
ibm.com/redbooks

Introduction to the
New Mainframe:
z/OS Basics

Mike Ebbers
Wayne O’Brien

Bill Ogden

Basic mainframe concepts, including
usage and architecture

z/OS fundamentals for students
and beginners

Mainframe hardware and
peripheral devices

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Introduction to the New Mainframe: z/OS Basics

July 2006

International Technical Support Organization

SG24-6366-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (July 2006)

Note: Before using this information and the product it supports, read the information in
“Notices” on page 633.

Contents

Preface . xi
How this text is organized . xii
How each chapter is organized . xii
About the authors . xiii
Acknowledgements . xiii
Comments welcome. xvi

Part 1. Introduction to z/OS and the mainframe environment

Chapter 1. Introduction to the new mainframe . 3
1.1 The new mainframe. 4
1.2 The S/360: A turning point in mainframe history . 4
1.3 An evolving architecture . 5
1.4 Mainframes in our midst . 7
1.5 What is a mainframe? . 8
1.6 Who uses mainframe computers?. 11
1.7 Factors contributing to mainframe use . 12
1.8 Typical mainframe workloads . 15
1.9 Roles in the mainframe world . 22
1.10 z/OS and other mainframe operating systems . 28
1.11 Summary . 31
1.12 Questions for review . 32
1.13 Topics for further discussion . 32

Chapter 2. Mainframe hardware systems and high availability 35
2.1 Introduction to mainframe hardware systems . 36
2.2 Early system design . 37
2.3 Current design. 39
2.4 Processing units . 46
2.5 Multiprocessors . 48
2.6 Disk devices . 49
2.7 Clustering . 51
2.8 What is a Parallel Sysplex?. 54
2.9 Typical mainframe systems. 58
2.10 Continuous availability of mainframes. 63
2.11 Summary . 70
2.12 Questions for review . 72
2.13 Topics for further discussion . 72
2.14 Exercises. 72
© Copyright IBM Corp. 2006. All rights reserved. iii

Chapter 3. z/OS overview. 73
3.1 What is an operating system? . 74
3.2 What is z/OS? . 74
3.3 Overview of z/OS facilities. 79
3.4 Virtual storage and other mainframe concepts . 81
3.5 What is workload management? . 102
3.6 I/O and data management. 105
3.7 Supervising the execution of work in the system 105
3.8 Defining characteristics of z/OS . 115
3.9 Additional software products for z/OS . 116
3.10 Middleware for z/OS . 117
3.11 A brief comparison of z/OS and UNIX. 118
3.12 Summary . 121
3.13 Questions for review . 123
3.14 Topics for further discussion . 123

Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 125
4.1 How do we interact with z/OS? . 126
4.2 TSO overview . 126
4.3 ISPF overview . 131
4.4 z/OS UNIX interactive interfaces. 149
4.5 Summary . 156
4.6 Questions for review . 157
4.7 Exercises. 158

Chapter 5. Working with data sets . 163
5.1 What is a data set? . 164
5.2 Where are data sets stored? . 165
5.3 What are access methods?. 166
5.4 How are DASD volumes used?. 166
5.5 Allocating a data set . 167
5.6 How data sets are named . 168
5.7 Allocating space on DASD volumes through JCL 169
5.8 Data set record formats. 171
5.9 Types of data sets . 174
5.10 What is VSAM? . 179
5.11 Catalogs and VTOCs . 181
5.12 Role of DFSMS in managing space . 186
5.13 z/OS UNIX file systems . 187
5.14 Working with a zFS file system . 190
5.15 Summary . 191
5.16 Questions for review . 192
5.17 Exercises. 193
iv Introduction to the New Mainframe: z/OS Basics

Chapter 6. Using JCL and SDSF . 199
6.1 What is JCL? . 200
6.2 JOB, EXEC, and DD parameters . 202
6.3 Data set disposition, DISP parameter . 204
6.4 Continuation and concatenation . 206
6.5 Why z/OS uses symbolic file names . 207
6.6 Reserved DDNAMES . 209
6.7 JCL procedures (PROCs) . 210
6.8 Understanding SDSF . 213
6.9 Utilities. 218
6.10 System libraries. 218
6.11 Summary . 219
6.12 Questions for review . 219
6.13 Topics for further discussion . 220
6.14 Exercises. 220

Chapter 7. Batch processing and JES. 229
7.1 What is batch processing? . 230
7.2 What is JES?. 231
7.3 What does an initiator do?. 233
7.4 Job and output management with JES and initiators 234
7.5 Job flow through the system . 241
7.6 JES2 compared to JES3 . 244
7.7 Summary . 245
7.8 Questions for review . 246
7.9 Exercises. 247

Part 2. Application programming on z/OS

Chapter 8. Designing and developing applications for z/OS 255
8.1 Application designers and programmers. 256
8.2 Designing an application for z/OS . 257
8.3 Application development life cycle: An overview. 259
8.4 Developing an application on the mainframe . 264
8.5 Going into production on the mainframe . 271
8.6 Summary . 272
8.7 Questions for review . 273

Chapter 9. Using programming languages on z/OS. 275
9.1 Overview of programming languages . 276
9.2 Choosing a programming language for z/OS . 277
9.3 Using Assembler language on z/OS . 278
9.4 Using COBOL on z/OS . 280
9.5 HLL relationship between JCL and program files 287
 Contents v

9.6 Using PL/I on z/OS . 288
9.7 Using C/C++ on z/OS . 292
9.8 Using Java on z/OS. 292
9.9 Using CLIST language on z/OS . 294
9.10 Using REXX on z/OS . 297
9.11 Compiled versus interpreted languages . 299
9.12 What is z/OS Language Environment? . 300
9.13 Summary . 308
9.14 Questions for review . 309
9.15 Topics for further discussion . 310

Chapter 10. Preparing a program to run on z/OS 311
10.1 Source, object, and load modules . 312
10.2 What are source libraries? . 312
10.3 Compiling programs on z/OS . 313
10.4 Creating load modules for executable programs. 330
10.5 Overview of compilation to execution . 334
10.6 Using procedures . 335
10.7 Summary . 336
10.8 Questions for review . 337
10.9 Exercises. 338

Part 3. Online workloads for z/OS

Chapter 11. Transaction management systems on z/OS. 347
11.1 Online processing on the mainframe. 348
11.2 Example of global online processing - the new big picture 348
11.3 Transaction systems for the mainframe . 350
11.4 What is CICS?. 355
11.5 What is IMS? . 370
11.6 Summary . 374
11.7 Questions for review . 375
11.8 Exercises. 376

Chapter 12. Database management systems on z/OS 379
12.1 Database management systems for the mainframe 380
12.2 What is a database? . 380
12.3 Why use a database? . 381
12.4 Who is the database administrator? . 383
12.5 How is a database designed? . 384
12.6 What is a database management system? . 387
12.7 What is DB2? . 389
12.8 What is SQL? . 395
12.9 Application programming for DB2 . 402
vi Introduction to the New Mainframe: z/OS Basics

12.10 Functions of the IMS Database Manager . 407
12.11 Structure of the IMS Database subsystem . 407
12.12 Summary . 411
12.13 Questions for review . 412
12.14 Exercises. 413

Chapter 13. z/OS HTTP Server . 419
13.1 Introduction to Web-based workloads on z/OS 420
13.2 What is z/OS HTTP Server? . 420
13.3 HTTP Server capabilities. 424
13.4 Summary . 428
13.5 Questions for review . 428
13.6 Exercises. 428

Chapter 14. WebSphere Application Server on z/OS 431
14.1 What is WebSphere Application Server for z/OS? 432
14.2 Servers . 433
14.3 Nodes (and node agents) . 433
14.4 Cells . 433
14.5 J2EE application model on z/OS. 434
14.6 Running WebSphere Application Server on z/OS. 435
14.7 Application server configuration on z/OS . 439
14.8 Connectors for Enterprise Information Systems 441
14.9 Questions for review . 446

Chapter 15. Messaging and queuing . 447
15.1 What WebSphere MQ is . 448
15.2 Synchronous communication . 448
15.3 Asynchronous communication . 449
15.4 Message types . 450
15.5 Message queues and the queue manager . 451
15.6 What is a channel? . 453
15.7 How transactional integrity is ensured. 453
15.8 Example of messaging and queuing . 454
15.9 Interfacing with CICS, IMS, batch, or TSO/E . 456
15.10 Summary . 456
15.11 Questions for review . 457

Part 4. System programming on z/OS

Chapter 16. Overview of system programming . 461
16.1 The role of the system programmer . 462
16.2 What is meant by separation of duties . 463
16.3 Customizing the system . 464
 Contents vii

16.4 Managing system performance . 476
16.5 Configuring I/O devices . 476
16.6 Following a process of change control . 477
16.7 Configuring consoles. 480
16.8 Initializing the system . 483
16.9 Summary . 491
16.10 Questions for review . 492
16.11 Topics for further discussion . 492
16.12 Exercises. 493

Chapter 17. Using SMP/E . 495
17.1 What is SMP/E? . 496
17.2 The SMP/E view of the system . 496
17.3 Changing the elements of the system . 498
17.4 Introducing an element into the system. 500
17.5 Preventing or fixing problems with an element 502
17.6 Fixing problems with an element. 503
17.7 Customizing an element - USERMOD SYSMOD 505
17.8 Keeping track of the elements of the system . 506
17.9 Tracking and controlling requisites . 509
17.10 How does SMP/E work? . 509
17.11 Working with SMP/E . 512
17.12 Data sets used by SMP/E . 522
17.13 Summary . 525
17.14 Questions for review . 525
17.15 Topics for further discussion . 526

Chapter 18. Security on z/OS . 527
18.1 Why security? . 528
18.2 Security facilities of z/OS. 528
18.3 Security roles. 529
18.4 The IBM Security Server . 529
18.5 Security administration . 533
18.6 Operator console security . 534
18.7 Integrity . 534
18.8 Summary . 537
18.9 Questions for review . 539
18.10 Topics for further discussion . 539
18.11 Exercises. 540

Chapter 19. Network Communications on z/OS 543
19.1 Communications in z/OS. 544
19.2 Brief history of data networks . 545
19.3 z/OS Communications Server . 548
viii Introduction to the New Mainframe: z/OS Basics

19.4 TCP/IP overview . 549
19.5 VTAM overview . 553
19.6 Summary . 560
19.7 Questions for review . 561
19.8 Exercises. 561

Appendix A. A brief look at IBM mainframe history. 563

Appendix B. DB2 sample tables . 573
Department table (DEPT). 573
Employee table (EMP) . 575

Appendix C. Utility programs . 579
Basic utilities. 580
System-oriented utilities . 587
Application-level utilities . 589

Appendix D. EBCDIC - ASCII table. 591

Appendix E. Class Program . 593
COBOL-CICS-DB2 program . 593
COBOL-Batch-VSAM program. 603
DSNTEP2 utility . 610
QMF batch execution . 611
Batch C program to access DB2 . 612
Java Servlet access to DB2 . 616
C program to access MQ . 618
Java program to access MQ . 628

Notices . 633
Trademarks . 634

Appendix F. Back matter. 635
Related publications . 636
IBM Redbooks . 638
Online resources . 639
How to get IBM Redbooks . 639
Help from IBM . 639

Appendix G. Glossary. 641

Index . 681
 Contents ix

x Introduction to the New Mainframe: z/OS Basics

Preface

This IBM® Redbook provides students of information systems technology with
the background knowledge and skills necessary to begin using the basic facilities
of a mainframe computer. It is the first in a planned series of textbooks designed
to introduce students to mainframe concepts and help prepare them for a career
in large systems computing.

For optimal learning, students are assumed to have successfully completed an
introductory course in computer system concepts, such as computer
organization and architecture, operating systems, data management, or data
communications. They should also have successfully completed courses in one
or more programming languages, and be PC literate.

This textbook can also be used as a prerequisite for courses in advanced topics
or for internships and special studies. It is not intended to be a complete text
covering all aspects of mainframe operation, nor is it a reference book that
discusses every feature and option of the mainframe facilities.

Others who will benefit from this course include experienced data processing
professionals who have worked with non-mainframe platforms, or who are
familiar with some aspects of the mainframe but want to become knowledgeable
with other facilities and benefits of the mainframe environment.

As we go through this course, we suggest that the instructor alternate between
text, lecture, discussions, and hands-on exercises. Many of the exercises are
cumulative, and are designed to show the student how to design and implement
the topic presented. The instructor-led discussions and hands-on exercises are
an integral part of the course material, and can include topics not covered in this
textbook.

In this course, we use simplified examples and focus mainly on basic system
functions. Hands-on exercises are provided throughout the course to help
students explore the mainframe style of computing.

At the end of this course, you will know:

� Basic concepts of the mainframe, including its usage, and architecture
� Fundamentals of z/OS®, a widely used mainframe operating system
� An understanding of mainframe workloads and the major middleware

applications in use on mainframes today
� The basis for subsequent course work in more advanced, specialized areas of

z/OS, such as system administration or application programming
© Copyright IBM Corp. 2006. All rights reserved. xi

How this text is organized
This text is organized in four parts, as follows:

� Part 1. “Introduction to z/OS and the mainframe environment” provides
an overview of the types of workloads commonly processed on the
mainframe, such as batch jobs and online transactions. This part of the text
helps students explore the user interfaces of z/OS, a widely used mainframe
operating system. Discussion topics include TSO/E and ISPF, UNIX®
interfaces, job control language, file structures, and job entry subsystems.
Special attention is paid to the users of mainframes and to the evolving role of
mainframes in today’s business world.

� Part 2. “Application programming on z/OS” introduces the tools and
utilities for developing a simple program to run on z/OS. This part of the text
guides the student through the process of application design, choosing a
programming language, and using a runtime environment.

� Part 3. “Online workloads for z/OS” examines the major categories of
interactive workloads processed by z/OS, such as transaction processing,
database management, and Web-serving. This part includes discussions of
several popular middleware products, including DB2®, CICS®, and
WebSphere® Application Server.

� Part 4. “System programming on z/OS” provides topics to help the student
become familiar with the role of the z/OS system programmer. This part of the
text includes discussions of system libraries, starting and stopping the
system, security, network communications and the clustering of multiple
systems. Also provided is an overview of mainframe hardware systems,
including processors and I/O devices.

In this text, we use simplified examples and focus mainly on basic system
functions. Hands-on exercises are provided throughout the text to help students
explore the mainframe style of computing. Exercises include entering work into
the system, checking its status, and examining the output of submitted jobs.

How each chapter is organized
Each chapter follows a common format:

� Objectives for the student
� Topics that teach a central theme related to mainframe computing
� Summary of the main ideas of the chapter
� A list of key terms introduced in the chapter
� Questions for review to help students verify their understanding of the

material
xii Introduction to the New Mainframe: z/OS Basics

� Topics for further discussion to encourage students to explore issues that
extend beyond the chapter objectives

� Hands-on exercises to help students reinforce their understanding of the
material

About the authors
This text was produced by technical specialists working at the International
Technical Support Organization, Poughkeepsie Center:

Mike Ebbers has worked with mainframe systems at IBM for 32 years. For part
of that time, he taught hands-on mainframe classes to new hires just out of
college. Mike currently creates IBM Redbooks™, a popular set of product
documentation that can be found at:

http://www.ibm.com/redbooks

Wayne O’Brien is an Advisory Software Engineer at IBM Poughkeepsie. Since
joining IBM in 1988, he has developed user assistance manuals and online help
for a wide variety of software products. Wayne holds a Master of Science degree
in Technical Communications from Rensselaer Polytechnic Institute (RPI) of Troy,
New York.

Bill Ogden is a retired IBM Senior Technical Staff Member. He holds BSEE and
MS (Computer Science) degrees and has worked with mainframes since 1962
and with z/OS since it was known as OS/360 Release 1/2. Since joining the ITSO
in 1978, Bill has specialized in encouraging users new to the operating system
and associated hardware.

Acknowledgements
The following people are gratefully acknowledged for their contributions to this
project:

� Dan Andrascik is a senior at the Pennsylvania State University, majoring in
Information Science and Technology. Dan is proficient in computer languages
(C++, Visual Basic®, HTML, XML, SQL), organizational theory, database
theory and design, and project planning and management. During his
internship with the ITSO organization at IBM Poughkeepsie, Dan worked
extensively with elements of the zSeries® platform.

� Rama Ayyar is a Senior IT Specialist with the IBM Support Center in Sydney,
Australia. He has 20 years of experience with the MVS™ operating system
and has been in the IT field for over 30 years. His areas of expertise include
 Preface xiii

TCP/IP, security, storage management, configuration management, and
problem determination. Rama holds a Master’s degree in Computer Science
from the Indian Institute of Technology, Kanpur.

� Emil T. Cipolla is an I/S consultant in the United States with 40 years of
experience. He holds Master’s degrees in Mechanical Engineering and
Business Administration from Cornell University. Emil is currently an adjunct
instructor at the college level.

� Mark Daubman is a senior at St. Bonaventure University, majoring in
Business Information Systems with a minor concentration in Computer
Science. As part of his internship with IBM, Mark worked extensively with
many of the z/OS interfaces described in this textbook. After graduation, Mark
plans to pursue a career in mainframes.

� Myriam Duhamel is an IT Specialist in Belgium. She has 20 years of
experience in application development and has worked at IBM for 12 years.
Her areas of expertise include development in different areas of z/OS (such
as COBOL, PL/I, CICS, DB2, and WebSphere MQ). Myriam currently teaches
courses in DB2 and WebSphere MQ.

� Per Fremstad is an IBM-certified I/T Specialist from the IBM Systems and
Technology group in IBM Norway. He has worked for IBM since 1982 and has
extensive experience with mainframes and z/OS. His areas of expertise
include the Web, WebSphere for z/OS and Web enabling of the z/OS
environment. He teaches frequently on z/OS, zSeries and WebSphere for
z/OS topics. Per holds a BSc from the University of Oslo, Norway.

� Luis Martinez Fuentes is a Certified Consulting IT Specialist (Data
Integration discipline) with Systems and Technology Group, IBM Spain. He
has 20 years of experience with IBM mainframes, mainly in the CICS and
DB2 areas. He is currently working in technical sales support for new
workloads on the mainframe. Luis is a member of the Iberia Technical Expert
Council, which is affiliated with the IBM Academy of Technology. Luis teaches
about mainframes at two universities in Madrid.

� Miriam Gelinski is a staff member of Maffei Consulting Group in Brazil,
where she is responsible for supporting customer planning and installing
mainframe software. She has five years of experience in mainframes. She
holds a Bachelor's degree in Information Systems from Universidade São
Marcos in Sao Paulo. Her areas of expertise include the z/OS operating
system, its subsystems, and TSO and ISPF.

� Michael Grossmann is an IT Education specialist in Germany with nine
years of experience as a z/OS system programmer and instructor. His areas
of expertise include z/OS education for beginners, z/OS operations,
automation, mainframe hardware and Parallel Sysplex®.
xiv Introduction to the New Mainframe: z/OS Basics

� Olegario Hernandez is a former IBM Systems Engineer in Chile. He has
more than 35 years of experience in application design and development
projects for mainframes. He has written extensively on the CICS application
interface, systems management, and grid computing. Olegario holds a
degree in Chemical Engineering from Universidad de Chile.

� Roberto Yuiti Hiratzuka is a mainframe systems programmer in Brazil with
15 years of experience. He holds a degree in Information Systems from
Faculdade de Tecnologia Sao Paulo (FATEC-SP).

� John Kettner is a Consulting Software Architect in the zSeries Advanced
Architecture Group. He has 30 years of mainframe experience and holds a
BS in Computer Science from L.I.U. His specialties are zSeries internals,
WebSphere product integration, and capacity planning. John has written
several Redbooks and contributes to various education programs in IBM.

� Georg Müller is a student at the University of Leipzig in Germany. He has
three years of experience with z/OS and mainframe hardware. He plans to
complete his study with a Master's degree in Computer Science next year. For
this textbook, Georg wrote topics and sample programs for WebSphere MQ
and HTTP Server, and helped to verify the sequence of learning modules.

� Rod Neufeld is a Senior Technical Services Professional in Canada. He has
25 years of experience in MVS and z/OS system programming. His areas of
expertise include z/OS systems software and support, Parallel Sysplex, and
business continuance and recovery. Rod holds an Honors Bachelors degree
in Science from the University of Manitoba.

� Paul Newton is a Senior Software Engineer in the IBM Developer Relations
Technical Support Center in Dallas, Texas. He has 25 years of experience
with mainframe operating systems, subsystems and data networks. Paul
holds a degree in Business Administration from the University of Arizona.

� Bill Seubert is a zSeries Software Architect in the United States. He has over
20 years experience in mainframes and distributed computing. He holds a
Bachelor’s degree in Computer Science from the University of Missouri,
Columbia. His areas of expertise include z/OS, WebSphere integration
software, and software architecture. Bill speaks frequently to IBM clients
about integration architecture and enterprise modernization.

� Henrik Thorsen is a Senior Consulting IT Specialist at IBM Denmark. He has
25 years of mainframe experience and holds an MS in Engineering from the
Technical University in Copenhagen and a BS in Economics from
Copenhagen Business School. His specialties are z/OS, Parallel Sysplex,
high availability, performance and capacity planning. Henrik has written
several IBM Redbooks and other documents and contributes to various
education programs throughout IBM and the zSeries technical community.
 Preface xv

� Andy R. Wilkinson is an IT Specialist in the United Kingdom. He has 25
years of experience in reservation systems and z/OS system programming,
and has worked at IBM for six years. His areas of expertise include hardware
configuration and SMP/E. Andy holds a degree in Materials Science and
Technology from the University of Sheffield and a degree in Computing from
the Open University.

Lastly, special thanks to the editors at the ITSO center in Poughkeepsie, New
York:

� Terry Barthel
� Ella Buslovich (graphics)
� Alfred Schwab

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xvi Introduction to the New Mainframe: z/OS Basics

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.developer.ibm.com/university/scholars/

Part 1 Introduction to
z/OS and the
mainframe
environment

Welcome to mainframe computing! We begin this text with an overview of the
mainframe computer and its place in today’s information technology (IT)
organization. We explore the reasons why public and private enterprises
throughout the world rely on the mainframe as the foundation of large-scale
computing. We discuss the types of workloads that are commonly associated
with the mainframe, such as batch jobs and online or interactive transactions,
and the unique manner in which this work is processed by a widely used
mainframe operating system—z/OS.

Throughout this text, we pay special attention to the people who use mainframes
and to the role of the New Mainframe in today’s business world.

Part 1
© Copyright IBM Corp. 2006. All rights reserved. 1

2 Introduction to the New Mainframe: z/OS Basics

Chapter 1. Introduction to the new
mainframe

1

Objective: As a technical professional in the world of mainframe computing,
you will need to understand how mainframe computers support your
company’s IT infrastructure and business goals. You will also need to know the
job titles of the various members of your company’s mainframe support team.

After completing this chapter, you will be able to:

� List ways in which the mainframe of today challenges the traditional
thinking about centralized computing versus distributed computing.

� Explain how businesses make use of mainframe processing power, the
typical uses of mainframes, and how mainframe computing differs from
other types of computing.

� Outline the major types of workloads for which mainframes are best suited.

� Name five jobs or responsibilities that are related to mainframe computing.

� Identify four mainframe operating systems.
© Copyright IBM Corp. 2006. All rights reserved. 3

1.1 The new mainframe
Today, mainframe computers play a central role in the daily operations of most of
the world’s largest corporations, including many Fortune 1000 companies. While
other forms of computing are used extensively in various business capacities, the
mainframe occupies a coveted place in today’s e-business environment. In
banking, finance, health care, insurance, public utilities, government, and a
multitude of other public and private enterprises, the mainframe computer
continues to form the foundation of modern business.

The long-term success of mainframe computers is without precedent in the
information technology (IT) field. Periodic upheavals shake world economies and
continuous—often wrenching—change in the Information Age has claimed many
once-compelling innovations as victims in the relentless march of progress. As
emerging technologies leap into the public eye, many are just as suddenly
rendered obsolete by some even newer advancement. Yet today, as in every
decade since the 1960s, mainframe computers and the mainframe style of
computing dominate the landscape of large-scale business computing.

Why has this one form of computing taken hold so strongly among so many of
the world’s corporations? In this chapter, we look at the reasons why mainframe
computers continue to be the popular choice for large-scale business computing.

1.2 The S/360: A turning point in mainframe history
When did mainframe computers come into being? The origin of mainframe
computers dates back to the 1950s, if not earlier. In those days, mainframe
computers were not just the largest computers; they were the only computers
and few businesses could afford them.

Mainframe development occurred in a series of generations starting in the 1950s.
First generation systems, such as the IBM 705 in 1954 and the IBM 1401 in
1959, were a far cry from the enormously powerful machines that were to follow,
but they clearly had characteristics of mainframe computers. These computers
were sold as business machines and served then—as now—as the central data
repository in a corporation's data processing center. 1

In the 1960s, the course of computing history changed dramatically when
mainframe manufacturers began to standardize the hardware and software they
offered to customers. The introduction of the IBM System/360™ (or S/360™) in
1964 signaled the start of the third generation: the first general purpose

e-business
The
transaction of
business over
an electronic
medium such
as the Internet.

1 According to the IBM product brochure, typical customer uses for a 1401 were "payroll, railroad
freight car accounting, public utility customer accounting, inventory control, and accounts receivable."

System/360
The first general
purpose
computer,
introduced in
1964.
4 Introduction to the New Mainframe: z/OS Basics

computers. Earlier systems such as the 1401 were dedicated as either
commercial or scientific computers. The revolutionary S/360 could perform both
types of computing, as long as the customer, a software company, or a
consultant provided the programs to do so. In fact, the name S/360 refers to the
architecture’s wide scope: 360 degrees to cover the entire circle of possible uses.

The S/360 was also the first of these computers to use microcode to implement
many of its machine instructions, as opposed to having all of its machine
instructions hard-wired into its circuitry. Microcode (or firmware, as it is
sometimes called) consists of stored microinstructions, not available to users,
that provide a functional layer between hardware and software. The advantage of
microcoding is flexibility, where any correction or new function can be
implemented by just changing the existing microcode, rather than replacing the
computer.

With standardized mainframe computers to run their workloads, customers
could, in turn, write business applications that didn’t need specialized hardware
or software. Moreover, customers were free to upgrade to newer and more
powerful processors without concern for compatibility problems with their existing
applications. The first wave of customer business applications were mostly
written in Assembler, COBOL, FORTRAN, or PL/1, and a substantial number of
these older programs are still in use today.

In the decades since the 1960s, mainframe computers have steadily grown to
achieve enormous processing capabilities. The New Mainframe has an unrivaled
ability to serve end users by the tens of thousands, manage petabytes of data,
and reconfigure hardware and software resources to accommodate changes in
workload—all from a single point of control.

1.3 An evolving architecture
An architecture is a set of defined terms and rules that are used as instructions
to build products. In computer science, an architecture describes the
organizational structure of a system. An architecture can be recursively
decomposed into parts that interact through interfaces, relationships that connect
parts, and constraints for assembling parts. Parts that interact through interfaces
include classes, components, and subsystems.

Starting with the first large machines, which arrived on the scene in the 1960s
and became known as “Big Iron” (in contrast to smaller departmental systems),
each new generation of mainframe computers has included improvements in one
or more of the following areas of the architecture:2

� More and faster processors

Architecture
describes the
organizational
structure of a
system.
 Chapter 1. Introduction to the new mainframe 5

� More physical memory and greater memory addressing capability

� Dynamic capabilities for upgrading both hardware and software

� Increased automation of hardware error checking and recovery

� Enhanced devices for input/output (I/O) and more and faster paths (channels)
between I/O devices and processors

� More sophisticated I/O attachments, such as LAN adapters with extensive
inboard processing

� A greater ability to divide the resources of one machine into multiple, logically
independent and isolated systems, each running its own operating system

� Advanced clustering technologies, such as Parallel Sysplex, and the ability to
share data among multiple systems.

Despite the continual change, mainframe computers remain the most stable,
secure, and compatible of all computing platforms. The latest models can handle
the most advanced and demanding customer workloads, yet continue to run
applications that were written in the 1970s or earlier.

How can a technology change so much, yet remain so stable? It can by evolving
to meet new challenges. In the early 1990s, the client/server model of computing,
with its distributed nodes of less powerful computers, emerged to challenge the
dominance of mainframe computers. Industry pundits predicted a swift end for
the mainframe computer and called it a “dinosaur.” In response, mainframe
designers did what they have always done when confronted with changing times
and a growing list of user requirements: they designed new mainframe
computers to meet the demand. With a tip of the hat to the dinosaur naysayers,
IBM, as the leading manufacturer of mainframe computers, code-named its
then-current machine T-Rex.

With the expanded functions and added tiers of data processing capabilities such
as Web-serving, autonomics, disaster recovery, and grid computing, the
mainframe computer is poised to ride the next wave of growth in the IT industry.
Mainframe manufacturers such as IBM are once again reporting annual sales
growth in the double digits.

And the evolution continues. While the mainframe computer has retained its
traditional, central role in the IT organization, that role is now defined to include
being the primary hub in the largest distributed networks. In fact, the Internet

2 Since the introduction of the S/360 in 1964, IBM has significantly extended the platform roughly
every ten years: System/370™ in 1970, System/370 Extended Architecture (370-XA) in 1983,
Enterprise Systems Architecture/390® (ESA/390) in 1990, and z/Architecture™ in 2000. For more
information about earlier mainframe hardware systems, see Appendix A, “A brief look at IBM
mainframe history” on page 563.

“I predict that
the last
mainframe will
be unplugged
on March 15,
1996.”
—Stewart
Alsop,
Infoworld,
March 1991
6 Introduction to the New Mainframe: z/OS Basics

itself is based largely on numerous, interconnected mainframe computers
serving as major hubs and routers.

As the image of the mainframe computer continues to evolve, you might ask: is
the mainframe computer a self-contained computing environment, or is it one
part of the puzzle in distributed computing? The answer is that The New
Mainframe is both: a self-contained processing center, powerful enough to
process the largest and most diverse workloads in one secure “footprint,” and
one that is just as effective when implemented as the primary server in a
corporation’s distributed server farm. In effect, the mainframe computer is the
definitive server in the client/server model of computing.

1.4 Mainframes in our midst
Despite the predominance of mainframes in the business world, these machines
are largely invisible to the general public, the academic community, and indeed
many experienced IT professionals. Instead, other forms of computing attract
more attention, at least in terms of visibility and public awareness. That this is so
is perhaps not surprising. After all, who among us needs direct access to a
mainframe? And, if we did, where would we find one to access? The truth,
however, is that we are all mainframe users, whether we realize it or not (more
on this later).

Most of us with some personal computer (PC) literacy and sufficient funds can
purchase a notebook computer and quickly put it to good use—running software,
browsing Web sites, and perhaps even writing papers for college professors to
grade. With somewhat greater effort and technical prowess, we can delve more
deeply into the various facilities of a typical Intel®-based workstation and learn its
capabilities through direct, hands-on experience—with or without help from any
of a multitude of readily available information sources in print or on the Web.

Mainframes, however, tend to be hidden from the public eye. They do their jobs
dependably—indeed, with almost total reliability—and are highly resistant to
most forms of insidious abuse that afflict PCs, such as e-mail-borne viruses and
Trojan Horses. By performing stably, quietly, and with negligible downtime,
mainframes are the example by which all other computers are judged. But at the
same time, this lack of attention tends to allow them to fade into the background.

Furthermore, in a typical customer installation, the mainframe shares space with
many other hardware devices: external storage devices, hardware network
routers, channel controllers, and automated tape library “robots,” to name a few.
The New Mainframe is physically no larger than many of these devices and
generally does not stand out from the crowd of peripheral devices.
 Chapter 1. Introduction to the new mainframe 7

So, how can we explore the mainframe’s capabilities in the real world? How can
we learn to interact with the mainframe, learn its capabilities, and understand its
importance to the business world? Major corporations are eager to hire new
mainframe professionals, but there’s a catch: Some previous experience would
help.

Would we even know a mainframe if we saw one, given that these machines
have evolved to flourish in the twenty-first century IT organization? What we need
is an experienced guide to lead us on a dinosaur safari, which is where this
textbook comes in!

1.5 What is a mainframe?
First, let’s tackle the terminology. Today, computer manufacturers don’t always
use the term mainframe to refer to mainframe computers. Instead, most have
taken to calling any commercial-use computer—large or small—a server, with
the mainframe simply being the largest type of server in use today. IBM, for
example, refers to its latest mainframe as the IBM System z9™ server. We use
the term mainframe in this text to mean computers that can support thousands of
applications and input/output devices to simultaneously serve thousands of
users.

Servers are proliferating. A business might have a large server collection that
includes transaction servers, database servers, e-mail servers and Web servers.
Very large collections of servers are sometimes called server farms (in fact, some
data centers cover areas measured in acres). The hardware required to perform
a server function can range from little more than a cluster of rack-mounted
personal computers to the most powerful mainframes manufactured today.

A mainframe is the central data repository, or hub, in a corporation’s data
processing center, linked to users through less powerful devices such as
workstations or terminals. The presence of a mainframe often implies a
centralized form of computing, as opposed to a distributed form of computing.
Centralizing the data in a single mainframe repository saves customers from
having to manage updates to more than one copy of their business data, which
increases the likelihood that the data is current.

The distinction between centralized and distributed computing, however, is
rapidly blurring as smaller machines continue to gain in processing power and
mainframes become ever more flexible and multi-purpose. Market pressures
require that today’s businesses continually reevaluate their IT strategies to find
better ways of supporting a changing marketplace. As a result, mainframes are
now frequently used in combination with networks of smaller servers in a
multitude of configurations. The ability to dynamically reconfigure a mainframe’s

Server farm
A very large
collection of
servers.
8 Introduction to the New Mainframe: z/OS Basics

hardware and software resources (such as processors, memory, and device
connections), while applications continue running, further underscores the
flexible, evolving nature of the modern mainframe.

While mainframe hardware has become harder to pigeon-hole, so, too, have the
operating systems that run on mainframes. Years ago, in fact, the terms defined
each other: a mainframe was any hardware system that ran a major IBM
operating system.3 This meaning has been blurred in recent years because
these operating systems can be run on very small systems.

Computer manufacturers and IT professionals often use the term platform to
refer to the hardware and software that are associated with a particular computer
architecture. For example, a mainframe computer and its operating system (and
their predecessors4) are considered a platform; UNIX on a Reduced Instruction
Set Computer (RISC) system is considered a platform somewhat independently
of exactly which RISC machine is involved; personal computers can be seen as
several different platforms, depending on which operating system is being used.

So, let’s return to our question now: “What is a mainframe?” Today, the term
mainframe can best be used to describe a style of operation, applications, and
operating system facilities. To start with a working definition, “a mainframe is
what businesses use to host the commercial databases, transaction servers, and
applications that require a greater degree of security and availability than is
commonly found on smaller-scale machines.”

Early mainframe systems were housed
in enormous, room-sized metal boxes
or frames, which is probably how the
term mainframe originated. The early
mainframe required large amounts of
electrical power and air-conditioning,
and the room was filled mainly with I/O
devices. Also, a typical customer site
had several mainframes installed, with
most of the I/O devices connected to all

of the mainframes. During their largest period, in terms of physical size, a typical
mainframe occupied 2,000 to 10,000 square feet (600 to 3000 square meters).
Some installations were even larger than this.

3 The name was also traditionally applied to large computer systems that were produced by other
vendors.
4 IBM System/390® (S/390®) refers to a specific series of machines, which have been superseded
by the IBM zSeries machines. Nevertheless, many S/390 systems are still in use. Therefore, keep in
mind that although we discuss the zSeries systems in this course, almost everything discussed also
applies to S/390 machines. One major exception is 64-bit addressing, which is used only with
zSeries.

Platform
A computer
architecture
(hardware and
software).

Mainframe
A large
computer
system that is
used to host the
databases,
transaction
servers, and
applications
that require a
great degree of
security and
availability.
 Chapter 1. Introduction to the new mainframe 9

Starting around 1990, mainframe processors and most of
their I/O devices became physically smaller, while their
functionality and capacity continued to grow. Mainframe
systems today are much smaller than earlier
systems—about the size of a large refrigerator.

In some cases, it is now possible to run a mainframe
operating system on a PC that emulates a mainframe.
Such emulators are useful for developing and testing
business applications before moving them to a mainframe
production system.

Clearly, the term mainframe has expanded beyond merely describing the
physical characteristics of a system. Instead, the word typically applies to some
combination of the following attributes:

� Compatibility with mainframe operating systems, applications, and data.

� Centralized control of resources.

� Hardware and operating systems that can share access to disk drives with
other systems, with automatic locking and protection against destructive
simultaneous use of disk data.

� A style of operation, often involving dedicated operations staff who use
detailed operations procedure books and highly organized procedures for
backups, recovery, training, and disaster recovery at an alternative location.

� Hardware and operating systems that routinely work with hundreds or
thousands of simultaneous I/O operations.

� Clustering technologies that allow the customer to operate multiple copies of
the operating system as a single system. This configuration, known as
Parallel Sysplex, is analogous in concept to a UNIX cluster, but allows
systems to be added or removed as needed, while applications continue to
run. This flexibility allows mainframe customers to introduce new applications,
or discontinue the use of existing applications, in response to changes in
business activity.

� Additional data and resource sharing capabilities. In a Parallel Sysplex, for
example, it is possible for users across multiple systems to access the same
databases concurrently, with database access controlled at the record level.

As the performance and cost of such hardware resources as central processing
unit (CPU) power and external storage media improve, and the number and
types of devices that can be attached to the CPU) increase, the operating system
software can more fully take advantage of the improved hardware. Also,
continuing improvements in software functionality help drive the development of
each new generation of hardware systems.
10 Introduction to the New Mainframe: z/OS Basics

1.6 Who uses mainframe computers?
So, who uses mainframes? Just about everyone has used a mainframe computer
at one point or another. If you ever used an automated teller machine (ATM) to
interact with your bank account, you used a mainframe.

Today, mainframe computers play a central role in the daily operations of most of
the world’s largest corporations. While other forms of computing are used
extensively in business in various capacities, the mainframe occupies a coveted
place in today’s e-business environment. In banking, finance, health care,
insurance, utilities, government, and a multitude of other public and private
enterprises, the mainframe computer continues to be the foundation of modern
business.

Until the mid-1990s, mainframes provided the only acceptable means of handling
the data processing requirements of a large business. These requirements were
then (and are often now) based on large and complex batch jobs, such as payroll
and general ledger processing.

The mainframe owes much of its popularity and longevity to its inherent reliability
and stability, a result of careful and steady technological advances that have
been made since the introduction of the System/360 in 1964. No other computer
architecture can claim as much continuous, evolutionary improvement, while
maintaining compatibility with previous releases.

Because of these design strengths, the mainframe is often used by IT
organizations to host the most important, mission-critical applications. These
applications typically include customer order processing, financial transactions,
production and inventory control, payroll, as well as many other types of work.

One common impression of a mainframe’s user interface is the 80x24-character
“green screen” terminal, named for the old cathode ray tube (CRT) monitors from
years ago that glowed green. In reality, mainframe interfaces today look much the
same as those for personal computers or UNIX systems. When a business
application is accessed through a Web browser, there is often a mainframe
computer performing crucial functions “behind the scene.”

Many of today’s busiest Web sites store their production databases on a
mainframe host. New mainframe hardware and software products are ideal for
Web transactions because they are designed to allow huge numbers of users
and applications to rapidly and simultaneously access the same data without
interfering with each other. This security, scalability, and reliability is critical to the
efficient and secure operation of contemporary information processing.

Corporations use mainframes for applications that depend on scalability and
reliability. For example, a banking institution could use a mainframe to host the
 Chapter 1. Introduction to the new mainframe 11

database of its customer accounts, for which transactions can be submitted from
any of thousands of ATM locations worldwide.

Businesses today rely on the mainframe to:

� Perform large-scale transaction processing (thousands of transactions per
second)5

� Support thousands of users and application programs concurrently accessing
numerous resources

� Manage terabytes of information in databases

� Handle large-bandwidth communication

The roads of the information superhighway often lead to a mainframe.

1.7 Factors contributing to mainframe use
The reasons for mainframe use are many, but most generally fall into one or more
of the following categories:

� Reliability, availability, and serviceability
� Security
� Scalabilty
� Continuing compatibility
� Evolving architecture

Let’s look at each of these categories in more detail.

1.7.1 Reliability, availability, and serviceability
The reliability, availability, and serviceability (or “RAS”) of a computer system
have always been important factors in data processing. When we say that a
particular computer system “exhibits RAS characteristics,” we mean that its
design places a high priority on the system remaining in service at all times.
Ideally, RAS is a central design feature of all aspects of a computer system,
including the applications.

RAS has become accepted as a collective term for many characteristics of
hardware and software that are prized by mainframe users. The terms are
defined as follows:

Reliability The system’s hardware components have extensive
self-checking and self-recovery capabilities. The system’s

5 IBM’s latest series of mainframe computers, the IBM System z9 109 (also known as the z9-109)
can process a staggering one billion transactions per day.
12 Introduction to the New Mainframe: z/OS Basics

software reliability is a result of extensive testing and the ability to
make quick updates for detected problems.

Availability The system can recover from a failed component without
impacting the rest of the running system. This applies to
hardware recovery (the automatic replacing of failed elements
with spares) and software recovery (the layers of error recovery
that are provided by the operating system).

Serviceability The system can determine why a failure occurred. This allows for
the replacement of hardware and software elements while
impacting as little of the operational system as possible. This
term also implies well-defined units of replacement, either
hardware or software.

A computer system is available when its applications are available. An available
system is one that is reliable; that is, it rarely requires downtime for upgrades or
repairs. And, if the system is brought down by an error condition, it must be
serviceable; that is, easy to fix within a relatively short period of time.

Mean time between failure (MTBF) refers to the availability of a computer system.
The New Mainframe and its associated software have evolved to the point that
customers often experience months or even years of system availability between
system downtimes. Moreover, when the system is unavailable because of an
unplanned failure or a scheduled upgrade, this period is typically very short. The
remarkable availability of the system in processing the organization’s
mission-critical applications is vital in today’s 24-hour, global economy. Along
with the hardware, mainframe operating systems exhibit RAS through such
features as storage protection and a controlled maintenance process.

Beyond RAS, a state-of-the-art mainframe system might be said to provide high
availability and fault tolerance. Redundant hardware components in critical
paths, enhanced storage protection, a controlled maintenance process, and
system software designed for unlimited availability all help to ensure a consistent,
highly available environment for business applications in the event that a system
component fails. Such an approach allows the system designer to minimize the
risk of having a single point of failure undermine the overall RAS of a computer
system.

1.7.2 Security
One of a firm’s most valuable resources is its data: customer lists, accounting
data, employee information, and so on. This critical data needs to be securely
managed and controlled, and, simultaneously, made available to those users
authorized to see it. The mainframe computer has extensive capabilities to
simultaneously share, but still protect, the firm’s data among multiple users.

Availability
The ability to
recover from
the failure of a
component
without
impacting the
rest of the
running
system.
 Chapter 1. Introduction to the new mainframe 13

In an IT environment, data security is defined as protection against unauthorized
access, transfer, modification, or destruction, whether accidental or intentional.
To protect data and to maintain the resources necessary to meet the security
objectives, customers typically add a sophisticated security manager product to
their mainframe operating system. The customer’s security administrator often
bears the overall responsibility for using the available technology to transform the
company’s security policy into a usable plan.

A secure computer system prevents users from accessing or changing any
objects on the system, including user data, except through system-provided
interfaces that enforce authority rules. The New Mainframe can provide a very
secure system for processing large numbers of heterogeneous applications that
access critical data. In this text, we discuss one example of a mainframe security
system in Chapter 18, “Security on z/OS” on page 527.

1.7.3 Scalability
It has been said that the only constant is change. Nowhere is that statement truer
than in the IT industry. In business, positive results can often trigger a growth in
IT infrastructure to cope with increased demand. The degree to which the IT
organization can add capacity without disruption to normal business processes
or without incurring excessive overhead (nonproductive processing) is largely
determined by the scalability of the particular computing platform.

By scalability, we mean the ability of the hardware, software, or a distributed
system to continue to function well as it is changed in size or volume; for
example, the ability to retain performance levels when adding processors,
memory, and storage. A scalable system can efficiently adapt to work, with larger
or smaller networks performing tasks of varying complexity.

As a company grows in employees, customers, and business partners, it usually
needs to add computing resources to support business growth. One approach is
to add more processors of the same size, with the resulting overhead in
managing this more complex setup. Alternatively, a company can consolidate its
many smaller processors into fewer, larger systems. Using a mainframe system,
many companies have significantly lowered their total cost of ownership (TCO),
which includes not only the cost of the machine (its hardware and software), but
the cost to run it.

Mainframes exhibit scalability characteristics in both hardware and software, with
the ability to run multiple copies of the operating system software as a single
entity called a system complex, or sysplex. We further explore mainframe
clustering technology and its uses in 2.8, “What is a Parallel Sysplex?” on
page 54.

Scalability
The ability of a
system to
retain
performance
levels when
adding
processors,
memory, and
storage.
14 Introduction to the New Mainframe: z/OS Basics

1.7.4 Continuing compatibility
Mainframe customers tend to have a very large financial investment in their
applications and data. Some applications have been developed and refined over
decades. Some applications were written many years ago, while others may
have been written “yesterday.” The ability of an application to work in the system
or its ability to work with other devices or programs is called compatibility.

The need to support applications of varying ages imposes a strict compatibility
demand on mainframe hardware and software, which have been upgraded many
times since the first System/360 mainframe computer was shipped in 1964.
Applications must continue to work properly. Thus, much of the design work for
new hardware and system software revolves around this compatibility
requirement.

The overriding need for compatibility is also the primary reason why many
aspects of the system work as they do, for example, the syntax restrictions of the
job control language (JCL) that is used to control batch jobs. Any new design
enhancements made to JCL must preserve compatibility with older jobs so that
they can continue to run without modification. The desire and need for continuing
compatibility is one of the defining characteristics of mainframe computing.

Absolute compatibility across decades of changes and enhancements is not
possible, of course, but the designers of mainframe hardware and software make
it a top priority. When an incompatibility is unavoidable, the designers typically
warn users at least a year in advance that software changes might be needed.

1.8 Typical mainframe workloads
Most mainframe workloads fall into one of two categories: batch processing or
online transaction processing, which includes Web-based applications
(Figure 1-1).

