High Performance Computing for Breakthrough Science at ORNL

Presented at the

ORAU Annual Council Meeting

James J. Hack, Director National Center for Computational Sciences

25 February 2009

ORNL is the U.S. Department of Energy's largest science and energy laboratory

- \$1.3B budget
- 4,250 employees
- 3,900 research guests annually
- \$350 million invested in modernization

- World's most powerful computing facility
- Nation's largest concentration of open source materials research

- Nation's most diverse energy portfolio
- The \$1.4B Spallation Neutron Source in operation
- Managing the billiondollar U.S. ITER project

National Center for Computational Sciences Oak Ridge National Laboratory

- Mission: Deploy and operate the computational resources required to tackle global challenges
- Providing world-leading computational resources and specialized services for the most computationally intensive problems
- Providing stable hardware/software path of increasing scale to maximize productive applications development
- Deliver transforming discoveries in materials, biology, climate, energy technologies, etc.
- Ability to investigate otherwise inaccessible systems, from supernovae to energy grid dynamics

Jaguar – 1.64 PF Cray XT: 45,376 Quad-Core Processors, 362 TB memory

Jaguar: World's most powerful computer. Designed for science from the ground up

-

Peak Performance	1.645 Petaflops
System Memory	362 Terabytes
Disk Space	10.7 Petabytes
Disk Bandwidth	240+ Gigabytes/second
Interconnect Bandwidth	532 Terabytes/second

High Performance Linpack Benchmark

- #2 on November 2008 list
- **1059** TeraFLOPS (76.7% of peak)
- **Ran on 150,152 cores**

- Largest HPL run ever, by a huge margin
- Ran on the XT5 portion of the machine 41 days after delivery of a 200 cabinet system!!!
- **Ran for 18.3 hours without a failure!!!!**

T/V	Ν	NB	Ρ	Q	Time	Gflops	
WR03R3C1	4712799	200	274	548	65884.80	1.059e+06	
VVVVVV	-VVVVVV	VVVVV	/VVV	VVVV-	VVVVVVVVVVVV	VVVVVV-	
Max aggregat	ed wall ti	me rfac	:t.,	. :	13.67		
+ Max aggreg	gated wall	time pf	act .	. :	10.99		
+ Max aggreg	gated wall	time my	. gwa	. :	10.84		
Max aggregat	ed wall ti	me pbca	ast .	. :	6131.91		
Max aggregat	ed wall ti	me upda	ate .	. :	63744.72		
+ Max aggreg	gated wall	time la	aswp .	. :	7431.52		
Max aggregat	ed wall ti	me up t	r sv	. :	16.98		
Ax-b _oo/	'(eps*($ A $	_00*	x _o	0+ b	_oo)*N)= 0.0006162	PASSED	
		======	=====	======		=======	
Managed by UT-Batt	telle						

HPC Challenge Benchmarks

- Four "Class 1" benchmarks:
- □ HPL 902 TFLOPS #1
- G-Streams 330 #1
- G-Random Access 16.6 GUPS#1 Baseline
- **G-FFTE** 2773 #3
- Working on further optimizations, but just ran out of time.
- A balanced, high performance supercomputer.

What does the system look like?

Jaguar combines the existing 263 TF Cray XT4 system at ORNL's NCCS with a new 1,382 TF Cray XT5 to create a 1.64 PF system

System attribute	XT5	XT4
Quad-core AMD Opteron [™] Processors	37,544	7,832
Node Architecture	Dual socket SMP	Single Socket
Memory per core / Node (GB)	2 / 16	2/8
Total System Memory (TB)	300	62
Disk Capacity (TB)	10,000	750
Disk Bandwidth (GB/s)	240	44
Interconnect	SeaStar2+ 3-D Torus	SeaStar2+ 3-D Torus

Jaguar's Cray XT5 Nodes

16 GB

Building the Cray XT5 System

Jaguar combines a new 1.38 PF Cray XT5 with the existing 263 TF Cray XT4

System components are linked by 4x-DDR Infiniband using 3 Cisco 7024D Switches

- XT5 has 192 IB links
- XT4 has 48 IB links
- Spider has 192 IB links

Storage for an avalanche of data

"Spider" is being installed to provide a shared, parallel file system for all systems

