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Abstract

This document describes a novel set of number systems based not on powers of a given base, but on factorials

of the system’s radix. The construction of these number systems is based on the process of ordering a set of sortable

elements and provides a unique one-to-one mapping between such an ordering and the integers in the range[0, R!)

for a set ofR elements. In this way, the particular order of any otherwisearbitrarily arranged sortable elements can

be used to convey a numerical value and therefore any arbitrary message restricted only by the number of elements

used. As a steganographic tool, this allows a message to be hidden in an inconspicuous list such as deck of cards,

shopping list, or the palette of an image file.

I. REVIEW OF DIGITAL NUMBER SYSTEMS

A number system is a map between numerical values and representations of those values. Generically, we might

say thatA represents the valueX in some number systemS. We denote this asA
S
⇒ X , or simplyA ⇒ X if the

particular number system,S, is obvious from the context.

The most commonly used number systems aredigital number systems, in which values are represented by a

string of digits:

aN−1aN−2 · · ·a2a1a0

For clarity, we will represent digit strings as ordered lists, such as

(aN−1, aN−2, . . . , a2, a1, a0)

When appropriate, the vector will be subscripted to indicate the number system.

Every digit in such a string makes a certain contribution to the value represented. Specifically, this contribution

is the product of the digit itself (ai for i = 0, . . . , N − 1) and the weight,Wi, associated with the digit’s position.

The total value is the sum of these contributed values:

(aN−1, . . . , a0)S ⇒
N−1
∑

i=0

Wiai; Wi = fS (i) (1)

The definition ofWi at the end of (1) indicates that the weight of each digit position is a function defined

according to number system whose only argument is the digit position, i. Specifically, the digit weight,Wi, and

digit value,ai, are independent.
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A. Positional Notation Number Systems

The familiar decimal, hexadecimal, and binary number systems belong to a subclass of the digit number systems

calledpositional notation number systems. A positional notation system is defined by an integer value,referred to

as thebase of the system. All of the digits in a positional notation system with baseB are integers in the closed

range[0, B − 1], and the weight of each digit position is an integer power of the system’s base. Specifically,

Wi = Bi

Deriving from equation 1, we define a positional notation number system with baseB as follows:

(aN−1, aN−2, . . . , a2, a1, a0)PB
⇒

∑N−1
i=0 Biai

ai ∈ {0, 1, . . . , B − 1} for i = 0, . . . , N − 1

Note that thePB subscript on the digit string indicates a positional notation representation with baseB.

II. ONE-TO-ONE NUMBER SYSTEMS

Orthogonal to the digital number systems, we define the classification of one-to-one integer number systems as

those number systems which have exactly one way to unambiguously represent every integer in a particular closed

range. To define this classification more rigorously, letL andD be two integers, withD ≥ 0. A one-to-one integer

number system with range[L, L + D], must satisfy the following three requirements:

1) (X ∈ Z) ∧ (L ≤ X ≤ L + D) → ∃A : A ⇒ X

2) GivenA ⇒ X andB ⇒ Y , X 6= Y → A 6= B

3) GivenA ⇒ X andB ⇒ Y , A 6= B → X 6= Y

Requirement 1 is calledfull-coverage, and it requires a one-to-one integer number system to be able to represent

every integer in the specified range[L, L + D]. Requirement 2 is calleduniqueness and it requires that different

values have different representations. Finally, requirement 3 is callednon-redudancy, and it requires that there be

no more than one way to represent a given value.

There are certain applications that benefit from having multiple ways to represent certain values (such as redundant

binary representation), and there are certain applications that benefit from trading off full-coverage in exchange for

partially covering a larger range more compactly (such as floating point numbers). However, the steganographic

application discussed in section V requires full-coverageso that the represented values can be used as arbitrary

binary objects. In addition, non-redundancy provides greater capacity for this application because it covers a larger

number of unique values than a corresponding number system that has multiple ways of representing some values.

Finally, uniqueness is necessary to communicate unambigously; without it a given representation could correspond

to multiple values and therefore multiple messages.

The following sections will address each of these requirements in turn.
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III. U NIQUENESS OFDIGITAL NUMBER SYSTEMS

All digital number systems provide uniqueness (requirement 2). This can be seen by noting that equation 1 can be

rewritten so that the number system,S, is a function with the digit string as the argument and the value represented

by the string the result:

S ( (aN−1, . . . , a0) ) =

N−1
∑

i=0

Wiai

In the terms of requirement 2, this looks like:

S (A) = X

S (B) = Y

To violate uniqueness would requireX 6= Y andA = B:

S (A) = X 6= Y = S (B) = S (A)

S (A) 6= S (A)

Since this is a contradiction, uniqueness cannot be violated.

IV. I NTRODUCING FACTORIAL NUMBER SYSTEMS

This section will present the defining characteristics of factorial number systems and show that these characteristics

are sufficient for making these systems finite, one-to-one integer number systems. Rationalization for the use of

these number systems in light of other sufficient number system will be provided later, in section V.