Compatibility
The ability of a
system both to
run software
requiring new
hardware
instructions
and to run
older software
requiring the
original
hardware
instructions.
 Chapter 1. Introduction to the new mainframe 15

Figure 1-1 Typical mainframe workloads

These workloads are discussed in several chapters in this text; the following
sections provide an overview.

1.8.1 Batch processing
One key advantage of mainframe systems is their ability to process terabytes of
data from high-speed storage devices and produce valuable output. For example,
mainframe systems make it possible for banks and other financial institutions to
perform end-of-quarter processing and produce reports that are necessary to
customers (for example, quarterly stock statements or pension statements) or to
the government (for example, financial results). With mainframe systems, retail
stores can generate and consolidate nightly sales reports for review by regional
sales managers.

The applications that produce these statements are batch applications; that is,
they are processed on the mainframe without user interaction. A batch job is
submitted on the computer, reads and processes data in bulk—perhaps
terabytes of data—and produces output, such as customer billing statements. An
equivalent concept can be found in a UNIX script file or a Windows® command
file, but a z/OS batch job might process millions of records.

While batch processing is possible on distributed systems, it is not as
commonplace as it is on mainframes because distributed systems often lack:

Batch job

Application program

Output data

Application program

Input
data

Processes data to
perform a

particular task

Online (interactive) transaction

Query

Reply

Accesses shared
data on behalf of
an online user

Batch
processing
The running of
jobs on the
mainframe
without user
interaction.
16 Introduction to the New Mainframe: z/OS Basics

� Sufficient data storage
� Available processor capacity, or cycles
� Sysplex-wide management of system resources and job scheduling

Mainframe operating systems are typically equipped with sophisticated job
scheduling software that allows data center staff to submit, manage, and track
the execution and output of batch jobs6.

Batch processes typically have the following characteristics:

� Large amounts of input data are processed and stored (perhaps terabytes or
more), large numbers of records are accessed, and a large volume of output
is produced.

� Immediate response time is usually not a requirement. However, batch jobs
often must complete within a “batch window,” a period of less-intensive online
activity, as prescribed by a service level agreement (SLA).

� Information is generated about large numbers of users or data entities (for
example, customer orders or a retailer’s stock on hand).

� A scheduled batch process can consist of the execution of hundreds or
thousands of jobs in a pre-established sequence.

During batch processing, multiple types of work can be generated. Consolidated
information such as profitability of investment funds, scheduled database
backups, processing of daily orders, and updating of inventories are common
examples. Figure 1-2 shows a number of batch jobs running in a typical
mainframe environment.

In Figure 1-2, consider the following elements at work in the scheduled batch
process:

1. At night, numerous batch jobs running programs and utilities are processed.
These jobs consolidate the results of the online transactions that take place
during the day.

2. The batch jobs generate reports of business statistics.

3. Backups of critical files and databases are made before and after the batch
window.

4. Reports with business statistics are sent to a specific area for analysis the
next day.

6 In the early days of the mainframe, punched cards were often used to enter jobs into the system for
execution. “Keypunch operators” used card punches to enter data, and decks of cards (or batches)
were produced. These were fed into card readers, which read the jobs and data into the system. As
you can imagine, this process was cumbersome and error-prone. Nowadays, it is possible to transfer
the equivalent of punched card data to the mainframe in a PC text file. We discuss various ways of
introducing work into the mainframe in Chapter 7, “Batch processing and JES” on page 229.
 Chapter 1. Introduction to the new mainframe 17

5. Reports with exceptions are sent to the branch offices.

6. Monthly account balance reports are generated and sent to all bank
customers.

7. Reports with processing summaries are sent to the partner credit card
company.

Figure 1-2 Typical batch use

8. A credit card transaction report is received from the partner company.

9. In the production control department, the operations area is monitoring the
messages on the system console and the execution of the jobs.

Disk storage
databases

Tape storage
Sequential

data sets

Partners
and clients
exchange

information

Reports

Backups

Data
update

Reports

Statistics,
summaries,
exceptions

Account balances,
bills, etc.

Processing
reports

Mainframe
Processing batch jobs

44

55
Reports

22

1010

11

88

66

33

CREDIT CARD

1234 5678 90121234 5678 9012
VALID FROM GOOD THRU

XX/XX/XX XX/XX/XX
PAUL FISCHER
XX/XX/XX XX/XX/XX
PAUL FISCHER

77

99

System
Operator

Production
control

Residence Main office
18 Introduction to the New Mainframe: z/OS Basics

10.Jobs and transactions are reading or updating the database (the same one
that is used by online transactions) and many files are written to tape.

1.8.2 Online transaction processing
Transaction processing that occurs interactively with the end user is referred to
as online transaction processing or OLTP. Typically, mainframes serve a vast
number of transaction systems. These systems are often mission-critical
applications that businesses depend on for their core functions. Transaction
systems must be able to support an unpredictable number of concurrent users
and transaction types. Most transactions are executed in short time
periods—fractions of a second in some cases.

One of the main characteristics of a transaction system is that the interactions
between the user and the system are very short. The user will perform a
complete business transaction through short interactions, with immediate
response time required for each interaction. These systems are currently
supporting mission-critical applications; therefore, continuous availability, high
performance, and data protection and integrity are required.

Online transactions are familiar to most people. Examples include:

� ATM machine transactions such as deposits, withdrawals, inquiries, and
transfers

� Supermarket payments with debit or credit cards

� Purchase of merchandise over the Internet

For example, inside a bank branch office or on the Internet, customers are using
online services when checking an account balance or directing fund balances.

In fact, an online system performs many of the same functions as an operating
system:

� Managing and dispatching tasks
� Controlling user access authority to system resources
� Managing the use of memory
� Managing and controlling simultaneous access to data files
� Providing device independence

Some industry uses of mainframe-based online systems include:

� Banks - ATMs, teller systems for customer service
� Insurance - Agent systems for policy management and claims processing
� Travel and transport - Airline reservation systems
� Manufacturing - Inventory control, production scheduling
� Government - Tax processing, license issuance and management

Online
transaction
processing
(OLTP)
Transaction
processing that
occurs
interactively
with the end
user.
 Chapter 1. Introduction to the new mainframe 19

How might the end users in these industries interact with their mainframe
systems? Multiple factors can influence the design of a company’s transaction
processing system, including:

� Number of users interacting with the system at any one time.

� Number of transactions per second (TPS).

� Availability requirements of the application. For example, must the application
be available 24 hours a day, seven days a week, or can it be brought down
briefly one night each week?

Before personal computers and intelligent workstations became popular, the
most common way to communicate with online mainframe applications was with
3270 terminals. These devices were sometimes known as “dumb” terminals, but
they had enough intelligence to collect and display a full screen of data rather
than interacting with the computer for each keystroke, saving processor cycles.
The characters were green on a black screen, so the mainframe applications
were nicknamed “green screen” applications.

Based on these factors, user interactions vary from installation to installation.
With applications now being designed, many installations are reworking their
existing mainframe applications to include Web browser-based interfaces for
users. This work sometimes requires new application development, but can often
be done with vendor software purchased to “re-face” the application. Here, the
end user often does not realize that there is a mainframe behind the scenes.

In this text, there is no need to describe the process of interacting with the
mainframe through a Web browser, as it is exactly the same as any interaction a
user would have through the Web. The only difference is the machine at the other
end!

Online transactions usually have the following characteristics:

� A small amount of input data, a few stored records accessed and processed,
and a small amount of data as output

� Immediate response time, usually less than one second
� Large numbers of users involved in large numbers of transactions
� Round-the-clock availability of the transactional interface to the user
� Assurance of security for transactions and user data

In a bank branch office, for example, customers use online services when
checking an account balance or making an investment.

Figure 1-3 shows a series of common online transactions using a mainframe.
20 Introduction to the New Mainframe: z/OS Basics

Figure 1-3 Typical online use

1. A customer uses an ATM, which presents a user-friendly interface for various
functions: Withdrawal, query account balance, deposit, transfer, or cash
advance from a credit card account.

2. Elsewhere in the same private network, a bank employee in a branch office
performs operations such as consulting, fund applications, and money
ordering.

3. At the bank’s central office, business analysts tune transactions for improved
performance. Other staff use specialized online systems for office automation
to perform customer relationship management, budget planning, and stock
control.

4. All requests are directed to the mainframe computer for processing.

5. Programs running on the mainframe computer perform updates and inquiries
to the database management system (for example, DB2).

6. Specialized disk storage systems store the database files.

Disk
storage

controller
Stores

database
files

Queries
and

updates

Account
activities

Office
automation

systems

Mainframe
Accesses
database

Requests

ATMs

Branch
offices

Business analysts Inventory control

Branch office
automation
systems

SNA or TCP/IP
network

55

66

33
22

44
11

Central office
 Chapter 1. Introduction to the new mainframe 21

1.9 Roles in the mainframe world
Mainframe systems are designed to be used by large numbers of people. Most of
those who interact with mainframes are end users—people who use the
applications that are hosted on the system. However, because of the large
number of end users, applications running on the system, and the sophistication
and complexity of the system software that supports the users and applications,
a variety of roles are needed to operate and support the system.

Figure 1-4 Who’s who in the mainframe world

In the IT field, these roles are referred to by a number of different titles; this text
uses the following:

� System programmers
� System administrators
� Application designers and programmers
� System operators
� Production control analysts

In a distributed systems environment, many of the same roles are needed as in
the mainframe environment. However, the job responsibilities are often not as
well-defined. Since the 1960s, mainframe roles have evolved and expanded to
provide an environment in which the system software and applications can

Production control analyst

Operator

System
administrator

System
programmer

End user

Application
developer

Mainframe jobsMainframe jobs
22 Introduction to the New Mainframe: z/OS Basics

function smoothly and effectively and serve many thousands of users efficiently.
While it may seem that the size of the mainframe support staff is large and
unwieldy, the numbers become comparatively small when one considers the
number of users supported, the number of transactions run, and the high
business value of the work that is performed on the mainframe.

This text is concerned mainly with the system programmer and application
programmer roles in the mainframe environment. There are, however, several
other important jobs involved in the “care and feeding” of the mainframe, and we
touch on some of these roles to give you a better idea of what’s going on behind
the scene.

Mainframe activities, such as the following, often require cooperation among the
various roles:

� Installing and configuring system software

� Designing and coding new applications to run on the mainframe

� Introduction and management of new workloads on the system, such as
batch jobs and online transaction processing

� Operation and maintenance of the mainframe software and hardware

In the following sections, we describe each role in more detail.

1.9.1 Who is the system programmer?
In a mainframe IT organization, the system programmer (or systems
programmer) plays a central role. The system programmer installs, customizes,
and maintains the operating system, and also installs or upgrades products that
run on the system. The system programmer might be presented with the latest
version of the operating system to upgrade the existing systems. Or, the
installation might be as simple as upgrading a single program, such as a sort
application.

The system programmer performs such tasks as the following:

� Planning hardware and software system upgrades and changes in
configuration

� Training system operators and application programmers

� Automating operations

� Capacity planning

� Running installation jobs and scripts

� Performing installation-specific customization tasks

System
programmer
The person
who installs,
customizes,
and maintains
the operating
system.
 Chapter 1. Introduction to the new mainframe 23

� Integration-testing the new products with existing applications and user
procedures

� System-wide performance tuning to meet required levels of service

The system programmer must be skilled at debugging problems with system
software. These problems are often captured in a copy of the computer's
memory contents called a dump, which the system produces in response to a
failing software product, user job, or transaction. Armed with a dump and
specialized debugging tools, the system programmer can determine where the
components have failed. When the error has occurred in a software product, the
system programmer works directly with the software vendor’s support
representatives to discover whether the problem’s cause is known and whether a
patch is available.

System programmers are needed to install and maintain the middleware on the
mainframe, such as database management systems, online transaction
processing systems and Web servers. Middleware is a software “layer” between
the operating system and the end user or end user application. It supplies major
functions that are not provided by the operating system. Major middleware
products such as DB2, CICS, and IMS™ can be as complex as the operating
system itself, if not more so.

1.9.2 Who is the system administrator?
The distinction between system programmer and system administrator varies
widely among mainframe sites. In smaller IT organizations, where one person
might be called upon to perform several roles, the terms may be used
interchangeably.

In larger IT organizations with multiple departments, the job responsibilities tend
to be more clearly separated. System administrators perform more of the
day-to-day tasks related to maintaining the critical business data that resides on
the mainframe, while the system programmer focuses on maintaining the system
itself. One reason for the separation of duties is to comply with auditing
procedures, which often require that no one person in the IT organization be
allowed to have unlimited access to sensitive data or resources. Examples of
system administrators include the database administrator (DBA) and the security
administrator.

While system programmer expertise lies mainly in the mainframe hardware and
software areas, system administrators are more likely to have experience with
the applications. They often interface directly with the application programmers
and end users to make sure that the administrative aspects of the applications
are met. These roles are not necessarily unique to the mainframe environment,
but they are key to its smooth operation nonetheless.

System
administrator
The person
who maintains
the critical
business data
that resides on
the mainframe.
24 Introduction to the New Mainframe: z/OS Basics

In larger IT organizations, the system administrator maintains the system
software environment for business purposes, including the day-to-day
maintenance of systems to keep them running smoothly. For example, the
database administrator must ensure the integrity of, and efficient access to, the
data that is stored in the database management systems.

Other examples of common system administrator tasks can include:

� Installing software
� Adding and deleting users and maintaining user profiles
� Maintaining security resource access lists
� Managing storage devices and printers
� Managing networks and connectivity
� Monitoring system performance

In matters of problem determination, the system administrator generally relies on
the software vendor support center personnel to diagnose problems, read
dumps, and identify corrections for cases in which these tasks aren’t performed
by the system programmer.

1.9.3 Who are the application designers and programmers?
The application designer and application programmer (or application developer)
design, build, test, and deliver mainframe applications for the company’s end
users and customers. Based on requirements gathered from business analysts
and end users, the designer creates a design specification from which the
programmer constructs an application. The process includes several iterations of
code changes and compilation, application builds, and unit testing.

During the application development process, the designer and programmer must
interact with other roles in the enterprise. For example, the programmer often
works on a team of other programmers who are building code for related
application program modules. When completed, each module is passed through
a testing process that can include function, integration, and system-wide tests.
Following the tests, the application programs must be acceptance tested by the
user community to determine whether the code actually satisfies the original user
requirement.

In addition to creating new application code, the programmer is responsible for
maintaining and enhancing the company’s existing mainframe applications. In
fact, this is often the primary job for many of today’s mainframe application
programmers. While mainframe installations still create new programs with
Common Business Oriented Language (COBOL) or PL/I, languages such as
Java™ have become popular for building new applications on the mainframe, just
as they have on distributed platforms.
 Chapter 1. Introduction to the new mainframe 25

Widespread development of mainframe programs written in high-level languages
such as COBOL and PL/I continues at a brisk pace, despite rumors to the
contrary. Many thousands of programs are in production on mainframe systems
around the world, and these programs are critical to the day-to-day business of
the corporations that use them. COBOL and other high-level language
programmers are needed to maintain existing code and make updates and
modifications to existing programs. Also, many corporations continue to build
new application logic in COBOL and other traditional languages, and IBM
continues to enhance their high-level language compilers to include new
functions and features that allow those languages to continue to take advantage
of newer technologies and data formats.

We will look at the roles of application designer and application programmer in
more detail in Part 2 of this text.

1.9.4 Who is the system operator?
The system operator monitors and controls the operation of the mainframe
hardware and software. The operator starts and stops system tasks, monitors the
system consoles for unusual conditions, and works with the system programming
and production control staff to ensure the health and normal operation of the
systems.

As applications are added to the mainframe, the system operator is responsible
for ensuring that they run smoothly. New applications from the Applications
Programming Department are typically delivered to the Operations Staff with a
run book of instructions. A run book identifies the specific operational
requirements of the application, which operators need to be aware of during job
execution. Run book instructions might include, for example: application-specific
console messages that require operator intervention, recommended operator
responses to specific system events, and directions for modifying job flows to
accommodate changes in business requirements7.

The operator is also responsible for starting and stopping the major subsystems,
such as transaction processing systems, database systems, and the operating
system itself. These restart operations are not nearly as commonplace as they
once were, as the availability of the mainframe has improved dramatically over
the years. However, the operator must still perform an orderly shutdown and
startup of the system and its workloads, when it is required.

7 Console messages were once so voluminous that operators often had a difficult time determining

whether a situation was really a problem. In recent years, tools to reduce the volume of messages

and automate message responses to routine situations have made it easier for operators to

concentrate on unusual events that might require human intervention.

System operator
The person who
monitors and
controls the
operation of the
mainframe
hardware and
software.
26 Introduction to the New Mainframe: z/OS Basics

In case of a failure or an unusual situation, the operator communicates with
system programmers, who assist the operator in determining the proper course
of action, and with the production control analyst, who works with the operator to
make sure that production workloads are completing properly.

1.9.5 Who is the production control analyst?
The production control analyst is responsible for making sure that batch
workloads run to completion—without error or delay. Some mainframe
installations run interactive workloads for online users, followed by batch updates
that run after the prime shift when the online systems are not running. While this
execution model is still common, world-wide operations at many
companies—with live, Internet-based access to production data—are finding the
“daytime online/night time batch” model to be obsolete. Batch workloads
continue to be a part of information processing, however, and skilled production
control analysts play a key role.

A common complaint about mainframe systems is that they are inflexible and
hard to work with, specifically in terms of implementing changes. The production
control analyst often hears this type of complaint, but understands that the use of
well-structured rules and procedures to control changes—a strength of the
mainframe environment—helps to prevent outages. In fact, one reason that
mainframes have attained a strong reputation for high levels of availability and
performance is that there are controls on change and it is difficult to introduce
change without proper procedures.

1.9.6 What role do vendors play?
A number of vendor roles are commonplace in the mainframe shop. Because
most mainframe computers are sold by IBM, and the operating systems and
primary online systems are also provided by IBM, most vendor contacts are IBM
employees. However, independent software vendor (ISV) products are also used
in the IBM mainframe environment, and customers use original equipment
manufacturer (OEM) hardware, such as disk and tape storage devices, as well.

Typical vendor roles follow:

� Hardware support or customer engineer
Hardware vendors usually provide on-site support for hardware devices. The
IBM hardware maintenance person is often referred to as the customer
engineer (CE). The CE provides installation and repair service for the
mainframe hardware and peripherals. The CE usually works directly with the
operations teams when hardware fails or new hardware is being installed.

Production
control analyst
The person who
ensures that
batch
workloads run
to completion
without error or
delay.
 Chapter 1. Introduction to the new mainframe 27

� Software support
A number of vendor roles exist to support software products on the
mainframe8. IBM has a centralized Support Center that provides entitled and
extra-charge support for software defects or usage assistance. There are also
information technology specialists and architects who can be engaged to
provide additional pre- and post-sales support for software products,
depending upon the size of the enterprise and the particular customer
situation.

� Field technical sales support, systems engineer, or client representative
For larger mainframe accounts, IBM and other vendors provide face-to-face
sales support. The vendor representatives specialize in various types of
hardware or software product families and call on the part of the customer
organization that influences the product purchases. At IBM, the technical
sales specialist is referred to as the field technical sales support (FTSS)
person, or by the older term, systems engineer (SE).

For larger mainframe accounts, IBM frequently assigns a client
representative, who is attuned to the business issues of a particular industry
sector, to work exclusively with a small number of customers. The client
representative acts as the general “single point of contact” between the
customer and the various organizations within IBM.

1.10 z/OS and other mainframe operating systems
Much of this text is concerned with teaching you the fundamentals of z/OS, which
is IBM’s foremost mainframe operating system. We begin discussing z/OS
concepts in Chapter 3, “z/OS overview” on page 73. It is useful for mainframe
students, however, to have a working knowledge of other mainframe operating
systems. One reason is that a given mainframe computer might run multiple
operating systems. For example, the use of z/OS, z/VM®, and Linux® on the
same mainframe is common.

Mainframe operating systems are sophisticated products with substantially
different characteristics and purposes, and each could justify a separate book for
a detailed introduction. Besides z/OS, four other operating systems dominate
mainframe usage: z/VM, z/VSE™, Linux for zSeries, and z/TPF.

8 This text does not examine the marketing and pricing of mainframe software. However, the
availability and pricing of middleware and other licensed programs is a critical factor affecting the
growth and use of mainframes.
28 Introduction to the New Mainframe: z/OS Basics

1.10.1 z/VM
z/Virtual Machine (z/VM) has two basic components: a control program (CP) and
a single-user operating system, CMS. As a control program, z/VM is a hypervisor
because it runs other operating systems in the virtual machines it creates. Any of
the IBM mainframe operating systems such as z/OS, Linux for zSeries, z/VSE,
and z/TPF can be run as guest systems in their own virtual machines, and z/VM
can run any combination of guest systems.

The control program artificially creates multiple virtual machines from the real
hardware resources. To end users, it appears as if they have dedicated use of the
shared real resources. The shared real resources include printers, disk storage
devices, and the CPU. The control program ensures data and application
security among the guest systems. The real hardware can be shared among the
guests, or dedicated to a single guest for performance reasons. The system
programmer allocates the real devices among the guests. For most customers,
the use of guest systems avoids the need for larger hardware configurations.

z/VM’s other major component is the Conversational Monitor System or CMS.
This component of z/VM runs in a virtual machine and provides both an
interactive end user interface and the general z/VM application programming
interface.

1.10.2 z/VSE
z/Virtual Storage Extended (z/VSE) is popular with users of smaller mainframe
computers. Some of these customers eventually migrate to z/OS when they grow
beyond the capabilities of z/VSE.

Compared to z/OS, the z/VSE operating system provides a smaller, less complex
base for batch processing and transaction processing. The design and
management structure of z/VSE is excellent for running routine production
workloads consisting of multiple batch jobs (running in parallel) and extensive,
traditional transaction processing. In practice, most z/VSE users also have the
z/VM operating system and use this as a general terminal interface for z/VSE
application development and system management.

z/VSE was originally known as Disk Operating System (DOS), and was the first
disk-based operating system introduced for the System/360 mainframe
computers. DOS was seen as a temporary measure until OS/360 would be
ready. However, some mainframe customers liked its simplicity (and small size)
and decided to remain with it after OS/360 became available. DOS became
known as DOS/VS (when it started using virtual storage), then VSE/SP and later
VSE/ESA™, and most recently z/VSE. The name VSE is often used collectively
to refer to any of the more recent versions.
 Chapter 1. Introduction to the new mainframe 29

1.10.3 Linux for zSeries
Several (non-IBM) Linux distributions can be used on a mainframe. There are
two generic names for these distributions:

� Linux for S/390 (uses 31-bit addressing and 32-bit registers)
� Linux for zSeries (uses 64-bit addressing and registers)

The phrase Linux on zSeries is used to refer to Linux running on an S/390 or
zSeries system, when there is no specific need to refer explicitly to either the
31-bit version or the 64-bit version. We assume students are generally familiar
with Linux and therefore we mention only those characteristics that are relevant
for mainframe usage. These include the following:

Linux uses traditional count key data (CKD)9disk devices and SAN-connected
SCSI-type devices. Other mainframe operating systems can recognize these
drives as Linux drives, but cannot use the data formats on the drives. That is,
there is no sharing of data between Linux and other mainframe operating
systems.

� Linux does not use 3270 display terminals, while all other mainframe
operating systems use 3270s as their basic terminal architecture.10 Linux
uses X Window System based terminals or X-Window System emulators on
PCs; it also supports typical ASCII terminals, usually connected through the
telnet protocol. The X-Window System is the standard for graphical interfaces
in Linux. It is the middle layer between the hardware and the window
manager.

� With the proper setup, a Linux system under z/VM can be quickly cloned to
make another, separate Linux image. The z/VM emulated LAN can be used to
connect multiple Linux images and to provide an external LAN route for them.
Read-only file systems, such as a typical /usr file system, can be shared by
Linux images.

� Linux on a mainframe operates with the ASCII character set, not the
EBCDIC11 form of stored data that is typically used on mainframes. Here,
EBCDIC is used only when writing to such character-sensitive devices as
displays and printers. The Linux drivers for these devices handle the
character translation.

9 CKD devices are formatted such that the individual data pieces can be accessed directly by the
read head of the disk.
10 There is a Linux driver for minimal 3270 operation, in very restrictive modes, but this is not
commonly used. 3270 terminals were full-screen buffered non-intelligent terminals, with control units
and data streams to maximize efficiency of data transmission.
11 EBCDIC, which stands for extended binary coded decimal interchange code, is a coded character
set of 256 8-bit characters that was developed for the representation of textual data. EBCDIC is not
compatible with ASCII character coding. For a handy conversion table, see Appendix D, “EBCDIC -
ASCII table” on page 591.
30 Introduction to the New Mainframe: z/OS Basics

1.10.4 z/TPF
The z/Transaction Processing Facility (z/TPF) operating system is a
special-purpose system that is used by companies with very high transaction
volume, such as credit card companies and airline reservation systems. z/TPF
was once known as Airline Control Program (ACP). It is still used by airlines and
has been extended for other very large systems with high-speed, high-volume
transaction processing requirements.

z/TPF can use multiple mainframes in a loosely-coupled environment to routinely
handle tens of thousands of transactions per second, while experiencing
uninterrupted availability that is measured in years. Very large terminal networks,
including special-protocol networks used by portions of the reservation industry,
are common.

1.11 Summary
Today, mainframe computers play a central role in the daily operations of most of
the world’s largest corporations, including many Fortune 1000 companies. While
other forms of computing are used extensively in business in various capacities,
the mainframe occupies a coveted place in today’s e-business environment. In
banking, finance, health care, insurance, utilities, government, and a multitude of
other public and private enterprises, the mainframe computer continues to form
the foundation of modern business.

The New Mainframe owes much of its popularity and longevity to its inherent
reliability and stability, a result of continuous technological advances since the
introduction of the IBM System/360 in 1964. No other computer architecture in
existence can claim as much continuous, evolutionary improvement, while
maintaining compatibility with existing applications.

The term mainframe has gradually moved from a physical description of IBM’s
larger computers to the categorization of a style of computing. One defining
characteristic of the mainframe has been a continuing compatibility that spans
decades.

The roles and responsibilities in a mainframe IT organization are wide and
varied. It takes skilled staff to keep a mainframe computer running smoothly and
reliably. It might seem that there are far more resources needed in a mainframe
environment than for small, distributed systems. But, if roles are fully identified on
the distributed systems side, a number of the same roles exist there as well.

Several operating systems are currently available for mainframes. This text
concentrates on one of these, z/OS. However, mainframe students should be
 Chapter 1. Introduction to the new mainframe 31

aware of the existence of the other operating systems and understand their
positions relative to z/OS.

1.12 Questions for review
To help test your understanding of the material in this chapter, complete the
following questions:

1. List ways in which the mainframe of today challenges the traditional thinking
about centralized computing versus distributed computing.

2. Explain how businesses make use of mainframe processing power, and how
mainframe computing differs from other types of computing.

3. List three strengths of mainframe computing, and outline the major types of
workloads for which mainframes are best suited.

4. Name five jobs or responsibilities that are related to mainframe computing.

5. This chapter mentioned at least five operating systems that are used on the
mainframe. Choose three of them and describe the main characteristics of
each.

1.13 Topics for further discussion
1. What is a mainframe today? How did the term arise? Is it still appropriate?

2. Why is it important to maintain system compatibility for older applications?
Why not simply change existing application programming interfaces whenever
improved interfaces become available?

3. Describe how running a mainframe can be cost effective, given the large
number of roles needed to run a mainframe system.

Key terms in this chapter

architecture availability batch
processing

compatibility e-business

mainframe online
transaction
processing
(OLTP)

platform production
control analyst

run book

scalability scalability system
operator

system
programmer

System/360
32 Introduction to the New Mainframe: z/OS Basics

4. What characteristics, good or bad, exist in a mainframe processing
environment because of the roles that are present in a mainframe shop?
(Efficiency? Reliability? Scalability?)

5. Most mainframe shops have implemented rigorous systems management,
security, and operational procedures. Have these same procedures been
implemented in distributed system environments? Why or why not?

6. Can you find examples of mainframe use in your everyday experiences?
Describe them and the extent to which mainframe processing is apparent to
end users. Examples might include the following:

– Popular Web sites that rely on mainframe technology as the back-end
server to support online transactions and databases.

– Mainframes used in your locality. These might include banks and financial
centers, major retailers, transportation hubs, and the health and medical
industries.

7. Can you find examples of distributed systems in everyday use? Could any of
these systems be improved through the addition of a mainframe? How?
 Chapter 1. Introduction to the new mainframe 33

34 Introduction to the New Mainframe: z/OS Basics

Chapter 2. Mainframe hardware systems
and high availability

2

Objective: As a new z/OS system programmer, you will need to develop a
thorough understanding of the hardware that runs the z/OS operating system.
z/OS is designed to make full use of mainframe hardware and its many
sophisticated peripheral devices. You should also understand how the
hardware and software achieves near-continuous availability through concepts
such as Parallel Sysplex and “no single points of failure.”

After completing this chapter, you will be able to:

� Discuss S/360 and zSeries hardware design.

� Explain processing units and disk hardware.

� Explain how mainframes differ from PC systems in data encoding.

� List some typical hardware configurations.

� Explain how Parallel Sysplex can achieve continuous availability.

� Explain dynamic workload balancing.

� Explain the single system image.
© Copyright IBM Corp. 2006. All rights reserved. 35

2.1 Introduction to mainframe hardware systems
This chapter provides an overview of mainframe hardware systems, with most of
the emphasis on the processor “box.”

Related reading: For detailed descriptions of the major facilities of
z/Architecture, the book z/3 Principles of Operation is the standard reference.
You can find this and other IBM publications at the z/OS Internet Library Web
site:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Let’s begin this chapter with a look at the terminology associated with mainframe
hardware. Being aware of various meanings of the terms systems, processors,
CPs, and so forth is important for your understanding of mainframe computers.

In the early S/360 days a system had a single processor, which was also known
as the central processing unit (CPU). The terms system, processor, and CPU
were used interchangeably. However, these terms became confusing when
systems became available with more than one processor. This is illustrated in
Figure 2-1.

Figure 2-1 Terminology overlap

CPU
Synonymous
with processor.

Individual processors in the
system

"processors"

"CPUs"

"engines"

"PUs"

"CPs"

IFLs, ICFs, zAAPs, IFLs
spares

"system" = CPs running an
operating system

System box from IBM
possibly a zSeries

machine

Sometimes referenced
as a "processor"

A few people use "CEC"

Many use "system"

Sometimes referenced
as a "CPU"
36 Introduction to the New Mainframe: z/OS Basics

Processor and CPU can refer to either the complete system box, or to one of the
processors (CPUs) within the system box. Although the meaning may be clear
from the context of a discussion, even mainframe professionals must clarify
which processor or CPU meaning they are using in a discussion. System
programmers use the IBM term central processor complex or CPC to refer to the
mainframe “box.” In this text, we use the term CPC to refer to the physical
collection of hardware that includes main storage, one or more central
processors, timers, and channels.

Partitioning and some of the terms in Figure 2-1 are discussed later in this
chapter. Briefly, all the S/390 or z/Architecture processors within a CPC are
processing units (PUs). When IBM delivers the CPC, the PUs are characterized
as CPs (for normal work), Integrated Facility for Linux (IFL), Integrated Coupling
Facility (ICF) for Parallel Sysplex configurations, and so forth.

In this text, we hope the meanings of system and processor are clear from the
context. We normally use system to indicate the hardware box, a complete
hardware environment (with I/O devices), or an operating environment (with
software), depending on the context. We normally use processor to mean a
single processor (CP) within the CPC.

2.2 Early system design
The central processor box contains the processors, memory,1 control circuits,
and interfaces for channels. A channel provides an independent data and control
path between I/O devices and memory. Early systems had up to 16 channels; the
largest mainframe machines at the time of writing can have over 1000 channels.

Channels connect to control units. A control unit contains logic to work with a
particular type of I/O device. A control unit for a printer would have much different
internal circuitry and logic than a control unit for a tape drive, for example. Some
control units can have multiple channel connections providing multiple paths to
the control unit and its devices.

Control units connect to devices, such as disk drives, tape drives, communication
interfaces, and so forth. The division of circuitry and logic between a control unit
and its devices is not defined, but it is usually more economical to place most of
the circuitry in the control unit.

Figure 2-2 presents a conceptual diagram of a S/360 system. Current systems
are not connected as shown in Figure 2-2. However, this figure helps explain the
background terminology that permeates mainframe discussions.

CPC
The physical
collection of
hardware that
includes main
storage, one or
more central
processors,
timers, and
channels.

1 Some S/360s had separate boxes for memory. However, this is a conceptual discussion and we
ignore such details.
 Chapter 2. Mainframe hardware systems and high availability 37

Figure 2-2 Conceptual S/360

The channels in Figure 2-2 are parallel channels (also known as bus and tag
channels, named for the two heavy copper cables they use). A parallel channel
can be connected to a maximum of eight control units. Most control units can be
connected to multiple devices; the maximum depends on the particular control
unit, but 16 is a typical number.

Each channel, control unit, and device has an address, expressed as a
hexadecimal number. The disk drive marked with an X in Figure 2-2 has address
132, derived as shown in Figure 2-3.

Figure 2-3 Device address

00 33 00 11

Processors
Storage
Control

Main
Storage

11 55 66 AA BB

Control
Unit

3
Control

Unit
Control

Unit

3

11 22

55 33Channels

Devices

X

Y 00 11 Z

Control
Unit

C0
Communication

line

Parallel
Channels

AnotherAnother
SystemSystem

Address: 1 3 2

Channel number Control unit number Device number
38 Introduction to the New Mainframe: z/OS Basics

The disk drive marked with a Y in the figure can be addressed as 171, 571, or
671 because it is connected through three channels. By convention the device is
known by its lowest address (171), but all three addresses could be used by the
operating system to access the disk drive. Multiple paths to a device are useful
for performance and for availability. When an application wants to access disk
171, the operating system will first try channel 1. If it is busy (or not available), it
will try channel 5, and so forth.

Figure 2-2 contains another S/360 system with two channels connected to
control units used by the first system. This sharing of I/O devices is common in all
mainframe installations. Tape drive Z is address A31 for the first system, but is
address 331 for the second system. Sharing devices, especially disk drives, is
not a simple topic and there are hardware and software techniques used by the
operating system to control exposures such as updating the same disk data at
the same time from two independent systems.

As mentioned, current mainframes are not used exactly as shown in Figure 2-2
on page 38. Differences include:

� Parallel channels are not available on the newest mainframes and are slowly
being displaced on older systems.

� Parallel channels have been replaced with ESCON® (Enterprise Systems
CONnection) and FICON® (FIber CONnection) channels. These channels
connect to only one control unit or, more likely, are connected to a director
(switch) and are optical fibers.

� Current mainframes have more than 16 channels and use two hexadecimal
digits as the channel portion of an address.

� Channels are generally known as CHPIDs (channel path identifiers) or
PCHIDs (physical channel identifiers) on later systems, although the term
channel is also correct. The channels are all integrated in the main processor
box.

The device address seen by software is more correctly known as a device
number (although the term address is still widely used) and is indirectly related to
the control unit and device addresses.

For more information on the development of the IBM mainframe since 1964, see
Appendix A, “A brief look at IBM mainframe history” on page 563.

2.3 Current design
Current CPC designs are considerably more complex than the early S/360
design. This complexity includes many areas:

ESCON
Enterprise
Systems
Connection
 Chapter 2. Mainframe hardware systems and high availability 39

� I/O connectivity and configuration
� I/O operation
� Partitioning of the system

2.3.1 I/O connectivity
Figure 2-4 on page 41 illustrates a recent configuration. A real system would
have more channels and I/O devices, but this figure illustrates key concepts.
Partitions, ESCON channels, and FICON channels are described later.

Briefly, partitions create separate logical machines in the CPC. ESCON and
FICON channels are logically similar to parallel channels but they use fiber
connections and operate much faster. A modern system might have 100-200
channels or CHPIDs.2 Key concepts partly illustrated here include the following:

� ESCON and FICON channels connect to only one device or one port on a
switch.

� Most modern mainframes use switches between the channels and the control
units. The switches may be connected to several systems, sharing the control
units and some or all of its I/O devices across all the systems.

� CHPID addresses are two hexadecimal digits.

� Multiple partitions can sometimes share CHPIDs. Whether this is possible
depends on the nature of the control units used through the CHPIDs. In
general, CHPIDs used for disks can be shared.

� An I/O subsystem layer exists between the operating systems in partitions (or
in the basic machine if partitions are not used) and the CHPIDs.

An ESCON director or FICON switch is a sophisticated device that can sustain
high data rates through many connections. (A large director might have 200
connections, for example, and all of these can be passing data at the same time.)
The director or switch must keep track of which CHPID (and partition) initiated
which I/O operation so that data and status information is returned to the right
place. Multiple I/O requests, from multiple CHPIDs attached to multiple partitions
on multiple systems, can be in progress through a single control unit.

The I/O control layer uses a control file known as an IOCDS (I/O Control Data
Set) that translates physical I/O addresses (composed of CHPID numbers,
switch port numbers, control unit addresses, and unit addresses) into device
numbers that are used by the operating system software to access devices. This
is loaded into the Hardware Save Area (HSA) at power-on and can be modified

2 The more recent mainframe machines can have more than 256 channels, but an additional setup is
needed for this. The channels are assigned in a way that only two hexadecimal digits are needed for
CHPID addresses.

CHPID
Channel path
identifier
40 Introduction to the New Mainframe: z/OS Basics

dynamically. A device number looks like the addresses we described for early
S/360 machines except that it can contain three or four hexadecimal digits.

Figure 2-4 Recent system configuration

Many users still refer to these as “addresses” although the device numbers are
arbitrary numbers between x'0000' and x’FFFF’. The newest mainframes, at the
time of writing, have two layers of I/O address translations between the real I/O
elements and the operating system software. The second layer was added to
make migration to newer systems easier.

Modern control units, especially for disks, often have multiple channel (or switch)
connections and multiple connections to their devices. They can handle multiple
data transfers at the same time on the multiple channels. Each device will have a
unit control block (UCB) in each z/OS image.

I/O Processing

Other
systems

01 02 ... 40 41 42 A0 A1

Control
Unit

ESCON
Director
(switch)

FICON
switch

Control
Unit

C0
Control

Unit

C1
Control

Unit

01
Control

Unit

02

E - ESC ON channel
F - FICON channel
O - OSA-Express channel

CEC box

Partition 1 Partition 2

LAN

O E E E E F F

Channels
(CHPIDs or PCHIDs)

Control unit addresses
(CUA)

00 11
00 11Unit addresses (UA)

01

00 11 00 11
 Chapter 2. Mainframe hardware systems and high availability 41

Figure 2-5 Device addressing

2.3.2 System control and partitioning
There are many ways to illustrate a mainframe’s internal structure, depending on
what we wish to emphasize. Figure 2-6 on page 43, while highly conceptual,
shows several of the functions of the internal system controls on current
mainframes. The internal controllers are microprocessors but use a much
simpler organization and instruction set than zSeries processors. They are
usually known as controllers to avoid confusion with zSeries processors.

HSA

LPAR B
Central Storage

LPAR A
Central Storage

UCB
2001

UCB
2000

UCB
183F

6830
6831

6832
6833

FF00

FF01

FF02

FF03 C40

683F

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

200A

200B

200C

200D

200E

200F

External device label
Four hex digits in range 0000-FFFF
Assigned by the system programmer
Used in JCL, commands and messages

 IEE302I 200A ONLINE

V 200B,ONLINE

V 200A,ONLINE

42 Introduction to the New Mainframe: z/OS Basics

Figure 2-6 System control and partitioning

Among the system control functions is the capability to partition the system into
several logical partitions (LPARs). An LPAR is a subset of the processor
hardware that is defined to support an operating system. An LPAR contains
resources (processors, memory, and input/output devices) and operates as an
independent system. Multiple logical partitions can exist within a mainframe
hardware system.

For many years there was a limit of 15 LPARs in a mainframe; more recent
machines have a limit of 30 (and potentially more). Practical limitations of
memory size, I/O availability, and available processing power usually limit the
number of LPARs to less than these maximums.

System administrators assign portions of memory to each LPAR; memory cannot
be shared among LPARs. The administrators can assign processors (noted as
CPs in Figure 2-6) to specific LPARs or they can allow the system controllers to
dispatch any or all the processors to all the LPARs using an internal

Note: The hardware and firmware that provide partitioning are known as
PR/SM™ (Processor Resource/System Manager). It is the PR/SM functions
that are used to create and run LPARs. This difference between PR/SM (a
built-in facility) and LPARs (the result of using PR/SM) is often ignored and the
term LPAR is used collectively for the facility and its results.

CP CP CP CP

System Control

LPAR1 LPAR2 LPAR3

System Control

CHPID

CHPID

CHPID CHPID CHPID

CHPID CHPID

HMC SE

Specialized microprocessors for
internal control functions

PC ThinkPads

Located in operator area Located inside CEC but
can be used by operators

Memory

Processors

Channels

Logical
partition
A subset of the
processor
hardware that
is defined to
support an
operating
system.
 Chapter 2. Mainframe hardware systems and high availability 43

load-balancing algorithm. Channels (CHPIDs) can be assigned to specific LPARs
or can be shared by multiple LPARs, depending on the nature of the devices on
each channel.

A system with a single processor (CP processor) can have multiple LPARs.
PR/SM has an internal dispatcher that can allocate a portion of the processor to
each LPAR, much as an operating system dispatcher allocates a portion of its
processor time to each process, thread, or task.

Partitioning control specifications are partly contained in the IOCDS and are
partly contained in a system profile. The IOCDS and profile both reside in the
Support Element (SE) which is simply a notebook computer inside the system.
The SE can be connected to one or more Hardware Management Consoles
(HMCs), which are desktop personal computers used to monitor and control
hardware such as the mainframe microprocessors An HMC is more convenient
to use than an SE and can control several different mainframes.

Working from an HMC (or from an SE, in unusual circumstances), an operator
prepares a mainframe for use by selecting and loading a profile and an IOCDS.
These create LPARs and configure the channels with device numbers, LPAR
assignments, multiple path information, and so forth. This is known as a
Power-on Reset (POR). By loading a different profile and IOCDS, the operator
can completely change the number and nature of LPARs and the appearance of
the I/O configuration. However, doing this is usually disruptive to any running
operating systems and applications and is therefore seldom done without
advance planning.

2.3.3 Characteristics of LPARs
LPARs are, in practice, equivalent to separate mainframes. Each LPAR runs its
own operating system. This can be any mainframe operating system; there is no
need to run z/OS, for example, in each LPAR. The installation planners may elect
to share I/O devices across several LPARs, but this is a local decision.

The system administrator can assign one or more system processors for the
exclusive use of an LPAR. Alternately, the administrator can allow all processors
to be used on some or all LPARs. Here, the system control functions (often
known as microcode or firmware) provide a dispatcher to share the processors
among the selected LPARs. The administrator can specify a maximum number of
concurrent processors executing in each LPAR. The administrator can also
provide weightings for different LPARs; for example, specifying that LPAR1
should receive twice as much processor time as LPAR2.

HMC
A console used
to monitor and
control hardware
such as the
mainframe
microprocessors.
44 Introduction to the New Mainframe: z/OS Basics

The operating system in each LPAR is IPLed separately, has its own copy3 of its
operating system, has its own operator console (if needed), and so forth. If the
system in one LPAR crashes, there is no effect on the other LPARs.

In Figure 2-6 on page 43, for example, we might have a production z/OS in
LPAR1, a test version of z/OS in LPAR2, and Linux for S/390 in LPAR3. If our
total system has 8 GB of memory, we might have assigned 4 GB to LPAR1, 1 GB
to LPAR2, 1 GB to LPAR3, and have kept 2 GB in reserve for some reason. The
operating system consoles for the two z/OS LPARs might be in completely
different locations.4

For most practical purposes there is no difference between, for example, three
separate mainframes running z/OS (and sharing most of their I/O configuration)
and three LPARs on the same mainframe doing the same thing. With minor
exceptions z/OS, the operators, and applications cannot detect the difference.

The minor differences include the ability of z/OS (if permitted when the LPARs
were defined) to obtain performance and utilization information across the
complete mainframe system and to dynamically shift resources (processors and
channels) among LPARs to improve performance.

2.3.4 Consolidation of mainframes
There are fewer mainframes in use today than there were 15 or 20 years ago. In
some cases, all the applications were moved to other types of systems. However,
in most cases the reduced number is due to consolidation. That is, several
smaller mainframes have been replaced with a smaller number of larger
systems.

There is a compelling reason for consolidation. Mainframe software (from many
vendors) can be expensive and typically costs more than the mainframe
hardware. It is usually less expensive (and sometimes much less expensive) to
replace multiple software licenses (for smaller machines) with one or two
licenses (for larger machines). Software license costs are often linked to the
power of the system but the pricing curves favor a small number of large
machines.

Software license costs for mainframes have become a dominant factor in the
growth and direction of the mainframe industry. There are several nonlinear
factors that make software pricing very difficult. We must remember that
mainframe software is not a mass market situation like PC software. The growth
of mainframe processing power in recent years has been nonlinear.

3 Most, but not all, of the z/OS system libraries can be shared.
4 Linux does not have an operator console in the sense of the z/OS consoles.
 Chapter 2. Mainframe hardware systems and high availability 45

The relative power needed to run a traditional mainframe application (a batch job
written in COBOL, for example) does not have a linear relation to the power
needed for a new application (with a GUI interface, written in C and Java). The
consolidation effect has produced very powerful mainframes. These might need
1% of their power to run an application, but the application vendor often sets a
price based on the total power of the machine.

This results in the odd situation where customers want the latest mainframe (to
obtain new functions or to reduce maintenance costs associated with older
machines) but they want the slowest mainframe that will run their applications (to
reduce software costs based on total system processor power).

2.4 Processing units
Figure 2-1 on page 36 lists several different types of processors in a system.
These are all z/Architecture processors that can be used for slightly different
purposes.5 Several of these purposes are related to software cost control, while
others are more fundamental.

All these start as equivalent processor units6 (PUs) or engines. A PU is a
processor that has not been characterized for use. Each of the processors
begins as a PU and is characterized by IBM during installation or at a later time.
The potential characterizations are:

� Central Processor (CP)

This is a processor available to normal operating system and application
software.

