
LEARNING THE MORPHOLOGICAL DIVERSITY

GABRIEL PEYRÉ∗, JALAL FADILI† , AND JEAN-LUC STARCK‡

Abstract. This article proposes a new method for image separation into a linear combination
of morphological components. Sparsity in fixed dictionaries is used to extract the cartoon and
oscillating content of the image. Complicated texture patterns are extracted by learning adapted
local dictionaries that sparsify patches in the image. These fixed and learned sparsity priors define
a non-convex energy and the separation is obtained as a stationary point of this energy. This
variational optimization is extended to solve more general inverse problems such as inpainting. A
new adaptive morphological component analysis algorithm is derived to find a stationary point of
the energy. Using adapted dictionaries learned from data allows to circumvent some difficulties faced
by fixed dictionaries. Numerical results demonstrate that this adaptivity is indeed crucial to capture
complex texture patterns.

Key words. Adaptive morphological component analysis, sparsity, image separation, inpainting,
dictionary learning, cartoon images, texture, wavelets.
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Morphological diversity is a concept where an image is modeled as a sum of com-
ponents, each of these components having a given morphological signature. Sparsity
in a redundant dictionary can be used to discriminate between these signatures, and
fast algorithms such as the Morphological Component Analysis (MCA) have been
developed in order to reconstruct simultaneously all the morphological components
[54]. For natural images, containing edges and contours, two fixed dictionaries can
be used such as the local DCT for sparsely representing the texture and the curvelet
for the edges [55]. Results were interesting, but this approach bears some limitations
since complicated textures may not be well represented by the local DCT, leading to
a bad separation.

This paper extends the morphological diversity by learning the morphologies of
complicated texture layers to help the separation process. These learned dictionaries
are coupled with more traditional fixed morphologies to characterize the cartoon and
oscillating content of an image. A new adaptive morphological component analysis
algorithm performs iteratively both the learning and the separation.

1. Image Separation and Inverse Problem Regularization.

1.1. Image Separation. The image separation process decomposes an input
image u ∈ RN of N pixels into a linear combination of |Λ| layers {us}s∈Λ, the so-
called morphological components

u =
∑
s∈Λ

us + ε, (1.1)

where ε is an error term representing the noise and model imperfections. Each us

accounts for a different kind of features of the original data u.
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2 G. PEYRÉ, J. FADILI, J.L. STARCK

Image separation is usually achieved by solving a variational optimization problem
of the form

min
{us}s∈Λ

1
2

∣∣∣∣∣∣u−∑
s∈Λ

us

∣∣∣∣∣∣2 + µ
∑
s∈Λ

Es(us), (1.2)

where each energy Es : RN 7→ R+ favors images with some specific kind of structures.
More precisely, for successful separation, each energy Es is designed to be as small
as possible over the layer us it is serving, while being large (or at least not as small)
over the other components. Thus each of these layers has its attached prior Es, and
multiplying the number of priors might help to recover intricate image structures such
as smooth areas, edges and textures of natural images.

1.2. Inverse Problems Regularization. Many problems in image processing
can be cast as inverting a linear system f = Ku + ε where u ∈ RN is the data to
recover, f ∈ Rm is the observed image and ε is a gaussian white noise of known finite
variance. The bounded linear operator K : RN 7→ Rm is typically ill-behaved since it
models an acquisition process that entails loss of information. This yields ill-posedness
of the inverse problem.

This inversion problem is regularized by adding some prior knowledge on the
typical structures of the original image u. This prior information accounts for the
smoothness of the solution and can range from uniform smoothness assumption to
more complex knowledge of the geometrical structures of u. The decomposition prob-
lem (1.2) is extended to handle an ill-behaved operator K which yields the following
minimization problem

min
{us}s∈Λ

1
2

∣∣∣∣∣∣f −K∑
s∈Λ

us

∣∣∣∣∣∣2 + µ
∑
s∈Λ

Es(us) . (1.3)

The simple case of image separation (1.1) corresponds to K = IdN . Typical
examples of inverse problems include deconvolution, inpainting and super-resolution.
In the latter, one seeks to recover a high-resolution image u from a low-resolution
observation f . In such a case, K is the convolution by a blurring kernel followed by a
sub-sampling, and f lacks the high frequency content of u.

There is a flurry of research activity on linear inverse problems regularization in
image processing. Comprehensive overviews can be found in dedicated monographs.

Sparsity-based regularization (e.g. in the wavelet domain) methods have re-
cently received considerable attention, either by adopting a Bayesian expectation-
maximization framework [26, 27, 6], by introducing surrogate functionals [14], or
using a proximal forward-backward splitting framework [12, 24]. This framework has
been successfully applied to inpainting [22, 24], deconvolution [25], multichannel data
restoration and blind source separation [61, 7].

1.3. Image Inpainting. This paper considers the inpainting inverse problem,
although our methods applies to other linear inverse problems as well. Inpainting is
to restore missing image information based upon the still available (observed) cues
from destroyed or deliberately masked subregions of the image f .

The inpainting problem corresponds to a diagonal operator

K = diagi(ηi) where ηi =
{

1 if i /∈ Ω
0 if i ∈ Ω ,
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LEARNING THE MORPHOLOGICAL DIVERSITY 3

where Ω ⊂ {0, . . . , N − 1} denotes the set of missing pixels.
Inpainting of non-textured images has been traditionally approached by diffusion

equations that progressively fills the missing pixels. The original work of Masnou and
Morel makes use of the continuation law of the level sets [40]. Following their work,
several authors proposed high order PDEs, see for instance [10, 5, 3] and anisotropic
diffusion [57] for non-texture inpainting. The inpainting of complicated textures can
be achieved by using copy-and-paste methods from computer graphics [19, 13] and can
successfully inpaint large missing regions. The Morphological Component Analysis
(MCA) is able to solve the inpainting problem [22, 24] for images containing simple
textural content such as locally parallel oscillations. Methods based on learning sparse
dictionaries [36, 33] and training fields of experts [51] are able to inpaint small missing
regions.