Based on Lustre file system

Bandwidth of over 240 GB/s

Over 10 PB of RAID6 Capacity

> 13,440 1 TB SATA Drives

□192 Storage servers

- 3 TeraBytes of memory
- 14 TeraFlops
- Available from all systems via our highperformance scalable I/O network
 - > Over 3,000 InfiniBand ports
 - Over 3 miles of cables
 - Scales as storage grows

Engineered for high availability

We are advancing scientific discovery

Resolved decades-long controversy about modeling physics of high temperature superconducting cuprates

New insights into protein structure and function leading to better understanding of cellulose-to-ethanol conversion

Addition of vegetation models in climate code for global, dynamic CO₂ exploration

First fully 3D plasma simulations shed new light on engineering superheated ionic gas in ITER

Fundamental instability of supernova shocks discovered directly through simulation

First 3-D simulation of flame that resolves chemical composition, temperature, and flow OAK

Recent and Highly Visible Science Output

for the Department of Energy

Science Prospects and Benefits with High End Computing in the Next Decade

Opportunity	Key Application Areas	Goal and Benefit
Materials science	Nanoscale science, manufacturing, and material lifecycles, response and failure	Design, characterize, and manufacture materials, down to the nanoscale, tailored and optimized for specific applications
Earth science	Weather, carbon management, climate change mitigation and adaptation, environment	Understand the complex biogeochemical cycles that underpin global ecosystems and control the sustainability of life on Earth
Energy assurance	Fossil, fusion, combustion, nuclear fuel cycle, chemical catalysis, renewables (wind, solar, hydro), bioenergy, energy efficiency, power grid, transportation, buildings	Attain, without costly disruption, the energy required by the United States in guaranteed and economically viable ways to satisfy residential, commercial, and transportation requirements
Fundamental science	High energy physics, nuclear physics, astrophysics, accelerator physics	Decipher and comprehend the core laws governing the Universe and unravel its origins
Biology and medicine	Proteomics, drug design, systems biology	Understand connections from individual proteins through whole cells into ecosystems and environments
National security	Disaster management, homeland security, defense systems, public policy	Analyze, design, stress-test, and optimize critical systems such as communications, homeland security, and defense systems; understand and uncover human behavioral systems underlying asymmetric operation environments
Engineering design	Industrial and manufacturing processes	Design, deploy, and operate safe and economical structures, machines, processes, and systems with reduced concept-to-deployment time

Science advances for the next decade require leadership computing

We have a multi-agency strategy for sustained leadership in computational sciences

- Provide the nation's most powerful open resources for capability computing
- Follow a well-defined path for maintaining national leadership in this critical area
- Deliver cutting-edge science relevant to the missions of key federal agencies
- Synergy of requirements and technology
- Unique opportunity for multi-agency collaboration for science

We are positioning ourselves to be a strategic climate science partner with NOAA

Climate change	Scenario, topic, time period, location		F	Regional climate projections
				Climate impacts
Impacts	climate sensitivity			GHG emissions (CDIAC)
Adaptation	Topic, potentials,	Data		Adaptation possibilities
Auaptation	limits Ouick			ARM archive
Mitigation	Emissions, technologies, policies	AND ATMOSPHERIC TA		Visualization tools Expert system shells
	IONAL	STRAT	User	Semantic web searches
	Climate chang	ION AL	0331313	Simplified models
Modeling and	ion Impacts, Climate Climate Climate	AND THE OF COMMERCE		Climate End Station
simulation		TIMENT OF C		Scientific liaison to project
	Mitigation		9	
	Uncertainties	Computing		Petascale computers
	Thresholds	IIIIIastiucture	Data	a analysis systems and tools
decision-	Feedbacks		24x7	7 system and facility support
related	Model coupling		Expert	assistance with applications
science	Integrating observations/		(Gigabit to terabit per second networks
1, managed by CI-I			Pe	tabyte file systems and data

