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Abstract

This document describes a novel set of number systems basezhrpowers of a given base, but on factorials
of the system’s radix. The construction of these numberesystis based on the process of ordering a set of sortable
elements and provides a unique one-to-one mapping betwenas ordering and the integers in the raf@eR!)
for a set of R elements. In this way, the particular order of any otherveidgtrarily arranged sortable elements can
be used to convey a numerical value and therefore any agbitnassage restricted only by the number of elements
used. As a steganographic tool, this allows a message todgeriin an inconspicuous list such as deck of cards,
shopping list, or the palette of an image file.

|. REVIEW OF DIGITAL NUMBER SYSTEMS

A number system is a map between numerical values and repagsas of those values. Generically, we might
say thatA represents the valug in some number systefi. We denote this asl 2 X, or simply A = X if the
particular number systens;, is obvious from the context.

The most commonly used number systems diggtal humber systems, in which values are represented by a
string of digits:

GN—-1AN—-2 " G20100
For clarity, we will represent digit strings as ordereddijstuch as
(aNflv aN-2,...,02,01, QO)

When appropriate, the vector will be subscripted to ingiche number system.
Every digit in such a string makes a certain contributionhte value represented. Specifically, this contribution
is the product of the digit itselfai for i = 0,..., N — 1) and the weight}¥;, associated with the digit's position.

The total value is the sum of these contributed values:
N-—1

(aN,l,...,ao)S:> Zwlalawlzfs (Z) (1)
=0

The definition of W; at the end of (1) indicates that the weight of each digit pmsiis a function defined
according to number system whose only argument is the dagitipn, i. Specifically, the digit weight}//;, and

digit value,a;, are independent.
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A. Positional Notation Number Systems

The familiar decimal, hexadecimal, and binary number sgstbelong to a subclass of the digit number systems
called positional notation number systems. A positional notation system is defined by an integer vatatgrred to
as thebase of the system. All of the digits in a positional notation ®ratwith baseB are integers in the closed

range[0, B — 1], and the weight of each digit position is an integer powerhaf $ystem’s base. Specifically,
W; = B
Deriving from equation 1, we define a positional notation bemsystem with bas®& as follows:

N1 1
(an-1,aN-2,...,a2,a1,a0)p, = > ;_o B'a;

a; €{0,1,...,B—1} fori=0,...,N —1

Note that thePp subscript on the digit string indicates a positional notatiepresentation with bage.

II. ONE-TO-ONE NUMBER SYSTEMS

Orthogonal to the digital number systems, we define the ifilzestion of one-to-one integer number systems as
those number systems which have exactly one way to unamisfjucepresent every integer in a particular closed
range. To define this classification more rigorously,Jleind D be two integers, withD > 0. A one-to-one integer
number system with rangd, L + D], must satisfy the following three requirements:

1) ( XeZ)N(L<L<X<L+D)—3JA:A=X

2) GivenA= X andB=Y,X#Y - A#B

3) GvenA= X andB=Y,A#B—- X #Y

Requirement 1 is calleflill-coverage, and it requires a one-to-one integer number system to leetabikpresent
every integer in the specified ran@g, L + D]. Requirement 2 is calledniqueness and it requires that different
values have different representations. Finally, requinen8 is callednon-redudancy, and it requires that there be
no more than one way to represent a given value.

There are certain applications that benefit from havingipleltvays to represent certain values (such as redundant
binary representation), and there are certain applicatibat benefit from trading off full-coverage in exchange for
partially covering a larger range more compactly (such aatifig point numbers). However, the steganographic
application discussed in section V requires full-coveragethat the represented values can be used as arbitrary
binary objects. In addition, non-redundancy provides @reeapacity for this application because it covers a larger
number of unique values than a corresponding number sy$tenhas multiple ways of representing some values.
Finally, uniqueness is necessary to communicate unamsligiouithout it a given representation could correspond
to multiple values and therefore multiple messages.

The following sections will address each of these requirgsa turn.
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I1l. UNIQUENESS OFDIGITAL NUMBER SYSTEMS

All digital number systems provide uniqueness (requirer2enThis can be seen by noting that equation 1 can be
rewritten so that the number systef,is a function with the digit string as the argument and tHeeaepresented

by the string the result:
N—-1
S( (aNfl,...,ao)) = Z Wiai
=0

In the terms of requirement 2, this looks like:

To violate uniqueness would requifé # Y and A = B:
S(A)=X # Y=8B)=S(4)
S(4) # S(4)

Since this is a contradiction, uniqueness cannot be vidlate

IV. INTRODUCING FACTORIAL NUMBER SYSTEMS

This section will present the defining characteristics ofdaal number systems and show that these characteristics
are sufficient for making these systems finite, one-to-omeger number systems. Rationalization for the use of
these number systems in light of other sufficient numberesyswill be provided later, in section V.