2. Morphological Diversity Modeling with Sparsity.

2.1. Cartoon Modeling. For the sketchy part of an image, a usual prior is to
assume that it belongs to some non-linear Banach space that favors the discontinuities
in the image. In particular, this entails that the functional norm of the sketchy part in
such spaces is small. Such spaces include the bounded variation (BV) space with the
associated total variation norm introduced by Rudin, Osher and Fatemi [52]. Another
important prior exploits the sparsity of wavelet coefficients, which corresponds to
various kinds of Besov norms. A standard example of such sparsity-promoting prior
is the `1-norm introduced by Donoho and Johnstone [17] in the wavelet context for
denoising purposes.

Wavelets are however sub-optimal to efficiently capture edge singularities dis-
tributed along smooth curves. The curvelet tight frame, introduced by Candès and
Donoho [9], is able to better represent cartoon images with smooth edges. Sparsity
in a curvelet tight frame can thus improve the modeling of edges.

2.2. Oscillating Texture Modeling. Simple texture models can also be de-
fined through variational energies that favor oscillations in images. Toward this goal,
Meyer introduced a functional space where oscillating patterns have a small norm. It
turns out that this Banach space is close to the dual of the BV space [42]. Meyer
has defined the so-called G-norm that can be used to perform the decomposition of
an image into a cartoon component (using for instance the total variation seminorm)
and an oscillating texture component.

The work of Meyer paved the way to an active research area in variational image
processing: cartoon+texture image decomposition. Several authors have proposed
algorithms to solve Meyer’s problem or close extensions, such as [60, 2, 32] to cite
only a few.

Sparsity-based energies have also been proposed to decompose an image into car-
toon+oscillating texture. To this end, Starck and co-authors [55, 54, 22] introduced
the Morphological Component Analysis (MCA) framework, where overcomplete fixed
dictionaries (one for each layer) are used as a source of diversity to discriminate
between the components. The key is that each dictionary must sparsify the corre-
sponding layer while being highly inefficient in representing the other content. For
example, MCA is capable of decomposing an image into structure+oscillating texture,
using the wavelet or curvelet dictionary for the cartoon layer, and the frame of local
cosines for the oscillating texture.

Other dictionaries can enhance over the results of local cosines to capture warped
locally oscillatory patterns. For instance, the waveatoms of Demanet and Ying [15]
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4 G. PEYRÉ, J. FADILI, J.L. STARCK

and the brushlets of Meyer and Coifman [41] have been designed for this goal.
However, the standard MCA is intrinsically limited by the discriminative perfor-

mance of its fixed non-adaptive dictionaries. Obviously, the latter are not able to
sparsify complex textures appearing in natural images.

2.3. Adaptivity and Dictionary Learning. To enhance the modeling of com-
plicated edge layouts and intricate texture patterns, one needs to resort to adapted
energies, that are tuned to fit the geometry of complex images.

A class of adaptive methods consists in using a family of orthogonal bases and
look for the best basis in this family using combinatorial optimization algorithms. The
wedgelets [16] and the bandlets [29, 39] better represent contours than a traditional
wavelet dictionary. For oscillating textures, a proper basis of the wavelet packet tree
[37] with an appropriate tiling of the frequency domain sparsifies some oscillatory
patterns. Cosine packets allow a dyadic partition of the spatial domain [37] accord-
ing to a quad-tree structure. Grouplet bases [38] are able to approximate efficiently
oscillating and turbulent textures, and were successfully applied to texture synthesis
and inpainting in [48].

In contrast to these approaches, which are able to handle only a particular kind
of images or textures, other approaches can adapt to the content of images through a
learning process. By minimizing a sparsity criterion, such algorithms allow to optimize
a local dictionary for a set of exemplar patches.

Olshausen and Field [45] were the first to propose a way of learning the dictionary
from the data and to insist on the dictionary redundancy. They have applied this
learning scheme to patches extracted from natural images. The major conclusion of
this line of research is that learning over a large set of disparate natural images leads
to localized oriented edge filters. Since then, other approaches to sparse coding have
been proposed using independent components analysis [4], or different sparsity priors
on the representation coefficients [31, 28, 23, 1].

It is worth point out that this dictionary learning bears tight similarities with
sparsity-based blind source separation (BSS) algorithms as proposed in [61] and in
the GMCA algorithm [7]. It is also related to non-negative matrix factorization that
is used for source separation, see for instance [47]. The role played by the dictionary
parallels the one of the mixing matrix in BSS.

These learned dictionaries have proven useful to perform image denoising [20],
inpainting [36, 33], texture synthesis [49] and image recognition [35].

A preliminary description of the adaptive MCA method was presented in [50].
Shoham and Elad have developed in [53] an adaptive separation method that approx-
imately minimizes our adaptive MCA energy, that is faster if no global dictionary is
used.

2.4. Contributions. This paper proposes a new adaptive image separation
method. It extends previous work on morphological component analysis by adapt-
ing the dictionary used to model and discriminate complex texture layer(s). Section
3 introduces the notions of fixed and learned dictionaries, that can be combined to
achieve high quality separation. The local dictionaries are learned during the separa-
tion within a new adaptive morphological component analysis algorithm detailed in
Section 4. This algorithm converges to a stationary point of a non-convex variational
energy. Numerical results show that a single adaptive texture layer can be trained
without user intervention to extract a complicated texture. Additional layers can
be added as well, and in this case, a proper user-defined initialization is required to
drive the algorithm to the desired decomposition which corresponds to a particular
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LEARNING THE MORPHOLOGICAL DIVERSITY 5

stationary point of the energy. This option offers some flexibility to the user to guide
the decomposition algorithm toward the desired solution.

