
GUESSTIMATE: A Programming Model
for Collaborative Distributed Systems

Kaushik Rajan
Microsoft Research India
krajan@microsoft.com

Sriram Rajamani
Microsoft Research India
sriram@microsoft.com

Shashank Yaduvanshi
Indian Institute of Technology, Delhi

hyaduvanshi@gmail.com

Abstract
We present a new programming model GUESSTIMATE for devel-
oping collaborative distributed systems. The model allows atomic,
isolated operations that transform a system from consistent state
to consistent state, and provides a shared transactional store for a
collection of such operations executed by various machines in a dis-
tributed system. In addition to “commited state” which is identical
in all machines in the distributed system, GUESSTIMATE allows
each machine to have a replicated local copy of the state (called
“guesstimated state”) so that operations on shared state can be ex-
ecuted locally without any blocking, while also guaranteeing that
eventually all machines agree on the sequences of operations exe-
cuted. Thus, each operation is executed multiple times, once at the
time of issue when it updates the guesstimated state of the issuing
machine, once when the operation is committed (atomically) to the
committed state of all machines, and several times in between as the
guesstimated state converges toward the committed state. While we
expect the results of these executions of the operation to be identical
most of the time in the class of applications we study, it is possible
for an operation to succeed the first time when it is executed on the
guesstimated state, and fail when it is committed. GUESSTIMATE
provides facilities that allow the programmer to deal with this po-
tential discrepancy. This paper presents our programming model,
its operational semantics, its realization as an API in C#, and our
experience building collaborative distributed applications with this
model.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Distributed programming;
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs

General Terms Design, Languages

Keywords Distributed systems, collaborative applications, con-
currency, language extensions

1. Introduction
Programming distributed systems is difficult for several reasons.
Latency between different components is high, and thus any com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

munication between components leads to large delays. Concur-
rency between components is intrinsic, and concurrent program-
ming is inherently hard. The programmer needs to deal with fail-
ures of various forms such as nodes, links, and disks. Consistency
between components in various machines needs to be traded off
with performance. In this paper we propose a programming model
GUESSTIMATE, which explores a new design point in the trade-off
between consistency and performance.

One way to build a distributed system is to centralize shared
data in the server, but this can affect responsiveness due to latency
and contention at the server. If we start caching or replicating the
shared data locally at each machine, we open a different can of
worms —it is non-trivial to keep all copies consistent. Thus, there
is an inherent tradeoff between responsiveness and consistency, and
there is a lot of prior work in this area. On the one extreme, we have
one copy serializability [4]. In this model, every action on shared
data is committed and made visible to all machines at the same
time. One copy serializability is the best form of consistency we
can hope for. However, this programming model is inherently slow.
The other extreme is replicated execution, where each machine has
its own local copy of the shared data, and can update the local
copies independently, which is very high performance, but there is
no consistency between the states of the various machines. Decades
of research has been done to explore the tradeoff between these two
models including sequential consistency [11], serializability [4],
linearizability [9], and eventual consistency [14].

GUESSTIMATE explores a new design point in the consistency-
performance tradeoff. In order to allow performance, GUESSTI-
MATE allows each machine to maintain a local copy of the shared
state (called “guesstimated state”). At any point in time, the guessti-
mated copy in each machine contains the expected outcome of
the sequence of operations issued by that machine, assuming no
conflicts with operations executed by other machines. Eventually,
the sequences of operations on all machines converge to the same
value. However, until this happens, each machine proceeds inde-
pendently with the current guesstimate it has. The advantage of the
programming model is that operations can be executed by any ma-
chine on its guesstimated state without waiting for any communica-
tion with other machines. The disadvantage is that each operation
executes multiple times —from the time of issue up to the time of
commit the operation updates the guesstimated copy, and finally at
the time of commit the operation atomically updates the committed
copy of all the machines — and the result of these executions is
not guaranteed to be identical, and the programmer has to deal with
this discrepancy.

In our model, operations transform shared objects from consis-
tent state to consistent state. Consistency is specified by precondi-
tions on operations. If at the time of issue an operation fails pre-
conditions on the guesstimated state, it is not even issued, and re-

jected.1 Otherwise, if an operation has no precondition violations,
it is immediately executed on the guesstimated state, without any
blocking. The same operation is executed again at commit time on
a different copy of the shared state (referred to as committed state)
that is guaranteed to be identical in all machines. In between issue
and commit of an operation issued by a machine mi, operations
from other machines can commit, and GUESSTIMATE attempts to
update the guesstimated state of mi with the knowledge of these
committed operations from other machines. As a results, each op-
eration can be executed several times on the guesstimated state, as
it progressively converges toward the committed state. For the class
of applications we study, we expect that most of the time the result
of the various executions of an operation from issue to commit are
identical, but this is not guaranteed.

We believe that the GUESSTIMATE programming model is par-
ticularly useful in building collaborative distributed applications,
where a group of users are collaborating to perform a shared task,
such as solving a puzzle, for example. We have built six such ap-
plications with GUESSTIMATE—a multi-player Sudoku game, an
event planning application, a message board application, a car pool
system, an auction system, and a small twitter-like application (see
Section 6). GUESSTIMATE provides facilities by which the pro-
grammer can annotate operations with particular kinds of specifica-
tions, and use off-the-shelf program verifiers to check that the im-
plementations of the operations satisfy these specifications. These
facilities enable the programming model to guarantee that even if
there are certain kinds of discrepancies between the results of ex-
ecution of the operation on the guesstimated state and the actual
committed state, as long as these differences do not matter with
respect to the specification of the operation, the model can simply
tolerate them. For other, more extreme kind of discrepancies which
violate the specification of the operation, the model provides com-
pletion functions which can be used to inform the user of discrep-
ancies, and have the users deal with such discrepancies. Challenges
also arise due to interaction between operations. A user might per-
form two operations o1 and o2 where the inputs to o2 depend on the
results of o1. Thus, a discrepancy in the execution of o1 affects the
execution of o2. GUESSTIMATE provides facilities by which such
operations with dependencies can be grouped into atomic opera-
tions with an all-or-nothing execution semantics. In the extreme,
the programmer might want one copy serializability for some im-
portant operations, and this can be implemented by the programmer
explicitly doing blocking until the operations commit.

This paper explores such a programming model, presents an op-
erational semantics for the programming model, a language exten-
sion to C# to use this programming model, and our experience in
writing some applications with the programming model.

2. Programming with GUESSTIMATE
We motivate GUESSTIMATE’s programming model using the

example of a multi-player collaborative Sudoku puzzle. The Su-
doku puzzle consists of a 9x9 square, where each square needs to
be filled with some integer between 1 and 9. The 9x9 square is
divided into nine 3x3 sub-squares uniformly. Each instance of the
puzzle comes with some pre-populated numbers. The objective of
the game is to fill all the entries in the 9x9 square subject to 3 con-
straints (1) the same number cannot repeat in a row, (2) the same
number cannot repeat in a column, (3) the same number cannot re-
peat in a 3x3 sub-square. Suppose we wish to program a collabora-
tive Sudoku game, where players are distributed across the Internet.
That is, we wish to allow different players to collaboratively work

1 In addition to better response times, the user gets feedback on operations
that fail on the guesstimated state quickly, so that they can potentially alter
the operation and resubmit it.

on different portions of the puzzle. Maintaining the state of the ma-
chine in a server is inflexible, and can lead to poor response times.
Thus, we might wish to replicate the state of the puzzle locally in
each of the machines.