� System Assistance Processor (SAP)

Every modern mainframe has at least one SAP; larger systems may have
several. The SAPs execute internal code7 to provide the I/O subsystem. An
SAP, for example, translates device numbers and real addresses of CHPIDs,
control unit addresses, and device numbers. It manages multiple paths to
control units and performs error recovery for temporary errors. Operating
systems and applications cannot detect SAPs, and SAPs do not use any
“normal” memory.

� Integrated Facility for Linux (IFL)

5 Do not confuse these with the controller microprocessors. The processors discussed in this section
are full, standard mainframe processors.
6 This discussion applies to the current zSeries machines at the time of writing. Earlier systems had
fewer processor characterizations, and even earlier systems did not use these techniques.
7 IBM refers to this as Licensed Internal Code (LIC). It is often known as microcode (which is not
technically correct) or as firmware. It is definitely not user code.

z/Architecture
An IBM
architecture for
mainframe
computers and
peripherals. The
zSeries family
of servers uses
the
z/Architecture.
46 Introduction to the New Mainframe: z/OS Basics

This is a normal processor with one or two instructions disabled that are used
only by z/OS. Linux does not use these instructions and can be executed by
an IFL. Linux can be executed by a CP as well. The difference is that an IFL is
not counted when specifying the model number8 of the system. This can
make a substantial difference in software costs.

� zAAP

This is a processor with a number of functions disabled (interrupt handling,
some instructions) such that no full operating system can be executed on the
processor. However, z/OS can detect the presence of zAAP processors and
will use them to execute Java code (and possibly other similar code in the
future). The same Java code can be executed on a standard CP. Again, zAAP
engines are not counted when specifying the model number of the system.
Like IFLs, they exist only to control software costs.

� zIIP

The System z9 Integrated Information Processor (zIIP) is a specialized
engine for processing eligible database workloads. The zIIP is designed to
help lower software costs for select workloads on the mainframe, such as
business intelligence (BI), enterprise resource planning (ERP) and customer
relationship management (CRM). The zIIP reinforces the mainframe’s role as
the data hub of the enterprise by helping to make direct access to DB2 more
cost effective and reducing the need for multiple copies of the data.

� Integrated Coupling Facility (ICF)

These processors run only Licensed Internal Code. They are not visible to
normal operating systems or applications. A coupling facility is, in effect, a
large memory scratch pad used by multiple systems to coordinate work. ICFs
must be assigned to LPARs that then become coupling facilities.

� Spare

An uncharacterized PU functions as a “spare.” If the system controllers detect
a failing CP or SAP, it can be replaced with a spare PU. In most cases this can
be done without any system interruption, even for the application running on
the failing processor.

� Various forms of Capacity on Demand and similar arrangements exist
whereby a customer can enable additional CPs at certain times (for
unexpected peak loads, for example).

In addition to these characterizations of processors, some mainframes have
models or versions that are configured to operate slower than the potential speed
of their CPs. This is widely known as kneecapping, although IBM prefers the term
capacity setting, or something similar. It is done by using microcode to insert null
cycles into the processor instruction stream. The purpose, again, is to control

8 Some systems do not have different models; in this case a capacity model number is used.
 Chapter 2. Mainframe hardware systems and high availability 47

software costs by having the minimum mainframe model or version that meets
the application requirements. IFLs, SAPs, zAAPs, and ICFs always function at
the full speed of the processor since these processors “do not count” in software
pricing calculations.9

2.5 Multiprocessors
All the earlier discussions and examples assume that more than one processor
(CP) is present in a system (and perhaps in an LPAR). It is possible to purchase
a current mainframe with a single processor (CP), but this is not a typical
system.10 The term multiprocessor means several processors (CP processors)
and implies that several processors are used by a copy of z/OS.

All operating systems today, from PCs to mainframes, can work in a
multiprocessor environment. However, the degree of integration of the multiple
processors varies considerably. For example, pending interrupts in a system (or
in an LPAR) can be accepted by any processor in the system (or working in the
LPAR). Any processor can initiate and manage I/O operations to any channel or
device available to the system or LPAR. Channels, I/O devices, interrupts, and
memory are owned by the system (or by the LPAR) and not by any specific
processor.

This multiprocessor integration appears simple on the surface, but its
implementation is complex. It is also important for maximum performance; the
ability of any processor to accept any interrupt sent to the system (or to the
LPAR) is especially important.

Each processor in a system (or in an LPAR) has a small private area of memory
(8 KB starting at real address 0 and always mapped to virtual address 0) that is
unique to that processor. This is the Prefix Storage Area (PSA) and is used for
interrupt handling and for error handling. A processor can access another
processor’s PSA through special programming, although this is normally done
only for error recovery purposes. A processor can interrupt other processors by
using a special instruction (SIGP, for Signal Processor). Again, this is typically
used only for error recovery.

9 This is true for IBM software but may not be true for all software vendors.
10 All current IBM mainframes also require at least one SAP, so the minimum system has two
processors: one CP and one SAP. However, the use of “processor” in the text usually means a CP
processor usable for applications. Whenever discussing a processor other than a CP, we always
make this clear.

Multiprocessor
A CPC that can
be physically
partitioned to
form two
operating
processor
complexes.
48 Introduction to the New Mainframe: z/OS Basics

2.6 Disk devices
IBM 3390 disk drives are commonly used on current mainframes. Conceptually,
this is a simple arrangement, as shown in Figure 2-7.

Figure 2-7 Initial IBM 3390 disk implementation

The associated control unit (3990) typically has four channels connected to one
or more processors (probably with a switch), and the 3390 unit typically has eight
or more disk drives. Each disk drive has the characteristics explained earlier.
This illustration shows 3990 and 3390 units, and it also represents the concept or
architecture of current devices.

The current equivalent device is an IBM 2105 Enterprise Storage Server®,
simplistically illustrated in Figure 2-8.

IBM 3390 Disk Unit

IBM 3990
Control Unit

channels
 Chapter 2. Mainframe hardware systems and high availability 49

Figure 2-8 Current 3390 implementation

The 2105 unit is a very sophisticated device. It emulates a large number of
control units and 3390 disk drives. It contains up to 11 TB of disk space, has up
to 32 channel interfaces, 16 GB cache, and 284 MB of non-volatile memory
(used for write queueing). The Host Adapters appear as control unit interfaces
and can connect up to 32 channels (ESCON or FICON).

The physical disk drives are commodity SCSI-type units (although a serial
interface, known as SSA, is used to provide faster and redundant access to the
disks). A number of internal arrangements are possible, but the most common
involves many RAID 5 arrays with hot spares. Practically everything in the unit
has a spare or fallback unit. The internal processing (to emulate 3990 control
units and 3390 disks) is provided by four high-end RISC processors in two
processor complexes; each complex can operate the total system. Internal
batteries preserve transient data during short power failures. A separate console
is used to configure and manage the unit.

The 2105 offers many functions not available in real 3390 units, including
FlashCopy®, Extended Remote Copy, Concurrent Copy, Parallel Access
Volumes, Multiple Allegiance, a huge cache, and so forth.

A simple 3390 disk drive (with control unit) has different technology from the
2105 just described. However, the basic architectural appearance to software is

Common Interconnect (across clusters)

HA HA HA HA HA HA HA HA HA HA HA HA HA HA HA HA

 Cluster Processor Complex

 cache NVS

DA DA DA DA

 Cluster Processor Complex

 cache NVS

DA DA DA DA

RAID array

RAID array

Device Adapters

Host Adapters (2 channel interfaces per adapter)
50 Introduction to the New Mainframe: z/OS Basics

the same. This allows applications and system software written for 3390 disk
drives to use the newer technology with no revisions.11

There have been several stages of new technology implementing 3390 disk
drives; the 2105 is the most recent of these. The process of implementing an
architectural standard (in this case the 3390 disk drive and associated control
unit) with newer and different technology while maintaining software compatibility
is characteristic of mainframe development. As has been mentioned several
times, maintaining application compatibility over long periods of technology
change is an important characteristic of mainframes.

2.7 Clustering
Clustering has been done on mainframes since the early S/360 days, although
the term cluster is seldom used there. A clustering technique can be as simple as
a shared DASD configuration where manual control or planning is needed to
prevent unwanted data overlap.

Additional clustering techniques have been added over the years. In the following
paragraphs we discuss three levels of clustering: Basic Shared DASD, CTC
rings, and Parallel Sysplex. Most z/OS installations today use one or more of
these levels; a single z/OS installation is relatively rare.

In this discussion we use the term “image.” A z/OS system (with one or more
processors) is a z/OS image. A z/OS image might exist on a S/390 or zSeries
server (with LPARs), or it might exist in an LPAR, or it might run under z/VM (a
hypervisor operating system mentioned in 1.10, “z/OS and other mainframe
operating systems” on page 28). A system with six LPARs—each a separate
z/OS system—has six z/OS images. We use the term image to indicate that we
do not care where (basic system, LPAR, or z/VM) a z/OS system is running.

2.7.1 Basic shared DASD
A basic shared DASD environment is illustrated in Figure 2-9. The figure shows
z/OS images, but these could be any earlier version of the operating system. This
could be two LPARs in the same system or two separate systems; there is
absolutely no difference in the concept or operation.

11 Some software enhancements are needed to use some of the new functions, but these are
compatible extensions at the operating system level and do not affect application programs.
 Chapter 2. Mainframe hardware systems and high availability 51

Figure 2-9 Basic shared DASD

The capabilities of a basic shared DASD system are limited. The operating
systems automatically issue RESERVE and RELEASE commands to a DASD
before updating the volume table of contents (VTOC), or catalog. (As we discuss
in Chapter 5, “Working with data sets” on page 163, the VTOC and catalog are
structures that contain metadata for the DASD, indicating where various data
sets reside.) The RESERVE command limits access to the entire DASD to the
system issuing the command, and this lasts until a RELEASE command is
issued. These commands work well for limited periods (such as updating
metadata). Applications can also issue RESERVE/RELEASE commands to
protect their data sets for the duration of the application. This is not automatically
done in this environment and is seldom done in practice because it would lock
out other systems’ access to the DASD for too long.

A basic shared DASD system is typically used where the Operations staff
controls which jobs go to which system and ensures that there is no conflict such
as both systems trying to update the same data at the same time. Despite this
limitation, a basic shared DASD environment is very useful for testing, recovery,
and careful load balancing.

Other types of devices or control units can be attached to both systems. For
example, a tape control unit, with multiple tape drives, can be attached to both
systems. In this configuration the operators can then allocate individual tape
drives to the systems as needed.

zSeries (or LPAR)

z/OS
channels

zSeries (or LPAR)

z/OS
channels

control unit control unit

Real system would
have many more
control units and
devices
52 Introduction to the New Mainframe: z/OS Basics

2.7.2 CTC rings
Figure 2-10 shows the next level of clustering. This has the same shared DASD
as discussed previously, but also has two channel-to-channel (CTC) connections
between the systems. This is known as a CTC ring. (The ring aspect is more
obvious when more than two systems are involved.)

Figure 2-10 Basic sysplex

z/OS can use the CTC ring to pass control information among all systems in the
ring. The information that can be passed this way includes:

� Usage and locking information for data sets on disks. This allows the system
to automatically prevent unwanted duplicate access to data sets. This locking
is based on JCL specifications provided for jobs sent to the system, as
explained in Chapter 6, “Using JCL and SDSF” on page 199.

� Job queue information such that all the systems in the ring can accept jobs
from a single input queue. Likewise, all systems can send printed output to a
single output queue.

� Security controls that allow uniform security decisions across all systems.

� Disk metadata controls so that RESERVE and RELEASE disk commands are
not necessary.

To a large extent, batch jobs and interactive users can run on any system in this
configuration because all disk data sets can be accessed from any z/OS image.

zSeries (or LPAR)

z/OS
channels

zSeries (or LPAR)

z/OS
channels

Control unit Control unit

Can have more systems
 in the CTC "ring"

CTC

CTC
 Chapter 2. Mainframe hardware systems and high availability 53

Jobs (and interactive users) can be assigned to whichever system is most lightly
loaded at the time.

When the CTC configurations were first used, the basic control information
shared was locking information. As we discussed in “Serializing the use of
resources” on page 113, the z/OS component doing this is called global resource
serialization function; this configuration is called a GRS ring. The primary
limitation of a GRS ring is the latency involved in sending messages around the
ring.

A different CTC configuration was used before the ring technique was developed.
This required two CTC connections from every system to every other system in
the configuration. When more than two or three systems were involved, this
became complex and required a considerable number of channels.

The earlier CTC configurations (every-system-to-every-system or a ring
configuration) were later developed into a basic sysplex configuration. This
includes control data sets on the shared DASD. These are used for consistent
operational specifications for all systems and to retain information over system
restarts.

Configurations with shared DASD, CTC connections, and shared job queues are
known as loosely coupled systems. (Multiprocessors, where several processors
are used by the operating system, are sometimes contrasted as tightly coupled
systems but this terminology is seldom used. These are also known as
Symmetrical MultiProcessors (SMPs); the SMP terminology is common with
RISC systems, but is not normally used for mainframes.)

2.8 What is a Parallel Sysplex?
A sysplex is a collection of z/OS systems that cooperate, using certain hardware
and software products, to process work. It is a clustering technology that can
provide near-continuous availability.

A conventional large computer system also uses hardware and software
products that cooperate to process work. A major difference between a sysplex
and a conventional large computer system is the improved growth potential and
level of availability in a sysplex. The sysplex increases the number of processing
units and z/OS operating systems that can cooperate, which in turn increases the
amount of work that can be processed. To facilitate this cooperation, new
products were developed and old products were enhanced.

A Parallel Sysplex is a sysplex that uses multisystem data-sharing technology. It
allows direct, concurrent read/write access to shared data from all processing

CTC
connection
A connection
between two
CHPIDs on the
same or
different
processors,
either directly
or through a
switch.

Parallel
Sysplex
A sysplex that
uses one or
more coupling
facilities.
54 Introduction to the New Mainframe: z/OS Basics

nodes (or servers) in the configuration without impacting performance or data
integrity. Each node can concurrently cache shared data in local processor
memory through hardware-assisted cluster-wide serialization and coherency
controls.

As a result, work requests that are associated with a single workload, such as
business transactions or database queries, can be dynamically distributed for
parallel execution on nodes in the sysplex cluster based on available processor
capacity.

Figure 2-11 shows the visible parts of a Parallel Sysplex, namely the hardware.
These are the key components of Parallel Sysplex as implemented in the
hardware architecture.

Figure 2-11 Sysplex hardware overview

2.8.1 What is a coupling facility?
A Parallel Sysplex relies on one or more coupling facilities (CFs). A coupling
facility is a mainframe processor, with memory and special channels, and a
built-in operating system. It has no I/O devices, other than the special channels,
and the operating system is very small.12

DASDDASDDASDDASDDASDDASD

ESCON / FICON

Sysplex Timer

IBM zSeries

CF02
CF

IBM zSeries

CF01
CF

z/OS

Sysplex
LPARs

IBM zSeries

z/OS

Sysplex
LPARs

1
2

3

4
567

8
9

10
11 12 1

2
3

4
567

8
9

10
11 12

Coupling
facility
A special
logical partition
that provides
high-speed
caching, list
processing,
and locking
functions in a
sysplex.
 Chapter 2. Mainframe hardware systems and high availability 55

A CF functions largely as a fast scratch pad. It is used for three purposes:

� Locking information that is shared among all attached systems

� Cache information (such as for a data base) that is shared among all attached
systems

� Data list information that is shared among all attached systems

The information in the CF resides in memory and a CF typically has a large
memory. A CF can be a separate system or an LPAR can be used as a CF.
Figure 2-12 illustrates a small Parallel Sysplex with two z/OS images. Again, this
whole configuration could be in three LPARs of a single system, in three separate
systems, or in a mixed combination.

Figure 2-12 Parallel Sysplex

12 The CF operating system is nothing like z/OS and has no direct user interfaces.

zSeries (or LPAR)

z/OS
channels

zSeries (or LPAR)

z/OS
channels

control unit control unit

system or LPAR

Coupling
Facility

CF channels
56 Introduction to the New Mainframe: z/OS Basics

In many ways a Parallel Sysplex system appears as a single large system. It has
a single operator interface (which controls all systems). With proper planning and
operation (neither of which is trivial), complex workloads can be shared by any or
all systems in the Parallel Sysplex, and recovery (by another system in the
Parallel Sysplex) can be automatic for many workloads.

2.8.2 Clustering technologies for the mainframe
Parallel Sysplex technology helps to ensure continuous availability in today’s
large systems environments. A Parallel Sysplex allows the linking up to 32
servers with near linear scalability to create a powerful commercial processing
clustered system. Every server in a Parallel Sysplex cluster can be configured to
share access to data resources, and a “cloned” instance of an application might
run on every server.

Parallel Sysplex design characteristics help businesses run continuously, even
during periods of dramatic change. Sysplex sites can dynamically add and
change systems in a sysplex, and configure the systems for no single points of
failure.

Through this state-of-the-art cluster technology, multiple z/OS systems can be
made to work in concert to more efficiently process the largest commercial
workloads.

Shared data clustering
Parallel Sysplex technology extends the strengths of IBM mainframe computers
by linking up to 32 servers with near linear scalability to create a powerful
commercial processing clustered system. Every server in a Parallel Sysplex
cluster has access to all data resources, and every “cloned” application can run
on every server. Using mainframe coupling technology, Parallel Sysplex
technology provides a “shared data” clustering technique that permits
multi-system data sharing with high performance read/write integrity.

This “shared data” (as opposed to “shared nothing”) approach enables
workloads to be dynamically balanced across servers in the Parallel Sysplex
cluster. It enables critical business applications to take advantage of the
aggregate capacity of multiple servers to help ensure maximum system
throughput and performance during peak processing periods. In the event of a
hardware or software outage, either planned or unplanned, workloads can be
dynamically redirected to available servers, thus providing near-continuous
application availability.
 Chapter 2. Mainframe hardware systems and high availability 57

Nondisruptive maintenance
Another unique advantage of using Parallel Sysplex technology is the ability to
perform hardware and software maintenance and installation in a nondisruptive
manner.

Through data sharing and dynamic workload management, servers can be
dynamically removed from or added to the cluster, allowing installation and
maintenance activities to be performed while the remaining systems continue to
process work. Furthermore, by adhering to the IBM software and hardware
coexistence policy, software and/or hardware upgrades can be introduced one
system at a time. This capability allows customers to roll changes through
systems at a pace that makes sense for their business.

The ability to perform rolling hardware and software maintenance in a
nondisruptive manner allows business to implement critical business function
and react to rapid growth without affecting customer availability.

2.9 Typical mainframe systems
We outline the general configurations of three different levels of configuration in
this section. These are not intended to be detailed descriptions, but are simply
overviews.

2.9.1 Very small systems
The first two examples, in Figure 2-13 on page 59, show that mainframe refers
more to a style of computing rather than to unique hardware. Two different
systems are illustrated and neither uses mainframe hardware in the generally
accepted sense of the term.
58 Introduction to the New Mainframe: z/OS Basics

Figure 2-13 Very small mainframe configurations

The first system illustrated is an IBM Multiprise® 3000 system (MP3000). which
IBM withdrew from marketing as this book was written. It was the smallest S/390
system produced in recent years. The MP3000 has one or two S/390 processors
plus a SAP processor. It also has internal disk drives that can be configured to
operate as normal IBM 3390 disk drives. A minimal internal tape drive is normally
used for software installation. The MP3000 can have a substantial number of
ESCON or parallel channels for connection to traditional external I/O devices.

The MP3000 is completely compatible with S/390 mainframes, but lacks later
zSeries features. It can run early versions of z/OS and all prior versions of the
operating system. It is typically used with z/VM or z/VSE operating systems
(which were briefly described in 1.10, “z/OS and other mainframe operating
systems” on page 28.)

The second system shown, the emulated zSeries system, has no mainframe
hardware. It is based on a personal computer (running Linux or UNIX) and uses
software to emulate z/OS. Special PCI channel adapters can be used to connect
to selected mainframe I/O devices. The personal computer running the emulated
z/OS can have substantial internal disks (typically in a RAID array) for emulating
IBM 3390 disk drives.

Printer

MP3000
system

SUPPORT
element

Standard mainframe control units and devices

ESCON channels

LAN
adapter(s)

tn3270 terminals

Printer

tn3270 terminals

LAN
adapter(s)

Emulated
system

Parallel channels

Selected mainframe control units and devices
 Chapter 2. Mainframe hardware systems and high availability 59

Both of these systems lack some features found in “real” mainframes.
Nevertheless, both are capable of doing quality work. Typical application
software cannot distinguish these systems from real mainframes. In fact, these
are considered mainframes because their operating systems, their middleware,
their applications, and their style of usage are the same as for larger mainframes.
The MP3000 can be configured with LPARs and might run both test and
production systems. The emulated system does not provide LPARs, but can
accomplish much the same thing by running multiple copies of the emulator
software.

A key attraction of these systems is that they can be a “mainframe in a box.” In
many cases no external traditional I/O devices are needed. This greatly reduces
the entry-level price for a mainframe system.

2.9.2 Medium single systems
Figure 2-14 on page 61 shows a modest mainframe system and shows the
typical external elements needed. The particular system shown is an IBM z890
system with two recent external disk controllers, a number of tape drives,
printers, LAN attachments, and consoles.

This is a somewhat idealized configuration in that no older devices are involved.
The systems outlined here might have a number of LPARs active, for example:

� A production z/OS system running interactive applications.

� A second production z/OS devoted to major batch applications. (These could
also be run in the first LPAR, but some installations prefer a separate LPAR for
management purposes.)

� A test z/OS version for testing new software releases, new applications, and
so forth.

� One or several Linux partitions, perhaps running Web-related applications.
60 Introduction to the New Mainframe: z/OS Basics

Figure 2-14 Medium mainframe configuration

The disk controllers in Figure 2-14 contain a large number of commodity drives
running in multiple RAID configurations. The control unit transforms their
interfaces to appear as standard IBM 3390 disk drives, which is the most
common disk appearance for mainframes. These disk control units have multiple
channel interfaces and can all operate in parallel.

2.9.3 Larger systems
Figure 2-15 shows a larger mainframe, although this is still a modest
configuration when compared to a large mainframe installation. This example is
typical in that both older and newer mainframes are present, along with channel
switches allowing all systems to access most I/O devices. Likewise, new and
older disk controllers (and devices) and tape controllers (and devices) are
present. The total system is in a modest Parallel Sysplex configuration.

Printer

RouterTape
drives

LAN

Consoles

OSA-Express
z890

Printer

Enterprise
Storage Server1

Enterprise
Storage Server1
 Chapter 2. Mainframe hardware systems and high availability 61

Figure 2-15 Moderately large mainframe configuration

Briefly, the devices in Figure 2-15 include:

� An IBM 3745, which is a communications controller optimized for connection
to remote terminals and controllers, and LANs. A 3745 appears as a control
unit to the mainframe.

� IBM 3490E tape drives, which, though somewhat outdated, handle the most
widely used mainframe-compatible tape cartridges.

� A sixth-generation mainframe design (G6).
� A newer z990 mainframe.
� An Enterprise Storage Server (ESS).
� ESCON directors.

OSA Express

LAN

LAN

Older DASD
device 3390

3490E

OSA Express

Consoles

CFCF

Escon
Director

Escon
Director

LAN
OSA Express

LAN
OSA Express

z990 9672
R96

Enterprise
Storage Server1

Enterprise
Storage Server1
62 Introduction to the New Mainframe: z/OS Basics

� OSA Express connections to several LANs.
� CF (shown as a separate box, but it might be an LPAR in the mainframe).

2.10 Continuous availability of mainframes
Parallel Sysplex technology is an enabling technology, allowing highly reliable,
redundant, and robust mainframe technologies to achieve near-continuous
availability. A properly configured Parallel Sysplex cluster is designed to remain
available to its users and applications with minimal downtime, for example:

� Hardware and software components provide for concurrency to facilitate
non-disruptive maintenance, like Capacity Upgrade on Demand, which allows
processing or coupling capacity to be added one engine at a time without
disruption to running workloads.

� DASD subsystems employ disk mirroring or RAID technologies to help protect
against data loss, and exploit technologies to enable point-in-time backup,
without the need to shut down applications.

� Networking technologies deliver functions such as VTAM® Generic
Resources, Multi-Node Persistent Sessions, Virtual IP Addressing, and
Sysplex Distributor to provide fault-tolerant network connections.

� I/O subsystems support multiple I/O paths and dynamic switching to prevent
loss of data access and improved throughput.

� z/OS software components allow new software releases to coexist with lower
levels of those software components to facilitate rolling maintenance.

� Business applications are “data sharing-enabled” and cloned across servers
to allow workload balancing to prevent loss of application availability in the
event of an outage.

� Operational and recovery processes are fully automated and transparent to
users, and reduce or eliminate the need for human intervention.

Parallel Sysplex is a way of managing this multi-system environment, providing
such benefits as:

� “No single points of failure” on page 64
� “Capacity and scaling” on page 64
� “Dynamic workload balancing” on page 65
� “Ease of use” on page 65
� “Single system image” on page 68
� “Compatible change and non-disruptive growth” on page 69
� “Application compatibility” on page 69
� “Disaster recovery” on page 70
 Chapter 2. Mainframe hardware systems and high availability 63

These benefits are described in the remaining sections of this chapter.

2.10.1 No single points of failure
In a Parallel Sysplex cluster, it is possible to construct a parallel processing
environment with no single points of failure. Because all of the systems in the
Parallel Sysplex can have concurrent access to all critical applications and data,
the loss of a system due to either hardware or software failure does not
necessitate loss of application availability.

Peer instances of a failing subsystem executing on remaining healthy system
nodes can take over recovery responsibility for resources held by the failing
instance. Alternatively, the failing subsystem can be automatically restarted on
still-healthy systems using automatic restart capabilities to perform recovery for
work in progress at the time of the failure. While the failing subsystem instance is
unavailable, new work requests can be redirected to other data-sharing
instances of the subsystem on other cluster nodes to provide continuous
application availability across the failure and subsequent recovery. This provides
the ability to mask planned as well as unplanned outages to the end user.

Because of the redundancy in the configuration, there is a significant reduction in
the number of single points of failure. Without a Parallel Sysplex, the loss of a
server could severely impact the performance of an application, as well as
introduce system management difficulties in redistributing the workload or
reallocating resources until the failure is repaired. In an Parallel Sysplex
environment, it is possible that the loss of a server may be transparent to the
application, and the server workload can be redistributed automatically within the
Parallel Sysplex with little performance degradation. Therefore, events that
otherwise would seriously impact application availability, such as failures in
central processor complex (CPC) hardware elements or critical operating system
components, would, in a Parallel Sysplex environment, have reduced impact.

Even though they work together and present a single image, the nodes in a
Parallel Sysplex cluster remain individual systems, making installation, operation,
and maintenance non-disruptive. The system programmer can introduce
changes, such as software upgrades, one system at a time, while the remaining
systems continue to process work. This allows the mainframe IT staff to roll
changes through its systems on a schedule that is convenient to the business.

2.10.2 Capacity and scaling
The Parallel Sysplex environment can scale nearly linearly from 2 to 32 systems.
This can be a mix of any servers that support the Parallel Sysplex environment.
The aggregate capacity of this configuration meets every processing requirement
known today.
64 Introduction to the New Mainframe: z/OS Basics

2.10.3 Dynamic workload balancing
The entire Parallel Sysplex cluster can be viewed as a single logical resource to
end users and business applications. Just as work can be dynamically distributed
across the individual processors within a single SMP server, so too, can work be
directed to any node in a Parallel Sysplex cluster having available capacity. This
avoids the need to partition data or applications among individual nodes in the
cluster or to replicate databases across multiple servers.

Workload balancing also permits a business to run diverse applications across a
Parallel Sysplex cluster while maintaining the response levels critical to a
business. The mainframe IT director selects the service level agreements
required for each workload, and the workload management (WLM) component of
z/OS, along with subsystems such as CP/SM or IMS, automatically balances
tasks across all the resources of the Parallel Sysplex cluster to meet these
business goals. The work can come from a variety of sources, such as batch,
SNA, TCP/IP, DRDA®, or WebSphere MQ.

There are several aspects to consider for recovery. First, when a failure occurs, it
is important to bypass it by automatically redistributing the workload to utilize the
remaining available resources. Secondly, it is necessary to recover the elements
of work that were in progress at the time of the failure. Finally, when the failed
element is repaired, it should be brought back into the configuration as quickly
and transparently as possible to again start processing the workload. Parallel
Sysplex technology enables all this to happen.

Workload distribution
After the failing element has been isolated, it is necessary to non-disruptively
redirect the workload to the remaining available resources in the Parallel Sysplex.
In the event of failure in the Parallel Sysplex environment, the online transaction
workload is automatically redistributed without operator intervention.

Generic resource management
Generic resource management provides the ability to specify to VTAM a common
network interface. This can be used for CICS terminal owning regions (TORs),
IMS Transaction Manager, TSO, or DB2 DDF work. If one of the CICS TORs fails,
for example, only a subset of the network is affected. The affected terminals are
able to immediately log on again and continue processing after being connected
to a different TOR.

2.10.4 Ease of use
The Parallel Sysplex solution satisfies a major customer requirement for
continuous 24-hour-a-day, 7-day-a-week availability, while providing techniques
 Chapter 2. Mainframe hardware systems and high availability 65

for achieving simplified Systems Management consistent with this requirement.
Some of the features of the Parallel Sysplex solution that contribute to increased
availability also help to eliminate some Systems Management tasks. Examples
include:

� “Workload management (WLM) component” on page 66
� “Sysplex Failure Manager (SFM)” on page 66
� “Automatic Restart Manager (ARM)” on page 66
� “Cloning and symbolics” on page 67
� “zSeries resource sharing” on page 67

Workload management (WLM) component
The workload management (WLM) component of z/OS provides sysplex-wide
workload management capabilities based on installation-specified performance
goals and the business importance of the workloads. WLM tries to attain the
performance goals through dynamic resource distribution. WLM provides the
Parallel Sysplex cluster with the intelligence to determine where work needs to
be processed and in what priority. The priority is based on the customer's
business goals and is managed by sysplex technology.

Sysplex Failure Manager (SFM)
The Sysplex Failure Management policy allows the installation to specify failure
detection intervals and recovery actions to be initiated in the event of the failure
of a system in the sysplex.

Without SFM, when one of the systems in the Parallel Sysplex fails, the operator
is notified and prompted to take some recovery action. The operator may choose
to partition the non-responding system from the Parallel Sysplex, or to take some
action to try to recover the system. This period of operator intervention might tie
up critical system resources required by the remaining active systems. Sysplex
Failure Manager allows the installation to code a policy to define the recovery
actions to be initiated when specific types of problems are detected, such as
fencing off the failed image that prevents access to shared resources, logical
partition deactivation, or central storage and expanded storage acquisition, to be
automatically initiated following detection of a Parallel Sysplex failure.

Automatic Restart Manager (ARM)
Automatic Restart Manager enables fast recovery of subsystems that might hold
critical resources at the time of failure. If other instances of the subsystem in the
Parallel Sysplex need any of these critical resources, fast recovery will make
these resources available more quickly. Even though automation packages are
used today to restart the subsystem to resolve such deadlocks, ARM can be
activated closer to the time of failure.

ARM
A system
recovery
function that
improves the
availability of
batch jobs and
started tasks.
66 Introduction to the New Mainframe: z/OS Basics

ARM reduces operator intervention in the following areas:

� Detection of the failure of a critical job or started task

� Automatic restart after a started task or job failure

After an abend of a job or started task, the job or started task can be restarted
with specific conditions, such as overriding the original JCL or specifying job
dependencies, without relying on the operator.

� Automatic redistribution of work to an appropriate system following a system
failure

This removes the time-consuming step of human evaluation of the most
appropriate target system for restarting work

Cloning and symbolics
Cloning refers to replicating the hardware and software configurations across the
different physical servers in the Parallel Sysplex. That is, an application that is
going to take advantage of parallel processing might have identical instances
running on all images in the Parallel Sysplex. The hardware and software
supporting these applications could also be configured identically on all systems
in the Parallel Sysplex to reduce the amount of work required to define and
support the environment.

The concept of symmetry allows new systems to be introduced and enables
automatic workload distribution in the event of failure or when an individual
system is scheduled for maintenance. It also reduces the amount of work
required by the system programmer in setting up the environment. Note that
symmetry does not preclude the need for systems to have unique configuration
requirements, such as the asymmetric attachment of printers and
communications controllers, or asymmetric workloads that do not lend
themselves to the parallel environment.

System symbolics are used to help manage cloning. z/OS provides support for
the substitution values in startup parameters, JCL, system commands, and
started tasks. These values can be used in parameter and procedure
specifications to allow unique substitution when dynamically forming a resource
name.

zSeries resource sharing
A number of base z/OS components have discovered that the IBM coupling
facility shared storage provides a medium for sharing component information for
the purpose of multi-system resource management. This exploitation, called IBM
zSeries Resource Sharing, enables sharing of physical resources such as files,
tape drives, consoles, and catalogs with improvements in cost, performance and
simplified systems management. This is not to be confused with Parallel Sysplex
 Chapter 2. Mainframe hardware systems and high availability 67

data sharing by the database subsystems. zSeries Resource Sharing delivers
immediate value even for customers who are not leveraging data sharing,
through native system exploitation delivered with the base z/OS software stack.

One of the goals of the Parallel Sysplex solution is to provide simplified systems
management by reducing complexity in managing, operating, and servicing a
Parallel Sysplex, without requiring an increase in the number of support staff and
without reducing availability.

2.10.5 Single system image
Even though there could be multiple servers and z/OS images in the Parallel
Sysplex and a mix of different technologies, the collection of systems in the
Parallel Sysplex should appear as a single entity to the operator, the end user,
the database administrator, and so on. A single system image brings reduced
complexity from both operational and definition perspectives.

Regardless of the number of system images and the complexity of the underlying
hardware, the Parallel Sysplex solution provides for a single system image from
several perspectives:

� Data access, allowing dynamic workload balancing and improved availability
� Dynamic Transaction Routing, providing dynamic workload balancing and

improved availability
� End-user interface, allowing logon to a logical network entity
� Operational interfaces, allowing easier Systems Management

Single point of control
It is a requirement that the collection of systems in the Parallel Sysplex can be
managed from a logical single point of control. The term “single point of control”
means the ability to access whatever interfaces are required for the task in
question, without reliance on a physical piece of hardware. For example, in a
Parallel Sysplex of many systems, it is necessary to be able to direct commands
or operations to any system in the Parallel Sysplex, without the necessity for a
console or control point to be physically attached to every system in the Parallel
Sysplex.

Persistent single system image across failures
Even though individual hardware elements or entire systems in the Parallel
Sysplex fail, a single system image must be maintained. This means that, as with
the concept of single point of control, the presentation of the single system image
is not dependent on a specific physical element in the configuration. From the
end-user point of view, the parallel nature of applications in the Parallel Sysplex
environment must be transparent. An application should be accessible
regardless of which physical z/OS image supports it.

Single point of
control
A sysplex
characteristic;
when you can
accomplish a
given set of
tasks from a
single
workstation.
68 Introduction to the New Mainframe: z/OS Basics

2.10.6 Compatible change and non-disruptive growth
A primary goal of Parallel Sysplex is continuous availability. Therefore, it is a
requirement that changes such as new applications, software, or hardware can
be introduced non-disruptively, and that they be able to coexist with current
levels. In support of compatible change, the hardware and software components
of the Parallel Sysplex solution will allow the coexistence of two levels, that is,
level N and level N+1. This means, for example, that no IBM software product will
make a change that cannot be tolerated by the previous release.

2.10.7 Application compatibility
A design goal of Parallel Sysplex clustering is that no application changes be
required to take advantage of the technology. For the most part, this has held
true, although some affinities need to be investigated to get the maximum
advantage from the configuration.

From the application architects’ point of view, three major points might lead to the
decision to run an application in a Parallel Sysplex:

� Technology benefits

Scalability (even with non-disruptive upgrades), availability, and dynamic
workload management are tools that enable an architect to meet customer
needs in cases where the application plays a key role in the customer’s
business process. With the multisystem data sharing technology, all
processing nodes in a Parallel Sysplex have full concurrent read/write access
to shared data without affecting integrity and performance.

� Integration benefits

Since many applications are historically S/390- and z/OS-based, new
applications on z/OS get performance and maintenance benefits, especially if
they are connected to existing applications.

� Infrastructure benefits

If there is already an existing Parallel Sysplex, it needs very little infrastructure
work to integrate a new application. In many cases the installation does not
need to integrate new servers. Instead it can leverage the existing
infrastructure and make use of the strengths of the existing sysplex. With
Geographically Dispersed Parallel Sysplex™ (GDPS®)—connecting multiple
sysplexes in different locations—the mainframe IT staff can create a
configuration that is enabled for disaster recovery.
 Chapter 2. Mainframe hardware systems and high availability 69

2.10.8 Disaster recovery
Geographically Dispersed Parallel Sysplex (GDPS) is the primary disaster
recovery and continuous availability solution for a mainframe-based multi-site
enterprise. GDPS automatically mirrors critical data and efficiently balances
workload between the sites. GDPS also uses automation and Parallel Sysplex
technology to help manage multi-site databases, processors, network resources
and storage subsystem mirroring. This technology offers continuous availability,
efficient movement of workload between sites, resource management, and
prompt data recovery for business-critical mainframe applications and data. With
GDPS, the current maximum distance between the two sites is 100km (about 62
miles) of fiber, although there are some other restrictions. This provides a
synchronous solution that helps to ensure no loss of data.

There is also GDPS/XRC, which can be used over extended distances and
should provide a recovery point objective of less than two minutes (that is, a
maximum of two minutes of data would need to be recovered or is lost).

2.11 Summary
Being aware of various meanings of the terms systems, processors, CPs, and so
forth is important for your understanding of mainframe computers. The original
S/360 architecture, based on CPUs, memory, channels, control units, and
devices, and the way these are addressed, is fundamental to understanding
mainframe hardware—even though almost every detail of the original design has
been changed in various ways. The concepts and terminology of the original
design still permeate mainframe descriptions and designs.

The ability to partition a large system into multiple smaller systems (LPARs) is
now a core requirement in practically all mainframe installations. The flexibility of
the hardware design, allowing any processor (CP) to access and accept
interrupts for any channel, control unit, and device connected to a given LPAR,
contributes to the flexibility, reliability, and performance of the complete system.
The availability of a pool of processors (PUs) that can be configured (by IBM) as
customer processors (CPs), I/O processors (SAPs), dedicated Linux processors
(IFLs), dedicated Java-type processors (zAAPs), and spare processors is unique
to mainframes and, again, provides great flexibility in meeting customer
requirements. Some of these requirements are based on the cost structures of
some mainframe software. In addition to these primary processors (the PUs, and
all their characterizations), mainframes have a network of controllers (special
microprocessors) that control the system as a whole. These controllers are not
visible to the operating system or application programs.

GDPS
An application
that improves
application
availability and
disaster
recovery in a
Parallel
Sysplex.

zAAP
A specialized
processing
assist unit
configured for
running Java
programming
on selected
zSeries
machines.
70 Introduction to the New Mainframe: z/OS Basics

Since the early 1970s mainframes have been designed as multiprocessor
systems, even when only a single processor is installed. All operating system
software is designed for multiple processors; a system with a single processor is
considered a special case of a general multiprocessor design. All but the
smallest mainframe installations typically use clustering techniques, although
they do not normally use the terms cluster or clustering. A clustering technique
can be as simple as a shared DASD configuration where manual control or
planning is needed to prevent unwanted data overlap. More common today are
configurations that allow sharing of locking and enqueueing controls among all
systems. Among other benefits, this automatically manages access to data sets
so that unwanted concurrent usage does not occur.

The most sophisticated of the clustering techniques is a Parallel Sysplex. This
technology allows the linking up to 32 servers with near linear scalability to create
a powerful commercial processing clustered system. Every server in a Parallel
Sysplex cluster has access to all data resources, and every “cloned” application
can run on every server. When used with coupling technology, Parallel Sysplex
provides a “shared data” clustering technique that permits multi-system data
sharing with high performance read/write integrity. Sysplex design characteristics
help businesses to run continuously, even during periods of dramatic change.
Sysplex sites can dynamically add and change systems in a sysplex, and
configure the systems for no single points of failure. Through this state-of-the-art
cluster technology, multiple z/OS systems can be made to work in concert to
more efficiently process the largest commercial workloads.

Key terms in this chapter

Automatic Restart
Manager (ARM)

central processing
complex (CPC)

central processing unit
(CPU)

channel path identifier
(CHPID)

channel-to-channel (CTC)
connection

coupling facility

ESCON channel Geographically Dispersed
Parallel Sysplex (GDPS)

hardware management
console (HMC)

logical partition (LPAR) multiprocessor Parallel Sysplex

single point of control z/Architecture zSeries Application Assist
Processor (zAAP).
 Chapter 2. Mainframe hardware systems and high availability 71

2.12 Questions for review
To help test your understanding of the material in this chapter, complete the
following questions:

1. Why does software pricing for mainframes seem so complex?

2. Why does IBM have so many models (or “capacity settings”) in recent
mainframe machines?

3. Why doesn’t the power needed for a traditional COBOL application have a
linear relationship with the power needed for a new Java application?

4. Multiprocessor means several processors (and that these processors are
used by the operating system and applications). What does
multiprogramming mean?

5. What are the differences between loosely coupled systems and tightly
coupled systems?

6. What z/OS application changes are needed to work in an LPAR?

2.13 Topics for further discussion
Visit a mainframe installation if this can be arranged. The range of new, older,
and much older systems and devices found in a typical installation is usually
interesting and helps to illustrate the sense of continuity that is so important to
mainframe customers.

1. What are the advantages of a Parallel Sysplex presenting a single image
externally? Are there any disadvantages?

2. Why is continuous availability required in today’s marketplace?

3. How might someone justify the cost of the “redundant” hardware and the cost
of the software licences required to build a Parallel Sysplex?

2.14 Exercises
1. To display the CPU configuration:

a. Access SDSF from the ISPF primary option menu.
b. In the command input field, enter /D M=CPU and press Enter.
c. Use the ULOG option in SDSF to view the command display result.

2. To display the page data set usage:

a. In the command input field, enter /D ASM and press Enter.
b. Press PF3 to return to the previous screens.
72 Introduction to the New Mainframe: z/OS Basics

Chapter 3. z/OS overview

3

Objective: As the newest member of your company’s mainframe IT group,
you will need to know the basic functional characteristics of the mainframe
operating system. The operating system taught in this course is z/OS, a widely
used mainframe operating system. z/OS is known for its ability to serve
thousands of users concurrently and for processing very large workloads in a
secure, reliable, and expedient manner.

After completing this chapter, you will be able to:

� List several defining characteristics of the z/OS operating system.

� Give examples of how z/OS differs from a single-user operating system.

� List the major types of storage used by z/OS.

� Explain the concept of virtual storage and its use in z/OS.

� State the relationship between pages, frames, and slots.

� List several software products used with z/OS to provide a complete
system.

� Describe several differences and similarities between the z/OS and UNIX
operating systems.
© Copyright IBM Corp. 2006. All rights reserved. 73

3.1 What is an operating system?
In simplest terms, an operating system is a collection of programs that manage
the internal workings of a computer system. Operating systems are designed to
make the best use of the computer’s various resources, and ensure that the
maximum amount of work is processed as efficiently as possible. Although an
operating system cannot increase the speed of a computer, it can maximize its
use, thereby making the computer seem faster by allowing it to do more work in a
given period of time.

A computer’s architecture consists of the functions the computer system
provides. The architecture is distinct from the physical design, and, in fact,
different machine designs might conform to the same computer architecture. In a
sense, the architecture is the computer as seen by the user, such as a system
programmer. For example, part of the architecture is the set of machine
instructions that the computer can recognize and execute. In the mainframe
environment, the system software and hardware comprise a highly advanced
computer architecture, the result of decades of technological innovation.

3.2 What is z/OS?
The operating system we discuss in this course is z/OS1, a widely used
mainframe operating system. z/OS is designed to offer a stable, secure, and
continuously available environment for applications running on the mainframe.

z/OS today is the result of decades of technological advancement. It evolved
from an operating system that could process a single program at a time to an
operating system that can handle many thousands of programs and interactive
users concurrently. To understand how and why z/OS functions as it does, it is
important to understand some basic concepts about z/OS and the environment
in which it functions. This chapter introduces some of the concepts that you will
need to understand the z/OS operating system.

In most early operating systems, requests for work entered the system one at a
time. The operating system processed each request or job as a unit, and did not
start the next job until the one being processed had completed. This
arrangement worked well when a job could execute continuously from start to
completion. But often a job had to wait for information to be read in from, or
written out to, a device such as a tape drive or printer. Input and output (I/O) take
a long time compared to the electronic speed of the processor. When a job
waited for I/O, the processor was idle.

1 z/OS is designed to take advantage of the IBM zSeries architecture, or z/Architecture, which was
introduced in 2000.
74 Introduction to the New Mainframe: z/OS Basics

Finding a way to keep the processor working while a job waited would increase
the total amount of work the processor could do without requiring additional
hardware. z/OS gets work done by dividing it into pieces and giving portions of
the job to various system components and subsystems that function
interdependently. At any point in time, one component or another gets control of
the processor, makes its contribution, and then passes control along to a user
program or another component.

3.2.1 Hardware resources used by z/OS
The z/OS operating system executes in a processor and resides in processor
storage during execution. z/OS is commonly referred to as the system software.

Mainframe hardware consists of processors and a multitude of peripheral
devices such as disk drives (called direct access storage devices or DASD),
magnetic tape drives, and various types of user consoles; see Figure 3-1. Tape
and DASD are used for system functions and by user programs executed by
z/OS.

Figure 3-1 Hardware resources used by z/OS

H a rd w a re M a s te r C o n s o le
(c o n tro ls m a in fra m e h a rd w a re)

o p e ra to r c o n s o le
(c o n tro ls z /O S)

M a in fra m e c o m p u te r
(C P U , p ro c e s s o r

s to ra g e)

z /O S

d is k s to ra g e
(D A S D vo lu m e s)

D A S D
c o n tro lle r

ta p e d r iv e

ta p e
c a rtr id g e s
 Chapter 3. z/OS overview 75

To fulfill a new order for a z/OS system, IBM ships the system code to the
customer through the Internet or (depending on customer preference) on
physical tape cartridges. At the customer site, a person such as the z/OS system
programmer receives the order and copies the new system to DASD volumes.
After the system is customized and ready for operation, system consoles are
required to start and operate the z/OS system.