3. Fixed and Adaptive Sparsity Energies. Each energy Es(us) depends on a
dictionary Ds that is a collection of atoms used to describe the component us sparsely.
This paper considers both fixed dictionaries, that are used to describe the content of
the component as a whole, and local learned dictionaries that are applied to patches
extracted from the component.

The set of indexes is thus decomposed as Λ = ΛF∪ΛL, and a fixed layer s ∈ ΛF is
assigned an energy EF(us, Ds), whereas an energy EL(us, Ds) is attached to a layer
s ∈ ΛL with a learned dictionary. The fixed dictionaries are defined by the user and
correspond typically to a cartoon morphological component or simple oscillating pat-
terns. On the contrary, learned dictionaries {Ds}s∈ΛL are optimized by our algorithm
to capture complicated stationary texture patterns. The corresponding adaptive sep-
aration process thus extends (1.2) to an optimization on both the components and
the adaptive dictionaries

min
{us}s∈Λ,{Ds∈Ds}s∈ΛL

1
2

∣∣∣∣∣∣f −K∑
s∈Λ

us

∣∣∣∣∣∣2 +µ
∑

s∈ΛF

EF(us, Ds)+µ
∑

s∈ΛL

EL(us, Ds), (3.1)

where Ds is a suitable set of convex constraints to be defined later (see (4.3)).

3.1. Sparsity-based Energy for a Fixed Dictionary. A fixed dictionary
Ds = (ds,j)06j<ms

, for s ∈ ΛF, is a (possibly redundant) collection of ms > N
atoms ds,j ∈ RN , that can be represented as a rectangular matrix Ds ∈ RN×ms . The
decomposition of a component us using this dictionary reads

us = Dsxs =
ms−1∑
j=0

xs[j]ds,j .

For a redundant dictionary where ms > N , such a decomposition is non-unique, and
a sparsity-promoting energy favors sparse coefficients xs, for which most of the entries
xs[j] are zero. In this paper, we use a convex `1 sparsity measure

||xs||1 =
∑

j

|xs[j]|,

which was proposed by Chen, Donoho and Saunders [11] in the popular basis pursuit
denoising problem (BPDN or Lasso for statisticians) for sparse approximation.

Finding a sparse approximation Dsxs of us in Ds can then be formulated as
minimizing the following energy

EF(us, Ds) = min
xs∈Rms

EF(us, xs, Ds) , (3.2)

where EF(us, xs, Ds) =
1
2
||us −Dsxs||2 + λ||xs||1. (3.3)

The parameter λ allows an approximate sparse representation Dsxs ≈ us and should
be adapted to the level of the noise and the sparsity of the sources.
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6 G. PEYRÉ, J. FADILI, J.L. STARCK

Cartoon sparse models. Wavelets [37] are used extensively in image compression
and allow to capture efficiently images with isotropic singularities and images with
bounded variations. We use a redundant dictionary Dwav of translation invariant
wavelets to capture the sketchy content of an image, which is assumed to have a small
total variation.

To capture more regular edge patterns, we use a redundant tight frame of curvelets
Dcurv, introduced by Candès and Donoho [9] to represent optimally cartoon images
with C2-regular edge curves.

Oscillating sparse models. Locally oscillating and stationary textures are handled
with a redundant tight frame Ddct of local cosines [37]. We use local cosine atoms
defined on blocks of 32×32 pixels, that are zero outside the blocks and are thus vectors
of length N . We use an overlapping factor of 2 of the blocks along the horizontal and
vertical directions, so that the redundancy of Ddct is ms/N = 4. As explained in the
introduction, other dictionaries well-suited for sparsifying oscillating patterns could
be used as well, e.g. waveatoms [15].

3.2. Sparsity-based Energy for a Learned Dictionary. We use local learned
dictionaries {Ds}s∈ΛL to capture fine scale structures of complex textures. For s ∈ ΛL,
a local learned dictionary Ds ∈ Rn×ms is used to represent patches Rk(us) ∈ Rn of
n = τ × τ pixels extracted from a component us,

∀ 0 6 k1,2 <
√

N/∆ and − τ/2 6 i1,2 < τ/2, Rk(us)[i] = us(k1∆+ i1, k2∆+ i2),

where i = (i1, i2) is the location of a pixel in the patch, k = (k1, k2) indexes the central
location of the patch, and 1 6 ∆ 6 τ controls the sub-sampling of the patch extraction
process. Although k is a pair of integers to index 2D patches, it is conveniently
converted into a single integer in {0, . . . , N/∆2 − 1} after rearranging the patches in
a vectorized form to store them as column vectors in a matrix.

Similarly to the energy (3.2) associated to a fixed dictionary, we define an energy
EL(us, Ds) associated to a local dictionary Ds. This energy allows one to control the
sparsity of the decomposition of all the patches Rk(us) in Ds. Following Aharon and
Elad [20, 1], we define this energy EL(us, Ds) as

EL(us, Ds) = min
{xs,k}k∈Rms×N/∆2

EL(us, {xs,k}k, Ds), (3.4)

where EL(us, {xs,k}k, Ds) =
1
p

∑
k

(
1
2
||Rk(us)−Dsxs,k||2 + λ||xs,k||1

)
, (3.5)

where p = (τ/∆)2 = n/∆2. Each xs,k corresponds to the coefficients of the decompo-
sition of the patch Rk(us) in the dictionary Ds. The weight 1/p in the energy (3.4)
compensates for the redundancy factor introduced by the overlap between the patches
Rk(us). This normalization allows one to re-scale the learned dictionary energy (3.4)
to be comparable with the fixed dictionary one (3.2).