Programming such an application with replicated state is non-
trivial. In each machine, we need to have three components: (1)
model that maintains the state of the puzzle, (2) a component that
manages the user interface, and (3) a synchronizer that performs
synchronization between the states of various machines. The syn-
chronizer is responsible for communication between all the repli-
cated instances of the model in various machines. Whenever the
model changes in any machine, the synchronizer needs to propagate
changes to all other machines. There could be conflicts because two
updates by two different machines could violate the constraints of
Sudoku mentioned above. There could be races because both the
UI and synchronizer could simultaneously update the model in each
machine. Programming the application correctly taking all these is-
sues into account is difficult. GUESSTIMATE’s goal is to hide much
of this complexity from the programmer, and offer a simplified pro-
gramming model where the programmer only needs to worry about
expressing the application logic. All the complex logic related to
keeping the model synchronized across various machines is han-
dled by the run-time system.

We describe how GUESSTIMATE’s programming model can be
used to program this application. Figure 1 shows the class Sudoku,
which represents the model(state shared by multiple computers). In
GUESSTIMATE the programmer declares shared objects by deriv-
ing from the abstract base class GSharedObject. Other than deriv-
ing this abstract base class, which forces providing code for a Copy
method, the programmer can program this class in whatever way
she wants. In this case, the class has a 9x9 array puzzle declared
in line 2. The method Check defined in lines 4–10 returns true if on
updating puzzle[row,col] with val the constraints of Sudoku
are satisfied, and false otherwise. The method Update defied in
lines 12–23 updates puzzle[r,c] to value v if it is a legal update,
and returns true. If the update is not legal, it returns false. Finally
the programmer has to define a copy method (line 24) that when
passed a source object copies the array puzzle from the source
to the this object. Note that other than deriving from the abstract
base class GSharedObject, the programmer does not have to do
anything different from the way she would write this class for a
non-distributed application.

Figure 2 shows the user interface class for this applica-
tion, which uses the Sudoku class from Figure 1. In line 6,
a new instance of the Sudoku class is created using a call to
Guesstimate.CreateInstance. Internally, GUESSTIMATE cre-
ates an instance of the Sudoku class and assigns it a unique identi-
fier. Other machines can now share this Sudoku instance by calling
the JoinInstance method. All machines that have joined this Su-
doku instance can now update this object while the run-time takes
care of all communication and synchronization.

In lines 15–24 of Figure 2 we see the event handler in the UI
that is executed in response to an update of row r, column c with
value v. In response to this event, in the case of a non-distributed
program, this code would simply call s.Update(r,c,v). With
GUESSTIMATE, the programmer has to create an operation us-
ing Guesstimate.CreateOperation as seen in line 17, and is-
sue the operation using Guesstimate.IssueOperation as seen
in line 19. When the operation is issued, GUESSTIMATE exe-
cutes it on the guesstimated copy of the Sudoku object. If the
execution fails due to violation of any of the constraints of Su-
doku (that is s.Update(r,c,v) returns false), the operation is
dropped. Otherwise, GUESSTIMATE submits it internally to a
queue, to be committed later simultaneously in all machines. The
code in lines 22–23 calls the redraw function if the operation suc-

1 class Sudoku : GSharedObject {
2 private int[9,9] puzzle;
3 ...
4 private bool Check(int row, int col, int val)
5 {
6 //returns true if adding val at puzzle[row,col]
7 //does not violate the constraints of Sudoku
8 // and false otherwise
9 ...

10 }
11

12 public bool Update(int r, int c, int v)
13 {
14 //adds value to puzzle[r,c] if all constraints
15 // are satisfied
16 if (r > 9 || r <= 0) return false;
17 if (c > 9 || c <= 0) return false;
18 if (v > 9 || v <= 0) return false;
19 if (!Check(r, c, v))
20 return false;
21 puzzle[r, c] = v;
22 return true;
23 }
24 public void copy(GSharedObject src)...
25 }

Figure 1. Sudoku class

1 public class UI {
2 enum Color {RED, YELLOW, GREEN, BLUE, COLORLESS};
3 Sudoku s;
4 OnCreate() {
5 //Here is how we create a shared object.
6 s = (Sudoku) Guesstimate.CreateInstance(typeof(Sudoku));
7 }
8 ...
9 void ReDraw(int r, int c, COLOR color){

10 Guesstimate.BeginRead(s);
11 Board[r,c].Text=s.puzzle[r,c];
12 Guesstimate.EndRead(s);
13 Board[r,c].BackColor=color;
14 }
15 void OnUpdate(int r, int c, int v){
16 // the operation we want to do is: s.Update(r,c,v)
17 Operation op = Guesstimate.CreateOperation(s, ‘‘Update’’, r,c,v);
18 //Issue the shared operation, together with a completion function
19 bool res = Guesstimate.IssueOperation(op,
20 (bool b) => {if (b) ReDraw(r, c, Color.GREEN);
21 else ReDraw(r, c, Color.RED)});
22 if(res)
23 ReDraw(r, c, Color.YELLOW);
24 }
25 }

Figure 2. UI class

ceeded on the guesstimated copy. The Redraw function (lines 9–
14) reads out the updated value from the guesstimate copy and re-
freshes the UI by changing the text on the square and painting it
YELLOW. Enclosing reads within Guesstimate.BeginRead and
Guesstimate.EndRead ensures that they are isolated from con-
current writes via the synchronizer.

At the time of commitment, this operation s.Update(r,c,v)
may succeed or fail. In particular, the operation can fail if between
the time instant when s.Update(r,c,v) was issued and the time
instant when the operation is committed, operations issued by some
other machine got committed, and these other operations violate the
precondition for the execution of s.Update(r,c,v).

After commitment, GUESSTIMATE calls a completion func-
tion, which is supplied as a delegate in the last argument of
Guesstimate.IssueOperation (lines 20–21). The completion
function takes a boolean value as argument. This boolean is the
result of executing the shared operation (in this case Update) dur-
ing commitment. The completion operation is used to change the
colors on the UI as follows. If the update operation is successful,
the completion operation changes the color of the square at row r,
column c to GREEN and if update fails the color is set to RED. The
way colors are manipulated by the UI in this example demonstrates
how GUESSTIMATE allows the programmer to deal with changes
to the shared state if some operations succeeded initially but failed
later due to conflicting operations from other machines.
Thus, programming with GUESSTIMATE involves the following
steps:

1. Create shared classes (that is, classes for objects that
the programmer wants to be shared across multi-
ple machines) such that they are derived from the
abstract base class GSharedObject. When creating
shared objects use Guesstimate.CreateInstance
or Guesstimate.JoinInstance methods provided by
GUESSTIMATE.

2. To invoke an operation on a shared object, first create the oper-
ation using Guesstimate.CreateOperation, and then issue
the operation using Guesstimate.IssueOperation.

3. Supply a completion function to
Guesstimate.IssueOperation to reconcile the client
of the shared object in case the operation fails during commit.

GUESSTIMATE API. The above example motivates the various
aspects of the GUESSTIMATE programming model. We now give a
complete description of the GUESSTIMATE API.

• GSharedObject CreateInstance(Type type) takes the
type of the shared object as input and creates a unique object of
that type and returns it to the client. The new object is internally
assigned a unique identifier and is registered with GUESSTI-
MATE.