The z/OS operating system is designed to make full use of the latest IBM
mainframe hardware and its many sophisticated peripheral devices. Figure 3-1
on page 75 presents a simplified view of mainframe concepts that we build upon
throughout this course:

� Software - The z/OS operating system consists of load modules or executable
code. During the install process, the system programmer copies these load
modules to load libraries residing on DASD volumes.

� Hardware - The system hardware consists of all the devices, controllers, and
processors that constitute a mainframe environment.

� Peripheral devices - These include tape drives, DASD, and consoles. There
are many other types of devices, some of which were discussed in Chapter 2,
“Mainframe hardware systems and high availability” on page 35.

� Processor storage - Often called real or central storage (or memory), this is
where the z/OS operating system executes. Also, all user programs share the
use of processor storage with the operating system.

As a “Big Picture” of a typical mainframe hardware configuration, Figure 3-1 is far
from complete. Not shown, for example, are the hardware control units that
connect the mainframe to the other tape drives, DASD, and consoles.

Related reading: The standard reference for descriptions of the major facilities
of z/Architecture is the IBM publication z/Architecture Principles of Operation.
You can find this and related publications at the z/OS Internet Library Web site:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

3.2.2 Multiprogramming and multiprocessing
The earliest operating systems were used to control single-user computer
systems. In those days, the operating system would read in one job, find the data
and devices the job needed, let the job run to completion, and then read in
another job. In contrast, the computer systems that z/OS manages are capable
of multiprogramming, or executing many programs concurrently. With
multiprogramming, when a job cannot use the processor, the system can
suspend, or interrupt, the job, freeing the processor to work on another job.

Multi-
programming
Executing
many
programs
concurrently.
76 Introduction to the New Mainframe: z/OS Basics

z/OS makes multiprogramming possible by capturing and saving all the relevant
information about the interrupted program before allowing another program to
execute. When the interrupted program is ready to begin executing again, it can
resume execution just where it left off. Multiprogramming allows z/OS to run
thousands of programs simultaneously for users who might be working on
different projects at different physical locations around the world.

z/OS can also perform multiprocessing, which is the simultaneous operation of
two or more processors that share the various hardware resources, such as
memory and external disk storage devices. The techniques of multiprogramming
and multiprocessing make z/OS ideally suited for processing workloads that
require many input/output (I/O) operations. Typical mainframe workloads include
long-running applications that write updates to millions of records in a database,
and online applications for thousands of interactive users at any given time. By
way of contrast, consider the operating system that might be used for a
single-user computer system. Such an operating system would need to execute
programs on behalf of one user only. In the case of a personal computer (PC), for
example, the entire resources of the machine are often at the disposal of one
user.

Many users running many separate programs means that, along with large
amounts of complex hardware, z/OS needs large amounts of memory to ensure
suitable system performance. Large companies run sophisticated business
applications that access large databases and industry-strength middleware
products. Such applications require the operating system to protect privacy
among users, as well as enable the sharing of databases and software services.

Thus, multiprogramming, multiprocessing, and the need for a large amount of
memory mean that z/OS must provide function beyond simple, single-user
applications. The sections that follow explain, in a general way, the attributes that
enable z/OS to manage complex computer configurations. Subsequent portions
of this text explore these features in more detail.

3.2.3 Modules and macros
z/OS is made up of programming instructions that control the operation of the
computer system. These instructions ensure that the computer hardware is being
used efficiently and is allowing application programs to run. z/OS includes sets of
instructions that, for example, accept work, convert work to a form that the
computer can recognize, keep track of work, allocate resources for work, execute
work, monitor work, and handle output. A group of related instructions is called a
routine or module. A set of related modules that make a particular system
function possible is called a system component. The workload management
(WLM) component of z/OS, for instance, controls system resources, while the
recovery termination manager (RTM) handles system recovery.

Multi-
processing
The
simultaneous
operation of two
or more
processors that
share the
various
hardware
resources.
 Chapter 3. z/OS overview 77

Sequences of instructions that perform frequently used system functions can be
invoked with executable macro instructions, or macros. z/OS macros exist for
functions such as opening and closing data files, loading and deleting programs,
and sending messages to the computer operator.

3.2.4 Control blocks
As programs execute the work of a z/OS system, they keep track of this work in
storage areas known as control blocks. In general, there are four types of z/OS
control blocks:

� System-related control blocks
� Resource-related control blocks
� Job-related control blocks
� Task-related control blocks

Each system-related control block represents one z/OS system and contains
system-wide information, such as how many processors are in use. Each
resource-related control block represents one resource, such as a processor or
storage device. Each job-related control block represents one job executing on
the system. Each task-related control block represents one unit of work.

Control blocks serve as vehicles for communication throughout z/OS. Such
communication is possible because the structure of a control block is known to
the programs that use it, and thus these programs can find needed information
about the unit of work or resource. Control blocks representing many units of the
same type may be chained together on queues, with each control block pointing
to the next one in the chain. The operating system can search the queue to find
information about a particular unit of work or resource, which might be:

� An address of a control block or a required routine

� Actual data, such as a value, a quantity, a parameter, or a name

� Status flags (usually single bits in a byte, where each bit has a specific
meaning)

z/OS uses a huge variety of control blocks, many with very specialized purposes.
This chapter discusses three of the most commonly used control blocks:

� Task control block (TCB), which represents a unit of work or task
� Service request block (SRB), which represents a request for a system service

� Address space control block (ASCB), which represents an address space

Control block
A data
structure that
serves as a
vehicle for
communication
in z/OS.
78 Introduction to the New Mainframe: z/OS Basics

3.2.5 Physical storage used by z/OS
Conceptually, mainframes and all other computers have two types of physical
storage2:

� Physical storage located on the mainframe processor itself. This is called
processor storage, real storage or central storage; think of it as memory for
the mainframe.

� Physical storage external to the mainframe, including storage on direct
access devices, such as disk drives and tape drives. This storage is called
paging storage or auxiliary storage.

The primary difference between the two kinds of storage relates to the way in
which it is accessed, as follows:

� Central storage is accessed synchronously with the processor. That is, the
processor must wait while data is retrieved from central storage3.

� Auxiliary storage is accessed asynchronously. The processor accesses
auxiliary storage through an input/output (I/O) request, which is scheduled to
run amid other work requests in the system. During an I/O request, the
processor is free to execute other, unrelated work.

As with memory for a personal computer, mainframe central storage is tightly
coupled with the processor itself, whereas mainframe auxiliary storage is located
on (comparatively) slower, external disk and tape drives. Because central storage
is more closely integrated with the processor, it takes the processor much less
time to access data from central storage than from auxiliary storage. Auxiliary
storage, however, is less expensive than central storage. Most z/OS installations
use large amounts of both.

3.3 Overview of z/OS facilities
An extensive set of system facilities and unique attributes makes z/OS well suited
for processing large, complex workloads, such as those that require many I/O
operations, access to large amounts of data, or comprehensive security. Typical
mainframe workloads include long-running applications that update millions of
records in a database and online applications that can serve many thousands of
users concurrently.

Figure 3-2 provides a “snapshot” view of the z/OS operating environment.

2 Many computers also have a fast memory, local to the processor, called the processor cache. The
cache is not visible to the programmer or application programs or even the operating system directly.
3 Some processor implementations use techniques such as instruction or data prefetching or
“pipelining” to enhance performance. These techniques are not visible to the application program or
even the operating system, but a sophisticated compiler can organize the code it produces to take
advantage of these techniques.

Central
storage
Physical
storage on the
processor.

Auxiliary
storage
Physical
storage
external to the
mainframe,
including
storage on
direct access
devices, such
as disk drives
and tape
drives.
 Chapter 3. z/OS overview 79

Figure 3-2 z/OS operating environment

These facilities are explored in greater depth in the remaining portions of this
text, but are summarized here as follows:

� An address space describes the virtual storage addressing range available to
an online user or a running program.

� Two types of physical storage are available: central storage and auxiliary
storage (AUX). Central storage is also referred to as real storage or real
memory.

� z/OS moves programs and data between central storage and auxiliary
storage through processes called paging and swapping.

� z/OS dispatches work for execution (not shown in the figure). That is, it
selects programs to be run based on priority and ability to execute and then
loads the program and data into central storage. All program instructions and
data must be in central storage when executing.

� An extensive set of facilities manages files stored on direct access storage
devices (DASDs) or tape cartridges.

� Operators use consoles to start and stop z/OS, enter commands, and
manage the operating system.

z/OS is further defined by many other operational characteristics, such as
security, recovery, data integrity and workload management.

Address spaces

Physical storage

Paging

Operator communication

Reliability, availability, and
serviceability

Data integrity

REALAUX

REALAUX
80 Introduction to the New Mainframe: z/OS Basics

3.4 Virtual storage and other mainframe concepts
z/OS uses both types of physical storage (central and auxiliary) to enable
another kind of storage called virtual storage. In z/OS, each user has access to
virtual storage, rather than physical storage. This use of virtual storage is central
to the unique ability of z/OS to interact with large numbers of users concurrently,
while processing the largest workloads.

3.4.1 What is virtual storage?
Virtual storage means that each running program can assume it has access to all
of the storage defined by the architecture’s addressing scheme. The only limit is
the number of bits in a storage address. This ability to use a large number of
storage locations is important because a program may be long and complex, and
both the program’s code and the data it requires must be in central storage for
the processor to access them.

z/OS supports 64-bit long addresses, which allows a program to address up to
18,446,744,073,709,600,000 bytes (16 exabytes) of storage locations. In reality,
the mainframe might have much less central storage installed. How much less
depends on the model of the computer and the system configuration.

To allow each user to act as though this much storage really exists in the
computer system, z/OS keeps only the active portions of each program in central
storage. It keeps the rest of the code and data in files called page data sets on
auxiliary storage, which usually consists of a number of high-speed direct access
storage devices (DASDs).

Virtual storage, then, is this combination of real and auxiliary storage. z/OS uses
a series of tables and indexes to relate locations on auxiliary storage to locations
in central storage. It uses special settings (bit settings) to keep track of the
identity and authority of each user or program. z/OS uses a variety of storage
manager components to manage virtual storage. This chapter briefly covers the
key points in the process.

This process is shown in more detail in 3.4.4, “Virtual storage overview” on
page 84.

Terms: Mainframe workers use the terms central storage, real memory, real
storage, and main storage interchangeably. Likewise, they use the terms
virtual memory and virtual storage synonymously.
 Chapter 3. z/OS overview 81

3.4.2 What is an address space?
The range of virtual addresses that the operating system assigns to a user or
separately running program is called an address space. This is the area of
contiguous virtual addresses available for executing instructions and storing
data. The range of virtual addresses in an address space starts at zero and can
extend to the highest address permitted by the operating system architecture.

z/OS provides each user with a unique address space and maintains the
distinction between the programs and data belonging to each address space.
Within each address space, the user can start multiple tasks, using task control
blocks or TCBs that allow multiprogramming.

In some ways a z/OS address space is like a UNIX process, and the address
space identifier (ASID) is like a process ID (PID). Further, TCBs are like UNIX
threads in that each operating system supports processing multiple instances of
work concurrently.

However, the use of multiple virtual address spaces in z/OS holds some special
advantages. Virtual addressing permits an addressing range that is greater than
the central storage capabilities of the system. The use of multiple virtual address
spaces provides this virtual addressing capability to each job in the system by
assigning each job its own separate virtual address space. The potentially large
number of address spaces provides the system with a large virtual addressing
capacity.

With multiple virtual address spaces, errors are confined to one address space,
except for errors in commonly addressable storage, thus improving system
reliability and making error recovery easier. Programs in separate address
spaces are protected from each other. Isolating data in its own address space
also protects the data.

z/OS uses many address spaces. There is at least one address space for each
job in progress and one address space for each user logged on through TSO,
telnet, rlogin or FTP (users logged on z/OS through a major subsystem, such as
CICS or IMS, are using an address space belonging to the subsystem, not their
own address spaces). There are many address spaces for operating system
functions, such as operator communication, automation, networking, security,
and so on.

Address space isolation
The use of address spaces allows z/OS to maintain the distinction between the
programs and data belonging to each address space. The private areas in one
user’s address space are isolated from the private areas in other address
spaces, and this provides much of the operating system’s security.

Address
space
The range of
virtual
addresses that
the operating
system assigns
to a user or
program.
82 Introduction to the New Mainframe: z/OS Basics

Yet, each address space also contains a common area that is accessible to every
other address space. Because it maps all of the available addresses, an address
space includes system code and data as well as user code and data. Thus, not
all of the mapped addresses are available for user code and data.

The ability of many users to share the same resources implies the need to
protect users from one another and to protect the operating system itself. Along
with such methods as “keys” for protecting central storage and code words for
protecting data files and programs, separate address spaces ensure that users’
programs and data do not overlap.

Address space communication
In a multiple virtual address space environment, applications need ways to
communicate between address spaces. z/OS provides two methods of
inter-address space communication:

� Scheduling a service request block (SRB), an asynchronous process
� Using cross-memory services and access registers, a synchronous process

A program uses an SRB to initiate a process in another address space or in the
same address space. The SRB is asynchronous in nature and runs
independently of the program that issues it, thereby improving the availability of
resources in a multiprocessing environment. We discuss SRBs further in “What
is an SRB?” on page 110.

A program uses cross-memory services to access another user’s address
spaces directly. You might compare z/OS cross-memory services to the UNIX
Shared Memory functions, which can be used on UNIX without special authority.
Unlike UNIX, however, z/OS cross-memory services require the issuing program
to have special authority, controlled by the authorized program facility (APF). This
method allows efficient and secure access to data owned by others, data owned
by the user but stored in another address space for convenience, and for rapid
and secure communication with services like transaction managers and
database managers.

Related reading: Using cross-memory services is described in the IBM
publication z/OS MVS Programming: Extended Addressability Guide. You can
find this and related publications at the z/OS Internet Library Web site:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

3.4.3 What is dynamic address translation?
Dynamic address translation, or DAT, is the process of translating a virtual
address during a storage reference into the corresponding real address. If the
virtual address is already in central storage, the DAT process may be accelerated
 Chapter 3. z/OS overview 83

through the use of a translation lookaside buffer. If the virtual address is not in
central storage, a page fault interrupt occurs, z/OS is notified and brings the page
in from auxiliary storage.

Looking at this process more closely reveals that the machine can present any
one of a number of different types of faults. A type, region, segment, or page fault
will be presented depending on at which point in the DAT structure invalid entries
are found. The faults repeat down the DAT structure until ultimately a page fault is
presented and the virtual page is brought into central storage either for the first
time (there is no copy on auxiliary storage) or by bringing the page in from
auxiliary storage.

DAT is implemented by both hardware and software through the use of page
tables, segment tables, region tables and translation lookaside buffers. DAT
allows different address spaces to share the same program or other data that is
for read only. This is because virtual addresses in different address spaces can
be made to translate to the same frame of central storage. Otherwise, there
would have to be many copies of the program or data, one for each address
space.

3.4.4 Virtual storage overview
Recall that for the processor to execute a program instruction, both the
instruction and the data it references must be in central storage. The convention
of early operating systems was to have the entire program reside in central
storage when its instructions were executing. However, the entire program does
not really need to be in central storage when an instruction executes. Instead, by
bringing pieces of the program into central storage only when the processor is
ready to execute them—moving them out to auxiliary storage when it doesn’t
need them, an operating system can execute more and larger programs
concurrently.

How does the operating system keep track of each program piece? How does it
know whether it is in central storage or auxiliary storage, and where? It is
important for z/OS professionals to understand how the operating system makes
this happen.

Physical storage is divided into areas, each the same size and accessible by a
unique address. In central storage, these areas are called frames; in auxiliary
storage, they are called slots. Similarly, the operating system can divide a
program into pieces the size of frames or slots and assign each piece a unique
address. This arrangement allows the operating system to keep track of these
pieces. In z/OS, the program pieces are called pages. These areas are
discussed further in “Frames, pages, and slots” on page 88.
84 Introduction to the New Mainframe: z/OS Basics

Pages are referenced by their virtual addresses and not by their real addresses.
From the time a program enters the system until it completes, the virtual address
of the page remains the same, regardless of whether the page is in central
storage or auxiliary storage. Each page consists of individual locations called
bytes, each of which has a unique virtual address.

Format of a virtual address
As mentioned, virtual storage is an illusion created by the architecture, in that the
system seems to have more memory than it really has. Each user or program
gets an address space, and each address space contains the same range of
storage addresses. Only those portions of the address space that are needed at
any point in time are actually loaded into central storage. z/OS keeps the inactive
pieces of address spaces in auxiliary storage. z/OS manages address spaces in
units of various sizes, as follows:

Page Address spaces are divided into 4-kilobyte units of virtual storage
called pages.

Segment Address spaces are divided into 1-megabyte units called
segments. A segment is a block of sequential virtual addresses
spanning megabytes, beginning at a 1-megabyte boundary. A
2-gigabyte address space, for example, consists of 2048
segments.

Region Address spaces are divided into 2-8 gigabyte units called
regions. A region is a block of sequential virtual addresses
spanning 2-8 gigabytes, beginning at a 2-gigabyte boundary. A
2-terabyte address space, for example, consists of 2048 regions.

A virtual address, accordingly, is divided into four principal fields: bits 0-32 are
called the region index (RX), bits 33-43 are called the segment index (SX), bits
44-51 are called the page index (PX), and bits 52-63 are called the byte index
(BX).

A virtual address has the following format:

As determined by its address-space-control element, a virtual address space can
be a 2-gigabyte space consisting of one region, or as large as a 16-exabyte
 Chapter 3. z/OS overview 85

space. The RX part of a virtual address for a 2-gigabyte address space must be
all zeros; otherwise, an exception is recognized.

The RX part of a virtual address is itself divided into three fields. Bits 0-10 are
called the region first index (RFX), bits 11-21 are called the region second index
(RSX), and bits 22-32 are called the region third index (RTX). Bits 0-32 of the
virtual address have the following format:

A virtual address in which the RTX is the left most significant part (a 42-bit
address) is capable of addressing 4 terabytes (4096 regions), one in which the
RSX is the left most significant part (a 53-bit address) is capable of addressing 8
petabytes (four million regions), and one in which the RFX is the left most
significant part (a 64-bit address) is capable of addressing 16 exabytes (8 billion
regions).

How virtual storage addressing works in z/OS
As stated previously, the use of virtual storage in z/OS means that only the
pieces of a program that are currently active need to be in central storage at
processing time. The inactive pieces are held in auxiliary storage. Figure 3-3
shows the virtual storage concept at work in z/OS.
86 Introduction to the New Mainframe: z/OS Basics

Figure 3-3 Real and auxiliary storage combine to create the illusion of virtual storage

In Figure 3-3, observe the following:

� An address is an identifier of a required piece of information, but not a
description of where in central storage that piece of information is. This allows
the size of an address space (that is, all addresses available to a program) to
exceed the amount of central storage available.

� For most user programs, all central storage references are made in terms of
virtual storage addresses. 4

� Dynamic address translation (DAT) is used to translate a virtual address
during a storage reference into a physical location in central storage. As
shown in Figure 3-3, the virtual address 10254000 can exist more than once,
because each virtual address maps to a different address in central storage.

� When a requested address is not in central storage, a hardware interruption is
signaled to z/OS and the operating system pages in the required instructions
and data to central storage.

4 Some instructions, primarily those used by operating system programs, require real addresses.

4kabc

00971000

0014A000

Auxiliary Storage

4k

Real address

Real Storage

4k

10254000
Virtual address

xyx

Real address

User A address space

User B address space

10254000
Virtual address

Virtual Storage
 Chapter 3. z/OS overview 87

Frames, pages, and slots
When a program is selected for execution, the system brings it into virtual
storage, divides it into pages of four kilobytes, transfers the pages into central
storage for execution. To the programmer, the entire program appears to occupy
contiguous space in storage at all times. Actually, not all pages of a program are
necessarily in central storage, and the pages that are in central storage do not
necessarily occupy contiguous space.

The pieces of a program executing in virtual storage must be moved between
real and auxiliary storage. To allow this, z/OS manages storage in units, or
blocks, of four kilobytes. The following blocks are defined:

� A block of central storage is a frame.
� A block of virtual storage is a page.
� A block of auxiliary storage is a slot.

A page, a frame, and a slot are all the same size: four kilobytes. An active virtual
storage page resides in a central storage frame. A virtual storage page that
becomes inactive resides in an auxiliary storage slot (in a paging data set).
Figure 3-4 shows the relationship of pages, frames, and slots.

In Figure 3-4, z/OS is performing paging for a program running in virtual storage.
The lettered boxes represent parts of the program. In this simplified view,
program parts A, E, F, and H are active and running in central storage frames,
while parts B, C, D, and G are inactive and have been moved to auxiliary storage
slots. All of the program parts, however, reside in virtual storage and have virtual
storage addresses.

Frame
In central
storage, areas
of equal size
and accessible
by a unique
address

Slot
In auxiliary
storage, areas
of equal size
and accessible
by a unique
address.
88 Introduction to the New Mainframe: z/OS Basics

Figure 3-4 Frames, pages, and slots

3.4.5 What is paging?
As stated previously, z/OS uses a series of tables to determine whether a page is
in real or auxiliary storage, and where. To find a page of a program, z/OS checks
the table for the virtual address of the page, rather than searching through all of
physical storage for it. z/OS then transfers the page into central storage or out to
auxiliary storage as needed. This movement of pages between auxiliary storage
slots and central storage frames is called paging. Paging is key to understanding
the use of virtual storage in z/OS.

z/OS paging is transparent to the user. During job execution, only those pieces of
the application that are required are brought in, or paged in, to central storage.
The pages remain in central storage until no longer needed, or until another page
is required by the same application or a higher-priority application and no empty
central storage is available. To select pages for paging out to auxiliary storage,
z/OS follows a “Least Used” algorithm. That is, z/OS assumes that a page that
has not been used for some time will probably not be used in the near future.

How paging works in z/OS
In addition to the DAT hardware and the segment and page tables required for
address translation, paging activity involves a number of system components to
handle the movement of pages and several additional tables to keep track of the
most current version of each page.

AUXILIARY

SLOTS

B

D G

C

REAL

FRAMES

H

F

A

E

VIRTUAL

PAGES

A

E

B

F

C D

G HE
 Chapter 3. z/OS overview 89

To understand how paging works, assume that DAT encounters an invalid page
table entry during address translation, indicating that a page is required that is
not in a central storage frame. To resolve this page fault, the system must bring
the page in from auxiliary storage. First, however, it must locate an available
central storage frame. If none is available, the request must be saved and an
assigned frame freed. To free a frame, the system copies its contents to auxiliary
storage and marks its corresponding page table entry as invalid. This operation is
called a page-out.

After a frame is located for the required page, the contents of the page are
copied from auxiliary storage to central storage and the page table invalid bit is
set off. This operation is called a page-in.

Paging can also take place when z/OS loads an entire program into virtual
storage. z/OS obtains virtual storage for the user program and allocates a central
storage frame to each page. Each page is then active and subject to the normal
paging activity; that is, the most active pages are retained in central storage while
the pages not currently active might be paged out to auxiliary storage.

Page stealing
z/OS tries to keep an adequate supply of available central storage frames on
hand. When a program refers to a page that is not in central storage, z/OS uses a
central storage page frame from a supply of available frames.

When this supply becomes low, z/OS uses page stealing to replenish it, that is, it
takes a frame assigned to an active user and makes it available for other work.
The decision to steal a particular page is based on the activity history of each
page currently residing in a central storage frame. Pages that have not been
active for a relatively long time are good candidates for page stealing.

Unreferenced interval count
z/OS uses a sophisticated paging algorithm to efficiently manage virtual storage
based on which pages were most recently used. An unreferenced interval count
indicates how long it has been since a program referenced the page. At regular
intervals, the system checks the reference bit for each page frame. If the
reference bit is off—that is, the frame has not been referenced—the system adds
to the frame’s unreferenced interval count. It adds the number of seconds since
this address space last had the reference count checked. If the reference bit is
on, the frame has been referenced and the system turns it off and sets the
unreferenced interval count for the frame to zero. Frames with the highest
unreferenced interval counts are the ones most likely to be stolen.

z/OS also uses various storage managers to keep track of all pages, frames, and
slots in the system. These are described in 3.4.8, “Role of storage managers” on
page 92.
90 Introduction to the New Mainframe: z/OS Basics

3.4.6 Swapping and the working set
Swapping is the process of transferring all of the pages of an address space
between central storage and auxiliary storage. A swapped-in address space is
active, having pages in central storage frames and pages in auxiliary storage
slots. A swapped-out address space is inactive; the address space resides on
auxiliary storage and cannot execute until it is swapped in.

While only a subset of the address space’s pages (known as its working set)
would likely be in central storage at any time, swapping effectively moves the
entire address space. It is one of several methods that z/OS uses to balance the
system workload and ensure that an adequate supply of available central storage
frames is maintained.

Swapping is performed by the System Resource Manager (SRM) component, in
response to recommendations from the Workload Manager (WLM) component.
WLM is described in 3.5, “What is workload management?” on page 102.

3.4.7 What is storage protection?
Up to now, we’ve discussed virtual storage mostly in the context of a single user
or program. In reality, of course, many programs and users are competing for the
use of the system. z/OS uses the following techniques to preserve the integrity of
each user’s work:

� A private address space for each user
� Page protection
� Low-address protection
� Multiple storage protect keys, as described in this section

How storage protect keys are used
Under z/OS, the information in central storage is protected from unauthorized
use by means of multiple storage protect keys. A control field in storage called a
key is associated with each 4K frame of central storage.

When a request is made to modify the contents of a central storage location, the
key associated with the request is compared to the storage protect key. If the
keys match or the program is executing in key 0, the request is satisfied. If the
key associated with the request does not match the storage key, the system
rejects the request and issues a program exception interruption.

When a request is made to read (or fetch) the contents of a central storage
location, the request is automatically satisfied unless the fetch protect bit is on,
indicating that the frame is fetch-protected. When a request is made to access
the contents of a fetch-protected central storage location, the key in storage is
compared to the key associated with the request. If the keys match, or the

Swapping
The process of
transferring an
entire address
space between
central storage
and auxiliary
storage.
 Chapter 3. z/OS overview 91

requestor is in key 0, the request is satisfied. If the keys do not match, and the
requestor is not in key 0, the system rejects the request and issues a program
exception interruption.

How storage protect keys are assigned
z/OS uses 16 storage protect keys. A specific key is assigned according to the
type of work being performed. As Figure 3-5 shows, the key is stored in bits 8
through 11 of the program status word (PSW). A PSW is assigned to each job in
the system.

Figure 3-5 Location of storage protect key

Storage protect keys 0 through 7 are used by the z/OS base control program
(BCP) and various subsystems and middleware products. Storage protect key 0
is the master key. Its use is restricted to those parts of the BCP that require
almost unlimited store and fetch capabilities. In almost any situation, a storage
protect key of 0 associated with a request to access or modify the contents of a
central storage location means that the request will be satisfied.

Storage protect keys 8 through 15 are assigned to users. Because all users are
isolated in private address spaces, most users—those whose programs run in a
virtual region—can use the same storage protect key. These users are called
V=V (virtual = virtual) users and are assigned a key of 8. Some users, however,
must run in a central storage region. These users are known as V=R (virtual =
real) users and require individual storage protect keys because their addresses
are not protected by the DAT process that keeps each address space distinct.
Without separate keys, V=R users might reference each other’s code and data.
These keys are in the range of 9 through 15.

3.4.8 Role of storage managers
Central storage frames and auxiliary storage slots, and the virtual storage pages
that they support, are managed by separate components of z/OS. These
92 Introduction to the New Mainframe: z/OS Basics

components are known as the real storage manager (sorry, not central storage
manager), the auxiliary storage manager, and the virtual storage manager. Here,
we describe the role of each briefly.

Real storage manager
The real storage manager or RSM™ keeps track of the contents of central
storage. It manages the paging activities described earlier, such as page-in,
page-out, and page stealing, and helps with swapping an address space in or
out. RSM also performs page fixing (marking pages as unavailable for stealing).

Auxiliary storage manager
The auxiliary storage manager or ASM uses the system’s page data sets, to
keep track of auxiliary storage slots. Specifically:

� Slots for virtual storage pages that are not in central storage frames

� Slots for pages that do not occupy frames, but, because the frame’s contents
have not been changed, the slots are still valid.

When a page-in or page-out is required, ASM works with RSM to locate the
proper central storage frames and auxiliary storage slots.

Virtual storage manager
The virtual storage manager or VSM™ responds to requests to obtain and free
virtual storage. VSM also manages storage allocation for any program that must
run in real, rather than virtual storage. Real storage is allocated to code and data
when they are loaded in virtual storage. As they run, programs can request more
storage by means of a system service, such as the GETMAIN macro. Programs
can release storage with the FREEMAIN macro.

VSM keeps track of the map of virtual storage for each address space. In so
doing, it sees an address space as a collection of 256 subpools, which are
logically related areas of virtual storage identified by the numbers 0 to 255. Being
logically related means the storage areas within a subpool share characteristics
such as:

� Storage protect key

� Whether they are fetch protected, pageable, or swappable

� Where they must reside in virtual storage (above or below 16 megabytes)

� Whether they can be shared by more than one task

Some subpools (numbers 128 to 255) are predefined by use by system
programs. Subpool 252, for example, is for programs from authorized libraries.
Others (numbered 0 to127) are defined by user programs.
 Chapter 3. z/OS overview 93

3.4.9 A brief history of virtual storage and 64-bit addressability
In 1970, IBM introduced System/370, the first of its architectures to use virtual
storage and address spaces. Since that time, the operating system has changed
in many ways. One key area of growth and change is addressability.

A program running in an address space can reference all of the storage
associated with that address space. In this text, a program's ability to reference
all of the storage associated with an address space is called addressability.

System/370 defined storage addresses as 24 bits in length, which meant that the
highest accessible address was 16,777,215 bytes (or 224-1 bytes)5. The use of
24-bit addressability allowed MVS/370, the operating system at that time, to allot
to each user an address space of 16 megabytes. Over the years, as MVS/370
gained more functions and was asked to handle more complex applications, even
access to 16 megabytes of virtual storage fell short of user needs.

With the release of the System/370-XA architecture in 1983, IBM extended the
addressability of the architecture to 31 bits. With 31-bit addressing, the operating
system (now called MVS Extended Architecture or MVS/XA™) increased the
addressability of virtual storage from 16 MB to 2 gigabytes (2 GB). In other
words, MVS/XA provided an address space for users that was 128 times larger
than the address space provided by MVS/370. The 16 MB address became the
dividing point between the two architectures and is commonly called the line (see
Figure 3-6).

Figure 3-6 31-bit addressability allows for 2-gigabyte address spaces in MVS/XA

5 Addressing starts with 0, so the last address is always one less than the total number of
addressable bytes.

Addressability
A program's
ability to
reference all of
the storage
associated with
an address
space.

The “Bar”
2GB

31-bit
addressing
(MVS/XA)

16 MB
The “Line” 24-bit

addressing
(MVS)
94 Introduction to the New Mainframe: z/OS Basics

The new architecture did not require customers to change existing application
programs. To maintain compatibility for existing programs, MVS/XA remained
compatible for programs originally designed to run with 24-bit addressing on
MVS/370, while allowing application developers to write new programs to exploit
the 31-bit technology.

To preserve compatibility between the different addressing schemes, MVS/XA
did not use the high-order bit of the address (Bit 0) for addressing. Instead,
MVS/XA reserved this bit to indicate how many bits would be used to resolve an
address: 31-bit addressing (Bit 0 on) or 24-bit addressing (Bit 0 off).

With the release of zSeries mainframes in 2000, IBM further extended the
addressability of the architecture to 64 bits. With 64-bit addressing, the potential
size of a z/OS address space expands to a size so vast we need new terms to
describe it. Each address space, called a 64-bit address space, is 16 exabytes
(EB) in size; an exabyte is slightly more than one billion gigabytes. The new
address space has logically 264 addresses. It is 8 billion times the size of the
former 2-gigabyte address space, or 18,446,744,073,709,600,000 bytes
(Figure 3-7).
 Chapter 3. z/OS overview 95

Figure 3-7 64-bit addressability allows for 16 exabytes of addressable storage

We say that the potential size is 16 exabytes because z/OS, by default, continues
to create address spaces with a size of 2 gigabytes. The address space exceeds
this limit only if a program running in it allocates virtual storage above the
2-gigabyte address. If so, z/OS increases the storage available to the user from
two gigabytes to 16 exabytes.

A program running on z/OS and the zSeries mainframe can run with 24-, 31-, or
64-bit addressing (and can switch among these if needed). To address the high
virtual storage available with the 64-bit architecture, the program uses
64-bit-specific instructions. Although the architecture introduces unique 64-bit

16 EB

64-bit
addressing

(z/OS)

The “Bar”
2GB

31-bit
addressing
(MVS/XA)

16 MB
The “Line” 24-bit

addressing
(MVS)
96 Introduction to the New Mainframe: z/OS Basics

exploitation instructions, the program can use both 31-bit and 64-bit instructions,
as needed.

For compatibility, the layout of the storage areas for an address space is the
same below 2 gigabytes, providing an environment that can support both 24-bit
and 31-bit addressing. The area that separates the virtual storage area below the
2-gigabyte address from the user private area is called the bar, as shown in
Figure 3-8. The user private area is allocated for application code rather than
operating system code.

Figure 3-8 Storage map for a 64-bit address space

0 to 231 The layout is the same; see Figure 3-8.

231to 232 From 2 GB to 4 GB is considered the bar. Below the bar can be
addressed with a 31-bit address. Above the bar requires a 64-bit
address.

232 - 241 The low non-shared area (user private area) starts at 4 GB and
extends to 241.

16 megabyte The “Line”

The “Bar” 2 gigabytes

2 terabytes

512 terabytes

16 exabytes

0
User Private Area

Common Area

User Extended
Private Area

Shared Area

User Extended
Private Area
 Chapter 3. z/OS overview 97

241 - 250 Shared area (for storage sharing) starts at 241 and extends to
250 or higher, if requested.

250 - 264 High non-shared area (user private area) starts at 250 or
wherever the shared area ends, and goes to 264.

In a 16-exabyte address space with 64-bit virtual storage addressing, there are
three additional levels of translation tables, called region tables: region third table
(R3T), region second table (R2T), and region first table (R1T). The region tables
are 16 KB in length, and there are 2048 entries per table. Each region has 2 GB.

Segment tables and page table formats remain the same as for virtual addresses
below the bar. When translating a 64-bit virtual address, once the system has
identified the corresponding 2-GB region entry that points to the Segment table,
the process is the same as that described previously.

3.4.10 What is meant by “below-the-line storage”?
z/OS programs and data reside in virtual storage that, when necessary, is backed
by central storage. Most programs and data do not depend on their real
addresses. Some z/OS programs, however, do depend on real addresses and
some require these real addresses to be less than 16 megabytes. z/OS
programmers refer to this storage as being “below the 16-megabyte line.”

In z/OS, a program’s attributes include one called residence mode or RMODE,
which specifies whether the program must reside (be loaded) in storage below 16
megabytes. A program with RMODE(24) must reside below 16 megabytes, while
a program with RMODE(31) can reside anywhere in virtual storage.

Examples of programs that require below-the-line storage include any program
that allocates a data control block (DCB). Those programs, however, often can
be 31-bit residency mode or RMODE(31) as they can run in 31-bit addressing
mode or AMODE(31). z/OS reserves as much central storage below 16
megabytes as it can for such programs and, for the most part, handles their
central storage dependencies without requiring them to make any changes.

Thousands of programs in use today are AMODE(24) and therefore
RMODE(24). Every program written before MVS/XA was available, and not
subsequently changed, has that characteristic. There are relatively few reasons
these days why a new program might need to be AMODE(24), so a new
application likely has next to nothing that is RMODE(24).

3.4.11 What’s in an address space?
Another way of thinking of an address space is as a programmer’s map of the
virtual storage available for code and data. An address space provides each
98 Introduction to the New Mainframe: z/OS Basics

programmer with access to all of the addresses available through the computer
architecture (earlier, we defined this as addressability).

z/OS provides each user with a unique address space and maintains the
distinction between the programs and data belonging to each address space.
Because it maps all of the available addresses, however, an address space
includes system code and data as well as user code and data. Thus, not all of the
mapped addresses are available for user code and data.

Understanding the division of storage areas in an address space is made easier
with a diagram. The diagram shown in Figure 3-9 is more detailed than needed
for this part of the course, but is included here to show that an address space
maintains the distinction between programs and data belonging to the user, and
those belonging to the operating system.

Figure 3-9 Storage areas in an address space

0
PSACommon

Private
User Region

System Region

LSQA/SWA/228/230

Common

Nucleus
SQA

PLPA/FLPA/MLPA

8 KB

24 KB

16 MB
Extended Nucleus

Extended PLPA/FLPA/MLPA
Extended CSA

Extended User Region
Extended LSQA/SWA/229/230

Extended SQA

Reserved

High User Region

Default Shared Memory Addressing

Low User Region

2GB

4GB

2 TB

512 TB

16 EB

Extended
Common

Extended
Private

Low User
Private

Shared
Area

Private

CSA
 Chapter 3. z/OS overview 99

Figure 3-9 shows the major storage areas in each address space. These are
described briefly as follows:

� All storage above 2 GB

This area is called high virtual storage and is addressable only by programs
running in 64-bit mode. It is divided by the high virtual shared area, which is
an area of installation-defined size that can be used to establish
cross-address space viewable connections to obtained areas within this area.

� Extended areas above 16 MB

This range of areas, which lies above The Line (16 MB) but below The Bar (2
GB), is a kind of “mirror image” of the common area below 16 MB. They have
the same attributes as their equivalent areas below The Line, but because of
the additional storage above The Line, their sizes are much larger.

� Nucleus

This is a key 0, read-only area of common storage that contains operating
system control programs.

� SQA

This area contains system level (key 0) data accessed by multiple address
spaces. The SQA area is not pageable (fixed), which means that it resides in
central storage until it is freed by the requesting program. The size of the SQA
area is predefined by the installation and cannot change while the operating
system is active. Yet it has the unique ability to “overflow” into the CSA area
as long as there is unused CSA storage that can be converted to SQA.

� PLPA/FLPA/MLPA

This area contains the link pack areas (the pageable link pack area, fixed link
pack area, and modified link pack area), which contain system level programs
that are often run by multiple address spaces. For this reason, the link pack
areas reside in the common area which is addressable by every address
space, therefore eliminating the need for each address space to have its own
copy of the program. This storage area is below The Line and is therefore
addressable by programs running in 24-bit mode.

� CSA

This portion of common area storage (addressable by all address spaces) is
available to all applications. The CSA is often used to contain data frequently
accessed by multiple address spaces. The size of the CSA area is
established at system initialization time (IPL) and cannot change while the
operating system is active.

� LSQA/SWA/subpool 228/subpool 230

This assortment of subpools, each with specific attributes, is used primarily by
system functions when the functions require address space level storage
100 Introduction to the New Mainframe: z/OS Basics

isolation. Being below The Line, these areas are addressable by programs
running in 24-bit mode.

� User Region

This area is obtainable by any program running in the user’s address space,
including user key programs. It resides below The Line and is therefore
addressable by programs running in 24-bit mode.

� System Region

This small area (usually only four pages) is reserved for use by the region
control task of each address space.

� Prefixed Save Area (PSA)

This area is often referred to as “Low Core.” The PSA is a common area of
virtual storage from address zero through 8191 in every address space.
There is one unique PSA for every processor installed in a system. The PSA
maps architecturally fixed hardware and software storage locations for the
processor. Because there is a unique PSA for each processor, from the view
of a program running on z/OS, the contents of the PSA can change any time
the program is dispatched on a different processor. This feature is unique to
the PSA area and is accomplished through a unique DAT manipulation
technique called prefixing.

Given the vast range of addressable storage in an address space, the drawing in
Figure 3-9 on page 99 is not to scale.

Each address space in the system is represented by an address space control
block or ASCB. To represent an address space, the system creates an ASCB in
common storage (system queue area or SQA), which makes it accessible to
other address spaces.

3.4.12 System address spaces and the master scheduler
Many z/OS system functions run in their own address spaces. The master
scheduler subsystem, for example, runs in the address space called *MASTER*
and is used to establish communication between z/OS and its own address
spaces.

When you start z/OS, master initialization routines initialize system services,
such as the system log and communication task, and start the master scheduler
address space. Then, the master scheduler may start the job entry subsystem
(JES2 or JES3). JES is the primary job entry subsystem. On many production
systems JES is not started immediately; instead, the automation package starts
all tasks in a controlled sequence. Then other subsystems are started.
 Chapter 3. z/OS overview 101

Subsystems are defined in a special file of system settings called a parameter
library or PARMLIB. These subsystems are secondary subsystems.

Each address space created has a number associated with it, called the address
space ID (or ASID). Because the master scheduler is the first address space
created in the system, it becomes address space number 1 (ASID=1). Other
system address spaces are then started during the initialization process of z/OS.

At this point, you need only understand that z/OS and its related subsystems
require address spaces of their own to provide a functioning operating system. A
short description of each type of address space follows:

� System

z/OS system address spaces are started after initialization of the master
scheduler. These address spaces perform functions for all the other types of
address spaces that start in z/OS.

� Subsystem

z/OS requires the use of various subsystems, such as a primary job entry
subsystem or JES (described in Chapter 7, “Batch processing and JES” on
page 229). Also, there are address spaces for middleware products such as
DB2, CICS, and IMS.

Besides system address spaces, there are, of course, typically many address
spaces for users and separately running programs, for example:

� TSO/E address spaces are created for every user who logs on to z/OS
(described in Chapter 4, “TSO/E, ISPF, and UNIX: Interactive facilities of
z/OS” on page 125).

� An address space is created for every batch job that runs on z/OS. Batch job
address spaces are started by JES.

3.5 What is workload management?
For z/OS, the management of system resources is the responsibility of the
workload management (WLM) component. WLM manages the processing of
workloads in the system according to the company’s business goals, such as
response time. WLM also manages the use of system resources, such as
processors and storage, to accomplish these goals.

3.5.1 What does WLM do?
In simple terms, WLM has three objectives:
102 Introduction to the New Mainframe: z/OS Basics

� To achieve the business goals that are defined by the installation, by
automatically assigning sysplex resources to workloads based on their
importance and goals. This objective is known as goal achievement.

� To achieve optimal use of the system resources from the system point of view.
This objective is known as throughput.

� To achieve optimal use of system resources from the point of view of the
individual address space. This objective is known as response and turnaround
time.

Goal achievement is the first and most important task of WLM. Optimizing
throughput and minimizing turnaround times of address spaces come after that.
Often, these latter two objectives are contradictory. Optimizing throughput means
keeping resources busy. Optimizing response and turnaround time, however,
requires resources to be available when they are needed. Achieving the goal of
an important address space might result in worsening the turnaround time of a
less important address space. Thus, WLM must make decisions that represent
trade-offs between conflicting objectives.

To balance throughput with response and turnaround time, WLM does the
following:

� Monitors the use of resources by the various address spaces.

� Monitors the system-wide use of resources to determine whether they are
fully utilized.

� Determines which address spaces to swap out (and when).

� Inhibits the creation of new address spaces or steals pages when certain
shortages of central storage exist.

� Changes the dispatching priority of address spaces, which controls the rate at
which the address spaces are allowed to consume system resources.

� Selects the devices to be allocated, if a choice of devices exists, in order to
balance the use of I/O devices.

Other z/OS components, transaction managers, and database managers can
communicate to WLM a change in status for a particular address space (or for
the system as a whole), or to invoke WLM’s decision-making power.

For example, WLM is notified when:

� Central storage is configured into or out of the system.
� An address space is to be created.
� An address space is deleted.
� A swap-out starts or completes.
� Allocation routines can choose the devices to be allocated to a request.

Workload
management
z/OS
component that
manages
system
resources
according to
stated business
goals.
 Chapter 3. z/OS overview 103

Up to this point, we have discussed WLM only in the context of a single z/OS
system. In real life, customer installations often use clusters of multiple z/OS
systems in concert to process complex workloads. Remember our earlier
discussion of clustered z/OS systems (a sysplex).

WLM is particularly well-suited to a sysplex environment. It keeps track of system
utilization and workload goal achievement across all the systems in the Parallel
Sysplex and data sharing environments. For example, WLM can decide the z/OS
system on which a batch job should run, based on the availability of resources to
process the job quickly.

3.5.2 How is WLM used?
A mainframe installation can influence almost all decisions made by WLM by
establishing a set of policies that allow an installation to closely link system
performance to its business needs. Workloads are assigned goals (for example,
a target average response time) and an importance (that is, how important it is to
the business that a workload meet its goals).

Before the introduction of WLM, the only way to inform z/OS about the company’s
business goals was for the system programmer to translate from high-level
objectives into the extremely technical terms that the system can understand.
This translation required highly skilled staff, and could be protracted, error-prone,
and eventually in conflict with the original business goals.

Further, it was often difficult to predict the effects of changing a system setting,
which might be required, for example, following a system capacity increase. This
could result in unbalanced resource allocation, in which work is deprived of a
critical system resource. This way of operating, called compatibility mode, was
becoming unmanageable as new workloads were introduced, and as multiple
systems were being managed together.

When in goal mode system operation, WLM provides fewer, simpler, and more
consistent system externals that reflect goals for work expressed in terms
commonly used in business objectives, and WLM and System Resource
Manager (SRM) match resources to meet those goals by constantly monitoring
and adapting the system. Workload Manager provides a solution for managing
workload distribution, workload balancing, and distributing resources to
competing workloads.

WLM policies are often based on a service level agreement (SLA), which is a
written agreement of the information systems (I/S) service to be provided to the
users of a computing installation. WLM tries to achieve the needs of workloads
(response time) as described in an SLA by attempting the appropriate
distribution of resources without over-committing them. Equally important, WLM

Service level
agreement
(SLA)
A written
agreement of
the service to
be provided to
the users of a
computing
installation.
104 Introduction to the New Mainframe: z/OS Basics

maximizes system use (throughput) to deliver maximum benefit from the installed
hardware and software platform.

3.6 I/O and data management
Nearly all work in the system involves data input or data output. In a mainframe,
the channel subsystem manages the use of I/O devices, such as disks, tapes,
and printers. The operating system must associate the data for a given task with
a device, and manage file allocation, placement, monitoring, migration, backup,
recall, recovery, and deletion.