Factorial number systems are a family of integer digital number systems where eachbmrmystem is defined

by an integer value called itsadix. The weight of each digit position for a factorial numbertsys is given by

W, =

mforlzo,,R—l (2)

where R is the radix that defines the number system.

The other defining characteristic of factorial number aystés that the digits are restricted as follows:
a; €{0,1,...,R—1—4} fori=0,...,R—1 3)

This is unusual compared to more familiar number systemgentie possible digit values are the same for every
position. In a factorial number system, the least significfigit position has the most digits to choose from (every
integer from 0 toR — 1, inclusive), with each subsequent position loosing onesiptes digit off the high end of the
range. Shortly, it will be shown that this construction pd®s the non-redundancy requirement for a one-to-one
number system.

Notice that in both (2) and (3), the counteonly runs up toR — 1, instead of the more generi¥ — 1 used
previously. This is an important aspect of factorial numggstems in that it causes these systems to be finite. As

will be shown, the factorial number system with radixcan only represent integer values[in R! — 1]. This is
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sufficient and appropriate for the steganographic apjdinathich will be discussed in section V, and is necessary
due to the definitions ofV; anda; in (2) and (3), respectively.

Before detailing the implications of these characteristiee will summarize the above in the following description
of a factorial number system with radi:

R-1 R!
(GR—L GR—2,...,02,01, aO)]—‘R = Eizo ai—(R_i)!

a; €Z; a; €0,R—i—1] fori=0,1,...,R—1

ReZ R>0

A. Factorial Number Systems are One-to-One

Factorial number systems are a subclass of digital numbstersys and therefore satisfy the uniqueness re-
quirement of one-to-one number systems, as shown abovectiorsdll. It will now be shown that factorial
number systems also satisfy the two remaining requiremehts one-to-one number system: full overage and
non-redundancy.

Let C; be the set of all possible values that digitan contribute to the total value:
Ci = {a;Wila; €{0,1,2,...,R—i—1}}
= {0,W;,2W;,...,(R—i—1)W;}

C; represents the set of all values that can be representeailviigits except digiti locked in at 0. Notice that
if the set were extended by one more element, that elementivieu
R! R!
R—)W,=(R—1 — = _ =W;
(=) B0 = ~ i) 1

We can thus say that this set spans the rajdgd/;,1), but only with a precision of¥; (in other words, each

element in the set i8V; away from its nearest neighbors).
We can likewise find the set;_; = {0,W;_1,...,(R —1i)W;_1}, which covers the rang@, ;) with a
precision ofW,;_;. We now add each element 6f_; to the first element of’; to construct the following:

{04+0,0+W;_1,0+2W;_q,...,04+ (R—1i) Wi_1}

Notice that the final element in this constructed set is aad=1W;_; away from the next element @;, which

has a value of¥;:

(R—i) Wi_1+ Wiy (R—i-i-l)Wi_l

. R
= (R—H—l)m
. R
= Bt e
R!
T (R-0)
- W
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We have therefore filled in th&/; distance between the two lowest elementdpfto a precision ofiV;_;. We
can likewise do this with each element 6f to span the entire rangé, W, 1) with a precision ofW;_;. This
represents all the values that can be constructed usingdigilg 7 and: — 1, with all other digits set to O.

By induction, we can use the next digit down to fill in these giapa precision oiV,;_5, and so on all the way
down to a precision of¥, with the least significant digit. By 2V, = (R%!O)! = % =1, so we have therefore
covered every integer ifo, W, 1) usingi digits.

By lettingi = R — 2 (the second to last digit), we can cover all the integerf)iiz_;1) = {O, (R%JH)!) =
[0, R!). This still leaves the last digit, but (3) dictates that thi#i always have a digit value of 0, and so contributes
nothing to the value. The factorial number system of rallixherefore satisfies the full-coverage requirement for
the rang€0, R! — 1].

Finally, notice that the sets constructed above by addich element oiC; to C;_; do not overlap, because the
largest value irC;_1 is less than the distance between adjacent membeTrs. dfactorial number systems therefore

also satisfy the non-redudancy requirement.

V. ORDERED-SET STEGANOGRAPHY

Steganography is the science of hiding data within an ingieosuscover object. It is a branch of information
theory and closely related to cryptography. Cryptograpiopvever, intends to conceal the meaning of the data,
where as steganography seeks to conceal the very existatioe data.

A basic tenet of steganography is that any arbitrary choiedlable to a message generator is an opportunity to
encode information. A classic example from history is Paevéte’s friend in the Old North Church. His choice
was to hang one lantern or two in the bell tower, and the dmtisie made conveyed information regarding the
movements of the British troops.