3.3. Images vs. Coefficients. The variational formulation (1.3) proposed in
this paper directly seeks for the components {us}s∈Λ, and the coefficients are only
considered as auxiliary variables. Alternative formulations of inverse problems in
redundant dictionaries or union of bases would look instead for the coefficients xs or
{xs,k}k of each component in the dictionary Ds.
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LEARNING THE MORPHOLOGICAL DIVERSITY 7

The corresponding coefficient-based minimization reads

({x?
s}s∈Λ, {D?

s}s∈ΛL) ∈ argmin
{xs}s∈Λ,{Ds∈Ds}s∈ΛL

(3.6)

1
2

∣∣∣∣∣∣f −K ∑
s∈ΛF

Dsxs −K
∑

s∈ΛL,k

R∗
k(Dsxs,k)

∣∣∣∣∣∣2 + λ
∑

s∈ΛF

||xs||1 + λ
∑

s∈ΛL,k

||xs,k||1, (3.7)

where the dual operator R∗
k reconstruct an image in RN with zero values outside the

patch. Such a coefficient-based optimization is used for fixed dictionaries in [55, 22,
24].

A fixed dictionary component for s ∈ ΛF is retrieved from these optimized coeffi-
cients as u?

s = Dsx
?
s. For a local learned dictionary, the reconstruction of the patches

are summed

∀ s ∈ ΛL, u?
s =

∑
k

R∗
k(D?

sx?
s,k). (3.8)

The reconstruction formula (3.8) shows that the optimization (3.7) for the learned
component s ∈ ΛL corresponds to finding a sparse approximation of us in the highly
redundant dictionary {R∗

k(ds,j)}k,j that gathers all the atoms at all patch locations.
The two formulations (1.3) and (3.7) are expected to differ significantly. These

differences share some similarities with the formulations analyzed in [21], that stud-
ies analysis and synthesis signal priors. In our setting, where we use local learned
dictionaries, the formulation (1.3) over the image domain makes more sense. In this
formulation, each patch is analyzed independently by the sparsity prior, and the `2

fidelity term gathers linearly the contributions of the patches to obtain us. As noticed
by Aharon and Elad [20, 1], this average of sparse representations has some flavor of
minimum mean square estimation, which further helps to reduce the noise.

Furthermore, the formulation (3.7) corresponds to the optimization of coefficients
in a highly redundant dictionary, which is demanding numerically. In contrast, our
formulation (1.3) allows for an iterative scheme that optimizes the coefficients inde-
pendently over each patch and average them afterward. We describe this adaptive
MCA scheme in the following section.

The last chief advantage of (1.3) is that it decouples the contribution of each
local learned dictionary Ds, for s ∈ ΛL. This simplifies the learning process, since
each dictionary is independently optimized during the iterations of our adaptive MCA.

4. Adaptive Morphological Component Analysis. The morphological com-
ponent analysis (MCA) algorithm [55, 54] allows to solve iteratively the variational
separation problem (1.3) for sparsity-based energies Es as defined in (3.2). For the
decomposition of an image into its geometrical and textured parts, the original ap-
proach [55, 54] uses fixed dictionaries of wavelets Dwav, curvelets Dcurv, and local
cosines Ddct. This paper extends the MCA algorithm to deal with energies Es asso-
ciated to local learned dictionaries Ds as defined in (3.4). In addition, our adaptive
MCA algorithm is able to optimize the local dictionaries Ds, which are automatically
adapted to the texture to extract.

4.1. Adaptive Variational Problem. The new adaptive MCA algorithm min-
imizes iteratively the energy (1.3) by adding to the decomposition variables {us}s∈Λ

and {Ds}s∈ΛL auxiliary variables {xs}s∈Λ corresponding to the coefficients of the de-
composition of each us. For a fixed dictionary layer s ∈ ΛF, these coefficients are
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8 G. PEYRÉ, J. FADILI, J.L. STARCK

stored in a vector xs ∈ Rms . For a local learned dictionary s ∈ ΛL these coefficients
are a collection of vectors {xs,k}N/∆2−1

k=0 ∈ Rms×N/∆2
.

The energy minimized by the adaptive MCA algorithm is

E({us}s, {xs}s, {Ds ∈ Ds}s∈ΛL) =
1
2
||f −K

∑
s

us||2+ (4.1)

µ
∑

s∈ΛF

EF(us, xs, Ds) + µ
∑

s∈ΛL

EL(us, xs, Ds) , (4.2)

where the fixed and learned energies EF and EL are defined in (3.3) and (3.5).
The constraint Ds = (dj,s)06j<ms

∈ Ds for s ∈ ΛL ensures that the columns di,s

of Ds have bounded norm

∀ j = 0, . . . ,ms − 1, ||dj,s||2 =
∑

i

|dj,s[i]|2 6 1.

This avoids the classical scale indeterminacy between the dictionaries and the coeffi-
cients since replacing (Ds, xs) by (aDs, xs/a) for a > 1 leaves the data fidelity term
unchanged, while diminishing the `1 penalty. We also impose that the atoms have
zero mean, which is consistent with the intuition that a texture contains locally only
high frequencies. The convex set Ds reads

Ds =

{
D ∈ Rn×ms \ ∀ j = 0, . . . ,ms − 1, ||dj,s|| 6 1 and

∑
i

dj,s[i] = 0

}
. (4.3)

Additional constraints. We note that other constraints could be used to better
control the stability of the learned dictionaries. For instance, an orthogonality con-
straint has been considered by Lesage et al. [30]. It could also be incorporated in our
constraint set Ds. Additional constraints could be considered to improve the sepa-
ration. In particular, enforcing the atoms of two distinct dictionaries Ds and Ds′ to
have different morphologies might increase the quality of the separation. Investigation
of such additional constraints is left for a future work.

Adaptive non-convex minimization. The energy E is marginally convex in each of
its arguments, and is optimized over a convex set. However, E is non-convex jointly
in all its arguments. We thus propose an iterative block relaxation coordinate descent
minimization scheme, and show that it converges to a stationary point of the energy.