These data management activities can be done either manually or through the
use of automated processes. When data management is automated, the system
determines object placement, and automatically manages object backup,
movement, space, and security. A typical z/OS production system includes both
manual and automated processes for managing data.

Depending on how a z/OS system and its storage devices are configured, a user
or program can directly control many aspects of data management, and in the
early days of the operating system, users were required to do so. Increasingly,
however, z/OS installations rely on installation-specific settings for data and
resource management, and add-on storage management products to automate
the use of storage. The primary means of managing storage in z/OS is with the
DFSMS component, which is discussed in Chapter 5, “Working with data sets”
on page 163.

3.7 Supervising the execution of work in the system
To enable multiprogramming, z/OS requires the use of a number of supervisor
controls, as follows:

� Interrupt processing

Multiprogramming requires that there be some technique for switching control
from one routine to another so that, for example, when routine A must wait for
an I/O request to be satisfied, routine B can execute. In z/OS, this switch is
achieved by interrupts, which are events that alter the sequence in which the
processor executes instructions. When an interrupt occurs, the system saves
the execution status of the interrupted routine and analyzes and processes
the interrupt.

� Creating dispatchable units of works

To identify and keep track of its work, the z/OS operating system represents
each unit of work with a control block. Two types of control blocks represent
 Chapter 3. z/OS overview 105

dispatchable units of work: task control blocks or TCBs represent tasks
executing within an address space; service request blocks or SRBs represent
higher priority system services.

� Dispatching work

After interrupts are processed, the operating system determines which unit of
work (of all the units of work in the system) is ready to run and has the highest
priority, and passes control to that unit of work.

� Serializing the use of resources

In a multiprogramming system, almost any sequence of instructions can be
interrupted, to be resumed later. If that set of instructions manipulates or
modifies a resource (for example, a control block or a data file), the operating
system must prevent other programs from using the resource until the
interrupted program has completed its processing of the resource.

Several techniques exist for serializing the use of resources; enqueuing and
locking are the most common (a third technique is called latching). All users
can use enqueuing, but only authorized routines can use locking to serialize
the use of resources.

3.7.1 What is interrupt processing?
An interrupt is an event that alters the sequence in which the processor executes
instructions. An interrupt might be planned (specifically requested by the
currently running program) or unplanned (caused by an event that might or might
not be related to the currently running program). z/OS uses six types of
interrupts, as follows:

� Supervisor calls or SVC interrupts

These occur when the program issues an SVC to request a particular system
service. An SVC interrupts the program being executed and passes control to
the supervisor so that it can perform the service. Programs request these
services through macros such as OPEN (open a file), GETMAIN (obtain
storage), or WTO (write a message to the system operator).

� I/O interrupts

These occur when the channel subsystem signals a change of status, such
as an I/O operation completing, an error occurring, or an I/O device such as a
printer has become ready for work.

� External interrupts

These can indicate any of several events, such as a time interval expiring, the
operator pressing the interrupt key on the console, or the processor receiving
a signal from another processor.
106 Introduction to the New Mainframe: z/OS Basics

� Restart interrupts

These occur when the operator selects the restart function at the console or
when a restart SIGP (signal processor) instruction is received from another
processor.

� Program interrupts

These are caused by program errors (for example, the program attempts to
perform an invalid operation), page faults (the program references a page that
is not in central storage), or requests to monitor an event.

� Machine check interrupts

These are caused by machine malfunctions.

When an interrupt occurs, the hardware saves pertinent information about the
program that was interrupted and, if possible, disables the processor for further
interrupts of the same type. The hardware then routes control to the appropriate
interrupt handler routine. The program status word or PSW is a key resource in
this process.

How is the program status word used?
The program status word (PSW) is a 128-bit data area in the processor that,
along with a variety of other types of registers (control registers, timing registers,
and prefix registers) provides details crucial to both the hardware and the
software. The current PSW includes the address of the next program instruction
and control information about the program that is running. Each processor has
only one current PSW. Thus, only one task can execute on a processor at a time.

The PSW controls the order in which instructions are fed to the processor, and
indicates the status of the system in relation to the currently running program.
Although each processor has only one PSW, it is useful to think of three types of
PSWs to understand interrupt processing:

� Current PSW
� New PSW
� Old PSW

The current PSW indicates the next instruction to be executed. It also indicates
whether the processor is enabled or disabled for I/O interrupts, external
interrupts, machine check interrupts, and certain program interrupts. When the
processor is enabled, these interrupts can occur. When the processor is
disabled, these interrupts are ignored or remain pending.

There is a new PSW and an old PSW associated with each of the six types of
interrupts. The new PSW contains the address of the routine that can process its
 Chapter 3. z/OS overview 107

associated interrupt. If the processor is enabled for interrupts when an interrupt
occurs, PSWs are switched using the following technique:

1. Storing the current PSW in the old PSW associated with the type of interrupt
that occurred

2. Loading the contents of the new PSW for the type of interrupt that occurred
into the current PSW

The current PSW, which indicates the next instruction to be executed, now
contains the address of the appropriate routine to handle the interrupt. This
switch has the effect of transferring control to the appropriate interrupt handling
routine.

Registers and the PSW
Mainframe architecture provides registers to keep track of things. The PSW, for
example, is a register used to contain information that is required for the
execution of the currently active program. Mainframes provide other registers, as
follows:

� Access registers are used to specify the address space in which data is found.

� General registers are used to address data in storage, and also for holding
user data.

� Floating point registers are used to hold numeric data in floating point form.

� Control registers are used by the operating system itself, for example, as
references to translation tables.

Related reading: The IBM publication z/Architecture Principles of Operation
describes the hardware facilities for the switching of system status, including
CPU states, control modes, the PSW, and control registers. You can find this and
other related publications at the z/OS Internet Library Web site:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
108 Introduction to the New Mainframe: z/OS Basics

Figure 3-10 Registers and the PSW

3.7.2 Creating dispatchable units of work
In z/OS, dispatchable units of work are represented by two kinds of control
blocks:

� Task control blocks (TCBs)

These represent tasks executing within an address space, such as user
programs and system programs that support the user programs.

� Service request blocks (SRBs)

These represent requests to execute a system service routine. SRBs are
typically created when one address space detects an event that affects a
different address space; they provide one mechanism for communication
between address spaces.

What is a TCB?
A TCB is a control block that represents a task, such as your program, as it runs
in an address space. A TCB contains information about the running task, such as

16 Access
 Registers (32 bits)

16 General
 Purpose

Registers (64 bits)
16 Floating Point

 Registers (64 bits)

which address
space?

address of data numeric data

Virtual Storage
Address Space

MVC B,A
MVC C,B

A B C

A

B

MVC

Real Storage

Virt. Instruction
address (64-bit)

which tables?

Program Status Word (PSW)

16 Control
 Registers (64 bits)

Move (MVC) instruction - moves the contents of the second operand into the first operand location

Up to 5 levels of
translation tables
 Chapter 3. z/OS overview 109

the address of any storage areas it has created. Do not confuse the z/OS term
TCB with the UNIX data structure called a process control block or PCB.

TCBs are created in response to an ATTACH macro. By issuing the ATTACH
macro, a user program or system routine begins the execution of the program
specified on the ATTACH macro, as a subtask of the attacher’s task. As a
subtask, the specified program can compete for processor time and can use
certain resources already allocated to the attacher’s task.

The region control task (RCT), which is responsible for preparing an address
space for swap-in and swap-out, is the highest priority task in an address space.
All tasks within an address space are subtasks of the RCT.

What is an SRB?
An SRB is a control block that represents a routine that performs a particular
function or service in a specified address space. Typically, an SRB is created
when one address space is executing and an event occurs that affects another
address space.

The routine that performs the function or service is called the SRB routine;
initiating the process is called scheduling an SRB; the SRB routine runs in the
operating mode known as SRB mode.

An SRB is similar to a TCB in that it identifies a unit of work to the system. Unlike
a TCB, an SRB cannot “own” storage areas. SRB routines can obtain, reference,
use, and free storage areas, but the areas must be owned by a TCB. In a
multi-processor environment, the SRB routine, after being scheduled, can be
dispatched on another processor and can run concurrently with the scheduling
program. The scheduling program can continue to do other processing in parallel
with the SRB routine. As mentioned earlier, an SRB provides a means of
asynchronous inter-address space communication for programs running on
z/OS.

Only programs running in a mode of higher authority called supervisor state can
create an SRB. These authorized programs obtain storage and initialize the
control block with things such as the identity of the target address space and
pointers to the code that will process the request. The program creating the SRB
then issues the SCHEDULE macro and indicates whether the SRB has global
(system-wide) or local (address space-wide) priority. The system places the SRB
on the appropriate dispatching queue where it will remain until it becomes the
highest priority work on the queue.

SRBs with a global priority have a higher priority than that of any address space,
regardless of the actual address space in which they will be executed. SRBs with
a local priority have a priority equal to that of the address space in which they will
110 Introduction to the New Mainframe: z/OS Basics

be executed, but higher than any TCB within that address space. The
assignment of global or local priority depends on the “importance” of the request;
for example, SRBs for I/O interrupts are scheduled at a global priority, to
minimize I/O delays.

Related reading: Using an SRB is described in the IBM publication z/OS MVS
Authorized Assembler Services Guide. You can find this and related publications
at the z/OS Internet Library Web site:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

3.7.3 Preemptable versus non-preemptable
Which routine receives control after an interrupt is processed depends on
whether the interrupted unit of work was preemptable. If so, the operating system
determines which unit of work should be performed next. That is, the system
determines which unit or work, of all the work in the system, has the highest
priority, and passes control to that unit of work.

A non-preemptable unit of work can be interrupted, but must receive control after
the interrupt is processed. For example, SRBs are often non-preemptable6.
Thus, if a routine represented by a non-preemptable SRB is interrupted, it will
receive control after the interrupt has been processed. In contrast, a routine
represented by a TCB, such as a user program, is usually preemptable7. If it is
interrupted, control returns to the operating system when the interrupt handling
completes. z/OS then determines which task, of all the ready tasks, will execute
next.

3.7.4 What does the dispatcher do?
New work is selected, for example, when a task is interrupted or becomes
non-dispatchable, or after an SRB completes or is suspended (that is, an SRB is
delayed because a required resource is not available).

In z/OS, the dispatcher component is responsible for routing control to the
highest priority unit of work that is ready to execute. The dispatcher processes
work in the following order:

1. Special exits

These are exits to routines that have a high priority because of specific
conditions in the system. For example, if one processor in a multi-processing

6 SRBs can be made preemptable by the issuing program, to allow work at an equal or higher priority
to have access to the processor. Also, client SRBs and enclave SRBs are preemptable. These topics
are beyond the scope of this book.
7 A TCB is non-preemptable when it is executing an SVC.
 Chapter 3. z/OS overview 111

system fails, alternate CPU recovery is invoked by means of a special exit to
recover work that was being executed on the failing processor.

2. SRBs that have a global priority

3. Ready address spaces in order of priority

An address space is ready to execute if it is swapped in and not waiting for
some event to complete. An address spaces’s priority is determined by the
dispatching priority specified by the user or the installation.

After selecting the highest priority address space, z/OS (through the
dispatcher) first dispatches SRBs with a local priority that are scheduled for
that address space and then TCBs in that address space.

If there is no ready work in the system, z/OS assumes a state called an enabled
wait until fresh work enters the system.

Different models of the z/Series hardware can have from one to 54 central
processors (CPs)8. Each and every CP can be executing instructions at the
same time. Dispatching priorities determine when ready-to-execute address
spaces get dispatched.

Figure 3-11 Dispatching work

8 The IBM z9-109 Model S54 can be ordered with up to 54 CPs (the model numbers correspond to
the maximum number of processors that can be ordered in the server).

6-Way Processor

In Ready

Address
Space

CP 0 CP 1 CP 2 CP 3 CP 4 CP 5

Job A

Job B

Job C

Job E

Job K

Job M

In Wait

Job D Job F

Job G

Job H

Job J

Job L

Job N

Out
Wait

Out
Ready
112 Introduction to the New Mainframe: z/OS Basics

An address space can be in any one of four queues:

� IN-READY - In central storage and waiting to be dispatched

� IN-WAIT - In central storage but waiting for some event to complete

� OUT-READY - Ready to execute but swapped out

� OUT-WAIT - Swapped out and waiting for some event to complete

Only IN-READY work can be selected for dispatching.

3.7.5 Serializing the use of resources
In a multitasking, multiprocessing environment, resource serialization is the
technique used to coordinate access to resources that are used by more than
one application. Programs that change data need exclusive access to the data.
Otherwise, if several programs were to update the same data at the same time,
the data could be corrupted (also referred to as a loss of data integrity). On the
other hand, programs that need only to read data can safely share access to the
same data at the same time.

The most common techniques for serializing the use of resources are enqueuing
and locking. These techniques allow for orderly access to system resources
needed by more than one user in a multiprogramming or multiprocessing
environment. In z/OS, enqueuing is managed by the global resource serialization
component and locking is managed by various lock manager programs in the
supervisor component.

What is global resource serialization?
The global resource serialization component processes requests for resources
from programs running on z/OS. Global resource serialization serializes access
to resources to protect their integrity. An installation can connect two or more
z/OS systems with channel-to-channel (CTC) adapters to form a GRS complex
to serialize access to resources shared among the systems.

When a program requests access to a reusable resource, the access can be
requested as exclusive or shared. When global resource serialization grants
shared access to a resource, exclusive users cannot obtain access to the
resource. Likewise, when global resource serialization grants exclusive access to
a resource, all other requestors for the resource wait until the exclusive requestor
frees the resource.

What is enqueuing?
Enqueuing is the means by which a program running on z/OS requests control of
a serially reusable resource. Enqueuing is accomplished by means of the ENQ
 Chapter 3. z/OS overview 113

(enqueue) and DEQ (dequeue) macros, which are available to all programs
running on the system. For devices that are shared between multiple z/OS
systems, enqueuing is accomplished through the RESERVE and DEQ macros.

On ENQ and RESERVE, a program specifies the names of one or more
resources and requests shared or exclusive control of those resources. If the
resources are to be modified, the program must request exclusive control; if the
resources are not to be modified, the program should request shared control,
which allows the resource to be shared by other programs that do not require
exclusive control. If the resource is not available, the system suspends the
requesting program until the resource becomes available. When the program no
longer requires control of a resource, it uses the DEQ macro to release it.

What is locking?
Through locking, the system serializes the use of system resources by
authorized routines and, in a Parallel Sysplex, by processors. A lock is simply a
named field in storage that indicates whether a resource is being used and who
is using it. In z/OS, there are two kinds of locks: global locks, for resources
related to more than one address space, and local locks, for resources assigned
to a particular address space. Global locks are provided for nonreusable or
nonsharable routines and various resources.

To use a resource protected by a lock, a routine must first request the lock for that
resource. If the lock is unavailable (that is, it is already held by another program
or processor), the action taken by the program or processor that requested the
lock depends on whether the lock is a spin lock or a suspend lock:

� If a spin lock is unavailable, the requesting processor continues testing the
lock until the other processor releases it. As soon as the lock is released, the
requesting processor can obtain the lock and, thus, control of the protected
resource. Most global locks are spin locks. The holder of a spin lock should be
disabled for most interrupts (if the holder were to be interrupted, it might never
be able to gain control to give up the lock).

� If a suspend lock is unavailable, the unit of work requesting the lock is delayed
until the lock is available. Other work is dispatched on the requesting
processor. All local locks are suspend locks.

You might wonder what would happen if two users each request a lock that is
held by the other? Would they both wait forever for the other to release the lock
first, in a kind of stalemate? In z/OS, such an occurrence would be known as a
deadlock. Fortunately, the z/OS locking methodology prevents deadlocks.

To avoid deadlocks, locks are arranged in a hierarchy, and a processor or routine
can unconditionally request only locks higher in the hierarchy than locks it
currently holds. For example, a deadlock could occur if processor 1 held lock A
114 Introduction to the New Mainframe: z/OS Basics

and required lock B; and processor 2 held lock B and required lock A. This
situation cannot occur because locks must be acquired in hierarchical sequence.
Assume, in this example, that lock A precedes lock B is the hierarchy. Processor
2, then, cannot unconditionally request lock A while holding lock B. It must,
instead, release lock B, request lock A, and then request lock B. Because of this
hierarchy, a deadlock cannot occur.

Related reading: The IBM publication z/OS Diagnosis Reference includes a
table that lists the hierarchy of z/OS locks, along with their descriptions and
characteristics.

3.8 Defining characteristics of z/OS
The defining characteristics of z/OS are summarized as follows:

� The use of address spaces in z/OS holds many advantages: Isolation of
private areas in different address spaces provides for system security, yet
each address space also provides a common area that is accessible to every
address space.

� The system is designed to preserve data integrity, regardless of how large
the user population might be. z/OS prevents users from accessing or
changing any objects on the system, including user data, except by the
system-provided interfaces that enforce authority rules.

� The system is designed to manage a large number of concurrent batch jobs,
with no need for the customer to externally manage workload balancing or
integrity problems that might otherwise occur due to simultaneous and
conflicting use of a given set of data.

� The security design extends to system functions as well as simple files.
Security can be incorporated into applications, resources, and user profiles.

� The system allows multiple communications subsystems at the same time,
permitting unusual flexibility in running disparate communications-oriented
applications (with mixtures of test, production, and fall-back versions of each)
at the same time. For example, multiple TCP/IP stacks can be operational at
the same time, each with different IP addresses and serving different
applications.

� The system provides extensive software recovery levels, making unplanned
system restarts very rare in a production environment. System interfaces
allow application programs to provide their own layers of recovery. These
interfaces are seldom used by simple applications—they are normally used
by sophisticated applications.
 Chapter 3. z/OS overview 115

� The system is designed to routinely manage very disparate workloads, with
automatic balancing of resources to meet production requirements
established by the system administrator.

� The system is designed to routinely manage large I/O configurations that
might extend to thousands of disk drives, multiple automated tape libraries,
many large printers, large networks of terminals, and so forth.

� The system is controlled from one or more operator terminals, or from
application programming interfaces (APIs) that allow automation of routine
operator functions.

� The operator interface is a critical function of z/OS. It provides status
information, messages for exception situations, control of job flow, hardware
device control, and allows the operator to manage unusual recovery
situations.

3.9 Additional software products for z/OS
A z/OS system usually contains additional, priced products that are needed to
create a practical working system. For example, a production z/OS system
usually includes a security manager product and a database manager product.
When talking about z/OS, people often assume the inclusion of these additional
products. This is normally apparent from the context of a discussion, but it might
sometimes be necessary to ask whether a particular function is part of “the base
z/OS” or whether it is an add-on product. IBM refers to its own add-on products
as IBM licensed programs.

With a multitude of independent software vendors (ISVs) offering a large number
of products with varying but similar functionality, such as security managers and
database managers, the ability to choose from a variety of licensed programs to
accomplish a task considerably increases the flexibility of the z/OS operating
system and allows the mainframe IT group to tailor the products it runs to meet
their company’s specific needs.

We won’t attempt to list all of the z/OS licensed programs in this text (hundreds
exist); some common choices include:

� Security system

z/OS provides a framework for customers to add security through the addition
of a security management product (IBM’s licensed program is Resource
Access Control Facility or RACF®). Non-IBM security system licensed
programs are also available.

Licensed
program
An additional,
priced software
product, not
part of the base
z/OS.
116 Introduction to the New Mainframe: z/OS Basics

� Compilers

z/OS includes an assembler and a C compiler. Other compilers, such as the
COBOL compiler, and the PL/1 compiler are offered as separate products.

� Relational database

One example is DB2. Other types of database products, such as hierarchical
databases, are also available.

� Transaction processing facility

IBM offers several, including:

– Customer Information Control System (CICS)
– Information Management System (IMS)
– WebSphere Application Server for z/OS

� Sort program

Fast, efficient sorting of large amounts of data is highly desirable in batch
processing. IBM and other vendors offer sophisticated sorting products.

� A large variety of utility programs

For example, the System Display and Search Facility (SDSF) program that we
use extensively in this course to view output from batch jobs is a licensed
program. Not every installation purchases SDSF; alternative products are
available.

A large number of other products are available from various independent
software vendors or ISVs, as they are commonly called in the industry.

3.10 Middleware for z/OS
Middleware is typically something between the operating system and an end
user or end-user applications. It supplies major functions not provided by the
operating system. As commonly used, the term usually applies to major software
products such as database managers, transaction monitors, Web servers, and
so forth. Subsystem is another term often used for this type of software. These
are usually licensed programs, although there are notable exceptions, such as
the HTTP Server.

z/OS is a base for using many middleware products and functions. It is
commonplace to run a variety of diverse middleware functions, with multiple
instances of some. The routine use of wide-ranging workloads (mixtures of
batch, transactions, Web serving, database queries and updates, and so on) is
characteristic of z/OS.

Middleware
Software that
supplies major
functions not
provided by the
operating
system.
 Chapter 3. z/OS overview 117

Typical z/OS middleware includes:

� Database systems
� Web servers
� Message queueing and routing functions
� Transaction managers
� Java virtual machines
� XML processing functions

A middleware product often includes an application programming interface (API).
In some cases, applications are written to run completely under the control of this
middleware API, while in other cases it is used only for unique purposes. Some
examples of mainframe middleware APIs include:

� The WebSphere suite of products, which provides a complete API that is
portable across multiple operating systems. Among these, WebSphere MQ
provides cross-platform APIs and inter-platform messaging.

� The DB2 database management product, which provides an API (expressed
in the SQL language) that is used with many different languages and
applications.

A Web server is considered to be middleware and Web programming (Web
pages, CGIs, and so forth) is largely coded to the interfaces and standards
presented by the Web server instead of the interfaces presented by the operating
system. Java is another example in which applications are written to run under a
Java Virtual Machine (JVM™)9 and are largely independent of the operating
system being used.

3.11 A brief comparison of z/OS and UNIX
What would we find if we compared z/OS and UNIX? In many cases, we’d find
that quite a few concepts would be mutually understandable to users of either
operating system, despite the differences in terminology.

For experienced UNIX users, Table 3-1 provides a small sampling of familiar
computing terms and concepts. As a new user of z/OS, many of the z/OS terms
will sound unfamiliar to you. As you work through this course, however, the z/OS
meanings will be explained and you will find that many elements of UNIX have
analogs in z/OS.

A major difference for UNIX users moving to z/OS is the idea that the user is just
one of many other users. In moving from a UNIX system to the z/OS
environment, users typically ask questions such as “Can I have the root

9 A JVM is not related to the virtual machines created by z/VM.
118 Introduction to the New Mainframe: z/OS Basics

password because I need to do...” or “Would you change this or that and restart
the system?” It is important for new z/OS users to understand that potentially
thousands of other users are active on the same system, and so the scope of
user actions and system restarts in z/OS and z/OS UNIX are carefully controlled
to avoid negatively affecting other users and applications.

Under z/OS, there does not exist a single root password or root user. User IDs
are external to z/OS UNIX System Services. User IDs are maintained in a
security database that is shared with both UNIX and non-UNIX functions in the
z/OS system, and possibly even shared with other z/OS systems. Typically, some
user IDs have root authority, but these remain individual user IDs with individual
passwords. Also, some user IDs do not normally have root authority, but can
switch to “root” when circumstances require it.

Both z/OS and UNIX provide APIs to allow in-memory data to be shared between
processes. In z/OS, a user can access another user’s address spaces directly
through cross-memory services. Similarly, UNIX has the concept of Shared
Memory functions, and these can be used on UNIX without special authority.

z/OS cross-memory services, however, require the issuing program to have
special authority, controlled by the authorized program facility (APF). This
method allows efficient and secure access to data owned by others, data owned
by the user but stored in another address space for convenience, and for rapid
and secure communication with services like transaction managers and
database managers.
 Chapter 3. z/OS overview 119

Table 3-1 Mapping UNIX to z/OS terms and concepts

Term or concept UNIX z/OS

Start the operating system Boot the system. IPL (initial program load) the
system.

Virtual storage given to
each user of the system

Users get whatever virtual
storage they need to
reference, within the limits
of the hardware and
operating system.

Users each get an address space,
a range of addresses extending to
2 GB (or even 16 EB) of virtual
storage, though some of this
storage contains system code that
is common for all users.

Data storage Files Data sets (sometimes called files)

Data format Byte orientation;
organization of the data is
provided by the
application.

Record orientation; often an
80-byte record, reflecting the
traditional punched card image.

System configuration data The /etc file system
controls characteristics.

Parameters in PARMLIB control
how the system IPLs and how
address spaces behave.

Scripting languages Shell scripts, Perl, awk,
and other languages

CLISTS (command lists) and
REXX execs

Smallest element that
performs work

A thread. The kernel
supports multiple threads.

A task or a service request block
(SRB). The z/OS base control
program (BCP) supports multiple
tasks and SRBs.

A long-running unit of work A daemon A started task or a long-running
job; often this is a subsystem of
z/OS.

Order in which the system
searches for programs to
run

Programs are loaded from
the file system according to
the user’s PATH
environmental variable (a
list of directories to be
searched).

The system searches the following
libraries for the program to be
loaded: TASKLIB, STEPLIB,
JOBLIB, LPALST, and the linklist.
120 Introduction to the New Mainframe: z/OS Basics

3.12 Summary
An operating system is a collection of programs that manage the internal
workings of a computer system. The operating system taught in this course is
z/OS, a widely used mainframe operating system. The z/OS operating system’s
use of multiprogramming and multiprocessing, and its ability to access and
manage enormous amounts of storage and I/O operations, makes it ideally
suited for running mainframe workloads.

The concept of virtual storage is central to z/OS. Virtual storage is an illusion
created by the architecture, in that the system seems to have more storage than
it really has. Virtual storage is created through the use of tables to map virtual
storage pages to frames in central storage or slots in auxiliary storage. Only
those portions of a program that are needed are actually loaded into central
storage. z/OS keeps the inactive pieces of address spaces in auxiliary storage.

Interactive tools provided by
the operating system
(not counting the interactive
applications that can be
added later.)

Users log in to systems
and execute shell sessions
in the shell environment.
They can issue the rlogin
or telnet commands to
connect to the system.
Each user can have many
login sessions open at
once.

Users log on to the system through
TSO/E and its panel-driven
interface, ISPF. A user ID is limited
to having only one TSO/E logon
session active at a time.

Users can also log in to a z/OS
UNIX shell environment using
telnet, rlogin, or ssh.

Editing data or code Many editors exist, such as
vi, ed, sed, and emacs.

ISPF editora

Source and destination for
input and output data

stdin and stdout SYSIN and SYSOUT
SYSUT1 and SYSUT2 are used
for utilities.
SYSTSIN and SYSTSPRT are
used for TSO/E users.

Managing programs The ps shell command
allows users to view
processes and threads,
and kill jobs with the kill
command.

SDSF allows users to view and
terminate their jobs.

a. There is also a TSO editor, though it is rarely used. For example, when sending e-mail
through TSO, the SENDNOTE exec opens a TSO EDIT session to allow the user to com-
pose the e-mail.

Term or concept UNIX z/OS
 Chapter 3. z/OS overview 121

z/OS is structured around address spaces, which are ranges of addresses in
virtual storage. Each user of z/OS gets an address space containing the same
range of storage addresses. The use of address spaces in z/OS allows for
isolation of private areas in different address spaces for system security, yet also
allows for inter-address space sharing of programs and data through a common
area accessible to every address space.

In common usage, the terms central storage, real storage, real memory, and
main storage are used interchangeably. Likewise, virtual memory and virtual
storage are synonymous. The amount of central storage needed to support the
virtual storage in an address space depends on the working set of the application
being used, and this varies over time. A user does not automatically have access
to all the virtual storage in the address space. Requests to use a range of virtual
storage are checked for size limitations and then the necessary paging table
entries are constructed to create the requested virtual storage.

Programs running on z/OS and zSeries mainframes can run with 24-, 31-, or
64-bit addressing (and can switch between these modes if needed). Programs
can use a mixture of instructions with 16-bit, 32-bit, or 64-bit operands, and can
switch between these if needed.

Mainframe operating systems seldom provide complete operational
environments. They depend on licensed programs for middleware and other
functions. Many vendors, including IBM, provide middleware and various utility
products. Middleware is a relatively recent term that can embody several
concepts at the same time. A common characteristic of middleware is that it
provides a programming interface, and applications are written (or partially
written) to this interface.

Key terms in this chapter

address space addressability auxiliary storage central storage

control block dynamic address
translation (DAT)

frame input/output (I/O)

licensed program middleware multiprogramming multiprocessing

page/paging page stealing service level
agreement (SLA)

slot

swapping virtual storage workload
management
(WLM)

z/OS
122 Introduction to the New Mainframe: z/OS Basics

3.13 Questions for review
To help test your understanding of the material in this chapter, complete the
following questions:

1. How does z/OS differ from a single-user operating system? Give two
examples.

2. z/OS is designed to take advantage of what mainframe architecture? In what
year was it introduced?

3. List the three major types of storage used by z/OS.

4. What is “virtual” about virtual storage?

5. Match the following terms:

a. Page __ auxiliary storage
b. Frame __ virtual storage
c. Slot __ central storage

6. What role does WLM play in a z/OS system?

7. List several defining characteristics of the z/OS operating system.

8. List three types of software products that might be added to z/OS to provide a
complete system.

9. List several differences and similarities between z/OS and UNIX operating
systems.

10.Which of the following is/are not considered to be middleware in a z/OS
system?

a. Web servers
b. Transaction managers
c. Database managers
d. Auxiliary storage manager

3.14 Topics for further discussion
Further exploration of z/OS concepts could include the following areas of
discussion:

1. z/OS offers 64-bit addressing. Suppose you want to use this capability to work
with a large virtual storage area. You would use the proper programming
interface to obtain, say, a 30 GB area of virtual storage and you might write a
loop to initialize this area for your application. What are some of the probable
side effects of these actions? When is this design practical? What external
circumstances need to be considered? What would be different on another
platform, such as UNIX?
 Chapter 3. z/OS overview 123

2. Why might moving programs and data blocks from below the line to above the
line be complicated for application owners? How might this be done without
breaking compatibility with existing applications?

3. An application program can be written to run in 24-, 31-, or 64-bit addressing
mode. How does the programmer select this? In a high-level language? In
assembler language? You have started using ISPF. What addressing mode is
it using?

4. Will more central storage allow a system to run faster? What measurements
indicate that more central storage is needed? When is no more central
storage needed? What might change this situation?

5. If the current z/OS runs only in z/Architecture mode, why do we mention 24-,
31-, and 64-bit operation? Why mention 32-bit operands?

6. Why bother with allocation for virtual storage? Why not build all the necessary
paging tables for all of virtual storage when an address space is first created?

7. Why are licensed programs needed? Why not simply include all of the
software with the operating system?

.

124 Introduction to the New Mainframe: z/OS Basics

Chapter 4. TSO/E, ISPF, and UNIX:
Interactive facilities of z/OS

4

Objective: In working with the z/OS operating system, you will need to know
its end-user interfaces. Chief among these is TSO and its menu-driven
interface, ISPF. These programs allow you to log on to the system, run
programs, and manipulate data files. Also, you will need to know the
interactive facilities of the z/OS implementation of UNIX interfaces, known
collectively as z/OS UNIX System Services, or z/OS UNIX for short.

After completing this chapter, you will be able to:

� Log on to z/OS.

� Run programs from the TSO READY prompt.

� Navigate through the menu options of ISPF.

� Use the ISPF editor to make changes to a data set.

� Use the UNIX interfaces on z/OS, including the z/OS UNIX command shell.
© Copyright IBM Corp. 2006. All rights reserved. 125

4.1 How do we interact with z/OS?
We’ve mentioned that z/OS is ideal for processing batch jobs—workloads that
run in the background with little or no human interaction. However, z/OS is just as
much an interactive operating system as it is a batch processing system. By
interactive we mean that end users (sometimes tens of thousands of them
concurrently in the case of z/OS) can use the system through direct interaction,
such as commands and menu style user interfaces.

z/OS provides a number of facilities to allow users to interact directly with the
operating system. This chapter provides an overview of each facility, as follows:

� “TSO overview” on page 126 shows how to log on to z/OS and describes the
use of a limited set of basic TSO commands available as part of the core
operating system. Interacting with z/OS in this way is called using TSO in its
native mode.

� “ISPF overview” on page 131 introduces the ISPF menu system, which is
what many people use exclusively to perform work on z/OS. ISPF menus list
the functions that are most frequently needed by online users.

� “z/OS UNIX interactive interfaces” on page 149 explores the z/OS UNIX shell
and utilities. This facility allows users to write and invoke shell scripts and
utilities, and use the shell programming language.

Hands-on exercises are provided at the end of the chapter to help students
develop their understanding of these important facilities.

4.2 TSO overview
Time Sharing Option/Extensions (TSO/E) allows users to create an interactive
session with the z/OS system. TSO1 provides a single-user logon capability and
a basic command prompt interface to z/OS.

Most users work with TSO through its menu-driven interface, Interactive System
Productivity Facility (ISPF). This collection of menus and panels offers a wide
range of functions to assist users in working with data files on the system. ISPF
users include system programmers, application programmers, administrators,
and others who access z/OS. In general, TSO and ISPF make it easier for people
with varying levels of experience to interact with the z/OS system.

1 Most z/OS users refer to TSO/E as simply “TSO,” and that is how it is called in this textbook. Also,
the word “user” is synonymous with “end user.”

Logon.
The procedure
by which a user
begins a
terminal
session.
126 Introduction to the New Mainframe: z/OS Basics

In a z/OS system, each user is granted a user ID and a password authorized for
TSO logon. Logging on to TSO requires a 3270 display device or, more
commonly, a TN3270 emulator running on a PC.

During TSO logon, the system displays the TSO logon screen on the user’s 3270
display device or TN3270 emulator. The logon screen serves the same purpose
as a Windows logon panel.

z/OS system programmers often modify the particular text layout and information
of the TSO logon panel to better suit the needs of the system’s users. Therefore,
the screen captures shown in this book will likely differ from what you might see
on an actual production system.

Figure 4-1 shows a typical example of a TSO logon screen.

Figure 4-1 Typical TSO/E logon screen

Many of the screen capture examples used in this course show program function
(PF) key settings. Because it is common practice for z/OS sites to customize the
PF key assignments to suit their needs, the key assignments shown in this
course might not match the PF key settings in use at your site.

3270
emulation
The use of
software that
enables a client
to emulate an
IBM 3270
display station
or printer, and
to use the
functions of a
host system.

------------------------------- TSO/E LOGON -----------------------------------

 Enter LOGON parameters below: RACF LOGON parameters:

 Userid ===> ZPROF

 Password ===> New Password ===>

 Procedure ===> IKJACCNT Group Ident ===>

 Acct Nmbr ===> ACCNT#

 Size ===> 860000

 Perform ===>

 Command ===>

 Enter an 'S' before each option desired below:
 -Nomail -Nonotice -Reconnect -OIDcard

PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1 ==> Attention PA2 ==> Reshow
You may request specific help information by entering a '?' in any entry field
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 127

A list of the PF key assignments used in this course is provided in 4.3.1,
“Keyboard mapping used in this course” on page 137.

4.2.1 Data file terms
z/OS files are called data sets. Before you can write data into them, space for
data sets must be reserved on disk. The user is involved in specifying the amount
of space as well as the formatting of it.

The act of creating a file on a mainframe is a somewhat more complicated
process than it is on a personal computer (PC). It's not an old technology; there
are several good reasons for the differences. One difference is that z/OS
traditionally uses what is called a record-oriented file system. In contrast, the PC
operating system (Microsoft Windows, Linux, Mac OS, and so on) uses a byte
stream file system.

What's the difference? In a byte stream file system, files are just a collection of
sequential streams of bits, and there is a special character to tell the computer
where a line (or record) ends and the next one begins. In a record-oriented file
system, files are organized on the disk into separate records. With
record-oriented files, you explicitly define the sizes and attributes of your records,
so there is no need for a special end line character, which helps to conserve
system resources. By the way, z/OS also supports special byte stream file
systems called HFS and zFS; we discuss them in 5.13, “z/OS UNIX file systems”
on page 187.

Here are some of the terms used when allocating a data set.

Volume serial A six character name of a disk or tape volume, such as
TEST01

Device type A model or type of disk device, such as 3390

Organization The method of processing a data set, such as sequential

Record format The data is stored in chunks called records, of either fixed
or variable length

Record length The length (number of characters) in each record

Block size If records are joined together to save space, this specifies
the length of the block in characters

Extent An allocation of space to hold the data. When the primary
extent is filled, the operating system will automatically
allocate more extents, called secondaries

Space Disk space is allocated in units called blocks, tracks, or
cylinders

Record
A group of
related data,
words, or fields
treated as a
unit.
128 Introduction to the New Mainframe: z/OS Basics

4.2.2 Using TSO commands in native mode
Most z/OS sites prefer to have the TSO user session automatically switch to the
ISPF interface after TSO logon. This section, however, briefly discusses the
limited set of basic TSO commands available independent of other
complementary programs, such as ISPF. Using TSO in this way is called using
TSO in its native mode.

When a user logs on to TSO, the z/OS system responds by displaying the
READY prompt, and waits for input, such as in Figure 4-2.

Figure 4-2 TSO logon READY prompt

The READY prompt accepts simple line commands such as HELP, RENAME,
ALLOCATE, and CALL. Figure 4-3 shows an example of an ALLOCATE
command that creates a data set (a file) on disk.

Figure 4-3 Allocating a data set from the TSO command line

Native TSO is similar to the interface offered by the native DOS prompt. TSO
also includes a very basic line mode editor, in contrast to the full screen editor
offered by ISPF.

Figure 4-4 on page 130 is another example of the line commands a user might
enter at the READY prompt. Here, the user is entering commands to sort data.

ICH70001I ZPROF LAST ACCESS AT 17:12:12 ON THURSDAY, OCTOBER 7, 2004
ZPROF LOGON IN PROGRESS AT 17:12:45 ON OCTOBER 7, 2004
You have no messages or data sets to receive.
READY

READY
 alloc dataset(zschol.test.cntl) volume(test01) unit(3390) tracks space(2,1)
recfm(f) lrecl(80) dsorg(ps)
READY
listds
 ENTER DATA SET NAME -
zschol.test.cntl
 ZSCHOL.TEST.CNTL
 --RECFM-LRECL-BLKSIZE-DSORG
 F 80 80 PS
 --VOLUMES--
 TEST01
 READY

Native Mode
Using TSO
without its
complementary
programs, such
as ISPF.
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 129

Figure 4-4 Using native TSO commands to sort data

In this example, the user entered several TSO ALLOCATE commands to assign
inputs and outputs to the workstation for the sort program. The user then entered
a single CALL command to run the sort program, DFSORT™, an optional
software product from IBM.

Each ALLOCATE command requires content (specified with the DATASET
operand) associated with the following:

� SORTIN - in this case AREA.CODES
� SORTOUT - in this case *, which means the terminal screen
� SYSOUT
� SYSPRINT
� SYSIN

Following the input and output allocations and the user-entered CALL command,
the sort program displays the results on the user’s screen. As shown in
Figure 4-4, the SORT FIELDS control statement causes the results to be sorted
by area code. For example, NJ (New Jersey) has the lowest number telephone
area code, 201.

 READY
ALLOCATE DATASET(AREA.CODES) FILE(SORTIN) SHR
 READY
ALLOCATE DATASET(*) FILE(SORTOUT) SHR
 READY
ALLOCATE DATASET(*) FILE(SYSOUT) SHR
 READY
ALLOCATE DATASET(*) FILE(SYSPRINT) SHR
 READY
ALLOCATE DATASET(SORT.CNTL) FILE(SYSIN) SHR
 READY
CALL ‘SYS1.SICELINK(SORT)’

 ICE143I 0 BLOCKSET SORT TECHNIQUE SELECTED
 ICE000I 1 - CONTROL STATEMENTS FOR Z/OS DFSORT V1R5
 SORT FIELDS=(1,3,CH,A)
 201 NJ
 202 DC
 203 CT
 204 Manitoba
 205 AL
 206 WA
 207 ME
 208 ID

130 Introduction to the New Mainframe: z/OS Basics

Native TSO screen control is very basic. For example, when a screen fills up with
data, three asterisks (***) are displayed to indicate a full screen. Here, you must
press the Enter key to clear the screen of data and allow the screen to display the
remainder of the data.

4.2.3 Using CLISTs and REXX under TSO
With native TSO, it is possible to place a list of commands, called a command list
or CLIST (pronounced “see list”) in a file, and execute the list as if it were one
command. When you invoke a CLIST, it issues the TSO/E commands in
sequence. CLISTs are used for performing routine tasks; they enable users to
work more efficiently with TSO.

For example, suppose that the commands shown in Example 4-4 on page 130
were grouped in a file called AREA.COMMND. The user could then achieve the
same results by using just a single command to execute the CLIST, as follows:

EXEC ‘CLIST AREA.COMMND’

TSO users create CLISTs with the CLIST command language. Another
command language used with TSO is called Restructured Extended Executor or
REXX. Both CLIST and REXX offer shell script-type processing. These are
interpretive languages, as opposed to compiled languages (although REXX can
be compiled as well). This textbook discusses CLIST and REXX in more detail in
Chapter 9, “Using programming languages on z/OS” on page 275.

Some TSO users write functions directly as CLISTs or REXX programs, but
these are more commonly implemented as ISPF functions, or by various
software products. CLIST programming is unique to z/OS, while the REXX
language is used on many platforms.

4.3 ISPF overview
After logging on to TSO, users typically access the ISPF menu. In fact, many use
ISPF exclusively for performing work on z/OS. ISPF is a full panel application
navigated by keyboard. ISPF includes a text editor and browser, and functions for
locating and listing files and performing other utility functions. ISPF menus list the
functions that are most frequently needed by online users.

Figure 4-5 shows the allocate procedure to create a data set using ISPF.

CLIST
A list of
commands that
is executed as
if it were one
command.

REXX
An interpretive
command
language used
with TSO.

ISPF
A facility of
z/OS that
provides
access to many
of the functions
most frequently
needed by
users.
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 131

Figure 4-5 Allocating a data set using ISPF panels

 Menu RefList Utilities Help

Allocate New Data Set
 Command ===>
Data Set Name . . . : ZCHOL.TEST.CNTL
Management class . . . (Blank for default management class)
 Storage class (Blank for default storage class)
 Volume serial TEST01 (Blank for system default volume) **
 Device type (Generic unit or device address) **
 Data class (Blank for default data class)
 Space units TRACK (BLKS, TRKS, CYLS, KB, MB, BYTES
 or RECORDS)
 Average record unit (M, K, or U)
 Primary quantity . . 2 (In above units)
 Secondary quantity 1 (In above units)
 Directory blocks . . 0 (Zero for sequential data set) *
 Record format F
 Record length 80
 Block size
 Data set name type : (LIBRARY, HFS, PDS, or blank) *
 (YY/MM/DD, YYYY/MM/DD
 Expiration date . . . YY.DDD, YYYY.DDD in Julian form
 Enter "/" to select option DDDD for retention period in days
 Allocate Multiple Volumes or blank)

 (* Specifying LIBRARY may override zero directory block)

 (** Only one of these fields may be specified)
 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap F10=Actions F12=Cancel
132 Introduction to the New Mainframe: z/OS Basics

Figure 4-6 shows the results of allocating a data set using ISPF panels.

Figure 4-6 Result of data set allocation using ISPF

 Data Set Information
 Command ===>

 Data Set Name . . . : ZCHOL.TEST.CNTL

 General Data Current Allocation
 Volume serial . . . : TEST01 Allocated tracks . : 2
 Device type : 3390 Allocated extents . : 1
 Organization . . . : PS
 Record format . . . : F
 Record length . . . : 80
 Block size : 80 Current Utilization
 1st extent tracks . : 2 Used tracks : 0
 Secondary tracks . : 1 Used extents . . . : 0

 Creation date . . . : 2005/01/31
 Referenced date . . : 2005/01/31
 Expiration date . . : ***None***

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap F12=Cancel
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 133

Figure 4-7 shows the ISPF menu structure.

Figure 4-7 ISPF menu structure

To access ISPF under TSO, the user enters a command such as ISPPDF from
the READY prompt to display the ISPF Primary Option Menu.

Copy/Move

C Copy M Mo
CP Cop MP

Group ____
Type ____

0 Settings
1 Browse
2 Edit
3 Utilities
4 DS List
5 ...

Primary
option menu

/ Cursor at ..
_ ...
_ ...
_ ...

Settings View Edit
1 Dataset
2 Library
3 Copy/Move
4 DS List

Utilities Dialog Test
Proj ____
Group ____
Type ____

Other Dsn__

Proj ____
Group ____
Type ____

Other Dsn__

1
2
3
4

0 //JOB1 JOB
0 //S1 EXEC
0 //DD1 DD
0 ..0 ..

Edit

Group ____
Type ____

Library

b Display
D Delete
Proj ______
Group ____
Type ____

Dataset
134 Introduction to the New Mainframe: z/OS Basics

Figure 4-8 shows an example of the ISPF Primary Menu.

Figure 4-8 ISPF Primary Option Menu

The ISPF panel can be customized with additional options by the local system
programmer. Therefore, it can vary in features and content from site to site.

 Menu Utilities Compilers Options Status Help
 --
 ISPF Primary Option Menu
 Option ===>

 0 Settings Terminal and user parameters User ID . : ZPROF
 1 View Display source data or listings Time. . . : 17:29
 2 Edit Create or change source data Terminal. : 3278
 3 Utilities Perform utility functions Screen. . : 1
 4 Foreground Interactive language processing Language. : ENGLISH
 5 Batch Submit job for language processing Appl ID . : PDF
 6 Command Enter TSO or Workstation commands TSO logon : IKJACCT
 7 Dialog Test Perform dialog testing TSO prefix: ZPROF
 8 LM Facility Library administrator functions System ID : SC04
 9 IBM Products IBM program development products MVS acct. : ACCNT#
 10 SCLM SW Configuration Library Manager Release . : ISPF 5.2
 11 Workplace ISPF Object/Action Workplace
 M More Additional IBM Products

 Enter X to Terminate using log/list defaults

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap F10=Actions F12=Cancel
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 135

To reach the ISPF menu selections shown in Figure 4-9, you enter M on the
option line.

Figure 4-9 More ISPF options displayed

In Figure 4-9, SORT is offered as option 9 on this panel. We will select it now as
a useful example of the ISPF panel-driven applications.
136 Introduction to the New Mainframe: z/OS Basics

Figure 4-10 shows the panel that would be displayed for option 9 of ISPF.