for the Department of Energy

arahiyaa

Climate Modeling the Complete Earth System

- Improving current scientific capabilities
 - Higher-resolution runs of emissions scenarios
 - Record time-to-solution using Jaguar capabilities
- Accelerating future science (tied to time to solution)
 - Explorations of multi-century ocean spin up
 - Explorations of multi-decadal carbon-cycle spin-up
 - Incorporation of land ice sheet treatment
 - Convergence on pre-industrial forcing for initialization of 20th century retrospective simulations
 - Vital steps toward completing Earth System Model capability

Simulated snapshot of the atmospheric CO₂ exchange between the free atmosphere and underlying land surface

Energy-Carbon-Water Challenges for (DOE) Climate Change Science

- Provide the scientific basis to enable evaluation of climate change consequences in the context of sustainable production and use of interrelated resources
- Develop and apply an integrated earth system model combined with systematic experiments and observations to understand and project impacts of climate change
- Emphasize long-term (decadal) consequences at regional to global scales

Approach

Leverage unique ORNL competencies in climate science

> Long history of contributions to global climate modeling

- fundamental contributions to mathematical & computational algorithms
- fundamental contributions to computational implementation
- fundamental knowledge of model component integration
- development of global carbon cycle component models
- > Long history of contributions to carbon cycle science
 - measurements of terrestrial carbon cycle and ecosystem response
 - novel experimental capabilities to quantify terrestrial ecosystem sensitivities
 - extensive data holdings on carbon cycle observations
 - terrestrial ecosystem process model development

> Unmatched leadership computational and data facilities

- enabling and pacing technologies for making scientific progress
- > Widely recognized expertise in Integrated Assessment
 - unique capabilities in adaptation and vulnerabilities

What do we mean by climate change? What do we mean by climate extremes?

Climate Change Science: simulating the statistics of weather

Column Integrated Water Vapor

Earth System Models add the carbon cycle

Carbon Cycle Modeling

Exchange of Carbon between surface and free atmosphere

Visualization and Data Analytics

Visualization

Once users have completed their runs, the Visualization task group helps them make sense of the sometimes overwhelming amount of information they generate.

- Viewing at a 30'x8' PowerWall
- Upgraded cluster with GPUs for remote visualization

End-to-End Solutions

Researchers must analyze, organize, and transfer an enormous quantity of data. The End-to-End task group streamlines the work flow for system users so that their time is not eaten up by slow and repetitive chores.

- Automate routine activities, ex. job monitoring at multiple sites
- Data Analysis

Million-fold increase in computing and data capabilities

ORNL's Current and Planned Data Centers

Computational Sciences Building (40K ft²)

- Upgraded building power to 25 MW
- Deployed a 6,600 ton chiller plant
- Tripled UPS and generator capability

Multiprogram Research Facility (32K ft²)

- Capability computing for national defense
- Expanded to 25 MW of power and 8,000 ton chiller

Multiprogram Data Center (260K ft²)

- 110K ft² classified; 110K ft² unclassified
- Shared mechanical & electrical infrastructure
- Build out 25K ft² on each side as needed
- Lights out facility

High Bandwidth Connectivity to NCCS Enables Efficient Remote User Access

Connected to Major Science Networks

OC192 to ESNET with backup OC48	1 - 4 x 10 Gb to NSF Teragrid
10 Gb to Internet2	2 x 10 Gb UltraScienceNet
4 x 10 Gb to National Lambda Rail	10 Gb Futurenet to NSF Cheetah net

Take away message ORNL and UT lead the world in High Performance **Computing (HPC)** Many of the nation's most challenging problems cannot be solved without simulation using HPC HPC is a \$200M per year enterprise in our area 500+ people directly employed by ORNL and UT in HPC

Questions?

Visit us at: http://computing.ornl.gov

Jim Hack jhack@ornl.gov

Buddy Bland BlandAS@ornl.gov

Doug Kothe Kothe@ornl.gov