• List <string> AvailableObjects() returns a list of
unique identifiers of all objects.

• Type GetType(string uniqueID) returns the type of a
shared object, given its unique identifier as input.

• string GetUniqueID(GSharedObject obj) returns the
uniqueID of a shared object.

• GSharedObject JoinInstance(string uniqueID) takes
the uniqueID of an available object and returns a reference to
that object. In, addition the machine executing this operation is
registered for future synchronizations on the object.

• sharedOp CreateOperation(GSharedObject
obj, string methodName, params object[]
parameterList) takes a shared object, the method name and
the parameters of the method as input and returns a shared
operation of type sharedOp.

A programmer can combine multiple shared operations to form
hierarchical operations. A shared operation can have a hierarchical
structure as defined in the grammar below:

SharedOp := PrimitiveOp| AtomicOp| OrElseOp
AtomicOp := Atomic { SharedOp* }
OrElseOp := SharedOp OrElse SharedOp

An AtomicOp is treated as an indivisible operation with ”all
or nothing” semantics. That is, if any one of the enclosed fail, then
none of the operations update the shared state. If all the enclosed
operations were to succeed then the shared state is updated by all
of them. The implementation of Atomic operations is done using
copy-on-write at the granularity of objects (see Section 4). The
OrElseOp is a hierarchical operation that allows the programmer
to specify an alternate operation in case of failure. The semantics
of op1 OrElse op2 is that at most one of op1 or op2 is allowed

to succeed with priority given to op1. If both op1 ad op2 fail, then
op1 OrElse op2 fails. The programmer is allowed to arbitrarily
nest these two hierarchical constructors. The following API is used
to create and issue shared operations:

• sharedOp CreateAtomic(List <sharedOp> ops) takes a
list of shared operations as input and returns a hierarchical
shared operation.

• sharedOp CreateOrElse(sharedOp op1, sharedOp
op2) takes two shared operations as input and returns a new
hierarchical shared operation.

• IssueOperation(sharedOp s,completionOp c) takes as
first parameter a sharedOp s created using CreateOperation,
CreateAtomic or CreateOrElse, and a second parame-
ter of type completionOp. The type completionOp is a
delegate type defined with the signature delegate void
CompletionOp(bool v). IssueOperation applies s to up-
date the guesstimated state immediately. Further, the opera-
tion is added to a pending list for committing on all machines.
GUESSTIMATE also remembers the machine m that submitted
the operation. At the time of commitment the completion oper-
ation c is executed on machine m. More details can be found in
Section 3.

• void BeginRead(GSharedObject object), void
EndRead(GSharedObject object) these methods can
be used to directly read the guesstimated state without issuing
operations. All reads enclosed within BeginRead and EndRead
are guaranteed to be isolated from concurrent writes to the
object through the synchronizer.

Apart from using this API to create shared objects, and issue oper-
ations on shared objects, the programmer can choose to implement
the application as she pleases.

3. Formal Model
In this section, we describe the GUESSTIMATE programming
model formally, and give an operational semantics for the model.
The programming model is presented at the level of abstraction a
programmer needs to understand in order to write programs. Thus,
the internal details of how the GUESSTIMATE runtime performs
replication and synchronization are somewhat hidden in this pre-
sentation. Section 4 presents the GUESSTIMATE runtime and ar-
gues that the runtime indeed faithfully implements the operational
semantics presented in this section.

Objects and state. A distributed system is a pair 〈M,S〉, whereM
is a tuple of |M | machines 〈m1,m2, . . . ,m|M|〉, and S is a set of
shared objects. In the example in Section 2, the Sudoku object is a
shared object. An application can have several such shared objects.
A shared state is a valuation to the set of shared objects. Σ is the set
of all shared states. In addition, each machine mi ∈ M maintains
a set of local objects Li, and this set could be different for different
machines. A local state is a valuation to the local objects. Γ is the
set of all local states. The programming model has four kinds of
operations: (1) local operation, (2) shared operation, (3) completion
operation, and (4) composite operation, described formally below.

The state of a machine is a 5-tuple 〈γ,C, σc, P, σg〉, where
γ ∈ Γ is the local state at the machine, C is a sequence of
completed shared operations, σc ∈ Σ is the committed state at the
machine, P is a sequence of pending composite operations at the
machine, and σg ∈ Σ is the guesstimated state at the machine.

The committed state σc is obtained by executing the sequence
of completed operations C from the initial state. The programming
model guarantees that the sequence C of completed operations is
identical across all machines, and thus C and σc are equal for all

machines in the distributed system (this is an invariant that can be
proved by induction on the operational semantics). The sequence
P consists of pending operations that have been submitted at this
machine, and guesstimated state σg is obtained by executing this
sequence of operations P starting from the committed state σc.
Since the sequence P may be different for different machines, the
guesstimated state σg could be different for different machines. As
the system proceeds executing, operations from P are moved to C,
and the guesstimated state σg and the committed state σc converge
to the same value when P becomes empty.

The set of machine states is denoted by ∆. The state of the
distributed system is a function Π from machine index to ∆. We
use the notation 〈γ(i), C(i), σc(i), P (i), σg(i)〉 to denote the state
of the ith machine Π(i).

Operations. Each machine can modify its local state using local
operations that can read the guesstimated state and local state,
but can update only local state. A local operation therefore has
signature (Σ × Γ) → Γ. Local operations do not change shared
state, and they are not applied on other machines. In addition to
managing local state, local operations can be used to maintain
information regarding submitted operations or to query the shared
state before applying an operation to change the shared state. The
set of all local operations is L.

A shared operation reads and updates the shared state. Shared
operations can succeed or fail. We can think of each shared opera-
tion as having a precondition Σ′ ⊆ Σ and the operation fails if it
is attempted to be executed from a state σ 6∈ Σ′. For example, if a
shared operation tries to buy tickets on an airplane, then it can fail
if there are not enough seats available. Thus, in addition to updating
the shared state, a shared operation returns a boolean value as well.
A shared operation therefore has signature Σ→ (Σ× B). The set
of all shared operations is S.

We associate a specification ϕs ⊆ Σ × Σ with every shared
operation s. A shared operation s conforms to specification ϕs if
for any pair of shared states σ1 and σ2 (1) if s(σ1) = 〈σ2, true〉,
then 〈σ1, σ2〉 ∈ ϕs, and (2) if s(σ1) = 〈σ2, false〉, then σ1 =
σ2. That is, a shared operation either returns true and satisfies
its specification, or returns false and does not modify the shared
state. We use specifications on shared operations to reason about
applications written using GUESSTIMATE. More details can be
found in Section 5.

A completion operation reads the local state, shared state, and a
boolean value, and updates the local state. A completion operation
therefore has signature (Σ×Γ×B)→ Γ. The set of all completion
operations is C.