Factorial number systems are a family of integer digital number systems where each number system is defined

by an integer value called itsradix. The weight of each digit position for a factorial number system is given by

Wi =
R!

(R − i)!
for i = 0, . . . , R − 1 (2)

whereR is the radix that defines the number system.

The other defining characteristic of factorial number systems is that the digits are restricted as follows:

ai ∈ {0, 1, . . . , R − 1 − i} for i = 0, . . . , R − 1 (3)

This is unusual compared to more familiar number systems where the possible digit values are the same for every

position. In a factorial number system, the least significant digit position has the most digits to choose from (every

integer from 0 toR−1, inclusive), with each subsequent position loosing one possible digit off the high end of the

range. Shortly, it will be shown that this construction provides the non-redundancy requirement for a one-to-one

number system.

Notice that in both (2) and (3), the counteri only runs up toR − 1, instead of the more genericN − 1 used

previously. This is an important aspect of factorial numbersystems in that it causes these systems to be finite. As

will be shown, the factorial number system with radixR can only represent integer values in[0, R! − 1]. This is
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sufficient and appropriate for the steganographic application which will be discussed in section V, and is necessary

due to the definitions ofWi andai in (2) and (3), respectively.

Before detailing the implications of these characteristics, we will summarize the above in the following description

of a factorial number system with radixR:

(aR−1, aR−2, . . . , a2, a1, a0)FR
=

∑R−1
i=0 ai

R!
(R−i)!

ai ∈ Z; ai ∈ [0, R − i − 1] for i = 0, 1, . . . , R − 1

R ∈ Z; R > 0

A. Factorial Number Systems are One-to-One

Factorial number systems are a subclass of digital number systems and therefore satisfy the uniqueness re-

quirement of one-to-one number systems, as shown above in section III. It will now be shown that factorial

number systems also satisfy the two remaining requirementsof a one-to-one number system: full overage and

non-redundancy.

Let Ci be the set of all possible values that digiti can contribute to the total value:

Ci = {aiWi|ai ∈ {0, 1, 2, . . . , R − i − 1}}

= {0, Wi, 2Wi, . . . , (R − i − 1)Wi}

Ci represents the set of all values that can be represented withall digits except digiti locked in at 0. Notice that

if the set were extended by one more element, that element would be

(R − i)Wi = (R − i)
R!

(R − i)!
=

R!

(R − i − 1)!
= Wi+1

We can thus say that this set spans the range[0, Wi+1), but only with a precision ofWi (in other words, each

element in the set isWi away from its nearest neighbors).

We can likewise find the setCi−1 = {0, Wi−1, . . . , (R − i)Wi−1}, which covers the range[0, Wi) with a

precision ofWi−1. We now add each element ofCi−1 to the first element ofCi to construct the following:

{0 + 0, 0 + Wi−1, 0 + 2Wi−1, . . . , 0 + (R − i)Wi−1}

Notice that the final element in this constructed set is a distanceWi−1 away from the next element ofCi, which

has a value ofWi:

(R − i)Wi−1 + Wi−1 = (R − i + 1)Wi−1

= (R − i + 1)
R!

(R − (i − 1))!

= (R − i + 1)
R!

(R − i + 1)!

=
R!

(R − i)!

= Wi
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We have therefore filled in theWi distance between the two lowest elements ofCi to a precision ofWi−1. We

can likewise do this with each element ofCi to span the entire range[0, Wi+1) with a precision ofWi−1. This

represents all the values that can be constructed using onlydigits i and i − 1, with all other digits set to 0.

By induction, we can use the next digit down to fill in these gaps to a precision ofWi−2, and so on all the way

down to a precision ofW0 with the least significant digit. By (2),W0 = R!
(R−0)! = R!

R! = 1, so we have therefore

covered every integer in[0, Wi+1) using i digits.

By letting i = R − 2 (the second to last digit), we can cover all the integers in[0, WR−1) =
[

0, R!
(R−R+1)!

)

=

[0, R!). This still leaves the last digit, but (3) dictates that thiswill always have a digit value of 0, and so contributes

nothing to the value. The factorial number system of radixR therefore satisfies the full-coverage requirement for

the range[0, R! − 1].

Finally, notice that the sets constructed above by adding each element ofCi to Ci−1 do not overlap, because the

largest value inCi−1 is less than the distance between adjacent members ofCi. Factorial number systems therefore

also satisfy the non-redudancy requirement.

V. ORDERED-SET STEGANOGRAPHY

Steganography is the science of hiding data within an inconspicuouscover object. It is a branch of information

theory and closely related to cryptography. Cryptography,however, intends to conceal the meaning of the data,

where as steganography seeks to conceal the very existance of the data.

A basic tenet of steganography is that any arbitrary choice available to a message generator is an opportunity to

encode information. A classic example from history is Paul Revere’s friend in the Old North Church. His choice

was to hang one lantern or two in the bell tower, and the decision he made conveyed information regarding the

movements of the British troops.