The adaptive MCA algorithm operates by minimizing successively and cyclically
E on the set of components {us}s∈Λ, on the set of coefficients {xs}s∈Λ and the set of
learned dictionaries {Ds}s∈ΛL . Each minimization is performed while all remaining
variables are held fixed.

The initialization of the dictionaries {Ds}s∈ΛL is thus important, and user in-
tervention can improve the result by selecting initial features relevant for texture
extraction.

4.2. Parameters Selection. Selecting optimal values for µ and λ is a delicate
and difficult task. The parameter µ is adapted to the noise level. In the case where
ε is a Gaussian white noise of variance σ, µ is set so that the residuals satisfy ||f −
K

∑
s u?

s|| ≈
√

Nσ, which works well for separation and denoising applications. The
same weight λ could be chosen for all dictionaries (i.e. components). Nevertheless,
if additional prior knowledge on the amplitude of each component is available, it
could be wisely incorporated by selecting different weights. In our experiments, we
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LEARNING THE MORPHOLOGICAL DIVERSITY 9

set λ = σ2/30, that was shown by Aharon and Elad [20, 1] to be a good choice for
denoising applications.

The choice of the size of the learned dictionaries (size of the patch n = τ2 and
redundancy ms/n) is still largely an open question in dictionary learning. For inpaint-
ing, the size of the patches should be chosen larger than that of the missing regions.
Increasing the redundancy of the dictionary enables to capture more complicated
textures, but makes the learning more difficult both computationally (complexity in-
creases with overcompleteness) and in terms of convergence behavior to a poor local
minimum (conditioning of the dictionary deteriorates with increasing redundancy).

4.3. Step 1 – Update of the Coefficients {xs}s∈Λ. The update of the coef-
ficients requires the minimization of E with respect to {xs}s∈Λ. Since this problem
is separable in each of the coefficient vector xs, we perform the optimization inde-
pendently for the coefficients of each fixed layer or each patch in a learned dictionary
layer.

For a fixed dictionary s ∈ ΛF, this corresponds to solving

xs ∈ argmin
x∈Rms

1
2
||us −Dsx||2 + λ||x||1. (4.4)

For a learned dictionary s ∈ ΛL, the minimization is performed with respect to each
patch index k

xs,k ∈ argmin
x∈Rms

1
2
||Rk(us)−Dsx||2 + pλ||x||1 . (4.5)

Both (4.4) and (4.5) correspond to sparse coding by minimizing a basis pursuit de-
noising problem [11]. The literature is inundated by a variety of algorithms trying to
solve this convex problem efficiently, among which interior point solvers [11], iterative
soft thresholding [14, 12], or Nesterov multi-step scheme [43, 44].

4.4. Step 2 – Update of the Components {us}s∈Λ. Updating the compo-
nents {us}s∈Λ requires to solve a quadratic minimization problem

min
{us}s∈Λ

||f −K
∑
s∈Λ

us||2 + µ
∑

s∈ΛF

||us −Dsxs||2 +
µ

p

∑
s∈ΛL,k

||Rk(us)−Dsxs,k||2. (4.6)

This is a high dimensional problem since it involves all the layers, and it can be solved
with a conjugate gradient descent.

An alternate method consists in cycling repeatedly on each component us for
s ∈ Λ, and optimizing (4.6) with respect to us alone. This generates iterates u

(`)
s

that ultimately converge to a global minimizer of (4.6). Although the convergence is
slower than with a conjugate gradient descent, it is simpler to implement since each
component update is easy to compute in closed-form.

At a step ` of this update of the components, a new iterate u
(`+1)
s is obtained by

minimizing (4.6) with respect to us alone. For a fixed dictionary s ∈ ΛF, this leads to

u(`+1)
s = argmin

u∈RN

||rs −Ku||2 + µ||u−Dsxs||2 with rs = f −K
∑
s′ 6=s

u
(`)
s′ ,

and for a learned dictionary s ∈ ΛL

u(`+1)
s = argmin

u∈RN

||rs −Ku||2 +
µ

p

∑
k

||Rk(u)−Dsxs,k||2 .
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10 G. PEYRÉ, J. FADILI, J.L. STARCK

Note that we use an equality and not an inclusion since the marginal objective is
strictly (in fact strongly) convex in u, therefore having a unique global minimizer in
this coordinate.

This leads to the following closed-form update rule

u(`+1)
s = (K∗K + µIdN )−1 (K∗rs + µûs) , (4.7)

where the reconstructed ûs is computed differently depending whether the dictionary
is fixed or learned

ûs =


Dsxs, if s ∈ ΛF,

1
p

∑
k

R∗
k(Dsxs,k), if s ∈ ΛL.

(4.8)

To derive the expression for a learned dictionary, we used the fact that

1
p

∑
k

R∗
kRk = IdN ,

and a special care should be taken at the boundaries of the image.
For a general operator K, the update (4.7) requires to solve a well-conditioned

linear system, which can be computed by conjugate gradient. If K is known to be
diagonalized in some domain (e.g. Fourier for convolution), then (4.7) can be im-
plemented very efficiently. For the image separation problem, where K = IdN , the
update of the component us reduces to the convex sum

u(`+1)
s = (1 + µ)−1(rs + µûs).

For the inpainting problem, the update becomes

u(`+1)
s [i] =

{
(1 + µ)−1(rs[i] + µûs[i]) if i ∈ Ω,

ûs[i] if i /∈ Ω.

