4. Triangular matrices

- terminology
- forward and backward substitution
- inverse

Definitions

a square matrix A is lower triangular if $a_{i j}=0$ for $j>i$

$$
A=\left[\begin{array}{ccccc}
a_{11} & 0 & \cdots & 0 & 0 \\
a_{21} & a_{22} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & 0 & 0 \\
a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1, n-1} & 0 \\
a_{n 1} & a_{n 2} & \cdots & a_{n, n-1} & a_{n n}
\end{array}\right]
$$

A is upper triangular if $a_{i j}=0$ for $j<i$ (A^{T} is lower triangular)
a triangular matrix is unit upper/lower triangular if $a_{i i}=1$ for all i
a triangular matrix is nonsingular if the diagonal elements are nonzero

Forward substitution

solve $A x=b$ with A lower triangular and nonsingular

$$
\left[\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Algorithm:

$$
\begin{aligned}
x_{1} & :=b_{1} / a_{11} \\
x_{2} & :=\left(b_{2}-a_{21} x_{1}\right) / a_{22} \\
x_{3} & :=\left(b_{3}-a_{31} x_{1}-a_{32} x_{2}\right) / a_{33} \\
& : \\
x_{n} & :=\left(b_{n}-a_{n 1} x_{1}-a_{n 2} x_{2}-\cdots-a_{n, n-1} x_{n-1}\right) / a_{n n}
\end{aligned}
$$

Cost: $1+3+5+\cdots+(2 n-1)=n^{2}$ flops

Recursive formulation

Block matrix formulation (for $n \times n$ matrix A)

$$
\left[\begin{array}{cc}
a_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
B_{2}
\end{array}\right]
$$

- a_{11} is scalar, A_{21} is $(n-1) \times 1, A_{22}$ is $n \times n$
- x_{1} is scalar, X_{2} is an $(n-1)$-vector, b_{1} is scalar, B_{2} is an $(n-1)$-vector
- $a_{11} \neq 0, A_{22}$ is nonsingular and lower triangular

Forward substitution

1. $x_{1}:=b_{1} / a_{11}$
2. solve $A_{22} X_{2}=B_{2}-A_{21} x_{1}$ by forward substitution

Back substitution

solve $A x=b$ with A upper triangular and nonsingular

$$
\left[\begin{array}{cccc}
a_{11} & \cdots & a_{1, n-1} & a_{1 n} \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & a_{n-1, n-1} & a_{n-1, n} \\
0 & \cdots & 0 & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n-1} \\
b_{n}
\end{array}\right]
$$

Algorithm:

$$
\begin{aligned}
x_{n} & :=b_{n} / a_{n n} \\
x_{n-1} & :=\left(b_{n-1}-a_{n-1, n} x_{n}\right) / a_{n-1, n-1} \\
x_{n-2} & :=\left(b_{n-2}-a_{n-2, n-1} x_{n-1}-a_{n-2, n} x_{n}\right) / a_{n-2, n-2} \\
& : \\
x_{1} & :=\left(b_{1}-a_{12} x_{2}-a_{13} x_{3}-\cdots-a_{1 n} x_{n}\right) / a_{11}
\end{aligned}
$$

Cost: n^{2} flops

Right inverse of a triangular matrix

to compute a right inverse, write $A X=I$ as

$$
A\left[\begin{array}{llll}
X_{1} & X_{2} & \cdots & X_{n}
\end{array}\right]=\left[\begin{array}{llll}
e_{1} & e_{2} & \cdots & e_{n}
\end{array}\right]
$$

X_{k} is column k of $X ; e_{k}$ is k th unit vector (of size n)
then compute the X_{k} 's by solving n sets of linear equations

$$
A X_{1}=e_{1}, \quad A X_{2}=e_{2}, \quad \ldots, \quad A X_{n}=e_{n}
$$

using forward or backward substitution

Conclusion: if A is triangular and nonsingular, then it has a right inverse

Left inverse of a triangular matrix

to compute a left inverse, write $Y A=I$ as $A^{T} Y^{T}=I$, i.e.,

$$
A^{T}\left[\begin{array}{llll}
Y_{1} & Y_{2} & \cdots & Y_{n}
\end{array}\right]=\left[\begin{array}{llll}
e_{1} & e_{2} & \cdots & e_{n}
\end{array}\right]
$$

Y_{k} is column k of $Y^{T} ; e_{k}$ is k th unit vector (of size n) then compute the Y_{k} 's by solving n sets of linear equations

$$
A^{T} Y_{1}=e_{1}, \quad A^{T} Y_{2}=e_{2}, \quad \ldots, \quad A^{T} Y_{n}=e_{n}
$$

using forward or backward substitution

Conclusion: if A is triangular and nonsingular, then it has a left inverse

Inverse of a triangular matrix

if right and left inverse exist, they must be equal:

$$
Y=Y(A X)=(Y A) X=X
$$

Conclusion: if A is triangular and nonsingular, then it has an inverse A^{-1}

$$
A A^{-1}=A^{-1} A=I
$$

- A^{-1} is lower triangular if A is lower triangular
- A^{-1} is upper triangular if A is upper triangular
- $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
- solution of $A x=b$ can be expressed as $x=A^{-1} b$

Summary

if A is triangular and nonsingular (has nonzero diagonal elements), then:

- $A x=b$ or $A^{T} x=b$ can be solved in n^{2} flops
- A and A^{T} have inverses
- A has a full range: $A x=b$ is solvable for all b
- A has a zero nullspace: unique solution of $A x=0$ is $x=0$
- A^{T} has a full range: $A^{T} x=b$ is solvable for all b
- A^{T} has a zero nullspace: unique solution of $A^{T} x=0$ is $x=0$