The factorial number system constructions described aboveare based on the choice of how to order a set of items.

Specifically, consider a set of unique items with some methodfor presenting the set in an ordered list. For the sake

of steganography, each possible ordering of the presented list could represent a different message. Generically, we

will assume the message is an arbitrary binary objecy: this could be ASCII text, or a compressed image file, or

simply an index into a codebook of pre-arranged messages. Such a set containingR elements hasR! ways it can

be ordered and can therefore encode a message up tolog2 R! bits.

In constructing this list, the message generator will beginby choosing the first element from the set of allR

possibilities. This corresponds to the least signficant digit in the radix-R factorial number system. This leaves only

R − 1 items to choose the second item from, which corresponds to the second-least significant digit, and so on.

Notice that for the final element, there is only one option left, which means it is not a choice for the message

generator and therefore cannot convey any additional information. This corresponds to the fact that the digitR− 1

in the factorial number system always has a digit value of 0 and therefore does not contribute to the value.

Thus, each element in the list corresponds to a digit in the factorial number system whose radix is equal to

the number of elements in the set. The restriction on digit values presented in (3) is derived from this process of

July 31, 2009 DRAFT



6

ordering a set of items. The weighting scheme shown in (2) wasthen established so that the number system would

be one-to-one as shown in section IV. This was necessary for the intended steganographic application: full-coverage

was nessary so that arbitrary binary messages could be encoded, and uniqeness was necessary so that the encoded

message would be unambiguous. Non-redundancy is not strictly necessary but allows a greater number of messages

to be encoded in the same size list (in steganographic terms,it provides a greater capacity).

The digit value associated with each element is based on its position in an agreed uponcanonical order (for

instance, a sorted lexicographical order). Importantly, the translation between elements in the list and digit values

is not universal, meaning that a given element in a given set does not always represent the same digit value. This

is a neccessary consequence of the fact that not all digits can take on the same digit values. Instead, the digit

value of an element comes from the canonical order of the elements that have not yet been used. For the first item

(corresponding to the least significant digit), this is the entire set of items. For the next item, it is the original set

of items, minus the item chosen for the first position.

To be clear, the unused items should be re-sorted after each item is chosen for the presented list, and the digit

value for the next chosen item is equal to its 0-based index into this resorted set. For practical purposes, as long

as the canonical order does not otherwise change when an itemis removed, a full resort is not necessary. Instead,

each element should be assigned an initial value based on itsindex into the canonical order of the full set. Each

time an item is removed, all the items above it will have theirvalues reduced by one in order to fill in the gap.

A. Example

Consider the following set of four items:

{apples, bananas, carrots, deer-meat}

The canonical order will be determined by ascending lexicographical sorting (a, b, c, d) for all subsets.

There are4! = 24 different ways to order this set. A particular ordering is

(bananas, deer-meat, apples, carrots)

Here we assume that the right-most item (“carrots”, in this case) was chosen first and therefore corresponds to the

least significant digit. Additional elements were added to the list moving right to left so that the left most item

corresponds to the final digit.

When “carrots” was chosen for the first item, all four items were available, so its digit value is equal to its

index into the canonical order of the set, which is 2. With this item removed, the canonical order of the remaining

elements is

(apples, bananas, deer-meat)

“apples” still has a digit value of 0, which will take up the second digit position. The removal of “apples” from

the set will cause the two remaining items to move down by one in the canonical ordering, leaving “deer-meat” at
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index 1, which will be its digit value in the third digit position. This leaves only “bananas” which necessarily has

a digit value of 0. Our factorial number system representation of this list is therefore:

(0, 1, 0, 2)

From the (1) and (2), this has a value of

(0 × 24) + (1 × 12) + (0 × 4) + (2 × 1) = 14

VI. CONCLUSION

The family of number systems described in this paper are closely modeled on the construction of a list from

a set of unique items and creates a simple one-to-one mappingbetween every possible ordering of such a list

and the integers in[0, R!) for a set of sizeR. This has applications in steganography where each integervalue

can correspond to an arbitrary message which can therefore be encoded into the particular order chosen for an

incospicuous ordered set, such as a shopping list or the palette of an image file.

The factorial number system equivalent to a set ofR items can encode up tolog2 R! bits. The rapid growth of

the factorial causes this to attain useful levels with listsof practical size. A set of 128 elements, for instance, can

encode over 716 bits, equivalent to 89 extended ASCII characters. Representing the set itself requires an average

of 7 bits per element, which makes 896 bits for the entire set,giving a data rate of more than 79%. A 256 element

set provides over 1600 bits of capacity with a data rate of 82%.

Sets of this magnitude are typical in palette based image files commonly used on the World Wide Web. While the

data rate taking the file as a whole may be quite small comparedto other steganographic techniques (for instance,

discrete cosine steganography used with JPEG files, and least-significant-bit stegnagraphy used with various true-

color lossless image formats), this technique benefits fromnot having to change the visual image itself, leading to

greater transparency.
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