4.5. Step 3 – Update of the Dictionaries {Ds}s∈ΛL . This update step con-
cerns only local learned dictionaries Ds for s ∈ ΛL. Since this problem is separable
in each dictionary, this optimization is carried out independently for each Ds. This
corresponds to

Ds ∈ argmin
D∈Ds

∑
k

||Rk(us)−Dxs,k||2 = argmin
D∈Ds

||Us −DXs||2F (4.9)

where ||.||F stands for the Frobenius norm, the convex set Ds is defined in (4.3),
Us ∈ Rn×N/∆2

is the matrix whose kth column is Rk(us) ∈ Rn, and Xs ∈ Rms×N/∆2

is the matrix whose kth column is xs,k ∈ Rms .
The minimization of (4.9) is accomplished by means of a projected gradient de-

scent, that computes iterates D
(`)
s such that

D(`+1)
s = PDs

(
D(`)

s + τ(Us −D(`)
s Xs)X∗

s

)
, (4.10)

where 0 < τ < 2/||XsX
∗
s || is the descent step-size, and

(d̃j)ms−1
j=0 = PDs

(D)
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LEARNING THE MORPHOLOGICAL DIVERSITY 11

is the projection of D = (dj)ms−1
j=0 on the convex set Ds, that has an explicit expression

d̃j =
dj − c

||dj − c||
with c =

1
n

n−1∑
i=0

dj [i].

We note that the linear constraint
∑

i dj,s[i] = 0 can be dropped if each patch Rk(us),
as a column vector in the matrix Us, is centered by subtracting its mean prior to the
dictionary update.

It is worth noting that potentially more efficient schemes, such as Nesterov multi-
step descent [43, 44] or block-coordinate minimization [33], could be used to solve
(4.9). Other approximate methods, potentially faster, have been used to perform the
update of the dictionary [23, 1], but they do not minimize (4.9) exactly.

Figure 4.1 shows two examples of dictionary learned from input exemplar textures.
One can see that the learned atoms dj do a good job at capturing the patterns of the
exemplar texture.

Exemplars ũ1 and ũ2 Dictionaries D1 and D2
Fig. 4.1. Examples of dictionary learning on two textures, with patches of size τ × τ = 10×10

pixels (only a subset of the atoms is displayed on the right).

4.6. Adaptive MCA algorithm. The adaptive MCA scheme is summarized in
Algorithm 1. It iteratively cycles between the above three steps. Each step is carried
out using an inner iterative algorithm, with convergence tolerances ηcoef, ηcomp and
ηdico associated to each of the corresponding inner iteration.

Initialization of the dictionaries. Since the energy E minimized by the adaptive
MCA is non-convex, different initializations for the dictionaries {Ds}s∈ΛL might lead
to different solutions. In the numerical experiments detailed in Section 5, we consider
several initialization scenarios, that may require some user intervention.
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12 G. PEYRÉ, J. FADILI, J.L. STARCK

Algorithm 1: Adaptive Morphological Component Analysis.
Input: observation f , fixed dictionaries {Ds}s∈ΛF , parameters µ and λ ;
Initialization: ∀ s ∈ Λ, us = 0, ∀ s ∈ ΛL initialize Ds ;
while not converged do

begin Update the coefficients:
for each s ∈ ΛF do

compute xs by minimizing (4.4) with tolerance ηcoef,
for each s ∈ ΛL, each k do

compute xs,k by minimizing (4.5) with tolerance ηcoef.

end

begin Update the components: set ` = 0, ∀ s ∈ Λ, u
(0)
s = us

repeat
for each s ∈ Λ do

compute u
(`+1)
s using (4.7).

until maxs ||u(`+1)
s − u

(`)
s || < ηcomp ;

Set ∀ s, us = u
(`+1)
s ;

end
begin Update the dictionaries:

for each s ∈ ΛL do set ` = 0, D
(0)
s = Ds

repeat
compute D

(`+1)
s using (4.10).

until ||D(`+1)
s −D

(`)
s || < ηdico ;

Set Ds = D
(`+1)
s .

end
Output: Estimated components {us}s∈Λ.

Convergence of adaptive MCA. The following result ensures that this adaptive
MCA algorithm converges to a stationary point of the energy E .

Proposition 4.1. Suppose that each of steps 1-3 is solved exactly by the adaptive
MCA algorithm. Then, the obtained sequence of iterates is defined, bounded and every
accumulation point is a stationary point of E.

Proof. The optimization problem (4.1) has at least one solution by coercivity. The
convergence proof of the block-relaxation minimization scheme follows, after identi-
fying our problem with the one considered by the author in [59]. Indeed using a
comparable notation to that of [59], we can write E({us}s, {xs}s, {Ds}s∈ΛL) as

J0({Ds}s, {us}s, {xs}s) + JD({Ds}s∈ΛL) + Ju({us}s) +
∑

s

Js
x(xs)

where

J0({Ds}s, {us}s, {xs}s) =
µ

2

∑
s∈ΛF

||us −Dsxs||2 +
µ

2p

∑
s∈ΛL,k

||Rk(us)−Dsxs,k||2
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LEARNING THE MORPHOLOGICAL DIVERSITY 13

JD({Ds}s) =

{
0 if Ds ∈ Ds ∀s ∈ ΛL,

+∞ if Ds /∈ Ds for some s ∈ ΛL.
,

Ju({us}s) =
1
2
||f −K

∑
s

us||2 ,

Js
x(xs) =

{
µλ||xs||1, (fixed dictionary),
µλ/p

∑
k ||xs,k||1, (learned dictionary).

,∀s ∈ Λ.

It is not difficult to see that J0 has a non-empty open domain and is continuously
differentiable on its domain. Thus J0 satisfies Assumption A.1 in [59]. Moreover, E
is continuous on its effective domain, with bounded level sets. E is also convex in
(u1, . . . , u|Λ|, x1, . . . , x|Λ|), and JD is convex. Thus, Lemma 3.1 and Theorem 4.1(b)
of [59] imply that the sequence of iterates provided by the block coordinate descent
MCA algorithm is defined, bounded and every accumulation point is a stationary
point of E .