A composite operation o is a pair 〈s, c〉 where s ∈ S is a shared
operation and c ∈ C is a completion operation. In a composite
operation, the boolean value produced by the shared operation is
passed as an argument to the corresponding completion operation.
The set of all composite operations is O. The semantics of a
composite operation 〈s, c〉 can thus be understood as:

λ(σ, γ). let (σ1, b) = s(σ) in
let γ1 = c(σ1, γ, b) in
(σ1, γ1)

Given a composite operation o = 〈s, c〉 we use the notation [o] or
equivalently [〈s, c〉] to denote a function with signature Σ → Σ
with the following semantics:

[〈s, c〉] = λσ.let (σ1, b) = s(σ) in σ1

We also extend the notation [.] to map a sequence of composite
operations to function with signature Σ→ Σ with the semantics:

[(o1, o2, . . . on)] = λσ.([on]([on−1] · · · ([o2]([o1](σ))) · · ·))

R1 : Π, o ∈ L issued at machine i ⇒ Π{ γ(i) := o(σg(i), γ(i)) }

R2 :
Π, o = 〈s, c〉 ∈ C issued at machine i,

s(σg(i)) = (σ, true)
⇒ Π{ P (i) := Append(P (i), o);

σg(i) := [o](σg(i)) }

R3 : Π, o = 〈s, c〉 = First(P (i)) ⇒

Π{ P (i) := AllButFirst(P (i));
C(i) := Append(C(i), s);
(σc(i), γ(i)) := o(σc(i), γ(i));
∀(j 6= i).C(j) := Append(C(j), s);
∀(j 6= i).σc(j) := s(σc(j));
∀(j 6= i).σg(j) := [P (j)](s(σc(j))) }

Figure 3. Operational semantics

Operational semantics. Each machine mi issues a sequence of
local and composite operations (oi1, o

i
2, . . .). Local operations are

executed locally on each machine, with no communication to other
machines. Each composite operation is first executed locally on
the guesstimated state of the issuing machine, and queued in the
sequence of pending operations. Atomically, a pending operation
is picked from the front of a pending queue of some machine, and
executed and committed on all machines.

The operational semantics of GUESSTIMATE is given by the
three rules in Figure 3. The rules are guarded commands of the
form Π, ϕ ⇒ Π′, where Π is the current state, ϕ is a guard (a
predicate that needs evaluates to true on current state and inputs
for the rule to be enabled), and Π′ is the next state. Π′ is obtained
by updating some components of Π. We use the notation Π{c1 :=
v1, c2 := v2, . . .} to denote a new state where component c1 in
Π gets updated to value v1, component c2 in Π gets updated to
value v2, etc. Any component not specified as updated retains its
old value.

To state the operational semantics formally, we need a few
definitions. The function First(list) returns the oldest entry in
list. The function AllButFirst(list) removes First(list) from
the list, and returns all the other elements preserved intact in the
same order. The function Append(list, o) returns a new list with
o appended as the last element of list.

Rule R1 states that a local operation at machine i merely mod-
ifies the local state at machine i. Rule R2 states that a composite
operation issued at machine i is appended at the end of the pending
queue at machine i, and updates the guesstimated state at machine
i. Note that this rule has a guard s(σg(i)) = (σ, true), which re-
quires that the operation s succeed before it is added to the pending
queue. If s(σg(i)) = (σ, false), then the operation o is dropped.

Rule R3 describes commitment of a shared operation. A shared
operation o = 〈s, c〉 is picked from the front of the pending queue
P (i) of some machine i. The operation is removed from the pend-
ing queue P (i) of machine i, and moved to the committed queue
C(i) of machine i. The committed state σc(i) and local state γ(i)
of machine i are updated by executing the operation o. For every
machine j, such that j 6= i, the shared operation s is also exe-
cuted to update the committed state σc(j). The operation is also
appended to the committed sequenceC(j) and updates the guessti-
mated state σg(j) by executing the pending operations P (j) on the
updated committed state. The rule R3 does not have a guard which
requires that the operation s be successful. The operation is exe-
cuted regardless of whether the operation s is successful or not.
Also, note that the guesstimated state σg(i) does not need to be
updated, since the concatenation of C(i) followed by P (i) is in-
variant due to the operation —the first element of P (i) is moved to
be the last element of C(i). During commitment, the operation s
is executed on all machines simultaneously and atomically, and up-
dates the committed state and guesstimated state in each machine.

In reality, this takes several rounds of communication between the
machines, but the programming model gives the illusion that the
commitment happens atomically on all machines. Section 4 gives
details on how the runtime implements atomic commitment. Dur-
ing the commitment process, the completion routine c is run on the
machinemi which issued the operation, and if the operation s fails,
then the completion routine c will have the opportunity to take re-
medial action.

Invariants. GUESSTIMATE guarantees that when the system qui-
esces and the pending queues of all machines is empty, the guessti-
mated state and the committed state of all the machines converge
to the same value.

Formally, every machine state 〈γ,C, σc, P, σg〉 satisfies the in-
variant [P](σc) = σg . The entire system (which comprises all ma-
chine states) satisfies the invariant that for any pair of machines mi

and mj , we have that σc(i) = σc(j) and C(i) = C(j). These
invariants can be proved by induction over the transition rules R1,
R2 and R3 allowed by the operational semantics.

4. The GUESSTIMATE runtime

Synchronization. The operational semantics given in Section 3
suffices to use GUESSTIMATE. In this section, we describe our spe-
cific implementation of synchronization in GUESSTIMATE runtime.
In particular, we describe how we simulate the atomic commitment
and how the implementation ensures that each operation is exe-
cuted at most three times. If the reader is merely interested in using
GUESSTIMATE, this description can be skipped. However, if the
reader is curious about how the GUESSTIMATE runtime guarantees
the semantics given in Section 3, we give some details below.

The synchronizer component of the GUESSTIMATE runtime,
maintains all the necessary state needed to coordinate among the
machines. At each machine mi it maintains a list of all shared
objects in the system (all calls to CreateInstance) and a list of all
objects that machine mi is subscribed to (calls to JoinInstance
made bymi). For each object that machinemi is subscribed to, the
synchronizer keeps two copies of the object, one to maintain the
committed state σc(i), and another to maintain the guesstimated
state σg(i). It also maintains an ordered list of pending operations
P (i) and a list of committed operations C(i). Every operation that
is issued by machine mi via IssueOperation is added to P (i).

To communicate between machines the synchronizer uses Peer-
Channel, a peer-to-peer (P2P) communication technology that is
part of .NET 3.5. PeerChannel allows multiple machines to be com-
bined together to form a mesh. Any member of the mesh can broad-
cast messages to all other members via a channel associated with
the mesh. GUESSTIMATE uses two meshes, one for sending sig-
nals and another for passing operations. Both meshes contain all
participating machines.

Synchronization among the machines is done in a master-slave
mode. One of the machines is designated to be the master and is
responsible for periodically initiating the synchronization process.
The synchronization happens over 3 stages.

1. AddUpdatesToMesh. In the first stage the pending opera-
tions from all machines are gathered to construct a consol-
idated pending list Pall(i) at each machine mi. This hap-
pens as follows. Starting with the master each machine mi,
on its turn, flushes out all operations in P (i) as triples of
the form 〈machineID , operationnumber , operation〉 via the
Operations channel to all the other machines, and then passes
the turn to the next machine i + 1 via a confirmation message
on the Signals channel. We will refer to the time instant at
which machine mi starts flushing operations as tBeginFlush(i)
and the time instant at which it completes flushing operations as
tEndFlush(i). In the time interval between tBeginFlush(i) and
tEndFlush(i) the implementation does not allow any new oper-
ations to be issued. Therefore at the time instant tEndFlush(i),
P (i) is empty.
The number of operations sent on the Operations channel is
also sent along with the confirmation message. As all machines
see these confirmation messages and know the number of par-
ticipating machines, they know the number of operations to ex-
pect in Pall(i). Once confirmation messages from all the par-
ticipants are received the master signals the beginning of the
second stage, ApplyUpdatesFromMesh.