Figure 4-10 SORT panel

Recall that 4.2.2, “Using TSO commands in native mode” on page 129 showed
an example of how a TSO user might perform a simple sort operation by entering
TSO commands in TSO native mode. Here, the same sort function is available
through ISPF as a menu-selectable option. Through the SORT option, the user
can allow ISPF to handle the TSO allocations, create the SORT control
statement, and call the SORT program to produce the results of the sort.

Notice the keyboard program function key (PF key) selections at the bottom of
each panel; using PF3 (END) returns the user to the previous panel.

4.3.1 Keyboard mapping used in this course
Many of the screen capture examples used in this textbook show ISPF program
function (PF) key settings at the bottom of the panel. As previously mentioned,

 DFSORT PRIMARY OPTION MENU
 ENTER SELECTION OR COMMAND ===>

 SELECT ONE OF THE FOLLOWING:

 0 DFSORT PROFILE - Change DFSORT user profile
 1 SORT - Perform Sort Application
 2 COPY - Perform Copy Application
 3 MERGE - Perform Merge Application
 X EXIT - Terminate DFSORT

 \--/
 | \--/ |
 | | Licensed Materials - Property of IBM | |
 | | | |
 | | 5740-SM1 (C) Copyright IBM Corp. 1988, 1992. | |
 | | All rights reserved. US Government Users | |
 | | Restricted Rights - Use, duplication or | |
 | | disclosure restricted by GSA ADP Schedule | |
 | | Contract with IBM Corp. | |
 | /--\ |
 /--\

 USE HELP COMMAND FOR HELP; USE END COMMAND TO EXIT.

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=CURSOR
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 137

because it is common for z/OS users to customize the PF key assignments to
suit their needs, the key assignments shown in this textbook might not match the
PF key settings in use on your system. Actual function key settings vary from
customer to customer.

Table 4-1 lists some of the most frequently used PF keys and other keyboard
functions and their corresponding keys.

Table 4-1 Keyboard mapping

The examples in this textbook use these keyboard settings. For example,
directions to press Enter mean that you should press the keyboard’s control key
(Ctrl) at the lower right. If the keyboard locks up, press the control key at the
lower left.

4.3.2 Using PF1-HELP and the ISPF tutorial
From the ISPF Primary Menu, press the PF1 HELP key to display the ISPF
tutorial. New users of ISPF should acquaint themselves with the tutorial
(Figure 4-11) and with the extensive online help facilities of ISPF.

Function Key

Enter Ctrl (right side)

Exit, end, or return PF3

Help PF1

PA1 or Attention Alt-Ins or Esc

PA2 Alt-Home

Cursor movement Tab or Enter

Clear Pause

Page up PF7

Page down PF8

Scroll left PF10

Scroll right PF11

Reset locked keyboard Ctrl (left side)
138 Introduction to the New Mainframe: z/OS Basics

Figure 4-11 ISPF Tutorial main menu

You will most likely only use a fraction of the content found in the entire ISPF
tutorial.

Besides the tutorial, you can access online help from any of the ISPF panels.
When you invoke help, you can scroll through information. Press the PF1-Help
key for explanations of common ISPF entry mistakes, and examples of valid
entries. ISPF Help also contains help for the various functions found in the
primary option menu.

4.3.3 Using the PA1 key
We interrupt your textbook-reading enjoyment with a brief commercial for the PA1
key. This is a very important key for TSO users and every user should know how
to find it on the keyboard.

Back in the early days, the “real” 3270 terminals had keys labeled PA1, PA2, and
PA3. These were called Program Action keys or PA keys. In practice, only PA1 is

 Tutorial --------------------- Table of Contents -------------------- Tutorial

 ISPF Program Development Facility Tutorial

 The following topics are presented in sequence, or may be selected by entering
 a selection code in the option field:
 G General - General information about ISPF
 0 Settings - Specify terminal and user parameters
 1 View - Display source data or output listings
 2 Edit - Create or change source data
 3 Utilities - Perform utility functions
 4 Foreground - Invoke language processors in foreground
 5 Batch - Submit job for language processing
 6 Command - Enter TSO command, CLIST, or REXX exec
 7 Dialog Test - Perform dialog testing
 9 IBM Products - Use additional IBM program development products
 10 SCLM - Software Configuration and Library Manager
 11 Workplace - ISPF Object/Action Workplace
 X Exit - Terminate ISPF using log and list defaults
 The following topics will be presented only if selected by number:
 A Appendices - Dynamic allocation errors and ISPF listing formats
 I Index - Alphabetical index of tutorial topics

F1=Help F2=Split F3=Exit F4=Resize F5=Exhelp F6=Keyshelp
 F7=PrvTopic F8=NxtTopic F9=Swap F10=PrvPage F11=NxtPage F12=Cancel
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 139

still widely used and it functions as a break key for TSO. In TSO terminology, this
is an attention interrupt. That is, pressing the PA1 key will end the current task.

Finding the PA1 key on the keyboard of a 3270 terminal emulator such as
TN3270 emulator can be a challenge. A 3270 emulator can be customized to
many different key combinations. On an unmodified x3270 session, the PA1 key
is Left Alt-1.

Let’s give PA1 a try (you’ll find it useful in the future). If you’ve got a TSO session
open now, try this:

1. Go to ISPF option 6. This panel accepts TSO commands.

2. Enter LISTC LEVEL(SYS1) ALL on the command line and press Enter. This
should produce a screen of output with three asterisks (***) in the last line on
the screen. In TSO, the *** indicates that there is more output waiting and you
must press Enter to see it (this meaning is consistent in almost all TSO
usage).

3. Press Enter for the next screen, and press Enter for the next screen, and so
forth.

4. Press the PA1 key, using whatever key combination is appropriate for your
TN3270 emulator. This should terminate the output.

4.3.4 Navigating through ISPF menus
ISPF includes a text editor and a browser, and functions for locating and listing
data sets and performing other utility functions. This textbook has not yet
discussed data sets, but you will need at least a working understanding of data
sets to begin the lab exercises in this chapter.

For now, think of a data set as a file used on z/OS to store data or executable
code. A data set can have a name up to 44 characters in length, such as
ZSCHOLAR.TEST.DATA. Data sets are described in more detail in Chapter 5,
“Working with data sets” on page 163.

A data set name is usually segmented, with one or more periods used to create
the separate data set qualifiers of 1 to 8 characters. The first data set qualifier is
the high level qualifier or HLQ. In this example, the HLQ is the ZSCHOLAR portion
of the data set name.

z/OS users typically use the ISPF Data Set List utility to work with data sets. To
access this utility from the ISPF Primary Option Menu, select Utilities, then
select Dslist to display the Utility Selection Panel, which is shown in Figure 4-12.
140 Introduction to the New Mainframe: z/OS Basics

Figure 4-12 Using the Data Set List utility

In the panel, you can use the Dsname Level data entry field to locate and list data
sets. To search for one data set in particular, enter the complete (or fully
qualified) data set name. To search for a range of data sets, such as all data sets
sharing a common HLQ, enter only the HLQ in the Dsname Level field.

Qualifiers can be specified fully, partially, or defaulted. At least one qualifier must
be partially specified. To search for a portion of a name, specify an asterisk (*)
before or after part of a data set name. Doing so will cause the utility to return all
data sets that match the search criteria. Avoid searching on * alone, because
TSO has many places to search in z/OS so this could take quite awhile.

In the majority of ISPF panels, a fully qualified data set name needs to be
enclosed in single quotes. Data set names not enclosed in single quotes will, by
default, be prefixed with a high level qualifier specified in the TSO PROFILE. This
default can be changed using the PROFILE PREFIX command. In addition, an
exception is ISPF option 3.4 DSLIST; do not enclose Dsname Level in quotes on
this panel.

For example, if you enter ZPROF in the Dsname field, the utility lists all data sets
with ZPROF as a high-level qualifier. The resulting list of data set names (see

 Menu RefList RefMode Utilities Help
 --
 Data Set List Utility
 Option ===> __

 blank Display data set list P Print data set list
 V Display VTOC information PV Print VTOC information

 Enter one or both of the parameters below:
 Dsname Level . . . ZPROF_______________________________
 Volume serial . . ______
 Data set list options
 Initial View . . . 1 1. Volume Enter "/" to select option
 2. Space / Confirm Data Set Delete
 3. Attrib / Confirm Member Delete
 4. Total / Include Additional Qualifiers

 When the data set list is displayed, enter either:
 "/" on the data set list command field for the command prompt pop-up,
 an ISPF line command, the name of a TSO command, CLIST, or REXX exec, or
 "=" to execute the previous command.

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap F10=Actions F12=Cancel
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 141

Figure 4-13) allows the user to edit or browse the contents of any data set in the
list.

Figure 4-13 Data Set List results for dsname ZPROF

To see all of the possible actions you might take for a given data set, specify a
forward slash (/) in the command column to the left of the data set name. ISPF
will display a list of possible actions, as shown in Figure 4-14.

 Menu Options View Utilities Compilers Help
 --
DSLIST - Data Sets Matching ZPROF Row 1 of 4
Command ===> Scroll ===> PAGE

Command - Enter "/" to select action Message Volume

 ZPROF *ALIAS
 ZPROF.JCL.CNTL EBBER1
 ZPROF.LIB.SOURCE EBBER1
 ZPROF.PROGRAM.CNTL EBBER1
 ZPROF.PROGRAM.LOAD EBBER1
 ZPROF.PROGRAM.SRC EBBER1
***************************** End of Data Set list ****************************

F1=Help F2=Split F3=Exit F5=Rfind F7=Up F8=Down F9=Swap F10=Left F11=Right F12=Cancel
142 Introduction to the New Mainframe: z/OS Basics

Figure 4-14 Displaying the Data Set List actions

4.3.5 Using the ISPF editor
To edit a data set’s contents, enter an e (edit) to the left of the data set name. In a
data set, each line of text is known as a record.

You can perform the following tasks:

� To view a data set’s contents, enter a v (view) as a line command in the
column.

� To edit a data set’s contents, enter an e (edit) as a line command in the
column.

� To edit the contents of a data set, move the cursor to the area of the record to
be changed and type over the existing text.

� To find and change text, you can enter commands on the editor command
line.

� To insert, copy, delete, or move text, place these commands directly on the
line numbers where the action should occur.

 Menu Options View Utilities Compilers Help
 - +---+ ----------
 D ! Data Set List Actions ! Row 1 of 4
 C ! ! ===> PAGE
 ! Data Set: ZPROF.PROGRAM.CNTL !
 C ! ! Volume
 - ! DSLIST Action ! -----------
 ! __ 1. Edit 12. Compress ! *ALIAS
 / ! 2. View 13. Free ! EBBER1
 ! 3. Browse 14. Print Index ! EBBER1
 ! 4. Member List 15. Reset ! EBBER1
 * ! 5. Delete 16. Move ! ***********
 ! 6. Rename 17. Copy !
 ! 7. Info 18. Refadd !
 ! 8. Short Info 19. Exclude !
 ! 9. Print 20. Unexclude 'NX' !
 ! 10. Catalog 21. Unexclude first 'NXF' !
 ! 11. Uncatalog 22. Unexclude last 'NXL' !
 ! !
 ! Select a choice and press ENTER to process data set action. !
 ! F1=Help F2=Split F3=Exit F7=Backward !
 ! F8=Forward F9=Swap F12=Cancel !
 +---+

F1=Help F2=Split F3=Exit F5=Rfind F7=Up F8=Down F9=Swap F10=Left F11=Right F12=Cancel
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 143

To commit your changes, use PF3 or save. To exit the data set without saving
your changes, enter Cancel on the edit command line.

Figure 4-15 shows the contents of data set
ZPROF.PROGRAM.CNTL(SORTCNTL) opened in edit mode.

Figure 4-15 Edit a data set

Take a look at the line numbers, the text area, and the editor command line.
Primary command line, line commands placed on the line numbers, and text
overtype are three different ways in which you can modify the contents of the
data set. Line numbers increment by 10 with the TSO editor so that the
programmer can insert nine additional lines between each current line without
having to renumber the program.

4.3.6 Using the online help
Remember your private tutor, F1=Help, when editing data sets. PF1 in edit mode
displays the entire editor tutorial (Figure 4-16).

 File Edit Edit_Settings Menu Utilities Compilers Test Help
--

 EDIT ZPROF.PROGRAM.CNTL(SORTCNTL) - 01.00 Columns 00001 00072

 Command ===> Scroll ===> CSR

 ****** ***************************** Top of Data *****************************

 000010 SORT FIELDS=(1,3,CH,A)

 ****** **************************** Bottom of Data ***************************
144 Introduction to the New Mainframe: z/OS Basics

Figure 4-16 Edit Help panel and tutorial

During the lab, you will edit a data set and use F1=Help to explore the Edit Line
Commands and Edit Primary Commands functions. Within the help function,
select and review the FIND, CHANGE, and EXCLUDE commands. This lab is
important for developing further skills in this course.

A subset of the line commands includes:

i Insert a line
Enter key Press Enter without entering anything to escape insert mode
i5 Obtain five input lines
d Delete a line
d5 Delete five lines
dd/dd Delete a block of lines
r Repeat a line
rr/rr Repeat a block of lines
c, then a or b Copy a line after or before
c5, then a or b Copy five lines after or before
cc/cc, then a or b Copy a block of lines after or before

 TUTORIAL -------------------------- EDIT ----------------------------- TUTORIAL
 OPTION ===>

 | EDIT |

 Edit allows you to create or change source data.

 The following topics are presented in sequence, or may be selected by number:
 0 - General introduction 8 - Display modes (CAPS/HEX/NULLS)
 1 - Types of data sets 9 - Tabbing (hardware/software/logical)
 2 - Edit entry panel 10 - Automatic recovery
 3 - SCLM edit entry panel 11 - Edit profiles
 4 - Member selection list 12 - Edit line commands
 5 - Display screen format 13 - Edit primary commands
 6 - Scrolling data 14 - Labels and line ranges
 7 - Sequence numbering 15 - Ending an edit session

 The following topics will be presented only if selected by number:
 16 - Edit models
 17 - Miscellaneous notes about edit

 F1=Help F2=Split F3=Exit F4=Resize F5=Exhelp F6=Keyshelp
 F7=PrvTopic F8=NxtTopic F9=Swap F10=PrvPage F11=NxtPage F12=Cancel
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 145

m, m5, mm/mm Move lines
x Exclude a line

4.3.7 Customizing your ISPF settings
The command line for your ISPF session might appear at the bottom of the
display, while your instructor’s ISPF command line might appear at the top. This
is a personal preference, but traditional usage places it at the top of the panel.

If you want your command line to appear at the top of the panel, do the following:

1. Go to the ISPF primary option menu.

2. Select option 0 to display the Settings menu, as shown in Figure 4-17 on
page 147.

3. In the list of Options, remove the “/” on the line that says “Command line at
bottom.” Use the Tab or New line key to move the cursor.
146 Introduction to the New Mainframe: z/OS Basics

Figure 4-17 ISPF settings

While in this menu, you can change some other parameters that you will need
later:

� Remove the “/” from Panel display CUA mode.

� Change the Terminal Type to 4. This provides 3270 support for symbols used
by the C language.

� Move the cursor to the Log/List option in the top line and press Enter.

– Select 1 (Log Data set defaults).
– Enter Process Option 2 (to delete the data set without printing).
– Press PF3 to exit.

� Move the cursor to the Log/List option again.

– Select 2 (List Data set defaults).
– Enter Process Option 2 to delete the data set without printing.

 Log/List Function keys Colors Environ Workstation Identifier Help

 ISPF Settings
 Command ===>

 Options Print Graphics
 Enter "/" to select option Family printer type 2
 _ Command line at bottom Device name
 / Panel display CUA mode Aspect ratio . . . 0
 / Long message in pop-up
 _ Tab to action bar choices
 _ Tab to point-and-shoot fields General
 / Restore TEST/TRACE options Input field pad . . B
 _ Session Manager mode Command delimiter . ;
 / Jump from leader dots
 _ Edit PRINTDS Command
 / Always show split line
 _ Enable EURO sign

 Terminal Characteristics
 Screen format 2 1. Data 2. Std 3. Max 4. Part

 Terminal Type 3 1. 3277 2. 3277A 3. 3278 4. 3278A
 5. 3290A 6. 3278T 7. 3278CF 8. 3277KN
 9. 3278KN 10. 3278AR 11. 3278CY 12. 3278HN
 13. 3278HO 14. 3278IS 15. 3278L2 16. BE163
 17. BE190 18. 3278TH 19. 3278CU 20. DEU78
 21. DEU78A 22. DEU90A 23. SW116 24. SW131
 25. SW500
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 147

– PF3 to exit.

� Press PF3 again to exit to the primary menu.

The actions in the bar across the top usually vary from site to site.

Another way to customize ISPF panels is with the hilite command, as shown in
Figure 4-18. This command allows you to tailor various ISPF options to suit the
needs of your environment.

Figure 4-18 Using the HILITE command

4.3.8 Adding a GUI to ISPF
ISPF is a full panel application navigated by keyboard. You can, however,
download and install a variety of ISPF graphical user interface (GUI) clients to
include with a z/OS system. After installing the ISPF GUI client, it is possible to
use the mouse.

Figure 4-19 shows an example of an ISPF GUI.
148 Introduction to the New Mainframe: z/OS Basics

Figure 4-19 ISPF GUI

The drop-down entries at the top of the ISPF panels require you to place the
cursor on the selection and press Enter. Move the ISPF GUI client mouse pointer
across the drop-down selections to display the respective sub-selections. Also
available in the GUI are Enter and PF key boxes.

4.4 z/OS UNIX interactive interfaces
The z/OS UNIX shell and utilities provide an interactive interface to z/OS. The
shell and utilities can be compared to the TSO function in z/OS.

To perform some command requests, the shell calls other programs, known as
utilities. The shell can be used to:

� Invoke shell scripts and utilities.
� Write shell scripts (a named list of shell commands, using the shell

programming language).
� Run shell scripts and C language programs interactively, in the TSO

background or in batch.

Shell
A command
interpreter for
UNIX
commands and
shell language
statements.
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 149

Figure 4-20 Shell and utilities

A user can invoke the z/OS UNIX shell in the following ways:

� From a 3270 display or a workstation running a 3270 emulator

� From a TCP/IP-attached terminal, using the rlogin and telnet commands

� From a TSO session, using the OMVS command.

As an alternative to invoking the shell directly, a user can use ISHELL by entering
the command ISHELL from TSO. ISHELL provides an ISPF panel interface to
perform many actions for z/OS UNIX operations.

Figure 4-21 shows an overview of these interactive interfaces, the z/OS UNIX
shell and ISHELL. Also, there are some TSO/E commands that support z/OS
UNIX, but they are limited to functions such as copying files and creating
directories.

z/OS

TSO Logon

TSO/E

VTAM

TCP/IPTCP/IP
NetworkNetwork

z/OS UNIX

TCP/IP

OMVS Shell

Commands and
Utilities

mkdir

find

diff

grep

awk

ISHELL OMVS
TELNET

ISHELL
A TSO
command that
invokes an
ISPF panel
interface to
perform many
actions for
z/OS UNIX
operations.
150 Introduction to the New Mainframe: z/OS Basics

Figure 4-21 z/OS UNIX interactive interfaces

The z/OS UNIX shell is based on the UNIX System V shell and has some of the
features from the UNIX Korn shell. The POSIX standard distinguishes between a
command, which is a directive to the shell to perform a specific task, and a utility,
which is the name of a program callable by name from the shell. To the user,
there is no difference between a command and a utility.

The z/OS UNIX shell provides the environment that has the most functions and
capabilities. It supports many of the features of a regular programming language.

You can store a sequence of shell commands in a text file that can be executed.
This is called a shell script.

The TSO commands used with z/OS UNIX are:

ISHELL The ISHELL command invokes the ISPF panel interface to z/OS
UNIX System Services. ISHELL is a good starting point for users
familiar with TSO and ISPF who want to use z/OS UNIX. These
users can do much of their work with ISHELL, which provides
panels for working with the z/OS UNIX file system, including panels
for mounting and unmounting file systems and for doing some
z/OS UNIX administration.

ISHELL is often good for system programmers, familiar with z/OS,
who need to set up UNIX resources for the users.

TSO experienced userUNIX experienced user

z/OS UNIX
(z/OS Shell)

OMVS command

ISPF Shell
(ISHELL)

ishell command

ls -l# ls -l
typetype
dirdir
dirdir

filenamefilename
binbin
etcetc

ISPF based
Menu interface

UNIX interface
POSIX 1003.2
Command interface
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 151

OMVS The OMVS command is used to invoke the z/OS UNIX shell.

Users whose primary interactive computing environment is a UNIX
system should find the z/OS UNIX shell environment familiar.

4.4.1 ISHELL command (ish)
Figure 4-22 shows the ISHELL or ISPF Shell panel displayed as a result of the
ISHELL or ISH command being entered from ISPF Option 6.

Figure 4-22 Panel displayed after issuing the ISH command

4.4.2 ISHELL - user files and directories
To search a user's files and directories, type the following and then press Enter:

/u/userid

For example, Figure 4-23 shows the files and directories of user rogers.

File Directory Special_file Tools File_systems Options Setup Help
--

UNIX System Services ISPF Shell

Enter a pathname and do one of these:

- Press Enter.
- Select an action bar choice.
- Specify an action code or command on the command line.

Return to this panel to work with a different pathname.
More: +

/u/rogers___
__
__
__

File Directory Special_file Tools File_systems Options Setup Help
--

UNIX System Services ISPF Shell

Enter a pathname and do one of these:

- Press Enter.
- Select an action bar choice.
- Specify an action code or command on the command line.

Return to this panel to work with a different pathname.
More: +

/u/rogers___
__
__
__
152 Introduction to the New Mainframe: z/OS Basics

Figure 4-23 Display of a user’s files and directories

From here, you use action codes to do any of the following:

b Browse a file or directory
e Edit a file or directory
d Delete a file or directory
r Rename a file or directory
a Show the attributes of a file or directory
c Copy a file or directory

4.4.3 OMVS command shell session
You use the OMVS command to invoke the z/OS UNIX shell.

The shell is a command processor that you use to:

� Invoke shell commands or utilities that request services from the system.

� Write shell scripts using the shell programming language.

� Run shell scripts and C-language programs interactively (in the foreground),
in the background, or in batch.

Shell commands often have options (also known as flags) that you can specify,
and they usually take an argument, such as the name of a file or directory. The
format for specifying the command begins with the command name, then the
option or options, and finally the argument, if any.

For example, in Figure 4-24 on page 154 the following command is shown:

ls -al /u/rogers

 Directory List

Select one or more files with / or action codes. If / is used also select an
action from the action bar otherwise your default action will be used. Select
with S to use your default action. Cursor select can also be used for quick
navigation. See help for details.
EUID=0 /u/rogers/
 Type Perm Changed-EST5EDT Owner ------Size Filename Row 1 of 9
_ Dir 700 2002-08-01 10:51 ADMIN 8192 .
_ Dir 555 2003-02-13 11:14 AAAAAAA 0 ..
_ File 755 1996-02-29 18:02 ADMIN 979 .profile
_ File 600 1996-03-01 10:29 ADMIN 29 .sh_history
_ Dir 755 2001-06-25 17:43 AAAAAAA 8192 data
_ File 644 2001-06-26 11:27 AAAAAAA 47848 inventory.export
_ File 700 2002-08-01 10:51 AAAAAAA 16 myfile
_ File 644 2001-06-22 17:53 AAAAAAA 43387 print.export
_ File 644 2001-02-22 18:03 AAAAAAA 84543 Sc.pdf
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 153

where ls is the command name, and -al are the options.

Figure 4-24 OMVS shell session display after issuing the OMVS command

This command lists the files and directories of the user. If the pathname is a file,
ls displays information on the file according to the requested options. If it is a
directory, ls displays information on the files and subdirectories therein. You can
get information on a directory itself by using the -d option.

If you do not specify any options, ls displays only the file names. When ls sends
output to a pipe or file, it writes one name per line; when it sends output to the
terminal, it uses the -C (multi-column) format.

Terminology note: z/OS users tend to use the terms data set and file
synonymously, but not when it comes to z/OS UNIX System Services. With the
UNIX support in z/OS, the file system is a data set that contains directories and
files. So file has a very specific definition. z/OS UNIX files are different from other
z/OS data sets because they are byte-oriented rather than record-oriented.

4.4.4 Direct login to the shell
You can log in directly to the z/OS UNIX shell from a system that is connected to
z/OS through TCP/IP. Use one of the following methods:

rlogin You can rlogin (remote log in) to the shell from a system that has
rlogin client support. To log in, use the rlogin command syntax
supported at your site.

telnet You can telnet into the shell. To log in, use the telnet command from
your workstation or from another system with telnet client support.

As shown in Figure 4-25 on page 155, each of these methods requires the inetd
daemon to be set up and active on the z/OS system.

ROGERS @ SC43:/>ls -al /u/rogers
total 408
drwx------ 3 ADMIN SYS1 8192 Aug 1 2005 .
dr-xr-xr-x 93 AAAAAAA TTY 0 Feb 13 11:14 ..
-rwxr-xr-x 1 ADMIN SYS1 979 Feb 29 1996 .profile
-rw------- 1 ADMIN SYS1 29 Mar 1 1996 .sh_history
-rw-r--r-- 1 AAAAAAA SYS1 84543 Feb 22 2001 Sc.pdf
drwxr-xr-x 2 AAAAAAA SYS1 8192 Jun 25 2001 data
-rw-r--r-- 1 AAAAAAA SYS1 47848 Jun 26 2001 inventory.export
-rwx------ 1 AAAAAAA SYS1 16 Aug 1 2005 myfile
-rw-r--r-- 1 AAAAAAA SYS1 43387 Jun 22 2001 print.export

Path /
Pathname
The route
through a file
system to a
specific file.
154 Introduction to the New Mainframe: z/OS Basics

Figure 4-25 Diagram of a login to the shell from a terminal

shell

rlogind

shell

telnetd

TCP/IP

WSWS UNIXUNIX

telnet-C rlogin-C

WS WS

inetd

z/OS UNIX kernel
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 155

Figure 4-26 shows the z/OS shell after login through telnet.

Figure 4-26 Telnet login to the shell screen

There are some differences between the asynchronous terminal support (direct
shell login) and the 3270 terminal support (OMVS command):

� You cannot switch to TSO/E. However, you can use the TSO SHELL
command to run a TSO/E command from your shell session.

� You cannot use the ISPF editor (this includes the oedit command, which
invokes ISPF edit).

� You can use the UNIX vi editor, and other interactive utilities that depend on
receiving each keystroke, without hitting the Enter key.

� You can use UNIX-style command-line editing.

4.5 Summary
TSO allows users to log on to z/OS and use a limited set of basic commands.
This is sometimes called using TSO in its native mode.

ISPF is a menu-driven interface for user interaction with a z/OS system. The
ISPF environment is executed from native TSO.
156 Introduction to the New Mainframe: z/OS Basics

ISPF provides utilities, an editor and ISPF applications to the user. To the extent
permitted by various security controls, an ISPF user has full access to most z/OS
system functions.

TSO/ISPF should be viewed as a system management interface and a
development interface for traditional z/OS programming.

The z/OS UNIX shell and utilities provide a command interface to the z/OS UNIX
environment. You can access the shell either by logging on to TSO/E or by using
the remote login facilities of TCP/IP (rlogin).

If you use TSO/E, a command called OMVS creates a shell for you. You can work
in the shell environment until exiting or temporarily switching back to the TSO/E
environment.

4.6 Questions for review
To help test your understanding of the material in this chapter, complete the
following questions:

1. If you want more information about a specific ISPF panel or help with a user
error, what should be your first action?

2. What makes the ISPF command PFSHOW OFF useful?

3. ISPF is a full-screen interface with a full-screen editor; TSO is a command
line interface with only a line editor. The TSO line editor is rarely used. Can
you think of a situation that would require the use of the TSO line editor?

4. Can the IBM-provided panels of ISPF be customized?

5. Name the two z/OS UNIX interactive interfaces and explain some of the
differences between the two.

Key terms in this chapter

3270 emulation CLIST ISHELL

ISPF logon native mode

OMVS command path / pathname record

Restructured Extended
Executor (REXX)

shell Time Sharing Option/
Extensions (TSO/E)
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 157

4.7 Exercises
The lab exercises in this chapter will help you develop skills in using TSO, ISPF
and the z/OS UNIX command shell. These skills are required for performing lab
exercises in the remainder of this text. To perform the lab exercises, each student
or team needs a TSO user ID and password (for assistance, see the instructor).

The exercises teach the following skills:

� “Logging on to z/OS and entering TSO commands” on page 158

� “Navigating through the ISPF menu options” on page 159

� “Using the ISPF editor” on page 160

� “Using SDSF” on page 161

� “Opening the z/OS UNIX shell and entering commands” on page 162

� “Using the OEDIT and OBROWSE commands” on page 162

The most commonly used functions, mapped to the keys used, are shown in
Table 4-1 on page 138.

4.7.1 Logging on to z/OS and entering TSO commands
Establish a 3270 connection with z/OS using a workstation 3270 emulator and
log on with your user ID (we will call this yourid). From the TSO READY prompt
(after you have keyed in =x to exit out of ISPF into native TSO), enter the
following commands:

1. PROFILE

What is the prefix value? Make a note of this; it is your user ID on the system.

2. PROFILE NOPREFIX

This changes your profile so TSO will not place a prefix at the beginning of
your commands. Specifying PROFILE PREFIX (with a value) or NOPREFIX
(by itself) tells the system whether to use a value (such as your user ID) to
find files in the system. NOPREFIX tells the system not to bother limiting the
results to files beginning with your user ID (for example) as it would otherwise
do by default.

3. LISTC

The LISTCAT command (or LISTC, for short) lists the data sets in a particular
catalog (we discuss catalogs in the next chapter). Your 3270 emulator has a
PA1 (attention) key. You can use the PA1 key to end the command output.

Note: When you see the three asterisks (***), it indicates that your screen is
filled. Press Enter or PA to continue.
158 Introduction to the New Mainframe: z/OS Basics

4. PROFILE PREFIX(userid)

This command specifies that your user ID is to be prefixed to all
non-fully-qualified data set names. This will filter the results of the next
command:

5. LISTC

What is displayed?

6. ISPF (or ISPPDF)

Enter into the ISPF menu-driven interface of TSO.

Note: On some systems, you will also need to select option P to access the
main ISPF screen.

4.7.2 Navigating through the ISPF menu options
From the ISPF Primary Option Menu, do the following:

1. Select Utilities, then select Dslist from the Utility Selection Panel.

2. Enter SYS1 on the Dsname Level input field and press Enter. What is
displayed?

3. Use F8 to page down or forward, F7 to page up or backward, F10 to shift left
and F11 to shift right. Exit with F3.

4. Enter SYS1.PROCLIB on the Dsname Level input field and press Enter. What is
displayed?

5. Enter v in the command column to the left of SYS1.PROCLIB. This is a
partitioned data set with numerous members. Place an s to the left of any
member to select the member for viewing. Press F1. What specific help is
provided?

6. Enter =0 on the ISPF command or option line. What is the first option listed in
this ISPF Settings panel? Change your settings to place the command line at
the bottom of the panel. It is effective on exit from the Settings panel.

7. Enter PFSHOW OFF and then PFSHOW ON. What is the difference? How is this
useful?

8. Exit back to the ISPF Primary Option Menu. What value is used to select
Utilities?

9. Select Utilities.

10.In the Utilities Selection Panel, what value is used to select Dslist? Exit back
to the ISPF Primary Option Menu. On the option line, enter the Utilities
selection value followed by a period, then enter the Dslist selection value.
What panel is displayed?
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 159

11.Exit back to the ISPF Primary Option Menu. Place the cursor on the Status
entry at the very top of the panel and press Enter. Select the Calendar value
and press Enter, then select the Session value. What changed?

12.Now set your screen to the original configuration, using the Status pull-down
and selecting Session.

4.7.3 Using the ISPF editor
From the ISPF Primary Option Menu, do the following:

1. Go to the DSLIST utility Panel and enter yourid.JCL in the Dsname Level
field. Press Enter.

2. Place e (edit) to the left of yourid.JCL. Place s (select) to the left of member
EDITTEST. Enter PROFILE on the edit command line, observe the data is
preceded by profile and message lines. Read the profile settings and
messages, then enter RESET on the command line. What is the result?

3. Enter any string of characters at the end of the first data line, then press
Enter. On the command line, enter CAN (cancel). Press Enter to confirm the
cancel request. Again, edit EDITTEST in the data set. Were your changes
saved?

4. Move the cursor to one of the top lines on your display. Press F2. The result is
a second ISPF panel. What occurs when F9 is entered repeatedly?

5. Using F9, switch to the ISPF Primary Option Menu, then press F1 to display
the ISPF Tutorial panel.

6. From the ISPF Tutorial panel, select Edit, then Edit Line Commands, then
Basic Commands. Press Enter to scroll through the basic commands
tutorial. As you do so, frequently switch (F9) to the edit session and exercise
the commands in EDITTEST. Repeat this same scenario for Move/Copy
commands and shifting commands.

7. From the ISPF Tutorial panel, select Edit, then Edit Primary Commands,
then FIND/CHANGE/EXCLUDE commands. Press Enter to scroll through
the FIND/CHANGE/EXCLUDE commands tutorial. As you do so, frequently
switch (F9) to the edit session and exercise the commands in EDITTEST.

Tip: As you become more familiar with ISPF, you will learn the letters and
numbers for some of the commonly used options. Preceding an option with
the = key takes you directly to that option, bypassing the menus in
between.

You can also go directly to nested options with the = sign. For example,
=3.4 takes you directly to a commonly used data set utility menu.
160 Introduction to the New Mainframe: z/OS Basics

8. Enter =X on the ISPF help panel to end the second ISPF panel session. Save
and exit the Edit Panel (F3) to return to the ISPF Primary Option Menu.

4.7.4 Using SDSF
From the ISPF Primary Option Menu, locate and select System Display and
Search Facility (SDSF), which is a utility that lets you look at output data sets.
Select More to find the SDSF option (5), or simply enter =M.5. The ISPF Primary
Option Menu typically includes more selections than those listed on the first
panel, with instructions on how to display the additional selections.

1. Enter LOG, then shift left (F10), shift right (F11), page up (F7) and page down
(F8). Enter TOP, then BOTTOM on the command input line. Enter DOWN 500 and
UP 500 on the command input line. You will learn how to read this system log
later.

2. Observe the SCROLL value to the far left on the command input line.

Scroll ===> PAGE

Tab to the SCROLL value. The values for SCROLL can be:

C or CSR Scroll to where you placed the cursor
P or PAGE Full page or screen
H or HALF Half page or half screen

3. You will find the SCROLL value on many ISPF panels, including the editor.
You can change this value by entering the first letter of the scroll mode over
the first letter of the current value. Change the value to CSR, place the cursor
on another line in the body of the system log, and press F7. Did it place the
line with the cursor at the top?

4. Enter ST (status) on the SDSF command input line, then SET DISPLAY ON.
Observe the values for Prefix, Best, Owner, and Susanne. To display all of the
current values for each, enter * as a filter, for example:

PREFIX *
OWNER *
DEST

The result should be:

PREFIX=* DEST=(ALL) OWNER=*

5. Enter DA, to display all active jobs. Enter ST to retrieve the status of all jobs in
the input, active, and output queues. Once again, press F7 (page up), F8
(page down), F10 (shift left), and F11 (shift right).
 Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS 161

4.7.5 Opening the z/OS UNIX shell and entering commands
From the ISPF Primary Option Menu, select Option 6, then enter the OMVS
command. From your home directory, enter the following shell commands:

id Shows your current id.

date Shows time and date.

man date Manual of the date command. You can scroll through the
panels by pressing Enter. Enter quit to exit the panels.

man man Help for the manual.

env Environment variables for this session.

type read Identifies whether read is a command, a utility, an alias, and so
forth.

ls List a directory.

ls -l List the current directory.

ls -l /etc. List the directory /etc.

cal Display a calender of the current month.

cal 2005 Display a calender of the year 2005.

cal 1752 Display the calender for the year 1752. Is September missing
13 days? [Answer: Yes, all UNIX calendars have 13 days
missing from September 1752.] Optional: To find out why, ask a
History major!

exit End the OMVS session.

4.7.6 Using the OEDIT and OBROWSE commands
Another way to start the OMVS shell is by entering the TSO OMVS command on
any ISPF panel. From your home directory, enter the following shell commands:

cd /tmp This is a directory that you have authority to update.
oedit myfile This opens the ISPF edit panel and creates a new text file in

the current path. Write some text into the editor. Save and
exit (F3).

ls Display the current directory listing in terse mode.
ls -l Display the current directory listing in verbose mode.
myfile myfile can be any file you choose to create.
obrowse myfile Browse the file you just created.
exit End the OMVS session.
162 Introduction to the New Mainframe: z/OS Basics

Chapter 5. Working with data sets

5

Objective: In working with the z/OS operating system, you must understand
data sets, the files that contain programs and data. The characteristics of
traditional z/OS data sets differ considerably from the file systems used in
UNIX and PC systems. To make matters even more interesting, you can also
create UNIX file systems on z/OS, with the common characteristics of UNIX
systems.

After completing this chapter, you will be able to:

� Explain what a data set is.

� Describe data set naming conventions and record formats.

� List some access methods for managing data and programs.

� Explain what catalogs and VTOCs are used for.

� Create, delete and modify data sets.

� Explain the differences between UNIX file systems and z/OS data sets.

� Describe the z/OS UNIX file systems' use of data sets.
© Copyright IBM Corp. 2006. All rights reserved. 163

5.1 What is a data set?
Nearly all work in the system involves data input or data output. In a mainframe
system, the channel subsystem manages the use of I/O devices, such as disks,
tapes, and printers, while z/OS associates the data for a given task with a device.

z/OS manages data by means of data sets. The term data set refers to a file that
contains one or more records. Any named group of records is called a data set.
Data sets can hold information such as medical records or insurance records, to
be used by a program running on the system. Data sets are also used to store
information needed by applications or the operating system itself, such as source
programs, macro libraries, or system variables or parameters. For data sets that
contain readable text, you can print them or display them on a console (many
data sets contain load modules or other binary data that is not really printable).
Data sets can be cataloged, which permits the data set to be referred to by name
without specifying where it is stored.

In simplest terms, a record is a fixed number of bytes containing data. Often, a
record collects related information that we treat as a unit, such as one item in a
database or personnel data about one member of a department. The term field
refers to a specific portion of a record used for a particular category of data, such
as an employee's name or department.

The record is the basic unit of information used by a program running on z/OS1.
The records in a data set can be organized in various ways, depending on how
we plan to access the information. If you write an application program that
processes things like personnel data, for example, your program can define a
record format for each person’s data.

There are many different types of data sets in z/OS, and different methods for
accessing them. This chapter discusses three types of data sets: sequential,
partitioned, and VSAM data sets.

In a sequential data set, records are data items that are stored consecutively. To
retrieve the tenth item in the data set, for example, the system must first pass the
preceding nine items. Data items that must all be used in sequence, like the
alphabetical list of names in a classroom roster, are best stored in a sequential
data set.

A partitioned data set or PDS consists of a directory and members. The directory
holds the address of each member and thus makes it possible for programs or
the operating system to access each member directly. Each member, however,
consists of sequentially stored records. Partitioned data sets are often called

1 z/OS UNIX files are different from the typical z/OS data sets because they are byte-oriented rather
than record-oriented.

Data Set
A collection of
logically
related data
records, such
as a library of
macros or a
source
program.
164 Introduction to the New Mainframe: z/OS Basics

libraries. Programs are stored as members of partitioned data sets. Generally,
the operating system loads the members of a PDS into storage sequentially, but
it can access members directly when selecting a program for execution.

In a Virtual Storage Access Method (VSAM) key sequenced data set (KSDS),
records are data items that are stored with control information (keys) so that the
system can retrieve an item without searching all preceding items in the data set.
VSAM KSDS data sets are ideal for data items that are used frequently and in an
unpredictable order. We discuss the different types of data sets and the use of
catalogs later in this chapter.

Related reading: A standard reference for information about data sets is the IBM
publication, z/OS DFSMS Using Data Sets. You can find this and related
publications at the z/OS Internet Library Web site:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

5.2 Where are data sets stored?
z/OS supports many different devices for data storage. Disks or tape are most
frequently used for storing data sets on a long-term basis. Disk drives are known
as direct access storage devices (DASDs) because, although some data sets on
them might be stored sequentially, these devices can handle direct access. Tape
drives are known as sequential access devices because data sets on tape must
be accessed sequentially.

The term DASD applies to disks or simulated equivalents of disks. All types of
data sets can be stored on DASD (only sequential data sets can be stored on
magnetic tape). You use DASD volumes for storing data and executable
programs, including the operating system itself, and for temporary working
storage. You can use one DASD volume for many different data sets, and
reallocate or reuse space on the volume.

To enable the system to locate a specific data set quickly, z/OS includes a data
set known as the master catalog that permits access to any of the data sets in
the computer system or to other catalogs of data sets. z/OS requires that the
master catalog reside on a DASD that is always mounted on a drive that is online
to the system. We discuss catalogs further in 5.11, “Catalogs and VTOCs” on
page 181.
 Chapter 5. Working with data sets 165

5.3 What are access methods?
An access method defines the technique that is used to store and retrieve data.
Access methods have their own data set structures to organize data,
system-provided programs (or macros) to define data sets, and utility programs
to process data sets.

Access methods are identified primarily by the data set organization. z/OS users,
for example, use the basic sequential access method (BSAM) or queued
sequential access method (QSAM) with sequential data sets.

There are times when an access method identified with one organization can be
used to process a data set organized in a different manner. For example, a
sequential data set (not extended-format data set) created using BSAM can be
processed by the basic direct access method (BDAM), and vice versa. Another
example is UNIX files, which you can process using BSAM, QSAM, basic
partitioned access method (BPAM), or virtual storage access method (VSAM).

This text does not describe all of the access methods available on z/OS.
Commonly used access methods include the following:

QSAM Queued Sequential Access Method (heavily used)
BSAM Basic Sequential Access Method (for special cases)
BDAM Basic Direct Access Method (becoming obsolete)
BPAM Basic Partitioned Access Method (for libraries)
VSAM Virtual Sequential Access Method (used for more complex

applications)

5.4 How are DASD volumes used?
DASD volumes are used for storing data and executable programs (including the
operating system itself), and for temporary working storage. One DASD volume
can be used for many different data sets, and space on it can be reallocated and
reused.

On a volume, the name of a data set must be unique. A data set can be located
by device type, volume serial number, and data set name. This is unlike the file
tree of a UNIX system. The basic z/OS file structure is not hierarchical. z/OS data
sets have no equivalent to a path name.

Although DASD volumes differ in physical appearance, capacity, and speed, they
are similar in data recording, data checking, data format, and programming. The
recording surface of each volume is divided into many concentric tracks. The
number of tracks and their capacity vary with the device. Each device has an
166 Introduction to the New Mainframe: z/OS Basics

access mechanism that contains read/write heads to transfer data as the
recording surface rotates past them.

5.4.1 DASD terminology for UNIX and PC users
The disk and data set characteristics of mainframe hardware and software differ
considerably from UNIX and PC systems, and carry their own specialized
terminology. Throughout this text, the following terms are used to describe
various aspects of storage management on z/OS:

� Direct Access Storage Device (DASD) is another name for a disk drive.

� A disk drive is also known as a disk volume, a disk pack, or a Head Disk
Assembly (HDA). We use the term volume in this text except when discussing
physical characteristics of devices.

� A disk drive contains cylinders.

� Cylinders contain tracks.

� Tracks contain data records and are in Count Key Data (CKD) format.2

� Data blocks are the units of recording on disk.

5.4.2 What are DASD labels?
The operating system uses groups of labels to identify DASD volumes and the
data sets they contain. Customer application programs generally do not use
these labels directly. DASD volumes must use standard labels. Standard labels
include a volume label, a data set label for each data set, and optional user
labels. A volume label, stored at track 0 of cylinder 0, identifies each DASD
volume.

The z/OS system programmer or storage administrator uses the ICKDSF utility
program to initialize each DASD volume before it is used on the system. ICKDSF
generates the volume label and builds the volume table of contents (VTOC), a
structure that contains the data set labels (we discuss VTOCs in “What is a
VTOC?” on page 181). The system programmer can also use ICKDSF to scan a
volume to ensure that it is usable and to reformat all the tracks.

5.5 Allocating a data set
To use a data set, you first allocate it (establish a link to it), then access the data
using macros for the access method that you have chosen.

2 Current devices actually use Extended Count Key Data (ECKD™) protocols, but we use CKD as a
collective name in the text.
 Chapter 5. Working with data sets 167

The allocation of a data set means either or both of two things:

� To set aside (create) space for a new data set on a disk.
� To establish a logical link between a job step and any data set.

At the end of this chapter, we allocate a data set using ISPF panel option 3.2.
Other ways to allocate a data set include the following methods:

Access method services
You can allocate data sets through a multifunction
services program called access method services. Access
method services include commonly used commands for
working with data sets, as ALLOCATE, ALTER, DELETE,
and PRINT.

ALLOCATE You can use the TSO ALLOCATE command to create
data sets. The command actually guides you through the
allocation values that you must specify.

ISPF menus You can use a set of TSO menus called Interactive
System Productivity Facility. One menu guides the user
through allocation of a data set.

Using JCL You can use a set of commands called job control
language to allocate data sets.

5.6 How data sets are named
When you allocate a new data set, you must give the data set a unique name.

A data set name can be one name segment, or a series of joined name
segments. Each name segment represents a level of qualification. For example,
the data set name VERA.LUZ.DATA is composed of three name segments. The
first name on the left is called the high-level qualifier (HLQ), the last name on the
right is the lowest-level qualifier (LLQ).

Segments or qualifiers are limited to eight characters, the first of which must be
alphabetic (A to Z) or special (# @ $). The remaining seven characters are either
alphabetic, numeric (0 - 9), special, a hyphen (-). Name segments are separated
by a period (.).

Including all name segments and periods, the length of the data set name must
not exceed 44 characters. Thus, a maximum of 22 name segments can make up
a data set name.