It is important to note that the convergence is only guaranteed for an exact adap-
tive MCA that performs an exact coordinate-wise minimization at each of the three
steps. Little is known about the behavior of an approximate block coordinate descent,
and the tolerances ηcoef, ηcomp and ηdico should be decayed through the iterations of
the MCA to ensure convergence. For the numerical experiments of Section 5, we nev-
ertheless used fixed tolerances, and we always observed empirically the convergence
of the algorithm.

Varying threshold. An important feature of the morphological component analysis
is that the value of the parameter µ is decreased through iterations until it reaches its
final value that is adapted to the noise level. This allows to speed up the convergence,
and is reminiscent of strategies employed in continuation and path following methods
for solving BPDN [18, 46]. More sophisticated threshold update schedules might be
used, see for instance [8].

Computational complexity. The bulk of computation in step 1 of Algorithm 1 is
invested in the application of the matrix Ds and its adjoint D∗

s . For fixed dictionaries
corresponding to tight frames used in this paper, these matrices are never explicitly
constructed. Rather, they are implemented as fast implicit analysis and synthesis
operators. The complexity of these operators for the wavelet Dwav, local DCT Ddct

and curvelets Dcurv is O(N log(N)) operations. For learned dictionaries, the matrices
Ds ∈ Rn×ms are explicitly constructed, but their size is much smaller than that of
fixed dictionaries.

The number of required iterations depends on the tolerance ηcoef and on the
algorithm used for the minimization. Nesterov multi-step descent [43, 44] enjoys a
fast decay of the `1-regularized objective with O(1/`2) rate on the objective. This
much faster than the the convergence rate of iterative soft thresholding which is only
O(1/`). In practice, Nesterov multi-step scheme performs well.

Each iteration of step 2 necessitates to reconstruct ûs for each s, which can
be typically achieved in O(N) or O(N log N) operations for a fixed dictionary, and
O(msnN/∆2) operations for a local learned dictionary. Then the linear system (4.7)
must be solved. For separation and inpainting problems, this step is fast and costs
at most O(N) for each s. The complexity of each iteration of the projected gradient
descent of step 3 is similar to the complexity of step 2.

5. Numerical Examples. Throughout all the numerical examples, we use pat-
ches of width τ = 10 pixels for the local learned dictionaries, with an overlap ∆ = τ/2.
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14 G. PEYRÉ, J. FADILI, J.L. STARCK

For all experiments, we artificially add a Gaussian white noise ε of standard deviation
σ/||f ||∞ = 0.03. The parameters λ and µ have been selected as explained in Section
4.2.

Original u1 Original u2 Mixture f = u1 + u2 + ε

Adaptive MCA u?
1 Adaptive MCA u?

2

u?
1 MCA u?

2
Fig. 5.1. Top row: original component to recover and observed mixture. Middle row: separa-

tion using adaptive MCA with a wavelet dictionary and a learned dictionary. Bottom row: separation
using MCA with a wavelet and a local DCT dictionary.

5.1. Image Decomposition. We recall that the image decomposition problem
corresponds to K = IdN in (4.1). One thus looks for an approximate decomposition
f ≈

∑
s us.

Image decomposition with a single adapted layer. We perform two experiments
to study the behavior of our algorithm with a fixed dictionary D1 to capture the
sketchy (cartoon) part of the image, and an adapted dictionary D2 to be learned in
order to capture an additional homogeneous texture. When only |ΛL| = 1 adapted
layer is computed, we found that the obtained results depend only slightly on the
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LEARNING THE MORPHOLOGICAL DIVERSITY 15

initialization. In this case, D2 is initialized with random patches extracted from the
observations f .

Figure 5.1, second row, shows the results of a first separation experiment where
D1 is a fixed redundant wavelet tight frame and D2 is a learned dictionary. The
adaptive layer is able to capture the fine scale details of the texture. Figure 5.1,
third row, shows the results where D2 is a fixed local DCT tight frame. This clearly
demonstrates that the local DCT is not able to capture efficiently the details of the
texture, and shows the usefulness and enhancement brought by adaptivity to the
separation process.

Figure 5.2, first row, displays an example of separation where the layer u1 has a
strong cartoon morphology. We thus use a fixed curvelet dictionary D1 = Dcurv. The
second layer corresponds to a learned dictionary. Figure 5.2, second row, shows the
separation obtained with our adaptive MCA. Although the high pass content of the
texture is well captured by the adaptive dictionary, some low pass residual content
is visible in the curvelet layer, mainly because elongated curvelets atoms are able to
match some patterns of the texture.

We note that in both examples of Figures 5.1 and 5.2, the cartoon layer is not
perfectly recovered by the adaptive MCA method. In particular, it contains residual
oscillations of the original texture layer. This is a consequence of the mutual coherence
between the fixed and learned dictionaries. Indeed, both wavelets and curvelets atoms
are oscillating and thus capture some of the texture content. The quality of the cartoon
layer can be enhanced by adding a total variation penalty as detailed in [55] to direct
this component to better fit the piecewise-smooth model.

Original u1 Original u2 Mixture f = u1 + u2 + ε

Adaptive MCA u?
1 Adaptive MCA u?

2
Fig. 5.2. Top row: original component to recover and observed mixture. Bottom row: separa-

tion using adaptive MCA with a curvelet dictionary and a learned dictionary.
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16 G. PEYRÉ, J. FADILI, J.L. STARCK

Separation of two textures using exemplars. In this separation scenario, we con-
sider an observed image f = u1 + u2 + ε of N = 256 × 256 pixels, where each us

corresponds to a stationary texture. We also consider two exemplar textures (ũ1, ũ2)
of 128 × 128 pixels that are similar to the components to retrieve. In practice, both
us and ũs are extracted from the same larger image, at different locations.