2. ApplyUpdatesFromMesh. Each machine mi waits until it re-
ceives all the expected operations and then applies operations
from Pall(i) to the committed state σc(i) in lexicographic or-
der of the pair 〈machineID , operationnumber〉. Once an op-
eration has been applied it is moved to the Completed listC(i).
An operation o in Pall(i) can update the state of machine
mi in one of two ways. If the operation o = 〈s, c〉 were
submitted by machine mi then o updates (σc(i), γ(i)) to the
value of o(σc(i), γ(i)). If the operation were submitted by
some machine j 6= i then o updates σc(i) to s(σc(i)). Once
machine mi has applied all operations in Pall(i) it sends an
acknowledgment on the Signals channel. After sending the
acknowledgment the guesstimated state on mi, namely σg(i)
is updated to [P (i)](σg(i)) to reflect the changes made since
the synchronization began. This is done by first copying the
committed state to the guesstimated state by calling Copy and
then applying each operation in [P (i)]. We will refer to the
time at which machine mi begins copying the committed state
on to the guesstimated state as tBeginUpdate(i) and the time at
which the last operation from P (i) has finished updating σg(i)
as tEndUpdate(i). In the time interval between tBeginUpdate(i)
and tEndUpdate(i) the implementation does not allow any new
operations to be issued.

3. FlagCompletion. Once the master receives acknowledgments
from all the machines the synchronization is complete. The
master can start another synchronization any time after this.

Concurrency control. Within the guesstimate runtime concurrent
updates to shared state are possible. Fine grained locks are used in-
ternally by the Synchronizer to avoid races. These locks are used
to ensure the following: (i) operation are queued atomically into the
pending list (ii) in the time interval [tBeginFlush(i), tEndFlush(i)]
no operations are issued (iii) the execution of an operation on
the guesstimated state happens atomically (iv) In the time interval
[tBeginUpdate(i), tEndUpdate(i)] no operations are issued. (v) All
reads to shared state enclosed within BeginRead and an EndRead
are guaranteed to be atomic. Note that all these blocking synchro-

nization operations are used from within the Synchronizer and
none of them involve more than one machine. While the current
implementation uses pessimistic concurrency control, lock free im-
plementations and optimistic concurrency control could also have
been used. For example, the pending list could be implemented as a
lock-free queue and updates to the shared state could be serialized
with optimistic concurrency control. This would be useful espe-
cially if the shared state were large, as it would allow concurrent
independent operations to be applied without blocking.

All or nothing semantics are provided for atomic operations
using copy on write. The first time an object is updated within
an atomic operation a temporary copy of its state is made and
from then on all updates within the atomic operation are made to
this copy. If the atomic operation succeeds, the temporary state is
copied back to the shared state.

Conformance to the operational semantics. It can be shown
that there is a simulation relation between the state transitions in
the GUESSTIMATE runtime and the rules for operational seman-
tics in Figure 3. The proof for local operations (corresponding to
R1) and issuing composite operations (corresponding to R2) are
straightforward. For commitment of operations (corresponding to
R3), the crux of the argument is that even though commitment
takes several rounds of messages, all composite operations sub-
mitted in this duration can be thought of as being submitted ei-
ther before or after the entire commitment operation completes.
In particular, all composite operations issued at machine mi be-
fore tBeginUpdate(i) can be thought of as issued before the atomic
commit, and all composite operations issued at machine mi af-
ter tEndUpdate(i) can be thought of as issued after the atomic
commit. Note that no operations can be issued in the interval
[tBeginUpdate(i), tEndUpdate(i)].

Bounded re-executions. A salient feature of the implementation is
that though the operational semantics allows an operation to be ex-
ecuted multiple (possibly unbounded) number of times, our imple-
mentation of the GUESSTIMATE runtime ensures that an operation
is executed at most three times (including issue and commit). We
present an argument for why an operation can execute at most three
times.

An operation can be submitted at machinemi either outside the
time interval [tBeginFlush(i), tEndUpdate(i)] or within the time
interval [tEndFlush(i), tBeginUpdate(i)] (note that no operation
can be submitted in the intervals [tBeginFlush(i), tEndFlush(i)]
and [tBeginUpdate(i), tEndUpdate(i)]).

Suppose an operation o is submitted outside the time inter-
val [tBeginFlush(i), tEndUpdate(i)] Then, operation o is executed
once during issue. During the next synchronization, the operation
o is guaranteed to get committed (because all operations in the
pending list are guaranteed to be committed). The operation o is
executed once again during commit, thus executing a total of two
times.

Suppose an operation o is submitted within the time inter-
val [tEndFlush(i), tBeginUpdate(i)]. As before, operation o is ex-
ecuted once during issue. Next, at the time tBeginUpdate(i) op-
eration o is part of the pending list P (i) and all operations that
committed during the current synchronization have updated the
committed state σc(i). o is executed for the second time some-
where in the time interval [tBeginUpdate(i), tEndUpdate(i)] to up-
date the guesstimated state and re-establish the invariant σg(i) =
[p](σc(i)). Finally, during the next synchronization, the operation
o is guaranteed to commit and executes one more time (as in the
previous case), thus executing a total of three times.

Entering and leaving the distributed system. Machines can dy-
namically enter and leave the distributed system. When an appli-
cation written with GUESSTIMATE is started up on a new machine

the GUESSTIMATE runtime adds the machine to the Signals and
Operations meshes and broadcasts a special message on the sig-
nals channel. The master processes this message before the next
synchronization and sends the new device both the list of available
objects and the list of completed operations. The new device ini-
tializes its state based on these and intimates the master, who then
begins synchronization. A machine that leaves the system intimates
the master and the master removes this machine from the next syn-
chronization onward.

Failures and fault tolerance. When the master starts a new syn-
chronization phase it assumes all machines are active. However, if
the synchronization is stalled for more than a threshold duration,
the master goes through the log of messages sent on the signals
channel to detect the stalling machine. It resends the signal to which
the machine failed to respond. If the fault were transient the ma-
chine might respond to this resent signal. If the machine still does
not respond, the master removes the machine from the current syn-
chronization phase and sends it a restart signal. On receiving the
restart signal the machine shuts down the current instance of the
application and restarts the application. Upon restart the machine
re-enters the system in a consistent state.

Our current implementation is not tolerant to failure of the
master. This support can be added by designating a new machine as
master if no synchronization messages are received for a threshold
duration.

5. Design Patterns
The two main advantages of programming with GUESSTIMATE
are simplicity and responsiveness. The programming model is very
close to sequential programming in that the programmer creates
shared objects, and issues shared operations on them which exe-
cute synchronously without blocking on the guesstimated state. The
simple (and common) case is when the results of the operation dur-
ing the commitment phase are the same as the results obtained from
the guesstimated state. However, the programmer needs to handle
the case when the two results are indeed different. We encountered
several such situations in the applications we have written using
GUESSTIMATE, and we have been able to handle these using a few
design patterns involving specifications, completions, atomic oper-
ations and blocking constructs. We describe these design patterns
below.

Specifications. As noted in Section 3, we recommend a program-
ming discipline where every shared operation s conforms to a spec-
ificationϕs ⊆ Σ×Σ (recall from Section 3 that s conforming toϕs

means that if s returns true then s respects ϕs, and if s returns false
then the shared state is unchanged). We have written such specifica-
tions ϕs using Spec# [2], and checked that the body of s conforms
to ϕs using the Boogie program verifier [3].