The factorial number system constructions described abm/based on the choice of how to order a set of items.
Specifically, consider a set of unique items with some metbogresenting the set in an ordered list. For the sake
of steganography, each possible ordering of the preseistecbluld represent a different message. Generically, we
will assume the message is an arbitrary binary objecy: thiddcbe ASCII text, or a compressed image file, or
simply an index into a codebook of pre-arranged messageh &set containing? elements hag:! ways it can
be ordered and can therefore encode a message log,t&! bits.

In constructing this list, the message generator will bdginchoosing the first element from the set of All
possibilities. This corresponds to the least signficanit dtigthe radix-R factorial number system. This leaves only
R — 1 items to choose the second item from, which correspondseaéicond-least significant digit, and so on.
Notice that for the final element, there is only one option, lgfhich means it is not a choice for the message
generator and therefore cannot convey any additionalnmdtion. This corresponds to the fact that the digit 1
in the factorial number system always has a digit value of @ therefore does not contribute to the value.

Thus, each element in the list corresponds to a digit in tlotofal number system whose radix is equal to

the number of elements in the set. The restriction on diditesa presented in (3) is derived from this process of
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ordering a set of items. The weighting scheme shown in (2)thes established so that the number system would
be one-to-one as shown in section V. This was necessariidantended steganographic application: full-coverage
was nessary so that arbitrary binary messages could be etcadd unigeness was necessary so that the encoded
message would be unambiguous. Non-redundancy is notystmietessary but allows a greater number of messages
to be encoded in the same size list (in steganographic teétmvides a greater capacity).

The digit value associated with each element is based onokgign in an agreed upocanonical order (for
instance, a sorted lexicographical order). Importantlg, translation between elements in the list and digit values
is not universal, meaning that a given element in a given ses dhot always represent the same digit value. This
is a neccessary consequence of the fact that not all digitstalee on the same digit values. Instead, the digit
value of an element comes from the canonical order of the eziésithat have not yet been used. For the first item
(corresponding to the least significant digit), this is tinéire set of items. For the next item, it is the original set
of items, minus the item chosen for the first position.

To be clear, the unused items should be re-sorted after ¢éawhi$ chosen for the presented list, and the digit
value for the next chosen item is equal to its 0-based indixtlms resorted set. For practical purposes, as long
as the canonical order does not otherwise change when aristeemoved, a full resort is not necessary. Instead,
each element should be assigned an initial value based amdiéx into the canonical order of the full set. Each

time an item is removed, all the items above it will have theilues reduced by one in order to fill in the gap.

A. Example

Consider the following set of four items:
{apples bananas carrots deer-mest

The canonical order will be determined by ascending lexiaphical sorting (a, b, c, d) for all subsets.

There ared! = 24 different ways to order this set. A particular ordering is
(bananas deer-meat apples carrotg

Here we assume that the right-most item (“carrots”, in tleise) was chosen first and therefore corresponds to the
least significant digit. Additional elements were addedhe list moving right to left so that the left most item
corresponds to the final digit.

When “carrots” was chosen for the first item, all four itemsrevavailable, so its digit value is equal to its
index into the canonical order of the set, which is 2. Withs tiem removed, the canonical order of the remaining
elements is

(apples bananas deer-meat

“apples” still has a digit value of 0, which will take up thecead digit position. The removal of “apples” from

the set will cause the two remaining items to move down by onéé canonical ordering, leaving “deer-meat” at
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index 1, which will be its digit value in the third digit po&ih. This leaves only “bananas” which necessarily has

a digit value of 0. Our factorial number system represemtatif this list is therefore:
(0,1,0,2)
From the (1) and (2), this has a value of

(0x24)+ (1 x12)+(0x4)+(2x1)=14

VI. CONCLUSION

The family of number systems described in this paper areetlamiodeled on the construction of a list from
a set of unique items and creates a simple one-to-one majgivgeen every possible ordering of such a list
and the integers if0, R!) for a set of sizeR. This has applications in steganography where each integjae
can correspond to an arbitrary message which can therefoenboded into the particular order chosen for an
incospicuous ordered set, such as a shopping list or thétgaiean image file.

The factorial number system equivalent to a sefRoitems can encode up tog, R! bits. The rapid growth of
the factorial causes this to attain useful levels with lstgpractical size. A set of 128 elements, for instance, can
encode over 716 bits, equivalent to 89 extended ASCII cherscRepresenting the set itself requires an average
of 7 bits per element, which makes 896 bits for the entiregieing a data rate of more than 79%. A 256 element
set provides over 1600 bits of capacity with a data rate of .82%

Sets of this magnitude are typical in palette based imageddenmonly used on the World Wide Web. While the
data rate taking the file as a whole may be quite small comparether steganographic techniques (for instance,
discrete cosine steganography used with JPEG files, antddigadficant-bit stegnagraphy used with various true-
color lossless image formats), this technique benefits fnotrhaving to change the visual image itself, leading to

greater transparency.
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