The learned dictionaries D1, D2 are optimized during the adaptive MCA Algo-
rithm 1. They are initialized using the exemplars (ũ1, ũ2) by minimizing (4.9) where
Us is composed of patches extracted from the exemplars.

Figure 4.1 shows the two exemplars together with the initialized dictionaries
learned from these exemplars. Figure 5.3 shows the separation obtained with our
adaptive MCA, which is of high visual quality, because the two textures exhibit a
large morphological diversity.

Original u1 Original u2 Mixture f = u1 + u2 + ε

Recovered u?
1 Recovered u?

2
Fig. 5.3. Example of texture separation using learned dictionaries initialized from exemplars.

Separation of two textures with user intervention. To study the ability of the
adaptive MCA to discriminate two complicated textures, Figure 5.4, left, shows a
synthetic image obtained by linearly blending two textures (ũ1, ũ2) as follow

f [i] = γ[i]ũ1[i] + (1− γ[i])ũ2[i] + ε[i]

where γ is linearly decaying from 1 to 0 along the horizontal axis.
We use two adapted dictionaries (D1, D2) to perform the separation. The user

intervention is required to initialize these dictionaries by extracting random patches
respectively from the left and the right part of the observed image f .

Figures 5.5 and 5.6 show the application of the adaptive MCA to natural images,
where no ground-truth (oracle) separation result is known. The user intervention is
required to give an approximate location of the pattern to extract for each layer us.
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LEARNING THE MORPHOLOGICAL DIVERSITY 17

γ[i]ũ1[i] (1− γ[i])ũ2[i] Mixture f

Adaptive MCA u?
1 Adaptive MCA u?

2
Fig. 5.4. Example of adaptive separation using two learned dictionaries initialized by the user.

Image f Wavelets u?
1 Texture u?

2
Fig. 5.5. Example of adaptive separation of a natural image into a cartoon layer and a texture

layer. The rectangle shows the region given by the user to initialize the dictionary.

Discussion about adaptive texture separation. We note that our method does not
provide a fully unsupervised texture separation since the user needs to indicate roughly
the locations where each textural pattern is present. In our approach, the separation
process is not penalized if atoms are exchanged without due between different dic-
tionaries, which explains the need for user intervention. A possible extension of our
approach might be to include additional constraints Ds ∈ Ds beyond imposing zero-
mean and bounded norm (4.3). For instance, one could force the atoms of a given
dictionary to have some frequency localization, anisotropy or orientation by adding
a set of convex constraints. Another extension of our method could integrate inter-
dictionary penalties such as the discriminative learning detailed in [34].

5.2. Inpainting Small Gaps. Figure 5.7 depicts an example of inpainting to
restore an image f = Ku + ε where 65% of the pixels are missing. The original
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18 G. PEYRÉ, J. FADILI, J.L. STARCK

Image f Wavelets u?
1

Texture u?
2 Texture u?

3 Texture u?
4

Fig. 5.6. Example of adaptive separation of a natural image into a cartoon layer and three
texture layers. The rectangles show the regions given by the user to initialize the dictionaries.

image u =
∑3

s=1 us is a superposition of a piecewise-smooth cartoon layer, a locally
oscillating texture (scarf), and a texture similar to the one in Figure 5.1. This figure
compares the result of inpainting with and without an additional layer corresponding
to the learned dictionary D3, with redundancy m3/n = 2. In both results, the fixed
dictionaries Dwav and Ddct were used. One can see that the inpainting result with
a learned dictionary is able to recover the missing fine scale details of the complex
texture, which is not the case with the use of a fixed local cosine dictionary Ddct alone
to represent the texture.

Figure 5.8 shows another example of inpainting with gaps of medium size. Again,
the inpainting with an additional learned dictionary D3 brings some improvement over
the inpainting obtained using standard MCA with only fixed dictionaries, although
the improvement is visually less important than with the random mask used in Figure
5.7. Our method however not only solves the inpainting problem, but also yields an
intuitive separation of the resulting inpainted image, which might be relevant for some
applications. Such applications include object tracking and recognition [58, 56], edge
detection after getting rid of texture [55], or textured artifacts removal in imaging
devices such as astronomy [54].

Discussion about adaptive texture inpainting. We note that similarly to other
dictionary learning approaches [36] and related methods such as fields of experts [51],
our approach is restricted to the inpainting of small gaps. The sparsity regularization
is indeed efficient if the width of missing regions is smaller that the width τ of the
patches. For large gaps, these methods tend to produce a blurry reconstruction in
the middle of the missing region. Inpainting large missing regions corresponds to a
synthesis problem and should be attacked under the umbrella of other approaches
based either on high order PDEs for cartoon inpainting [10, 5, 3], or patch recopy
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LEARNING THE MORPHOLOGICAL DIVERSITY 19

Original Image u =
∑3

s=1 us Input Image f = Ku + ε

MCA, SNR=15.8dB Adaptive MCA, SNR=18.8dB

Cartoon layer u1 Local cosines layer u2 Learned dictionary u3
Fig. 5.7. Top row: original image and masked image with 65% randomly removed pixels.

Middle row: inpainted images provided by the standard and adaptive MCA algorithms. Bottom: the
three layers provided by the adaptive MCA algorithm.

[19, 13] for more general (texture) pattern inpainting.

Conclusion. We have proposed a new adaptive provably convergent algorithm
to perform structure and texture separation using both fixed and learned dictionaries,
along with an application to the simultaneous separation and inpainting problem. The
main feature of the method is its ability to jointly decompose the image and learn the
local dictionaries, which allows to adapt the process to the properties of the textures
to be extracted. Numerical examples have shown that this adaptivity improves the
efficiency and visual quality of the separation and inpainting. We have also shown
that handling several learned dictionaries is possible, but this requires a special care
to be taken at the initialization to achieve the desired separation effect.
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