Consider a machine mi that executes a sequence of operations
(s, t, . . .), where each shared operation s conforms to a specifi-
cation ϕs. Suppose all these operations succeed during execution
on the guesstimated state. Suppose also that each of the opera-
tions succeeds during commitment (we consider the case where
some of these operations fail during commitment later). This means
that the committed sequence of operations could be of the form
(o11, . . . , s, o

2
i , . . . , t, . . .) where operations oij submitted by other

machines are interleaved between the operations (s, t, . . .). How-
ever, due to definition of conformance, the pre and post states of
operations s and t in the committed sequence necessarily satisfy
ϕs and ϕt respectively.

For example, in our car pool application, a method
GetRide(Event e) searches through various ride sharing options
to get a ride for the user to attend event e. The operation succeeds
if some vehicle has space for the user. However, it may so happen

that during the execution of the method on the guesstimated state
the user gets a ride on vehicle v3 and by the time the operation is
committed, vehicle v3 is full. We have written a predicate ϕGetRide

which is satisfied if the user gets a ride on some vehicle, and estab-
lished that the implementation GetRide conforms to ϕGetRide using
Boogie. This ensures that as long as GetRide succeeds in the com-
mitted sequence, the user will have some ride, though perhaps not
in the initial vehicle v3 that was obtained during execution on the
guesstimated state.

This design pattern is easily extended to hierarchical OrElse
operations. If operations s and t both conform to a specification ϕ,
it can be established that the operation s OrElse t also conforms
to ϕ. Thus, the programmer can compose several alternatives to
achieve a goal ϕ using using the OrElse constructor, and still re-
spect this design pattern, allowing the flexibility that the operation
could succeed using one alternative during the execution on the
guesstimated state and another alternative during commitment.

Completions. Writing specifications for each shared operation and
checking for conformance greatly simplifies the task of writing
completion routines. If we use this discipline, then completion
routines can be written using the form:
(bool b) =>

if (b)
"indicate in UI that the
operation successfully committed"

else
"indicate in UI that the operation failed,
and ask the user to take remedial action"

Note that the completion routine for the Sudoku application
seen in Figure 2 follows this pattern.

In essence, the above two design patterns split up the respon-
sibility for handling variances between the guesstimated state and
actual committed state between the programmer and the user. The
programmer codes up several alternatives for achieving the goals of
an operation s such that the operation s returns true if any of these
alternatives can be executed successfully, and ensures that a speci-
fication ϕs (derived from the goal of the operation) holds for each
of these alternatives using static analysis. If all the alternatives fail
during commitment, the completion routine throws up the problem
to the user, and asks the user to deal with the failure.

Atomic operations. There are two kinds scenarios where we have
found use for atomic operations. The first is obvious —when we
want a set of operations to be executed with all-or-nothing seman-
tics. This happens in our event planning application when a user
wants to sign up for two events or none.

The second kind of scenario where we have found use for
atomic operations is when there is a value dependency between
operations. Suppose we have two operations s and t such that a
location written by s is read or written by t. Then, there is the pos-
sibility that s and t succeed during execution on the guesstimated
state, and that s could fail during commitment, and t could succeed.
In such situations if the dependence has to be enforced we suggest
grouping s and t together as a single atomic operation.

Blocking operations. Finally, there are certain situations where we
really want to be sure that an operation commits before executing
subsequent operations. We have encountered this situation, for in-
stance, in our event planning application, where we first require a
user to login, and we do not want to allow the user to do anything
before we are sure that the login has succeeded.

We have been able to program such scenarios by blocking the
main thread on issuing the operation and waiting until the comple-
tion routine unblocks it. The general template for doing so is as
below.
res = IssueOperation(loginOperation,
(bool b) =>

if (b)
"release the thread and allow access"

else
"release the thread and deny access"

if(res)
"block the thread"

In summary, we have presented four design patterns that we
have found useful in writing GUESSTIMATE applications. Our ex-
perience is that the above design patterns provide simple ways to
handle common situations that arise in programming collaborative
applications using GUESSTIMATE.

6. Experience
We have built 6 collaborative applications using the GUESSTIMATE
programming model. These are a collaborative multi-player Su-
doku puzzle, an event planning application, a message board appli-
cation, a car pool system, an auction system and a small scale twit-
ter application. In all these applications the shared state and shared
operations are encapsulated together in a shared object class. This
class derives from the abstract base class GSharedObject exposed
through GUESSTIMATE and implements a copy method. For exam-
ple, the Sudoku class contains a 9x9 array and an update operation
that form the shared data and operation respectively. It also imple-
ments a copy method that when passed a source object, copies the
9x9 array from the source to the this object. At a high level the
rest of the application design typically involves having to call ap-
propriate API functions to create new instances of shared objects
and issue operations based on user interaction. All applications are
written with about 500-700 lines of code. Below we share our ex-
perience in developing these applications using GUESSTIMATE by
highlighting some interesting design decisions that we made.

Updating local state. While the shared state is kept globally con-
sistent and up-to-date by the runtime, the programmer has to en-
sure that the local state is kept up-to-date. The state used by the
GUI has to not only be updated in response to user actions but
also in response to synchronizer events, and this can be done us-
ing GUESSTIMATE’s completion operations.

Designing completion operations correctly for the multi-player
Sudoku was challenging. Our first design of the GUI was as de-
scribed in Section 2 where initially when an operation is submitted,
the color of the square is changed to yellow, and later depending
on success or failure the color is changed to green or red respec-
tively. However, this design differentiated successful operations of
the current user from the successful operations done by other users,
and our users did not like this distinction. Ultimately, we chose to
remove the green color all together and depict all successful op-
erations from all users uniformly. Thus, we decided to use special
markings only for tentative operations and failing operations. When
an operation succeeds at commit time, we use the completion op-
eration to remove tentative markings.

Another interesting design decision was with regards to refresh-
ing the GUI. In most applications the GUI displays only user spe-
cific information in detail, while displaying other information only
on demand. For example, in event planner the list of activities
joined by the user is always on display and is kept up-to-date via
completion operations. On the other hand information regarding va-
cancy status of events is not displayed unless asked for. Therefore
it is often sufficient to frequently refresh only the user specific state
of the GUI while updating other state less frequently. Completion
operations are well suited to do this.

The one exception we found is in Sudoku where it is essential
for updates from other users to reflect on the grid as and when they
happen. In our initial design, the grid was refreshed every time the
user submitted an operation and every time a completion operation
was run. However, this alone was not sufficient. The user often did

1 private void button_signin_Click(object sender, EventArgs e){
2 string usrnm = textBox_username.Text;
3 string passwd = TextBox_password.Text;
4 sharedOp op = Guesstimate.CreateOperation(handle,usrnm,passwd);
5 Semaphore s=new Semaphore(0,1);
6 bool res = Guesstimate.IssueOperation(op,
7 (bool b) =>
8 {
9 if (b) { my_name = username; s.Release();}

10 else {
11 register_failed r = new register_failed();
12 r.ShowDialog(); s.Release();
13 }
14 }
15);
16 if (!res)
17 this.Close();
18 else{
19 this.Cursor = Cursors.WaitCursor;
20 s.WaitOne();
21 this.Cursor = Cursors.Default;
22 this.Close();
23 }
24 }

Figure 4. Sample code to implement a blocking operation

not see updates from operations submitted elsewhere. In our final
design we choose to call refresh based on user activity. Every time
the user moves the mouse around on a grid or the grid comes to the
fore, refresh is called. So as long as the user is active the display is
kept up-to-date. Our user experience study suggests that this is an
effective solution. Additional API support, that provides a call back
for changes to a shared object via remote operations, could provide
an alternate solution.