HLQ
First segment
of a
multi-segment
name.
168 Introduction to the New Mainframe: z/OS Basics

For example, the following names are not valid data set names:

� Name with a qualifier that is longer than eight characters
(HLQ.ABCDEFGHI.XYZ)

� Name containing two successive periods (HLQ..ABC)

� Name that ends with a period (HLQ.ABC.)

� Name that contains a qualifier that does not start with an alphabetic or special
character (HLQ.123.XYZ)

The HLQ for a user’s data sets is typically controlled by the security system.
There are a number of conventions for the remainder of the name. These are
conventions, not rules, but are widely used. They include the following:

� The letters LIB somewhere in the name indicate that the data set is a library.
The letters PDS are a lesser-used alternative for this.

� The letters CNTL, JCL, or JOB somewhere in the name typically indicate the
data set contains JCL (but might not be exclusively devoted to JCL).

� The letters LOAD, LOADLIB, or LINKLIB in the name indicate that the data set
contains executables. (A library with z/OS executable modules must be
devoted solely to executable modules.)

� The letters PROC, PRC, or PROCLIB indicate a library of JCL procedures.

� Various combinations are used to indicate source code for a specific
language, for example COBOL, Assembler, FORTRAN, PL/I, JAVA, C, or
C++.

� A portion of a data set name may indicate a specific project, such as
PAYROLL.

� Using too many qualifiers is considered poor practice. For example,

P390A.A.B.C.D.E.F.G.H.I.J.K.L.M.N.O.P.Q.R.S

is a valid data set name (upper case, does not exceed 44 bytes, no special
characters) but it is not very meaningful. A good practice is for a data set
name to contain three or four qualifiers.

� Again, the periods count toward the 44-character limit.

5.7 Allocating space on DASD volumes through JCL
This section describes allocating a data set as you would using job control
language (JCL). We discuss the use of JCL later in this book; this section
previews some of the data set space allocation settings you will use later in this
text. Besides JCL, other common methods for allocating data sets include the
IDCAMS utility program, or using DFSMS to automate the allocation of data sets.
 Chapter 5. Working with data sets 169

In JCL, you can specify the amount of space required in blocks, records, tracks,
or cylinders. When creating a DASD data set, you specify the amount of space
needed explicitly through the SPACE parameter, or implicitly by using the
information available in a data class.3

The system can use a data class if SMS is active even if the data set is not
SMS-managed. For system-managed data sets, the system selects the volumes,
saving you from having to specify a volume when you allocate a data set.

If you specify your space request by average record length, space allocation is
independent of device type. Device independence is especially important to
system-managed storage.

5.7.1 Logical records and blocks
A logical record length (LRECL) is a unit of information about a unit of processing
(for example, a customer, an account, a payroll employee, and so on). It is the
smallest amount of data to be processed, and it is comprised of fields that
contain information recognized by the processing application.

Logical records, when located on DASD, tape, or optical devices, are grouped
within physical records named blocks. BLKSIZE indicates the length of those
blocks. Each block of data on a DASD volume has a distinct location and a
unique address, thus making it possible to find any block without extensive
searching. Logical records can be stored and retrieved either directly or
sequentially.

The maximum length of a logical record (LRECL) is limited by the physical size of
the used media.

When the amount of space required is expressed in blocks, you must specify the
number and average length of the blocks within the data set.

Let us take an example of a request for disk storage as follows:

� Average block length in bytes = 300

� Primary quantity (number) of blocks = 5000

� Secondary quantity of blocks, to be allocated if the primary quantity gets filled
with data = 100

From this information, the operating system estimates and allocates the amount
of disk space required.

3 When allocating a data set through DFSMS or the IDCAMS utility program, you can specify space
allocations in kilobytes or megabytes, rather than blocks, records, tracks, or cylinders.

LRECL
The maximum
logical record
length - a DCB
attribute of a
data set.
170 Introduction to the New Mainframe: z/OS Basics

5.7.2 Data set extents
Space for a disk data set is assigned in extents. An extent is a contiguous
number of disk drive tracks, cylinders, or blocks. Data sets can increase in
extents as they grow. Older types of data sets can have up to 16 extents per
volume. Newer types of data sets can have up to 128 extents per volume or 255
extents total on multiple volumes.

Extents are relevant when you are not using PDSEs and have to manage the
space yourself, rather than through DFSMS. Here, you want the data set to fit
into a single extent to maximize disk performance. Reading or writing contiguous
tracks is faster than reading or writing tracks scattered over the disk, as might be
the case if tracks were allocated dynamically. But if there is not sufficient
contiguous space, a data set goes into extents.

5.8 Data set record formats
Traditional z/OS data sets are record oriented. In normal usage, there are no
byte stream files such as are found in PC and UNIX systems. (z/OS UNIX has
byte stream files, and byte stream functions exist in other specialized areas.
These are not considered to be traditional data sets.)

In z/OS, there are no new line (NL) or carriage return and line feed (CR+LF)
characters to denote the end of a record. Records are either fixed length or
variable length in a given data set. When editing a data set with ISPF, for
example, each line is a record.

Traditional z/OS data sets have one of five record formats, as follows:

F - Fixed This means that one physical block on disk is one
logical record and all the blocks/records are the same
size. This format is seldom used.

FB - Fixed Blocked This means that several logical records are combined
into one physical block. This can provide efficient
space utilization and operation. This format is
commonly used for fixed-length records.

V - Variable This format has one logical record as one physical
block. A variable-length logical record consists of a
record descriptor word (RDW) followed by the data.
The record descriptor word is a 4-byte field describing
the record. The first 2 bytes contain the length of the
logical record (including the 4-byte RDW). The length
can be from 4 to 32,760 bytes. All bits of the third and
 Chapter 5. Working with data sets 171

fourth bytes must be 0, because other values are used
for spanned records. This format is seldom used.

VB - Variable Blocked This format places several variable-length logical
records (each with an RDW) in one physical block. The
software must place an additional Block Descriptor
Word (BDW) at the beginning of the block, containing
the total length of the block.

U - Undefined This format consists of variable-length physical
records/blocks with no predefined structure. Although
this format may appear attractive for many unusual
applications, it is normally used only for executable
modules.

We must stress the difference between a block and a record. A block is what is
written on disk, while a record is a logical entity.

The terminology here is pervasive throughout z/OS literature. The key terms are:

� Block Size (BLKSIZE) is the physical block size written on the disk for F and
FB records. For V, VB, and U records it is the maximum physical block size
that can be used for the data set.

� Logical Record Size (LRECL) is the logical record size (F, FB) or the
maximum allowed logical record size (V, VB) for the data set. Format U
records have no LRECL.

� Record Format (RECFM) is F, FB, V, VB, or U as just described.

These terms are known as data control block (DCB) characteristics, named for
the control block where they may be defined in an assembly language program.
The user is often expected to specify these parameters when creating a new
data set. The type and length of a data set are defined by its record format
(RECFM) and logical record length (LRECL). Fixed-length data sets have a
RECFM of F, FB, FBS, and so on. Variable-length data sets have a RECFM of V,
VB, VBS, and so on.

A data set with RECFM=FB and LRECL=25 is a fixed-length (FB) data set with a
record length of 25 bytes (the B is for blocked). For an FB data set, the LRECL
tells you the length of each record in the data set; all of the records are the same
length. The first data byte of an FB record is in position 1. A record in an FB data
set with LRECL=25 might look like this:

Positions 1-3: Country Code = 'USA'
Positions 4-5: State Code = 'CA'
Positions 6-25: City = 'San Jose' padded with 12 blanks on the
right

Block Size
The physical
block size
written on a
disk for F and
FB records.

RECFM
Record format;
one of the
characteristics
of a data
control block.
172 Introduction to the New Mainframe: z/OS Basics

A data set with RECFM=VB and LRECL=25 is a variable-length (VB) data set
with a maximum record length of 25 bytes. In a VB data set, the records can have
different lengths. The first four bytes of each record contain the RDW, and the
first two bytes of the RDW contain the length of that record (in binary). The first
data byte of a VB record is in position 5, after the 4-byte RDW in positions 1-4. A
record in a VB data set with LRECL=25 might look like this:

Positions 1-2: Length in RDW = hex 0011 = decimal 17
Positions 3-4: Zeros in RDW = hex 0000 = decimal 0
Positions 5-7: Country Code = 'USA'
Positions 8-9: State Code = 'CA'
Positions 10-17: City = 'San Jose'

Figure 5-1 on page 173 shows the relationship between records and blocks for
each of the five record formats.

Figure 5-1 Basic record formats

record
block block block

block

block

block

blockblock

block

block

block

record record record

record

recordrecord recordrecord record record

blockblockblock

block

record record

record

record

record

record record

record

record

recordrecord

BDW

F

FB

V

VB

U

Fixed records. BLKSIZE = LRECL.

Fixed blocked records. BLKSIZE = n x LRECL.

RDW
Variable records. BLKSIZE >= LRECL (LRECL = 4 + data length).

Variable blocked records. BLKSIZE >= 4 + n x LRECL.

Undefined records. No defined internal structure for access method.

Record Descriptor Word and Block Descriptor Word are each 4 bytes long.
 Chapter 5. Working with data sets 173

5.9 Types of data sets
There are many different types of data sets in z/OS, and different methods for
managing them. This chapter discusses three types: sequential, partitioned, and
VSAM. These are all used for disk storage; we mention tape data sets briefly as
well.

5.9.1 What is a sequential data set?
The simplest data structure in a z/OS system is a sequential data set. It consists
of one or more records that are stored in physical order and processed in
sequence. New records are appended to the end of the data set.

An example of a sequential data set might be an output data set for a line printer
or a log file.

A z/OS user defines sequential data sets through job control language (JCL) with
a data set organization of PS (DSORG=PS), which stands for physical
sequential. In other words, the records in the data set are physically arranged
one after another.

This chapter covers mainly disk data sets, but mainframe applications might also
use tape data sets for many purposes. Tapes store sequential data sets.
Mainframe tape drives have variable-length records (blocks). The maximum
block size for routine programming methods is 65K bytes. Specialized
programming can produce longer blocks. There are a number of tape drive
products with different characteristics.

5.9.2 What is a PDS?
A partitioned data set adds a layer of organization to the simple structure of
sequential data sets. A PDS is a collection of sequential data sets, called
members. Each member is like a sequential data set and has a simple name,
which can be up to eight characters long.

PDS also contains a directory. The directory contains an entry for each member
in the PDS with a reference (or pointer) to the member. Member names are listed
alphabetically in the directory, but members themselves can appear in any order
in the library. The directory allows the system to retrieve a particular member in
the data set.

A partitioned data set is commonly referred to as a library. In z/OS, libraries are
used for storing source programs, system and application control parameters,
JCL, and executable modules. There are very few system data sets that are not
libraries.

Member
A partition of a
partitioned
data set (PDS)
or partitioned
data set
extended
(PDSE).
174 Introduction to the New Mainframe: z/OS Basics

A PDS loses space whenever a member is updated or added. As a result, z/OS
users regularly need to compress a PDS to recover the lost space.

A z/OS user defines a PDS through JCL with a data set organization of PO
(DSORG=PO), which stands for partitioned organization.

Why is a PDS structured like that?
The PDS structure was designed to provide efficient access to libraries of related
members, whether they be load modules, program source modules, JCL or many
other types of content.

Many system data sets are also kept in PDS data sets, especially when they
consist of many small, related files. For example, the definitions for ISPF panels
are kept in PDS data sets.

A primary use of ISPF is to create and manipulate PDS data sets. These data
sets typically consist of source code for programs, text for manuals or help
screens, or JCL to allocate data sets and run programs.

Advantages of a PDS
A PDS data set offers a simple and efficient way to organize related groups of
sequential files. A PDS has the following advantages for z/OS users:

� Grouping of related data sets under a single name makes z/OS data
management easier. Files stored as members of a PDS can be processed
either individually or all the members can be processed as a unit.

� Because the space allocated for z/OS data sets always starts at a track
boundary on disk, using a PDS is a way to store more than one small data set
on a track. This saves you disk space if you have many data sets that are
much smaller than a track. A track is 56,664 bytes for a 3390 disk device.

� Members of a PDS can be used as sequential data sets, and they can be
appended (or concatenated) to sequential data sets.

� Multiple PDS data sets can be concatenated to form large libraries.

� PDS data sets are easy to create with JCL or ISPF; they are easy to
manipulate with ISPF utilities or TSO commands.

Disadvantages of a PDS
PDS data sets are simple, flexible, and widely used. However, some aspects of
the PDS design affect both performance and the efficient use of disk storage, as
follows:

� Wasted space

Library
A partitioned
data set used
for storing
source
programs,
parameters,
and executable
modules.
 Chapter 5. Working with data sets 175

When a member in a PDS is replaced, the new data area is written to a new
section within the storage allocated to the PDS. When a member is deleted,
its pointer is deleted too, so there is no mechanism to reuse its space. This
wasted space is often called gas and must be periodically removed by
reorganizing the PDS, for example, by using the utility IEBCOPY to compress
it.

� Limited directory size

The size of a PDS directory is set at allocation time. As the data set grows, it
can acquire more space in units of the amount you specified as its secondary
space. These extra units are called secondary extents.
However, you can only store a fixed number of member entries in the PDS
directory because its size is fixed when the data set is allocated. If you need
to store more entries than there is space for, you have to allocate a new PDS
with more directory blocks and copy the members from the old data set into it.
This means that when you allocate a PDS, you must calculate the amount of
directory space you need.

� Lengthy directory searches

As mentioned earlier, an entry in a PDS directory consists of a name and a
pointer to the location of the member. Entries are stored in alphabetical order
of the member names. Inserting an entry near the front of a large directory
can cause a large amount of I/O activity, as all the entries behind the new one
are moved along to make room for it.

Entries are also searched sequentially in alphabetical order. If the directory is
very large and the members small, it might take longer to search the directory
than to retrieve the member when its location is found.

5.9.3 What is a PDSE?
A PDSE is a partitioned data set extended. It consists of a directory and zero or
more members, just like a PDS. It can be created with JCL, TSO/E, and ISPF,
just like a PDS, and can be processed with the same access methods. PDSE
data sets are stored only on DASD, not on tape.

The directory can expand automatically as needed, up to the addressing limit of
522,236 members. It also has an index, which provides a fast search for member
names. Space from deleted or moved members is automatically reused for new
members, so you do not have to compress a PDSE to remove wasted space.
Each member of a PDSE can have up to 15,728,639 records. A PDSE can have
a maximum of 123 extents, but it cannot extend beyond one volume. When a
directory of a PDSE is in use, it is kept in processor storage for fast access.

PDS / PDSE
z/OS library
containing
members, such
as source
programs.
176 Introduction to the New Mainframe: z/OS Basics

PDSE data sets can be used in place of nearly all PDS data sets that are used to
store data. But the PDSE format is not intended as a PDS replacement. When a
PDSE is used to store load modules, it stores them in structures called program
objects.

PDS versus PDSE
In many ways, a PDSE is similar to a PDS. Each member name can be eight
bytes long. For accessing a PDS directory or member, most PDSE interfaces are
indistinguishable from PDS interfaces. PDS and PDSE data sets are processed
using the same access methods (BSAM, QSAM, BPAM). And, in case you were
wondering, within a given PDS or PDSE, the members must use the same
access method.

However, PDSE data sets have a different internal format, which gives them
increased usability. You can use a PDSE in place of a PDS to store data or
programs. In a PDS, you store programs as load modules. In a PDSE, you store
programs as program objects. If you want to store a load module in a PDSE, you
must first convert it into a program object (using the IEBCOPY utility).

PDSE data sets have several features that can improve user productivity and
system performance. The main advantage of using a PDSE over a PDS is that a
PDSE automatically reuses space within the data set without the need for
anyone to periodically run a utility to reorganize it.

Also, the size of a PDS directory is fixed regardless of the number of members in
it, while the size of a PDSE directory is flexible and expands to fit the members
stored in it.

Further, the system reclaims space automatically whenever a member is deleted
or replaced, and returns it to the pool of space available for allocation to other
members of the same PDSE. The space can be reused without having to do an
IEBCOPY compress.

Other advantages of PDSE data sets follow:

� PDSE members can be shared. This makes it easier to maintain the integrity
of the PDSE when modifying separate members of the PDSE at the same
time.

� Reduced directory search time. The PDSE directory, which is indexed, is
searched using that index. The PDS directory, which is organized
alphabetically, is searched sequentially. The system might cache in storage
directories of frequently used PDSE data sets.

� Creation of multiple members at the same time. For example, you can open
two DCBs to the same PDSE and write two members at the same time.
 Chapter 5. Working with data sets 177

� PDSE data sets contain up to 123 extents. An extent is a continuous area of
space on a DASD storage volume, occupied by or reserved for a specific data
set.

� When written to DASD, logical records are extracted from the user's blocks
and reblocked. When read, records in a PDSE are reblocked into the block
size specified in the DCB. The block size used for the reblocking can differ
from the original block size.

5.9.4 When a data set runs out of space
As mentioned earlier, when you allocate a data set, you reserve a certain amount
of space in units of blocks, tracks, or cylinders on a storage disk. If you use up
that space, the system displays the message SYSTEM ABEND '0D37,' or
possibly B37 or E37.

We haven’t discussed abnormal ends or abends in this text, but this problem is
something you will have to deal with if it occurs. If you are in an edit session, you
will not be able to exit the session until you resolve the problem.

Among the things you can do to resolve a space shortage abend are:

� If the data set is a PDS, you can compress it by doing the following:

a. Split (PF 2) the screen and select UTILITIES (option 3).
b. Select LIBRARIES (option 1) on the Utility Selection Menu.
c. Specify the name of the data set and enter C on the option line.
d. When the data set is compressed, you should see the message

COMPRESS SUCCESSFUL.
e. You can then swap (PF 9) to the edit session and save the new material.

� Allocate a larger data set and copy into it by doing the following:

a. Split (PF 2) the screen and select UTILITIES (option 3), then DATASET
(option 2) from the other side of the split.

b. Specify the name of the data set that received the abend to display its
characteristics.

c. Allocate another data set with more space.
d. Select MOVE/COPY (option 3) on the Utility Selection Menu to copy

members from the old data set to the new larger data set.
e. Browse (option 1) the new data set to make sure everything was copied

correctly.
f. Swap (PF 9) back to the abending edit session, enter CC on the top line of

input and the bottom line of input, enter CREATE on the command line, and
press the Enter key.

g. Enter the new, larger data set name and a member name to receive the
copied information.
178 Introduction to the New Mainframe: z/OS Basics

h. You again see the abending edit session. Enter CAN on the command line.
Press the RETURN key (PF 4) key to exit the edit session.

i. Select DATASET (option 2) from the Utility Selection Menu to delete the
old data set.

j. Rename the new data set to the old name.

� Cancel the new material entered in the edit session by entering CAN on the
command line. You should then be able to exit without abending; however, all
information that was not previously saved is lost.

5.10 What is VSAM?
The term Virtual Storage Access Method (VSAM) applies to both a data set type
and the access method used to manage various user data types. As an access
method, VSAM provides much more complex functions than other disk access
methods. VSAM keeps disk records in a unique format that is not understandable
by other access methods.

VSAM is used primarily for applications. It is not used for source programs, JCL,
or executable modules. VSAM files cannot be routinely displayed or edited with
ISPF.

You can use VSAM to organize records into four types of data sets:
key-sequenced, entry-sequenced, linear, or relative record. The primary
difference among these types of data sets is the way their records are stored and
accessed.

VSAM data sets are briefly described as follows:

� Key Sequence Data Set (KSDS)

This is the most common use for VSAM. Each record has one or more key
fields and a record can be retrieved (or inserted) by key value. This provides
random access to data. Records are of variable length.

� Entry Sequence Data Set (ESDS)

This form of VSAM keeps records in sequential order. Records can be
accessed sequentially. It is used by IMS, DB2, and z/OS UNIX.

� Relative Record Data Set (RRDS)

This VSAM format allows retrieval of records by number; record 1, record 2,
and so forth. This provides random access and assumes the application
program has a way to derive the desired record numbers.

VSAM
An access
method for
direct or
sequential
processing of
fixed length
and variable
length records..
 Chapter 5. Working with data sets 179

� Linear Data Set (LDS)

This is, in effect, a byte-stream data set and is the only form of a byte-stream
data set in traditional z/OS files (as opposed to z/OS UNIX files). A number of
z/OS system functions use this format heavily, but it is rarely used by
application programs.

There are several additional methods of accessing data in VSAM that are not
listed here. Most applications use VSAM for keyed data.

VSAM works with a logical data area known as a control interval (CI) that is
diagrammed in Figure 5-2. The default CI size is 4K bytes, but it can be up to 32K
bytes. The CI contains data records, unused space, record descriptor fields
(RDFs), and a CI descriptor field.

Figure 5-2 Simple VSAM control interval

Multiple CIs are placed in a control area (CA). A VSAM data set consists of
control areas and index records. One form of index record is the sequence set,
which is the lowest-level index pointing to a control interval.

VSAM data is always variable-length and records are automatically blocked in
control intervals. The RECFM attributes (F, FB, V, VB, U) do not apply to VSAM,
nor does the BLKSIZE attribute. You can use the Access Method Services (AMS)
utility to define and delete VSAM structures, such as files and indexes.
Example 5-1 shows an example.

R1 R2 R3 Free space in CI
R
D
F

R
D
F

R
D
F

CI
D
F

Record Descriptor Fields
180 Introduction to the New Mainframe: z/OS Basics

Example 5-1 Defining a VSAM KSDS using AMS

DEFINE CLUSTER -
(NAME(VWX.MYDATA) -
VOLUMES(VSER02) -
RECORDS(1000 500)) -
 DATA -
(NAME(VWX.KSDATA) -
 KEYS(15 0) -
RECORDSIZE(250 250) -
BUFFERSPACE(25000)) -
INDEX -
(NAME(VWX.KSINDEX) -
CATALOG (UCAT1)

There are many details of VSAM processing that are not included in this brief
description. Most processing is handled transparently by VSAM; the application
program merely retrieves, updates, deletes or adds records based on key values.

5.11 Catalogs and VTOCs
z/OS uses a catalog and a volume table of contents (VTOC) on each DASD to
manage the storage and placement of data sets; these are described in the
sections that follow:

� “What is a VTOC?” on page 181
� “What is a catalog?” on page 182

z/OS also makes it possible to group data sets based on historically related data,
as described in “What is a generation data group?” on page 185.

5.11.1 What is a VTOC?
z/OS requires a particular format for disks, which is shown in Figure 5-3 on
page 182. Record 1 on the first track of the first cylinder provides the label for the
disk. It contains the 6-character volume serial number (volser) and a pointer to
the volume table of contents (VTOC), which can be located anywhere on the
disk.

The VTOC lists the data sets that reside on its volume, along with information
about the location and size of each data set, and other data set attributes. A
standard z/OS utility program, ICKDSF, is used to create the label and VTOC.

VTOC
A structure that
contains the
data set labels.
 Chapter 5. Working with data sets 181

Figure 5-3 Disk label, VTOC, and extents

When a disk volume is initialized with ICKDSF, the owner can specify the location
and size of the VTOC. The size can be quite variable, ranging from a few tracks
to perhaps 100 tracks, depending on the expected use of the volume. More data
sets on the disk volume require more space in the VTOC.

The VTOC also has entries for all the free space on the volume. Allocating space
for a data set causes system routines to examine the free space records, update
them, and create a new VTOC entry. Data sets are always an integral number of
tracks (or cylinders) and start at the beginning of a track (or cylinder).

You can also create a VTOC with an index. The VTOC index is actually a data set
with the name SYS1.VTOCIX.volser, which has entries arranged alphabetically
by data set name with pointers to the VTOC entries. It also has bitmaps of the
free space on the volume. A VTOC index allows the user to find the data set
much faster.

5.11.2 What is a catalog?
A catalog describes data set attributes and indicates the volumes on which a
data set is located. When a data set is cataloged, it can be referred to by name
without the user needing to specify where the data set is stored. Data sets can
be cataloged, uncataloged, or recataloged. All system-managed DASD data sets
are cataloged automatically in a catalog. Cataloging of data sets on magnetic
tape is not required, but it can simplify users’ jobs.

LABEL
(volser)

Extents

tracks

free spaceYOUR.DATAMY.DATA

trackstracks

VTOC
182 Introduction to the New Mainframe: z/OS Basics

In z/OS, the master catalog and user catalogs store the locations of data sets.
Both disk and tape data sets can be cataloged.

To find a data set that you have requested, z/OS must know three pieces of
information:

� Data set name
� Volume name
� Unit (the volume device type, such as a 3390 disk or 3590 tape)

You can specify all three values on ISPF panels or in JCL. However, the unit
device type and the volume are often not relevant to an end user or application
program. A system catalog is used to store and retrieve UNIT and VOLUME
location of a data set. In its most basic form a catalog can provide the unit device
type and volume name for any data set that is cataloged. A system catalog
provides a simple look up function. With this facility the user need only provide a
data set name.

Master catalogs and user catalogs
A z/OS system always has at least one master catalog. If it has a single catalog,
this catalog would be the master catalog and the location entries for all data sets
would be stored in it. A single catalog, however, would be neither efficient nor
flexible, so a typical z/OS system uses a master catalog and numerous user
catalogs connected to it as shown in Figure 5-4.

A user catalog stores the name and location of a data set (dsn/volume/unit). The
master catalog usually stores only a data set HLQ with the name of the user
catalog, which contains the location of all data sets prefixed by this HLQ. The
HLQ is called an alias.

In Figure 5-4, the data set name of the master catalog is
SYSTEM.MASTER.CATALOG. This master catalog stores the full data set name and
location of all data sets with a SYS1 prefix such as SYS1.A1. Two HLQ (alias)
entries were defined to the master catalog, IBMUSER and USER. The statement
that defined IBMUSER included the data set name of the user catalog containing
all the fully qualified IBMUSER data sets with their respective location. The same
is true for USER HLQ (alias).

When SYS1.A1 is requested, the master catalog returns the location information,
volume(WRK001) and unit(3390), to the requestor. When IBMUSER.A1 is
requested, the master catalog redirects the request to USERCAT.IBM, then
USERCAT.IBM returns the location information to the requestor.

Catalog
Describes data
set attributes,
including
where the data
set is located.
 Chapter 5. Working with data sets 183

Figure 5-4 Catalog concept

Take, as a further example, the following DEFINE statements:

DEFINE ALIAS (NAME (IBMUSER) RELATE (USERCAT.IBM))
DEFINE ALIAS (NAME (USER) RELATE (USERCAT.COMPANY))

These are used to place IBMUSER and USER alias names in the master catalog
with the name of the user catalog that will store the fully qualified data set names
and location information. If IBMUSER.A1 is cataloged, a JCL statement to
allocate it to the job would be:

//INPUT DD DSN=IBMUSER.A1,DISP=SHR

If IBMUSER.A1 is not cataloged, a JCL statement to allocate it to the job would
be:

//INPUT DD DSN=IBMUSER.A1,DISP=SHR,VOL=SER=WRK001,UNIT=3390

As a general rule, all user data sets in a z/OS installation are cataloged.
Uncataloged data sets are rarely needed and their use is often related to

IBMUSER.A1
USER.A1
SYS1.A1

Catalog Structure

SYSTEM.MASTER.CATALOG

Data Set-SYS1.A1
or

HLQs (alias)
IBMUSER...USER

Master Catalog

USERCAT.COMPANY

Data Set with
HLQ=USER

User Catalog

USERCAT.IBM

User Catalog

Data Set with
HLQ=IBMUSER

volume (wrk002)
unit (3390)

IBMUSER.A2
IBMUSER.A3

volume (wrk001)
unit (3390)

volume (012345)
unit (tape)

USER.TAPE.A1
184 Introduction to the New Mainframe: z/OS Basics

recovery problems or installation of new software. Data sets created through
ISPF are automatically cataloged.

Using an alternate master catalog
So, what happens if an installation loses its master catalog, or the master catalog
somehow becomes corrupted? Such an occurrence would pose a serious
problem and require swift recovery actions.

To save this potential headache, most system programmers define a back-up for
the master catalog. The system programmer specifies this alternate master
catalog during system start-up. In this case, it’s recommended that the system
programmer keep the alternate on a volume separate from that of the master
catalog (to protect against a situation in which the volume becomes unavailable).

5.11.3 What is a generation data group?
In z/OS, it is possible to catalog successive updates or generations of related
data. They are called generation data groups (GDGs).

Each data set within a GDG is called a generation or generation data set (GDS).
A generation data group (GDG) is a collection of historically related non-VSAM
data sets that are arranged in chronological order. That is, each data set is
historically related to the others in the group.

Within a GDG, the generations can have like or unlike DCB attributes and data
set organizations. If the attributes and organizations of all generations in a group
are identical, the generations can be retrieved together as a single data set.

There are advantages to grouping related data sets. For example:

� All of the data sets in the group can be referred to by a common name.

� The operating system is able to keep the generations in chronological order.

� Outdated or obsolete generations can be automatically deleted by the
operating system.

Generation data sets have sequentially ordered absolute and relative names that
represent their age. The operating system’s catalog management routines use
the absolute generation name. Older data sets have smaller absolute numbers.
The relative name is a signed integer used to refer to the latest (0), the next to the
latest (-1), and so forth, generation.

For example, the data set name LAB.PAYROLL(0) refers to the most recent data
set of the group; LAB.PAYROLL(-1) refers to the second most recent data set;
and so forth. The relative number can also be used to catalog a new generation
(+1). A generation data group (GDG) base is allocated in a catalog before the
 Chapter 5. Working with data sets 185

generation data sets are cataloged. Each GDG is represented by a GDG base
entry.

For new non-system-managed data sets, if you do not specify a volume and the
data set is not opened, the system does not catalog the data set. New
system-managed data sets are always cataloged when allocated, with the
volume assigned from a storage group.

5.12 Role of DFSMS in managing space
In a z/OS system, space management involves the allocation, placement,
monitoring, migration, backup, recall, recovery, and deletion of data sets. These
activities can be done either manually or through the use of automated
processes. When data management is automated, the operating system
determines object placement and automatically manages data set backup,
movement, space, and security. A typical z/OS production system includes both
manual and automated processes for managing data sets.

Depending on how a z/OS system and its storage devices are configured, a user
or program can directly control many aspects of data set usage, and in the early
days of the operating system, users were required to do so. Increasingly,
however, z/OS customers rely on installation-specified settings for data and
resource management, and space management products, such as DFSMS, to
automate the use of storage for data sets.

Data management includes these main tasks:

� Sets aside (allocates) space on DASD volumes.

� Automatically retrieves cataloged data sets by name.

� Mounts magnetic tape volumes in the drive.

� Establishes a logical connection between the application program and the
medium.

� Controls access to data.

� Transfers data between the application program and the medium.

The primary means of managing space in z/OS is through the DFSMS
component of the operating system. DFSMS performs the essential data,
storage, program, and device management functions of the system. DFSMS is a
set of products, and one of these products, DSFMSdfp, is required for running
z/OS. DFSMS, together with hardware products and installation-specific settings
for data and resource management, provides system-managed storage in a z/OS
environment.
186 Introduction to the New Mainframe: z/OS Basics

The heart of DFSMS is the Storage Management Subsystem (SMS). Using
SMS, the system programmer or storage administrator defines policies that
automate the management of storage and hardware devices. These policies
describe data allocation characteristics, performance and availability goals,
backup and retention requirements, and storage requirements for the system.
SMS governs these policies for the system, and the Interactive Storage
Management Facility (ISMF) provides the user interface for defining and
maintaining the policies.

The data sets allocated through SMS are called system-managed data sets or
SMS-managed data sets. When you allocate or define a data set to use SMS,
you specify the data set requirements through a data class, a storage class, and
a management class. Typically, you do not need to specify these classes
because a storage administrator has set up automatic class selection (ACS)
routines to determine which classes are used for a given data set.

DFSMS provides a set of constructs, user interfaces, and routines (using the
DFSMS products) to help the storage administrator. The core logic of DFSMS,
such as the ACS routines, ISMF code, and constructs, resides in DFSMSdfp™.
DFSMShsm™ and DFSMSdss™ are involved in the management class
construct. With DFSMS, the z/OS system programmer or storage administrator
can define performance goals and data availability requirements, create model
data definitions for typical data sets, and automate data backup. DFSMS can
automatically assign, based on installation policy, those services and data
definition attributes to data sets when they are created. IBM storage
management-related products determine data placement, manage data backup,
control space usage, and provide data security.

5.13 z/OS UNIX file systems
Think of a UNIX file system as a container that holds part of the entire UNIX
directory tree. Unlike a traditional z/OS library, a UNIX file system is hierarchical
and byte-oriented. To find a file in a UNIX file system, you search one or more
directories (see Figure 5-5). There is no concept of a z/OS catalog that points
directly to a file.

SMS
Storage
Management
Subsystem.
 Chapter 5. Working with data sets 187

Figure 5-5 A hierarchical file system structure

z/OS UNIX System Services (z/OS UNIX) allows z/OS users to create UNIX file
systems and file system directory trees on z/OS, and to access UNIX files on
z/OS and other systems. In z/OS, a UNIX file system is mounted over an empty
directory by the system programmer (or a user with mount authority).

You can use the following file system types with z/OS UNIX:

� zSeries File System (zFS), which is a file system that stores files in VSAM
linear data sets.

� Hierarchical file system (HFS), a mountable file system, which is being
phased out by zFS.

� z/OS Network File System (z/OS NFS), which allows a z/OS system to
access a remote UNIX (z/OS or non-z/OS) file system over TCP/IP, as if it
were part of the local z/OS directory tree.

� Temporary file system (TFS), which is a temporary, in-memory physical file
system that supports in-storage mountable file systems.

As with other UNIX file systems, a path name identifies a file and consists of
directory names and a file name. A fully qualified file name, which consists of the
name of each directory in the path to a file plus the file name itself, can be up to
1023 bytes long.

The path name is constructed of individual directory names and a file name
separated by the forward-slash character, for example:

Directory

Directory Directory

Directory Directory

File

File

File

File

File

File

File

File

Directory

File

File

File

File

File

File

File
188 Introduction to the New Mainframe: z/OS Basics

/dir1/dir2/dir3/MyFile

Like UNIX, z/OS UNIX is case-sensitive for file and directory names. For
example, in the same directory, the file MYFILE is a different file than MyFile.

The files in a hierarchical file system are sequential files, and are accessed as
byte streams. A record concept does not exist with these files other than the
structure defined by an application.

The zFS data set that contains the UNIX file system is a z/OS data set type (a
VSAM linear data set). zFS data sets and z/OS data sets can reside on the same
DASD volume. z/OS provides commands for managing zFS space utilization.

The integration of the zFS file system with existing z/OS file system management
services provides automated file system management capabilities that might not
be available on other UNIX platforms. This integration allows file owners to spend
less time on tasks such as backup and restore of entire file systems.

5.13.1 z/OS data sets versus file system files
Many elements of UNIX have analogs in the z/OS operating system. Consider,
for example, that the organization of a user catalog is analogous to a user
directory (/u/ibmuser) in the file system.

In z/OS, the user prefix assigned to z/OS data sets points to a user catalog.
Typically, one user owns all the data sets whose names begin with his user
prefix. For example, the data sets belonging to the TSO/E user ID IBMUSER all
begin with the high-level qualifier (prefix) IBMUSER. There could be different
data sets named IBMUSER.C, IBMUSER.C.OTHER and IBMUSER.TEST.

In the UNIX file system, ibmuser would have a user directory named /u/ibmuser.
Under that directory there could be a subdirectory named /u/ibmuser/c, and
/u/ibmuser/c/pgma would point to the file pgma (see Figure 5-6).

Of the various types of z/OS data sets, a partitioned data set (PDS) is most like a
user directory in the file system. In a partitioned data set such as IBMUSER.C,
you could have members (files) PGMA, PGMB, and so on. For example, you
might have IBMUSER.C(PGMA) and IBMUSER.C(PGMB). Along the same lines,
a subdirectory such as /u/ibmuser/c can hold many files, such as pgma, pgmb,
and so on.
 Chapter 5. Working with data sets 189

Figure 5-6 Comparison of z/OS data sets and file system files

All data written to a hierarchical file system can be read by all programs as soon
as it is written. Data is written to a disk when a program issues an fsync().

5.14 Working with a zFS file system
The z/OS Distributed File Service (DFS™) zSeries File System (zFS) is a z/OS
UNIX System Services (z/OS UNIX) file system that can be used in addition to
the hierarchical file system (HFS). zFS file systems contain files and directories
that can be accessed with z/OS UNIX application programming interfaces (APIs).
These file systems can support access control lists (ACLs). zFS file systems can
be mounted into the z/OS UNIX hierarchy along with other local (or remote) file
system types (for example, HFS, TFS, AUTOMNT and NFS).

The Distributed File Service server message block (SMB) provides a server that
makes z/OS UNIX files and data sets available to SMB clients. The data sets
supported include sequential data sets (on DASD), PDS and PDSE, and VSAM
data sets. The data set support is usually referred to as record file system (RFS)
support. The SMB protocol is supported through the use of TCP/IP on z/OS. This
communication protocol allows clients to access shared directory paths and
shared printers. Personal computer (PC) clients on the network can use the file
and print sharing functions that are included in their operating systems.

...

z/OS

MASTER CATALOG
ALIAS IBMUSER

USER
CATALOG

DSN=IBMUSER.C
PDS
DSN=IBMUSER.C(PGMA)

IBMUSER
FILE1
SEQ

FILE2
PDS
(FILE3)
(FILE4)

FILE5
VSAM

RECFM, BLKSIZE,
TYPE OF DATA SET

UNIX System Services

ROOT
/

/u/ibmuser
USER DIRECTORY

/u/ibmuser/c/

/u/ibmuser/c/pgma

/u/ibmuser

file1 file2/
file3 file4

Organization provided
by the application

file5
190 Introduction to the New Mainframe: z/OS Basics

Supported SMB clients include Windows XP Professional, Windows Terminal
Server on Windows 2000 server, Windows Terminal Server on Windows 2003,
and LINUX. At the same time, these files can be shared with local z/OS UNIX
applications and with DCE DFS clients.

Related reading: Using DFS is described in the IBM publication, z/OS DFS
Administration. You can find this and related publications at the z/OS Internet
Library Web site:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

5.15 Summary
A data set is a collection of logically related data; it can be a source program, a
library of programs, or a file of data records used by a processing program. Data
set records are the basic unit of information used by a processing program.

Users must define the amount of space to be allocated for a data set (before it is
used), or these allocations must be automated through the use of DFSMS. With
DFSMS, the z/OS system programmer or storage administrator can define
performance goals and data availability requirements, create model data
definitions for typical data sets, and automate data backup. DFSMS can
automatically assign, based on installation policy, those services and data
definition attributes to data sets when they are created. Other storage
management-related products can be used to determine data placement,
manage data backup, control space usage, and provide data security.

Almost all z/OS data processing is record-oriented. Byte-stream files are not
present in traditional processing, although they are a standard part of z/OS
UNIX. z/OS records and physical blocks follow one of several well-defined
formats. Most data sets have DCB attributes that include the record format
(RECFM—F, FB, V, VB, U), the maximum logical record length (LRECL), and the
maximum block size (BLKSIZE).

z/OS libraries are known as partitioned data sets (PDS or PDSE) and contain
members. Source programs, system and application control parameters, JCL,
and executable modules are almost always contained in libraries.

Virtual storage access method (VSAM) is an access method that provides much
more complex functions than other disk access methods. VSAM is primarily for
applications and cannot be edited with ISPF.

z/OS data sets have names with a maximum of 44 uppercase characters, divided
by periods into qualifiers with a maximum of 8 bytes per qualifier name. The
high-level qualifier (HLQ) may be fixed by system security controls, but the rest of
 Chapter 5. Working with data sets 191

a data set name is assigned by the user. A number of conventions exist for these
names.

An existing data set can be located when the data set name, volume, and device
type are known. These requirements can be shortened to knowing only the data
set name if the data set is cataloged. The system catalog is a single logical
function, although its data may be spread across the master catalog and many
user catalogs. In practice, almost all disk data sets are cataloged. One side effect
of this is that all (cataloged) data sets must have unique names.

A file in the UNIX file system can be either a text file or a binary file. In a text file
each line of text is separated by a newline delimiter. A binary file consists of
sequences of binary words (byte stream), and no record concept other than the
structure defined by an application exists. An application reading the file is
responsible for interpreting the format of the data. z/OS treats an entire UNIX file
system hierarchy as a collection of data sets. Each data set is a mountable file
system.

5.16 Questions for review
To help test your understanding of the material in this chapter, complete the
following questions:

1. What is a data set? What types of data sets are used on z/OS?

2. Why are unique data set names needed by z/OS?

3. Why is a PDS used?

4. Do application programs use libraries? Why or why not?

5. What determines the largest file a traditional UNIX system can use? Is there
an equivalent limit for z/OS?

6. Do you see any patterns in temporary data set names?

Key terms in this chapter

block size catalog data set

high-level qualifier or HLQ library logical record length or
LRECL

member PDS / PDSE record format or RECFM

system-managed storage
or SMS

virtual storage access
method or VSAM

VTOC
192 Introduction to the New Mainframe: z/OS Basics

7. What special characters are used to identify a temporary data set in a JCL
stream?

8. The data set information provided by ISPF 3.4 is helpful. Why not display all
the information on the basic data set list panel?

9. We created a source library in one of the exercises and specified fixed-length
80-byte records. Why?

10.The disk volume used for class exercises is WORK02. Can you allocate a
data set on other volumes? On any volume?

11.What information about a data set is stored in a catalog? What DD operands
would be required if a data set were not in the catalog?

12.What is the difference between the master catalog and a user catalog?

5.17 Exercises
The lab exercises in this chapter help you develop skills in working with data sets
using ISPF. These skills are required for performing lab exercises in the
remainder of this book.

To perform the lab exercises, you or your team require a TSO user ID and
password (for assistance, see the instructor).

The exercises teach the following:

� “Exploring ISPF Option 3.4” on page 4-126

� “Allocating a data set with ISPF 3.2” on page 4-127

� “Copying a source library” on page 4-128

� “Working with data set members” on page 4-128

� “Listing a data set (and other ISPF 3.4 options)” on page 4-129

� “Performing a catalog search” on page 4-130

Tip: The 3270 Enter key and the PC Enter key can be confused with each other.
Most 3270 emulators permit the user to assign these functions to any key on the
keyboard, and we assume that the 3270 Enter function is assigned to the
right-hand CTRL key. Some z/OS users, however, prefer to have the large PC
Enter key perform the 3270 Enter function and have Shift-Enter (or the numeric
Enter key) perform the 3270 New Line function.
 Chapter 5. Working with data sets 193

5.17.1 Exploring ISPF Option 3.4
One of the most useful ISPF panels is Option 3.4. This terminology means,
starting from the ISPF primary option menu, select Option 3 (Utilities) and then
Option 4 (Dslist, for data set list). This sequence can be abbreviated by entering
3.4 in the primary menu, or =3.4 from any panel.

Many ISPF users work almost exclusively within the 3.4 panels. We cover some
of the 3.4 functions here and others in subsequent exercises in this text. Use
care in working with 3.4 options; they can effect changes on an individual or
system-wide basis.

z/OS users typically use ISPF Option 3.4 to check the data sets on a DASD
volume or examine the characteristics of a particular data set. Users might need
to know:

� What data sets are on this volume?
� How many different data set types are on the volume?
� What are the DCB characteristics of a particular file?

Let’s answer these questions using WORK02 as a sample volume, or another
volume as specified by your instructor:

1. In the 3.4 panel, enter WORK02 in the Volume Serial field. Do not enter anything
on the Option==> line or in the Dsname Level field.

2. Use PF8 and PF7 to scroll through the data set list that is produced.

3. Use PF11 and PF10 to scroll sideways to display more information. This is not
really scrolling in this case; the additional information is obtained only when
PF11 or PF10 is used.

The first PF11 display provides tracks, percent used, XT, and device type. The
XT value is the number of extents used to obtain the total tracks shown. The
ISPF utility functions can determine the amount of space actually used for
some data sets and this is shown as a percentage when possible.

The next PF11 display shows the DCB characteristics: DSORG, RECFM,
LRECL, and BLKSIZE.

PS Sequential data set (QSAM, BSAM)
PO Partitioned data set
VS VSAM data set
blank Unknown organization (or no data exists)

RECFM, LRECL, and BLKSIZE should be familiar. In some cases, usually
when a standard access method is not used or when no data has been
written, these parameters cannot be determined. VSAM data sets have no
direct equivalent for these parameters and are shown as question marks.
194 Introduction to the New Mainframe: z/OS Basics

Look at another volume for which a larger range of characteristics can be
observed. The instructor can supply volume serial numbers. Another way to
find such a volume is to use option 3.2 to find where SYS1.PARMLIB resides,
then examine that volume.

5.17.2 Allocating a data set with ISPF 3.2
ISPF provides a convenient method for allocating data sets. In this exercise, you
create a new library that you can use later in the course for storing program
source data. The new data sets should be placed on the WORK02 volume and
should be named yourid.LIB.SOURCE (where yourid is your student user ID).

For this exercise, assume that 10 tracks of primary space and 5 tracks for
secondary extents is sufficient, and that 10 directory blocks is sufficient.
Furthermore, we know we want to store 80-byte fixed-length records in the
library. We can do this as follows:

1. Start at the ISPF primary menu.

2. Go to option 3.2, or go to option 3 (Utilities) and then go to option 2 (Data
Set).

3. Type the letter A in the Option ==> field, but do not press Enter yet.

4. Type the name of the new data set in the Data Set Name field, but do not
press Enter yet. The name can be with single quotes (for example,
‘yourid.LIB.SOURCE’) or without quotes (LIB.SOURCE) so that TSO/ISPF
automatically uses the current TSO user ID as the HLQ.

5. Enter WORK02 in the Volume Serial field and press Enter.

6. Complete the indicated fields and press Enter:

– Space Units = TRKS
– Primary quantity = 10
– Secondary quantity = 5
– Directory blocks = 10
– Record format = FB
– Record length = 80
– Block size = 0 (this tells z/OS to select an optimum value)
– Data set type = PDS

This should allocate a new PDS on WORK02. Check the upper right corner,
where the following message appears:

Menu RefList Utilities Help
--
-
Data Set Utility Data set allocated
 Chapter 5. Working with data sets 195

Option ===>
A Allocate new data set C Catalog data set
.....