Blocking via completion operations. In five of the applications
(all but Sudoku) we needed to implement two functionalities, signin
and new user registration, as blocking functions. New user registra-
tion is made blocking to ensure that the same username is not si-
multaneously registered at two machines. And we choose to make
signin blocking to ensure that a user is signed in only on one ma-
chine at a time.

Blocking is implemented as shown in Figure 4 by waiting on
a semaphore until the completion operation releases it. Here, the
login operation is created in line 4, and issued in line 6. If the
result of the IssueOperation is true, then the issuing thread
simply waits on semaphore s at line 20. The wait is released by the
completion routine executing s.Release() in line 9. Apart from
these two functionalities the rest of the operations in all applications
are better suited to a non-blocking design.

Atomic and OrElse Operations. Atomic operations and OrElse
operations are used extensively in the event planner application.
Users can choose to join one among many events and we im-
plemented this using an OrElse operation. Atomic operations are
used when a user wants to perform multiple operations with all-or-
nothing semantics, for example a user chooses to go to a party only
if she also gets a ride to the party. Atomic operations are also used
when there is a value dependence via the shared state. In the event
planner, a request to join an event can fail either because there is no
more vacancy in the event or because the user has already joined
the maximum allowed events. In case a user wants to join an im-
portant event (eventa), but cannot because she is already used her
quota, she might want to leave some other event (eventb) and join
eventa. However, she wants to retain eventb unless she can join
eventa for sure. We use Atomic operations to ensure that such de-
pendencies are respected during execution.

Specifications and contracts. We designed all classes that imple-
ment GSharedObject in Spec#. Specifications of two kinds were

useful. Method contracts were used to specify that when a shared
operation returns false no updates are made to the shared state and
when it returns true changes are made only to the relevant parts.
Object invariants were used to express that both the state before
and after a method satisfy the object invariant.

Spec# translates contracts into a set of assertions and uses Boo-
gie to statically verify these assertions. Boogie classifies assertions
into provably correct assertions, provably failing assertions (these
are flagged as warnings at compile time) and other assertions which
cannot be proven statically. Spec# translates the last category of as-
sertions into checks and throws up a warning if there is a violation
at runtime. Programming with Spec# helped us in a few occasions
to catch bugs in our application logic. For example, the Sudoku
grid row check had an off by one error in array indexing which was
caught with the aid of Spec#. For our final version of Sudoku with
contracts, Spec# generated 323 assertions out of which boogie was
able to verify 271 as correct while the remaining 52 were translated
into runtime checks.

Maintaining local state. All updates to shared state happen via
GUESSTIMATE and are internally protected by locks from within
the GUESSTIMATE runtime. However, ensuring that updates to
local state are protected by locks is the programmers responsibility.
Particularly, as both completion operations and local operations
can update local state, all state accessed within completion
operations must be synchronized appropriately. For example,
in the event planner application, both the local operations that
mark tentative changes and the completion operations, update a
tentative joined list. Care must be taken to protect this list
with a lock.

In our experience, we find that the non-blocking nature of
GUESSTIMATE is well suited to programming collaborative dis-
tributed applications. In the rare cases that blocking operations are
required, they can implemented as shown in Figure 4.

7. Performance Evaluation
In this section we report the performance of the GUESSTIMATE
runtime in terms of the time it takes for each synchronization (all
three stages put together) to complete. We also study the scalability
of applications written with guesstimate by measuring how increas-
ing the number of users impacts (i) the synchronization time and (ii)
the number of conflicts. All measurements were made while run-
ning the Sudoku application with 2 to 8 users within a local area
network over a one hour time period. We chose to use Sudoku as
the test application, since we could get several volunteers to use it
with concurrent user activity.

Figure 5. Distribution of time taken for synchronization

Synchronization time. Figure 5 plots the distribution of the time
taken for synchronizations over a long run of the application in-
volving 8 users solving 2 Sudoku grids. It can be seen that the time
taken by guesstimate to complete a synchronization is within 0.5
seconds most of the time. There are 2 outliers in the distribution
where a synchronization takes more than 12 seconds. These corre-
spond to the times when synchronization stalled and the master had
to perform a fault recovery. However, owing to the non-blocking
nature of guesstimate even during these times the user could con-
tinue performing operations. Any blocking implementation would
have rendered the system unresponsive at these times.

Figure 6. Average time to synchronize vs. number of users

Figure 6 shows the impact of number of users on synchroniza-
tion time both in the presence and absence of user activity. The
average synchronization time is measured by ignoring the outliers
(time > 12 seconds), as including them would skew the average
away from the median. Two interesting observations can be made
from this plot. First, the plot indicates that presence or absence of
user activity does not affect the synchronization time by much. This
indicates that the dominant component of the time for synchroniza-
tion is network delay.

Second, it can be seen that the time for synchronization in-
creases linearly with number of users. This can be attributed to
the serial nature of the first stage (AddUpdatesToMesh) of syn-
chronization (refer to Section 4). However, even assuming a linear
increase guesstimate should easily scale to a 100 users as even with
100 users the average time to synchronize would be within 3 sec-
onds. This is reasonable even for a high user activity event like a
multi-player game, but possibly not for a highly sophisticated real
time game. For collaborative applications which do not have such
high user activity, guesstimate in its current form should scale to
a 1000 users. To scale it further we would have to parallelize the
first stage, which should also not be very hard. In our current de-
sign the first stage is kept serial purely for ease of monitoring and
debugging.

Conflicts. Figure 7 shows the number of instances when an oper-
ation that succeeded on issue failed at commit time during our ex-
periments. These measurements were made by adding a new user
for every 100 synchronizations performed by the runtime. As can
be seen conflicts are very rare even the presence of 8 active users.

Failure and recovery. During the one hour period for which we
gathered statistics, GUESSTIMATE encountered three failures, once
when one of the machines was restarted while the application was
running, and twice when the synchronization was stalled possibly
because a message was lost in transmission. GUESSTIMATE recov-
ered in all three cases automatically, once by resending the lost
message and twice by removing the machine from the stalled syn-

Figure 7. Number of conflicts vs. number of users

chronization loop and sending a restart message, and none of the
other users were even aware of the failure.

8. Related Work
Distributed systems have existed for several decades now. Early re-
search on consistency guarantees for data shared across distributed
systems was from the database community [4]. The notions of
replicated databases with one-copy serializability was introduced.
One-copy serializability allows for pessimistic replication as the
replicas are kept consistent at all times. These systems guaran-
tee high consistency but can lead to low performance and avail-
ability [16]. Optimistic replication on the other hand allows for
higher availability and faster performance than pessimistic repli-
cation. However, the replicas can diverge and safeguards need to
be provided to ensure that some form of consistency is guaran-
teed. Systems with optimistic replication typically guarantee even-
tual consistency [14].

Many systems have been built for mobile and Internet services
that support optimistic replication with an eventual consistency
guarantee. The work most closely related to the guesstimate sys-
tem is the mobile database system Bayou [12]. Bayou replicates
a database on multiple servers and allows clients to submit SQL
like queries to the database. This query is processed in one server
and then propagated across to other servers using pairwise entropy.
It allows for specification of per write merge functions to resolve
conflicts. Bayou relies on features in the database storage system
to log all operations on the database and to rollback and re-execute
them multiple times so that all servers see operations in the same
order. Little is known about the way to program applications for
Bayou. GUESSTIMATE differs in that it provides a well defined
API to build applications for distributed systems. It also does not
need any guarantees from the underlying storage system. Unlike
Bayou, GUESSTIMATE maintains all state in memory. In addition
to OrElse operations that are similar to the merge functions de-
fined in Bayou, GUESSTIMATE provides completion operations to
notify application users about conflicts. Further, it allows users to
naturally express related operations as Atomic operations.

The IceCube system [10] allows for users to specify constraints
on the order in which operations should be executed. Constraints
like either op1 or op2 should be performed and op1 should only be
performed if op2 is performed can be specified. The final commit
order can then be any order that satisfies all constraints. GUESSTI-
MATE respects the natural or causal ordering between operations
submitted by the same user. In addition it allows for hierarchical
operations.

Operational transformation [7] is a technique used for building
collaborative applications that allows operations to be committed as

soon as they are submitted. Operations received from other replicas
are suitably transformed before being applied so that their seman-
tic effect is preserved. While this is well suited for text applications
where transformations can be carefully defined, writing such trans-
formers is hard for other applications. Some of the design principles
of GUESSTIMATE like replication, availability and conflict resolu-
tion are also used in the design of replicated and distributed file
systems such as Unison [13], Coda [15] and GFS [8].

Mace is a language extension for C++ that allows the program-
mer to specify components of a distributed system in the form of
a state transition model and transforms them into a C++ imple-
mentation. Mace also enables the use of code profilers and model
checkers to help identify performance and correctness errors in dis-
tributed applications. GUESSTIMATE on the other hand provides
specific support for the development of interactive applications and
chooses a particular design point in the performance-consistency
trade-off that is well suited to such applications. Other languages
like X10 [6] target distributed systems with a partitioned global ad-
dress space. Extensions to software transactional memory that scale
to distributed systems with a partitioned global address space have
also been proposed [5]. GUESSTIMATE is not restricted to any par-
ticular distributed system architecture.

In summary, the twin goals of providing a performance-
consistency trade-off that is well suited to collaborative applica-
tions and a programming API that allows the programmer to build
such applications sets GUESSTIMATE apart from existing work.

9. Limitations and Future Work
GUESSTIMATE has several limitations. We list them below together
with some directions for future work.

Modularity and layering. Applications are often written in a lay-
ered fashion. While we have abundant experience using GUESSTI-
MATE to write applications in which the user directly interacts with
the API via a user interface, we do not know if we can develop
multi-layered software with it.

Size of shared state. GUESSTIMATE maintains multiple copies of
the shared state and copies the committed state to the guesstimated
state at the end of each synchronization. Dealing with large shared
objects could therefore slow down guesstimate. However, optimiz-
ing copy-on-write has been studied in several contexts, such as
STMs [1], and by using programming language features to inform
the runtime about side-effect free code and optimize copying in
such situations.

Updating local state. With GUESSTIMATE updating the local state
whenever changes are made to shared state still remains the pro-
grammer’s responsibility. Completion operations provide one way
to update local state but these do not handle updates from remote
operations. A mechanism to register a callback function for remote
updates could prove useful.

Scalable run-time. As mentioned in Section 7 the current version
of GUESSTIMATE might not scale beyond 1000 nodes, as the syn-
chronization time increases linearly with number of users. While
the non-blocking nature of GUESSTIMATE ensures that users are
not blocked during synchronization, slow synchronization affects
the lag between submission and completion, and hence affects user
experience. One possibility is to parallelize the first stage of the
synchronization protocol so that the time taken depends only on the
number of operations and the network delay but not on the number
of users.

Fault tolerance. While the current version of GUESSTIMATE tol-
erates some faults, since it is designed as a single master system,

the master remains a single point of failure. One possibility is to ex-
tend the implementation to dynamically change the master in case
the master fails.

Off-line updates. GUESSTIMATE does not currently support off-
line updates. Adding such support could be non-trivial in the sense
that if the time gap between the executions on the guesstimated and
committed states is large, the scope for discrepancy and conflicts
also becomes large.

ACKNOWLEDGMENTS
We thank Jim Larus, Dave Detlefs, Dave Campbell, Anders

Hejlsberg, Rama Ramasubramanian, Sanjiva Prasad and the anony-
mous reviewers for their insightful comments on earlier drafts of
this paper.

References
[1] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R.

Murphy, Bratin Saha, and Tatiana Shpeisman. Compiler and runtime
support for efficient software transactional memory. In PLDI ’06:
Programming language design and implementation, 2006.

[2] Mike Barnett, K. Rustan M. Leino, K. Rustan, M. Leino, and Wolfram
Schulte. The spec# programming system: An overview. In CASSIS
’04: Construction and Analysis of Safe, Secure and Interoperable
Smart Devices, 2004.

[3] Mike Barnett, Bor yuh Evan Chang, Robert Deline, Bart Jacobs, and
K. Rustanm. Leino. Boogie: A modular reusable verifier for object-
oriented programs. In FMCO ’05: Formal Methods for Components
and Objects, 2006.

[4] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman.
Concurrency Control and Recovery in Database Systems. 1987.

[5] Robert L. Bocchino, Vikram S. Adve, and Bradford L. Chamberlain.
Software transactional memory for large scale clusters. In PPoPP
’08: Principles and practice of parallel programming, 2008.

[6] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and
Vivek Sarkar. X10: an object-oriented approach to non-uniform
cluster computing. In OOPSLA ’05: Object-oriented programming,
systems, languages, and applications, 2005.

[7] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware
systems. In SIGMOD ’89: SIGMOD international conference on
Management of data, 1989.

[8] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
google file system. In SOSP ’03: Symposium on Operating systems
principles, 2003.

[9] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a
correctness condition for concurrent objects. ACM Trans. Program.
Lang. Syst., 12(3):463–492, 1990.

[10] Anne-Marie Kermarrec, Antony Rowstron, Marc Shapiro, and Peter
Druschel. The icecube approach to the reconciliation of divergent
replicas. In PODC ’01: Principles of distributed computing, 2001.

[11] Leslie Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Trans. Computers,
28(9), 1979.

[12] Karin Petersen, Mike Spreitzer, Douglas Terry, and Marvin Theimer.
Bayou: replicated database services for world-wide applications. In
EW 7: Proceedings of the 7th workshop on ACM SIGOPS European
workshop, 1996.

[13] Benjamin C. Pierce and Jérôme Vouillon. What’s in Unison? A formal
specification and reference implementation of a file synchronizer.
Technical Report MS-CIS-03-36, Dept. of Computer and Information
Science, University of Pennsylvania, 2004.

[14] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM
Comput. Surv., 37(1), 2005.

[15] M. Satyanarayanan. The evolution of coda. ACM Trans. Comput.
Syst., 20(2), 2002.

[16] Haifeng Yu and Amin Vahdat. The costs and limits of availability for
replicated services. In SOSP ’01: Symposium on Operating systems
principles, 2001.