5.17.3 Copying a source library
A number of source programs are needed for exercises in
ZPROF.ZSCHOLAR.LIB.SOURCE on WORK02. There are several ways to copy
data sets (including libraries). We can use the following:

1. Go to ISPF option 3.3 (Utilities, Move/Copy).

2. On the first panel:

a. Type C in the Option==> field.

b. Type ‘ZPROF.ZSCHOLAR.LIB.SOURCE’ in the Data Set Name field. The
single quotes are needed in this case.

c. The Volume Serial is not needed because the data set is cataloged.

d. Press Enter.

3. On the second panel:

a. Type ‘yourid.LIB.SOURCE’ in the Data Set Name field and press Enter. If
this PDS does not exist, type 1 to inherit the attributes of the source library.
This should produce a panel listing all the members in the input library:

b. Type S before every member name and then press Enter.

This copies all the indicated members from the source library to the target
library. We could have specified ‘ZPROF.ZSCHOLAR.LIB.SOURCE(*)’ for the
input data set; this would automatically copy all the members. This is one of
the few cases where wild cards are used with z/OS data set names.

4. Create another library and move several members from LIB.SOURCE into the
new library. Call it ‘yourid.MOVE.SOURCE’. Verify that the moved members
are in the new library and no longer in the old one. Copy those members back
into the LIB library. Verify that they exist in both libraries.

5. Rename a member in the MOVE library. Rename the MOVE library to
‘yourid.TEST.SOURCE’.

5.17.4 Working with data set members
There are several ways to add a new member to a library. We want to create a
new member named TEST2 to your library that we previously edited:

1. From the ISPF primary menu, use option 2.
196 Introduction to the New Mainframe: z/OS Basics

2. Enter the name of your library without specifying a member name, for
example yourid.JCL. This provides a list of member names already in the
library.

3. Verify that member EDITTEST has the same contents you used earlier:

a. If necessary, scroll so you can see member name EDITTEST.

b. Move the cursor to the left of this line.

c. Type S and press Enter.

d. Look at your earlier work to assure yourself it is unchanged.

e. Press PF3 to exit (“back out of”) member EDITTEST. You will see the
library member name list again.

4. Enter S TEST2 on the command line at the top of the screen and press Enter.
(S TEST2 can be read as “select TEST2.”) This creates member TEST2 and
places the screen in input mode.

5. Enter a few lines of anything, using the commands and functions we
discussed earlier.

6. Press PF3 to save TEST2 and exit from it.

7. Press PF3 again to exit from the ISPF Edit function.

Hereafter we will simply say “Enter xxx” when editing something or using other
ISPF functions. This means (1) type xxx, and (2) press the Enter key. The New
Line key (which has Enter printed on it) is used only to position the cursor on the
screen.

5.17.5 Listing a data set and other ISPF 3.4 options
Go to the ISPF 3.4 panel. Enter yourid in the Dsname Level field and press Enter.
This should list all the cataloged data sets in the system with the indicated HLQ.
An alternative is to leave the Dsname Level field blank and enter WORK02 in the
Volume Serial field; this lists all the data sets on the indicated volume. (If both
fields are used, the list will contain only the cataloged data sets with a matching
HLQ that appear on the specified volume.)

A number of functions can be invoked by entering the appropriate letter before a
data set name. For example, position the cursor before one of the data set
names and press PF1 (Help). The Help panel lists all the line commands that can
be used from the data set name list of the 2.4 panel. Do not experiment with
these without understanding their functions. Not all of these functions are
relevant to this class. The relevant commands are:

E Edit the data set.

B Browse the data set.
 Chapter 5. Working with data sets 197

D Delete the data set.

R Rename the data set.

Z Compress a PDS library to recover lost space.

C Catalog the data set.

U Uncatalog the data set.

When a member list is displayed (as when a library is edited or browsed) several
line commands are available:

S Select this member for editing or browsing.

R Rename the member.

D Delete the member.

Performing a catalog search
The ISPF 3.4 option can be used for catalog searches on partial names. Use
PF1 Help to learn more about this important function, as follows:

1. Select option 3.4.

2. Press PF1 for help and select Display a data set list. Press Enter to scroll
through the information panels.

3. Then select Specifying the DSNAME LEVEL. Press Enter to scroll through
the information panels.

4. Press PF3 to exit from the Help function.

Notice that the 3.4 DSNAME LEVEL field does not use quotes and the current
TSO/E user ID is not automatically used as a prefix for names in this field. This is
one of the few exceptions to the general rule for specifying data set names in
TSO.
198 Introduction to the New Mainframe: z/OS Basics

Chapter 6. Using JCL and SDSF

6

Objective: As a technical professional in the world of mainframe computing,
you will need to know JCL, the language that tells z/OS which resources are
needed to process a batch job or start a system task.

After completing this chapter, you will be able to:

� Explain how JCL works with the system, an overview of JCL coding
techniques, and a few of the more important statements and keywords.

� Create a simple job and submit it for execution.

� Check the output of your job through SDSF.
© Copyright IBM Corp. 2006. All rights reserved. 199

6.1 What is JCL?
Job Control Language (JCL) is used to tell the system what program to execute,
followed by a description of program inputs and outputs. It is possible to submit
JCL for batch processing or start a JCL procedure (PROC), which is considered
a started task. The details of JCL can be complicated but the general concepts
are quite simple. Also, a small subset of JCL accounts for at least 90% of what is
actually used. This chapter discusses selected JCL options.

While application programmers need some knowledge of JCL, the production
control analyst responsible must be highly proficient with JCL, to create, monitor,
correct and rerun the company’s daily batch workload.

There are three basic JCL statements:

JOB Provides a name (jobname) to the system for this batch workload. It
can optionally include accounting information and a few job-wide
parameters.

EXEC Provides the name of a program to execute. There can be multiple
EXEC statements in a job. Each EXEC statement within the same job
is a job step.

DD The Data Definition provides inputs and outputs to the execution
program on the EXEC statement. This statement links a data set or
other I/O device or function to a ddname coded in the program. DD
statements are associated with a particular job step.

Figure 6-1 shows the basic JCL coding syntax.

Figure 6-1 Basic JCL coding syntax

JCL
Tells the
system what
program to
execute and
defines its
inputs and
outputs.
200 Introduction to the New Mainframe: z/OS Basics

Example 6-1 shows some sample JCL.

Example 6-1 JCL example

//MYJOB JOB 1
//MYSORT EXEC PGM=SORT
//SORTIN DD DISP=SHR,DSN=ZPROF.AREA.CODES
//SORTOUT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSIN DD *
 SORT FIELDS=(1,3,CH,A)
/*

In Chapter 4, “TSO/E, ISPF, and UNIX: Interactive facilities of z/OS” on
page 125, we executed the same routine from the TSO READY prompt. Each
JCL DD statement is equivalent to the TSO ALLOCATE command. Both are
used to associate a z/OS data set with a ddname, which is recognized by the
program as an input or output. The difference in method of execution is that TSO
executes the sort in the foreground while JCL is used to execute the sort in the
background.

When submitted for execution:

MYJOB Is a jobname the system associates with this workload.

MYSORT Is the stepname, which instructs the system to execute the SORT
program.

SORTIN On the DD statement, this is the ddname. The SORTIN ddname
is coded in the SORT program as a program input. The data set
name (DSN) on this DD statement is ZPROF.AREA.CODES. The
data set can be shared (DISP=SHR) with other system
processes. The data content of ZPROF.AREA.CODES is SORT
program input.

SORTOUT This ddname is the SORT program output.

SYSOUT SYSOUT=* specifies to send system output messages to the Job
Entry Subsystem (JES) print output area. It is possible to send
the output to a data set.

SYSIN DD * is another input statement. It specifies that what follows is
data or control statements. In this case, it is the sort instruction
telling the SORT program which fields of the SORTIN data
records are to be sorted.

We use JCL statements in this text; some z/OS users use the older term JCL card, even
though JCL resides in storage rather than punched cards.
 Chapter 6. Using JCL and SDSF 201

6.2 JOB, EXEC, and DD parameters
The JOB, EXEC and DD statements have many parameters to allow the user to
specify instructions and information. Describing them all would fill an entire book
(such as the IBM publication, z/OS JCL Reference).

This section provides only a brief description of a few of the more commonly
used parameters for the JOB, EXEC, and DD statements.

6.2.1 JOB parameters
The JOB statement //MYJOB JOB 1 has a job name MYJOB. The 1 is an accounting
field that can be subject to system exits that might be used for charging system
users.

Some common JOB statement parameters include:

REGION= Requests specific memory resources to be allocated to the
job.

NOTIFY= Sends notification of job completion to a particular user, such
as the submitter of the job.

USER= Specifies that the job is to assume the authority of the user
ID specified.

TYPRUN= Delays or holds the job from running, to be released later.
CLASS= Directs a JCL statement to execute on a particular input

queue.
MSGCLASS= Directs job output to a particular output queue.
MSGLEVEL= Controls the number of system messages to be received.

Example:

//MYJOB JOB 1,NOTIFY=&SYSUID,REGION=6M

6.2.2 EXEC parameters
The EXEC JCL statement //MYSTEP EXEC has a stepname of MYSTEP. Following
the EXEC is either PGM=(executable program name) or a JCL procedure name.
When a JCL PROC is present, then the parameters will be the variable
substitutions required by the JCL PROC. Common parameters found on the EXEC
PGM= statement are:

PARM= Parameters known by and passed to the program.
COND= Boolean logic for controlling execution of other EXEC steps in

this job. IF, THEN, ELSE JCL statements exist that are superior
to using COND; however, lots of old JCL may exist in production
environments using this statement.

JOB
Statement
JCL that
identifies the
job and the
user who
submits it.

EXEC
Statement
JCL that gives
the name of a
program to be
executed.
202 Introduction to the New Mainframe: z/OS Basics

TIME= Imposes a time limit.

Example:

//MYSTEP EXEC PGM=SORT

6.2.3 DD parameters
The DD JCL statement //MYDATA DD has a ddname of MYDATA. The DD or Data
Definition statement has significantly more parameters than the JOB or EXEC
statements. The DD JCL statement can be involved with many aspects of
defining or describing attributes of the program inputs or outputs. Some common
DD statement parameters are:

DSN= The name of the data set; this can include creation of temporary
or new data sets or a reference back to the data set name.

DISP= Data set disposition, such as whether the data set needs to be
created or already exists, and whether the data set can be
shared by more than one job. DISP= is so important, in fact, that
we devote the next section to it: 6.3, “Data set disposition, DISP
parameter” on page 204.

SPACE= Amount of disk storage requested for a new data set.
SYSOUT= Defines a print location (and the output queue or data set).
VOL=SER= Volume name, disk name or tape name.
UNIT= System disk, tape, special device type, or esoteric (local name).
DEST= Routes output to a remote destination.
DCB= Data set control block, numerous subparameters.

Most common subparameters:
LRECL= Logical record length. Number of bytes/characters in each

record.
RECFM= Record format, fixed, blocked, variable, etc.
BLOCKSIZE= Store records in a block of this size, typically a multiple of

LRECL. A value of 0 will let the system pick the best value.
DSORG= Data set organization—sequential, partitioned, etc.

LABEL= Tape label expected (No Label or Standard Label followed by
data set location). A tape can store multiple data sets; each data
set on the tape is in a file position. The first data set on tape is file
1.

DUMMY Results in a null input or throwing away data written to this
ddname.

* Input data or control statements follow—a method of passing
data to a program from the JCL stream.

*,DLM= Everything following is data input (even //) until the two
alphanumeric or special characters specified are encountered in
column 1.

DD Statement
Specifies
inputs and
outputs for the
program in the
EXEC
statement.
 Chapter 6. Using JCL and SDSF 203

6.3 Data set disposition, DISP parameter
All JCL parameters are important, but the DISP function is perhaps the most
important for DD statements. Among its other uses, the DISP parameter advises
the system about data set enqueuing needed for this job to prevent conflicting
use of the data set by other jobs.

The complete parameter has these fields:

DISP=(status,normal end,abnormal end)
DISP=(status,normal end)
DISP=status

where status can be NEW, OLD, SHR, or MOD:

NEW Indicates that a new data set is to be created. This job has exclusive
access to the data set while it is running. The data set must neither
already exist on the same volume as the new data set nor be in a
system or user catalog.

OLD Indicates that the data set already exists and that this job is to have
exclusive access to it while it is running.

SHR Indicates that the data set already exists and that several concurrent
jobs can share access while they are running. All the concurrent jobs
must specify SHR.

MOD Indicates that the data set already exists and the current job must
have exclusive access while it is running. If the current job opens the
data set for output, the output will be appended to the current end of
the data set.

The normal end parameter indicates what to do with the data set (the
disposition) if the current job step ends normally. Likewise, the abnormal end
parameter indicates what to do with the data set if the current job step
abnormally ends.

The options are the same for both parameters:

DELETE Delete (and uncatalog) the data set at the end of the job step
KEEP Keep (but not catalog) the data set at the end of the job step
CATLG Keep and catalog the data set at the end of the job step
UNCATLG Keep the data set but uncatalog it at the end of the job step
PASS Allow a later job step to specify a final disposition.

The default disposition parameters (for normal and abnormal end) are to leave
the data set as it was before the job step started. (We discussed catalogs in
5.11.2, “What is a catalog?” on page 182.)

Job Step
The JCL
statements that
request and
control
execution of a
program and
that specify the
resources
needed to run
the program.
204 Introduction to the New Mainframe: z/OS Basics

You might wonder, what would happen if you specified DISP=NEW for a data set
that already exists? Very little, actually! To guard against the inadvertent erasure
of files, z/OS rejects a DISP=NEW request for an existing data set. You get a JCL
error message instead of a new data set.

6.3.1 Creating new data sets
If the DISP parameter for a data set is NEW, you must provide more information,
including:

� A data set name.

� The type of device for the data set.

� A volser if it is a disk or labeled tape.

� If a disk is used, the amount of space to be allocated for the primary extent
must be specified.

� If it is a partitioned data set, the size of the directory must be specified.

� Optionally, DCB parameters can be specified. Alternately, the program that
will write the data set can provide these parameters.

The DISP and data set names have already been described. Briefly, the other
parameters are:

Volser The format for this in a DD statement is VOL=SER=xxxxxx,
where xxxxxx is the volser. The VOL parameter can specify
other details, which is the reason for the format.

Device type There are a number of ways to do this, but UNIT=xxxx is the
most common. The xxxx can be an IBM device type (such as
3390), or a specific device address (such as 300), or an
esoteric name defined by the installation (such as SYSDA).
Typically, you code SYSDA to tell the system to choose any
available disk volume from a pool of available devices.

Member name Remember that a library (or partitioned data set, PDS)
member can be treated as a data set by many applications and
utilities. The format DSNAME=ZPROF.LIB.CNTL(TEST) is used
to reference a specific member. If the application or utility
program is expecting a sequential data set, then either a
sequential data set or a member of a library must be specified.
A whole library name (without a specific member name) can be
used only if the program/utility is expecting a library name.

Space:
The SPACE DD parameter is required for allocating data sets on DASD. It
identifies the space required for your data set. Before a data set can be created
 Chapter 6. Using JCL and SDSF 205

on disk, the system must know how much space the data set requires and how
the space is to be measured.

There are a number of different formats and variations for this. Common
examples are:

SPACE=(TRK,10) 10 tracks, no secondary extents
SPACE=(TRK,(10,5)) 10 tracks primary, 5 tracks for each secondary extent
SPACE=(CYL,5) Can use CYL (cylinders) instead of TRK
SPACE=(TRK,(10,5,8))PDS with 8 directory blocks
SPACE=(1000,(50000,10000))Primary 50000 records@1000 bytes each

In the basic case, SPACE has two parameters. These are the unit of measure
and the amount of space. The unit of measure can be tracks, cylinders, or the
average block size.1

The amount of space typically has up to three subparameters:

� The first parameter is the primary extent size, expressed in terms of the unit
of measure. The system will attempt to obtain a single extent (contiguous
space) with this much space. If the system cannot obtain this space in not
more than five extents (on a single volume) before the job starts, the job is
failed.

� The second parameter, if used, is the size of each secondary extent. The
system does not obtain this much space before the job starts and does not
guarantee that this space is available. The system obtains secondary extents
dynamically, while the job is executing. In the basic examples shown here the
secondary extents are on the same volume as the primary extent.

� The third parameter, if it exists, indicates that a partitioned data set (library) is
being created. This is the only indication that a PDS is being created instead
of another type of data set. The numeric value is the number of directory
blocks (255 bytes each) that are assigned for the PDS directory. (Another JCL
parameter is needed to create a PDSE instead of a PDS.)

If the space parameter contains more than one subparameter, the whole space
parameter must be inclosed in parentheses.

6.4 Continuation and concatenation
As a consequence of the limitations of the number of characters that could be
contained in single 80-column punched cards used in earlier systems, z/OS
introduced the concepts of continuation and concatenation. Therefore, z/OS

1 The unit of measure can also be KB and MB but these are not as commonly used.
206 Introduction to the New Mainframe: z/OS Basics

retained these conventions in order to minimize the impact on previous
applications and operations.

Continuation of JCL syntax involves a comma at the end of the last complete
parameter. The next JCL line would include // followed by at least one space,
then the additional parameters. JCL parameter syntax on a continuation line
must begin on or before column sixteen and should not extend beyond column
722.

//JOBCARD JOB 1,REGION=8M,NOTIFY=ZPROF

The JCL statement above would have the same result as the following
continuation JCL:

//JOBCARD JOB 1,
// REGION=8M,
// NOTIFY=ZPROF

An important feature of DD statements is the fact that a single ddname can have
multiple DD statements. This is called concatenation.

The following JCL indicates that data sets are concatenated:

//DATAIN DD DISP=OLD,DSN=MY.INPUT1
// DD DISP=OLD,DSN=MY.INPUT2
// DD DISP=SHR,DSN=YOUR.DATA

Concatenation applies only to input data sets. The data sets are automatically
processed in sequence. In the example, when the application program reads to
the end of MY.INPUT1, the system automatically opens MY.INPUT2 and starts
reading it. The application program is not aware that it is now reading a second
data set. This continues until the last data in the concatenation is read; at that
time the application receives an end-of -file indication.

6.5 Why z/OS uses symbolic file names
z/OS normally uses symbolic file names,3 and this is another defining
characteristic of this operating system. It applies a naming redirection between a
data set-related name used in a program and the actual data set used during
execution of that program. This is illustrated in Figure 6-2 on page 208.

2 Columns 73 through 80 are reserved for something called card sequence numbers.

Concatenation
A single ddname
can have multiple
DD statements
(input data sets).

3 This applies to normal traditional processing. Some languages, such as C, have defined interfaces
that bypass this function.
 Chapter 6. Using JCL and SDSF 207

Figure 6-2 DDNAME and DSNAME

In this illustration we have a program, in some arbitrary language, that needs to
open and read a data set.4 When the program is written, the name XYZ is
arbitrarily selected to reference the data set. The program can be compiled and
stored as an executable. When someone wants to run the executable program, a
JCL statement must be supplied that relates the name XYZ to an actual data set
name. This JCL statement is a DD statement. The symbolic name used in the
program is a DDNAME and the real name of the data set is a DSNAME.

The program can be used to process different input data sets simply by changing
the DSNAME in the JCL. This becomes significant for large commercial
applications that might use dozens of data sets in a single execution of the
program. A payroll program for a large corporation is a good example. This can
be an exceptionally complex application that might use hundreds of data sets.
The same program might be used for different divisions in the corporation by
running it with different JCL. Likewise, it can be tested against special test data
sets by using a different set of JCL.

4 The pseudo-program uses the term file, as is common in most computer languages.

OPEN FILE=XYZ
READ FILE=XYZ

...
CLOSE FILE=XYZ

Program

DDNAME

JCL for JOB

DSNAME

//XYZ DD DSNAME=MY.PAYROLL MY.PAYROLL

Symbolic File
Name
A naming
redirection
between a data
set-related
name used in a
program and
the actual data
set used during
execution of
that program.
208 Introduction to the New Mainframe: z/OS Basics

Figure 6-3 Symbolic file name - same program, but another data set

The firm could use the same company-wide payroll application program for
different divisions and only change a single parameter in the JCL card (the
DD DSN=DIV1.PAYROLL). The parameter value DIV1.PAYROLL would cause the
program to access the data set for Division 1. This example demonstrates the
power and flexibility afforded by JCL and symbolic file names.

This DDNAME--JCL--DSNAME processing applies to all traditional z/OS work
although it might not always be apparent. For example, when ISPF is used to edit
a data set, ISPF builds the internal equivalent of a DD statement and then opens
the requested data set with the DD statement. The ISPF user does not see this
processing—it takes place “transparently.”5

6.6 Reserved DDNAMES
A programmer can select almost any name for a DD name, however, using a
meaningful name (within the 8-character limit) is recommended.

There are a few reserved DD names that a programmer cannot use (all of these
are optional DD statements):

//JOBLIB DD ...
//STEPLIB DD ...
//JOBCAT DD ...
//STEPCAT DD ...
//SYSABEND DD ...
//SYSUDUMP DD ...
//SYSMDUMP DD ...

5 Here, we are temporarily ignoring some of the operational characteristics of the z/OS UNIX
interfaces of z/OS; the discussion applies to traditional z/OS usage.

OPEN FILE=XYZ
READ FILE=XYZ

...
CLOSE FILE=XYZ

Program

DDNAME

JCL for JOB

DSNAME

//XYZ DD DSNAME=DIV1.PAYROLL DIV1.PAYROLL
 Chapter 6. Using JCL and SDSF 209

//CEEDUMP DD ...

A JOBLIB DD statement, placed just after a JOB statement, specifies a library
that should be searched first for the programs executed by this job. A STEPLIB
DD statement, placed just after an EXEC statement, specifies a library that
should be searched first for the program executed by the EXEC statement. A
STEPLIB overrides a JOBLIB if both are used.

JOBCAT and STEPCAT are used to specify private catalogs, but these are rarely
used (the most recent z/OS releases no longer support private catalogs).
Nevertheless, these DD names should be treated as reserved names.

The SYSABEND, SYSUDUMP, SYSMDUMP, and CEEDUMP DD statements are
used for various types of memory dumps that are generated when a program
abnormally ends (or ABENDs.)

6.7 JCL procedures (PROCs)
Some programs and tasks require a larger amount of JCL than a user can easily
enter. JCL for these functions can be kept in procedure libraries. A procedure
library member contains part of the JCL for a given task—usually the fixed,
unchanging part of JCL. The user of the procedure supplies the variable part of
the JCL for a specific job. In other words, a JCL procedure is like a macro.

Such a procedure is sometimes known as a cataloged procedure. A cataloged
procedure is not related to the system catalog; rather, the name is a carryover
from another operating system.

Example 6-2 shows an example of a JCL procedure (PROC).

Example 6-2 Example JCL procedure

//MYPROC PROC
//MYSORT EXEC PGM=SORT
//SORTIN DD DISP=SHR,DSN=&SORTDSN
//SORTOUT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
// PEND

Much of this JCL should be recognizable now. JCL functions presented here
include:

� PROC and PEND statements are unique to procedures. They are used to identify
the beginning and end of the JCL procedure.

PROC
A procedure
library member
contains part
(usually the
fixed part) of
the JCL for a
given task.
210 Introduction to the New Mainframe: z/OS Basics

� PROC is preceded by a label or name; the name defined in Example 6-2 is
MYPROC.

� JCL variable substitution is the reason JCL PROCs are used. &SORTDSN is the
only variable in Example 6-2.

In Example 6-3 we include the inline procedure in Example 6-2 in our job stream.

Example 6-3 Sample inline procedure

//MYJOB JOB 1
//*---------------------------------*
//MYPROC PROC
//MYSORT EXEC PGM=SORT
//SORTIN DD DISP=SHR,DSN=&SORTDSN
//SORTOUT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
// PEND
//*---------------------------------*
//STEP1 EXEC MYPROC,SORTDSN=ZPROF.AREA.CODES
//SYSIN DD *
 SORT FIELDS=(1,3,CH,A)

When MYJOB is submitted, the JCL from Example 6-2 on page 210 is effectively
substituted for EXEC MYPROC. The value for &SORTDSN must be provided.

SORTDSN and its value were placed on a separate line, a continuation of the EXEC
statement. Notice the comma after MYPROC.

//SYSIN DD * followed by the SORT control statement will be appended to the
substituted JCL.

6.7.1 JCL PROC statement override
When an entire JCL PROC statement needs to be replaced, then a JCL PROC
override statement can be used. An override statement has the following form:

//stepname.ddname DD ...

Example 6-4 shows an example of overriding the SORTOUT DD statement in
MYPROC. Here, SORTOUT is directed to a newly created sequential data set.

Example 6-4 Sample procedure with statement override

//MYJOB JOB 1
//*---------------------------------*
//MYPROC PROC
//MYSORT EXEC PGM=SORT
//SORTIN DD DISP=SHR,DSN=&SORTDSN
 Chapter 6. Using JCL and SDSF 211

//SORTOUT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
// PEND
//*---------------------------------*
//STEP1 EXEC MYPROC,SORTDSN=ZPROF.AREA.CODES
//MYSORT.SORTOUT DD DSN=ZPROF.MYSORT.OUTPUT,
// DISP=(NEW,CATLG),SPACE=(CYL,(1,1)),
// UNIT=SYSDA,VOL=SER=SHARED,
// DCB=(LRECL=20,BLKSIZE=0,RECFM=FB,DSORG=PS)
//SYSIN DD *
 SORT FIELDS=(1,3,CH,A)

6.7.2 How is a job submitted for batch processing?
Using UNIX as an analogy, a UNIX process can be processed in the background
by appending an ampersand (&) to the end of a command or script. Pressing
Enter then submits the work as a background process.

In z/OS terminology, work (a job) is submitted for batch processing. Batch
processing is a rough equivalent to UNIX background processing. The job runs
independently of the interactive session. The term batch is used because it is a
large collection of jobs that can be queued, waiting their turn to be executed
when the needed resources are available. Commands to submit jobs might take
any of the following forms:

ISPF editor command line

SUBmit and press Enter.

ISPF command shell SUBmit ‘USER.JCL’
where the data set is sequential.

ISPF command line TSO SUBmit 'USER.JCL’
where the data set is sequential.

ISPF command line TSO SUBmit ‘USER.JCL(MYJOB)’
where the data set is a library or partitioned data set
containing member MYJOB.

TSO command line SUBmit 'USER.JCL’
212 Introduction to the New Mainframe: z/OS Basics

Example 6-5 shows three different points at which you can enter the SUBMIT
command.

Example 6-5 Several ways to submit a JCL stream for processing

6.8 Understanding SDSF
After submitting a job, it is common to use System Display and Search Facility
(SDSF) to review the output for successful completion or review and correct JCL
errors. SDSF allows you to display printed output held in the JES spool area.
Much of the printed output sent to JES by batch jobs (and other jobs) is never
 Chapter 6. Using JCL and SDSF 213

actually printed. Instead it is inspected using SDSF and deleted or used as
needed.

SDSF provides a number of additional functions, including:

� Viewing the system log and searching for any literal string
� Entering system commands (in earlier versions of the operating system, only

the operator could enter commands)
� Controlling job processing (hold, release, cancel, and purge jobs)
� Monitoring jobs while they are being processed
� Displaying job output before deciding to print it
� Controlling the order in which jobs are processed
� Controlling the order in which output is printed
� Controlling printers and initiators

Figure 6-4 shows the SDSF primary option menu.

Figure 6-4 SDSF primary option menu

SDSF
Displays
printed output
held in the JES
spool area for
inspection.
214 Introduction to the New Mainframe: z/OS Basics

SDSF uses a hierarchy of online panels to guide users through its functions, as
shown in Figure 6-5.

Figure 6-5 SDSF panel hierarchy

You can see the JES output data sets created during the execution of your batch
job. They are saved on the JES spool data set.

You can see the JES data sets in any of the following queues:

I Input
DA Execution queue
O Output queue
H Held queue
ST Status queue

For output and held queues, you cannot see those JES data sets you requested
to be automatically purged by setting a MSGCLASS sysout class that has been
defined to not save output. Also, depending on the MSGCLASS you chose on the
JOB card, the sysouts can be either in the output queue or in the held queue.

Primary
Option
Menu

SYSLOG
Panel

Display
Active
Users
Panel

Input
Queue
Panel

Output
Queue
Panel

Help
Output
Queue
Panel

Status
Panel

Printer
Panel

Initiator
Panel

Job
Data Set

Panel

Output
Descriptor

Panel

Output
Data Set

Panel
 Chapter 6. Using JCL and SDSF 215

Figure 6-6 SDSF viewing the JES2 Output files

Screen 1 in Figure 6-6 displays a list of the jobs we submitted and whose output
we directed to the held (Class T) queue, as identified in the MSGCLASS=T
parameter on the job card. In our case only one job has been submitted and
executed. Therefore, we only have one job on the held queue. Entering a ?
command in the NP column displays the output files generated by job 7359.

Screen 2 in Figure 6-6 displays three ddnames: the JES2 messages log file, the
JES2 JCL file, and the JES2 system messages file. This option is useful when
you are seeing jobs with many files directed to SYSOUT and you want to display
one associated with a specific step. You issue an S in the NP column to select a
file you want.

To see all files, instead of a ?, type S in the NP column; the JES2 job log is
displayed similar to the one shown in Example 6-6.

J E S 2 J O B L O G -- S Y S T E M S C 6 4 -- N O D E

13.19.24 JOB26044 ---- WEDNESDAY, 27 AUG 2003 ----
13.19.24 JOB26044 IRR010I USERID MIRIAM IS ASSIGNED TO THIS JOB.
13.19.24 JOB26044 ICH70001I MIRIAM LAST ACCESS AT 13:18:53 ON WEDNESDAY,
AUGU
13.19.24 JOB26044 $HASP373 MIRIAM2 STARTED - INIT 1 - CLASS A - SYS SC64
13.19.24 JOB26044 IEF403I MIRIAM2 - STARTED - ASID=0027 - SC64

Screen 1

Screen 2

Jobname
The name by
which a job is
known to the
system (JCL
statement).
216 Introduction to the New Mainframe: z/OS Basics

13.19.24 JOB26044 - --TIMINGS
(MINS.)--
13.19.24 JOB26044 -JOBNAME STEPNAME PROCSTEP RC EXCP CPU SRB
CLOCK
13.19.24 JOB26044 -MIRIAM2 STEP1 00 9 .00 .00
.00
13.19.24 JOB26044 IEF404I MIRIAM2 - ENDED - ASID=0027 - SC64
13.19.24 JOB26044 -MIRIAM2 ENDED. NAME-MIRIAM TOTAL CPU TIME=
13.19.24 JOB26044 $HASP395 MIRIAM2 ENDED
------ JES2 JOB STATISTICS ------
 27 AUG 2003 JOB EXECUTION DATE
 11 CARDS READ
 44 SYSOUT PRINT RECORDS
 0 SYSOUT PUNCH RECORDS
 3 SYSOUT SPOOL KBYTES
 0.00 MINUTES EXECUTION TIME
 1 //MIRIAM2 JOB 19,MIRIAM,NOTIFY=&SYSUID,MSGCLASS=T,
 // MSGLEVEL=(1,1),CLASS=A
 IEFC653I SUBSTITUTION JCL -
19,MIRIAM,NOTIFY=MIRIAM,MSGCLASS=T,MSGLEVE
 2 //STEP1 EXEC PGM=IEFBR14
 //*---*
//* THIS IS AN EXAMPLE OF A NEW DATA SET ALLOCATION
 //*---*
 3 //NEWDD DD DSN=MIRIAM.IEFBR14.TEST1.NEWDD,
 // DISP=(NEW,CATLG,DELETE),UNIT=SYSDA,
 // SPACE=(CYL,(10,10,45)),LRECL=80,BLKSIZE=3120
 4 //SYSPRINT DD SYSOUT=T
 /*
ICH70001I MIRIAM LAST ACCESS AT 13:18:53 ON WEDNESDAY, AUGUST 27, 2003
IEF236I ALLOC. FOR MIRIAM2 STEP1
IGD100I 390D ALLOCATED TO DDNAME NEWDD DATACLAS ()
IEF237I JES2 ALLOCATED TO SYSPRINT
IEF142I MIRIAM2 STEP1 - STEP WAS EXECUTED - COND CODE 0000
IEF285I MIRIAM.IEFBR14.TEST1.NEWDD CATALOGED
IEF285I VOL SER NOS= SBOX38.
IEF285I MIRIAM.MIRIAM2.JOB26044.D0000101.? SYSOUT
IEF373I STEP/STEP1 /START 2003239.1319
IEF374I STEP/STEP1 /STOP 2003239.1319 CPU 0MIN 00.00SEC SRB 0MIN
00.00S
IEF375I JOB/MIRIAM2 /START 2003239.1319
IEF376I JOB/MIRIAM2 /STOP 2003239.1319 CPU 0MIN 00.00SEC SRB 0MIN
00.00S

Example 6-6 JES2 job log
 Chapter 6. Using JCL and SDSF 217

6.9 Utilities
z/OS includes a number of programs useful in batch processing called utilities.
These programs provide many small, obvious, and useful functions. A basic set
of system-provided utilities is described in Appendix C, “Utility programs” on
page 579.

Customer sites often add their own customer-written utility programs (although
most users refrain from naming them utilities) and many of these are widely
shared by the user community. Independent software vendors also provide many
similar products (for a fee).

6.10 System libraries
z/OS has many standard system libraries. A brief description of several libraries
is appropriate here. The traditional libraries include:

� SYS1.PROCLIB. This library contains JCL procedures distributed with z/OS.
In practice, there are many other JCL procedure libraries (supplied with
various program products) concatenated with it.

� SYS1.PARMLIB. This library contains control parameters for z/OS and for
some program products. In practice, there may be other libraries
concatenated with it.

� SYS1.LINKLIB. This library contains many of the basic execution modules of
the system. In practice, it is one of a large number of execution libraries that
are concatenated.

� SYS1.LPALIB. This library contains system execution modules that are
loaded into the link pack area when the system is initialized. There may be
several other libraries concatenated with it. Programs stored here are
available to other address spaces.

� SYS1.NUCLEUS. This library contains the basic supervisor (“kernel”)
modules of z/OS.

� SYS1.SVCLIB. This library contains operating system routines known as
supervisor calls (SVCs).

These libraries are in standard PDS format and are found on the system disk
volumes. They are discussed in more detail in Section 16.3.1, “z/OS system
libraries” on page 464.

Utility
Programs that
provide many
useful batch
functions.

System
Library
PDS data sets
on the system
disk volumes
that hold control
parameters for
z/OS, JCL
procedures,
basic execution
modules, and
so on.
218 Introduction to the New Mainframe: z/OS Basics

6.11 Summary
Basic JCL contains three types of statements: JOB, EXEC, and DD. A job can
contain several EXEC statements (steps) and each step might have several DD
statements. JCL provides a wide range of parameters and controls; only a basic
subset is described here.

A batch job uses ddnames to access data sets. A JCL DD statement connects
the ddname to a specific data set (DS name) for one execution of the program. A
program can access different groups of data sets (in different jobs) by changing
the JCL for each job.

The DISP parameters of DD statements help to prevent unwanted simultaneous
access to data sets. This is very important for general system operation. The
DISP parameter is not a security control, rather it helps manage the integrity of
data sets. New data sets can be created through JCL by using the DISP=NEW
parameter and specifying the desired amount of space and the desired volume.

System users are expected to write simple JCL, but normally use JCL
procedures for more complex jobs. A cataloged procedure is written once and
can then be used by many users. z/OS supplies many JCL procedures, and
locally-written ones can be added easily. A user must understand how to override
or extend statements in a JCL procedure in order to supply the parameters
(usually DD statements) needed for a specific job.

6.12 Questions for review
To help test your understanding of the material in this chapter, complete the
following review questions:

1. In the procedure fragment and job in 6.7, “JCL procedures (PROCs)” on
page 210, where is the COBOL source code? What is the likely output data
set for the application? What is the likely input data set? How would we code
the JCL for a SYSOUT data set for the application?

Key terms in this chapter

concatenation DD statement EXEC statement

job control language (JCL) JOB statement job step

jobname PROC SDSF

symbolic file name system library utility
 Chapter 6. Using JCL and SDSF 219

2. We have three DD statements:

//DD1 DD UNIT=3480,...
//DD2 DD UNIT=0560,...
//DD3 DD UNIT=560,...

What do these numbers mean? How do we know this?

3. JCL can be submitted or started. What is the difference?

4. Explain the relationship between a data set name, a DD name, and the file
name within a program.

5. Which JCL statement (JOB, EXEC, or DD) has the most parameters? Why?

6. What is the difference between JCL and a JCL PROC? What is the benefit of
using a JCL PROC?

7. To override a JCL PROC statement in the JCL stream executing the PROC,
what PROC names must be known? What is the order of the names on the
JCL override statement?

8. When a JCL job has multiple EXEC statements, what is the type of name
associated with each EXEC statement?

6.13 Topics for further discussion
This material is intended to be discussed in class, and these discussions should
be regarded as part of the basic course text.

1. Why has the advent of database systems potentially changed the need for
large numbers of DD statements?

2. The first positional parameter of a JOB statement is an accounting field. How
important is accounting for mainframe usage? Why?

6.14 Exercises
The lab exercises in this chapter help you develop skills in creating batch jobs
and submitting them for execution on z/OS. These skills are required for
performing lab exercises in the remainder of this text.

To perform the lab exercises, you or your team requires a TSO user ID and
password (for assistance, see the instructor).

The exercises teach the following:

� “Creating a simple job” on page 221

� “Using ISPF in split screen mode” on page 223
220 Introduction to the New Mainframe: z/OS Basics

� “Manipulating text in ISPF” on page 224

� “Submitting a job and checking the results” on page 224

� “Creating a PDS member” on page 225

� “Copying a PDS member” on page 226

6.14.1 Creating a simple job
1. From ISPF, navigate to the Data Set List Utility panel and enter yourid.JCL in

the Dsname Level field (described in an earlier exercise).

2. Enter e (edit) to the left (in the command column) of yourid.JCL. Enter s
(select) to the left of member JCLTEST. Enter RESet on the editor command
line.

3. Notice that only a single JCL line is in the data set, EXEC PGM=IEFBR14.
This is a system utility that does not request any input or output and is
designed to complete with a successful return code (0). Enter SUBMIT or
SUB on the command line and press Enter.

4. Enter 1 in response to the message:

IKJ56700A ENTER JOBNAME CHARACTER(S) -

The result will be the message:

IKJ56250I JOB yourid1(JOB00037) SUBMITTED

Note: Whenever you see three asterisks (***), it means there’s more data to see.
Press Enter to continue.

When the job finishes, you should see the message:

$HASP165 yourid1 ENDED AT SYS1 MAXCC=0 CN(INTERNAL)

5. Add (insert) a new first line in your file that will hold a JOB statement. The
JOB statement must precede the EXEC statement. (Hint: Replicate (r) the
single EXEC statement, then overwrite the EXEC statement with your JOB
statement.) This JOB statement should read:

//youridA JOB 1

Replace “yourid” with your team user ID, leave the “A”, then submit this JCL and
press PF3 to save the file and exit the editor.

6. From the ISPF Primary Option Menu, find SDSF (described in 7.9.5, “Using
SDSF” on page 248). You can use the split screen function for a new screen
session, giving you one session for the DSLIST and the other for SDSF.

7. In the SDSF menu, enter PREFIX yourid*, then enter ST (Status Panel). Both
jobs that you submitted should be listed. Place S (select) to the left of either
 Chapter 6. Using JCL and SDSF 221

job, then page up and down to view the messages produced from the
execution. Press PF3 to exit.

8. Edit JCLTEST again, and insert the following lines at the bottom:

//CREATE DD DSN=yourid.MYTEST,DISP=(NEW,CATLG),
// UNIT=SYSDA,SPACE=(TRK,1)

9. Submit the content of JCLTEST created above, press PF3 (save and exit
edit), then view the output of this job using SDSF. Notice that you have two
jobs with the same jobname. The jobname with the highest JOBID number is
the last one that was run.

a. What was the condition code? If it was greater than 0, page down to the
bottom of the output listing to locate the JCL error message. Correct the
JCLTEST and resubmit. Repeat until cond code=0000 is received.

b. Navigate to the Data Set List Utility panel (=3.4) and enter yourid.MYTEST
in the DSNAME level field. What volume was used to store the data set?

c. Enter DEL / in the numbered left (command) column of the data set to
delete the data set. A confirmation message may appear asking you to
confirm that you want to delete the data set.

d. We just learned that batch execution of program IEFBR14, which requires
no inputs or outputs, returns a condition code 0 (success) if there were no
JCL errors. Although IEFBR14 does no I/O, JCL instructions are read and
executed by the system. This program is useful for creating (DISP=NEW)
and deleting (DISP=(OLD,DELETE)) data sets on a DD statement.

10.From any ISPF panel, enter in the Command Field ==>

TSO SUBMIT JCL(JCLERROR)

Your user ID is the prefix (high-level qualifier) of data set JCL containing
member JCLERROR.

a. You will be prompted to enter a suffix character for a generated job card.
Take note of the jobname and job number from the submit messages.

b. Use SDSF and select the job output. Page down to the bottom. Do you
see the JCL error? What are the incorrect and correct JCL DD operands?
Correct the JCL error located in yourid.JCL(JCLERROR). Resubmit
JCLERROR to validate your correction.

11.From any ISPF panel, enter TSO SUBMIT JCL(SORT). Your user ID is the
assumed prefix of data set JCL containing member SORT.

a. You will be prompted to enter a suffix character for a generated job card.
Take note of the jobname and job number from the submit messages.

b. Use SDSF and place a ? to the left of the job name. The individual listing
from the job will be displayed. Place s (select) to the left of SORTOUT to
222 Introduction to the New Mainframe: z/OS Basics

view the sort output, then press PF3 to return. Select JESJCL. Notice the
“job statement generated message” and the “substitution JCL” messages.

12.Let’s purge some (or all) unnecessary job output. From SDSF, place a p
(purge) to the left of any job that you would like to purge from the JES output
queue.

13.From the ISPF panel, enter TSO SUBMIT JCL(SORT) and review the output.

14.From the ISPF panel, enter TSO SUBMIT JCL(SORTPROC) and review the output.
You may not see the output in the SDSF ST panel. This is because the
jobname is not starting with yourid. To see all output, enter PRE *, then OWNER
yourid to see only the jobs that are owned by you.

15.What JCL differences exist between SORT and SORTPROC? In both JCL
streams, the SYSIN DD statement references the sort control statement.
Where is the sort control statement located?

16.Edit the partitioned data set member containing the SORT control statement.
Change FIELD=(1,3,CH,A) to FIELD=(6,20,CH,A). Press PF3 and then from
the ISPF panel enter TSO SUBMIT JCL(SORT). Review the job’s output using
SDSF. Was this sorted by code or area?

17.From the ISPF panel, enter TSO LISTC ALL. By default, this will list all catalog
entries for data sets beginning with yourid. The system catalog will return the
data set names, the name of the catalog storing the detailed information, the
volume location, and a devtype number that equates to specific values for
JCL UNIT= operand. LISTC is an abbreviation for LISTCAT.

6.14.2 Using ISPF in split screen mode
As discussed earlier, most ISPF users favor a split screen. This is easily done:

1. Move the cursor to the bottom (or top) line.

2. Press PF2 to split the screen.

3. Press PF9 to switch between the two screens.

4. Use PF3 (perhaps several times) to exit from one of the splits. The screen
need not be split at the top or bottom. The split line can be positioned on any
line by using PF2. More than two screens can be used. Try to use these ISPF
commands:

START
SWAP LIST
SWAP <screen number.>

Tip: All JCL references to &SYSUID are replaced with the user ID that
submitted the job.
 Chapter 6. Using JCL and SDSF 223

6.14.3 Manipulating text in ISPF
After logging on to TSO/E and activating ISPF, look at the primary option menu.

1. Enter each option and write down its purpose and function. Each team should
prepare a brief summary for one of the 12 functions on the ISPF panel (Items
0-11). Note that z/OS installations often heavily customize the ISPF panels to
suit their needs.

2. Create a test member in a partitioned data set. Enter some lines of
information, then experiment with the commands below. Use PF1 if you need
help.

i Insert a line.
Enter key Press Enter without entering anything to escape insert

mode.
i5 Obtain 5 input lines.
d Delete a line.
d5 Delete 5 lines.
dd/dd Delete a block of lines (place a DD on the first line of

the block and another DD on the last line of the block).
r Repeat (or replicate) a line.
rr/rr Repeat (replicate) a block of lines (where an RR marks

the first line of the block and another RR marks the last
line).

c along with a or b Copy a line after or before another line.
c5 along with a or b Copy 5 lines after or before another line.
cc/cc along with a or b Copy a block of lines after or before another line.
m, m5, mm/mm Move line(s).
x, x5, xx/xx Exclude lines.
s Redisplay (show) the lines you excluded.
(Shift right columns.
) Shift left columns.
< Shift left data.
> Shift right data.

6.14.4 Submitting a job and checking the results
Edit member COBOL1 in the yourid.LIB.SOURCE library and inspect the
COBOL program. There is no JCL with it. Now edit member COBOL1 in
yourid.JCL.6 Inspect the JCL carefully. It uses a JCL procedure to compile and
run a COBOL program.7 Follow these steps:

1. Change the job name to yourid plus additional characters.

6 The matching member names (COBOL1) are not required; however, they are convenient.
7 This is not exactly the COBOL procedure we discussed earlier. Details of these procedures
sometimes change from release to release of the operating system.
224 Introduction to the New Mainframe: z/OS Basics

2. Change the NOTIFY parameter to your user ID.

3. Add TYPRUN=SCAN to your job card.

4. Type SUB on the ISPF command line to submit the job.

5. Split your ISPF screen and go to SDSF on the new screen (you might have
this already from an earlier exercise).

6. In SDSF go to the ST (Status) display and look for your job name.

You may need to enter a PRE or OWNER command on the SDSF command
line to see any job names. (A previous user may have issued a prefix
command to see only certain job names.)

7. Type S beside your job name to see all of the printed output:

– Messages from JES2
– Messages from the initiator
– Messages from the COBOL compiler
– Messages from the binder
– Output from the COBOL program

7. Remove TYPRUN=SCAN when you are ready to run your job.

8. Use PF3 to “move up” a level and type ? beside your job name to display
another output format.

The instructor can tell you the purposes of the various JES2 and initiator
messages.

� Resubmit the job with MSGLEVEL=(1,1) on the JOB statement.

� Resubmit the job with MSGLEVEL=(0,0) on the JOB statement.

The MSGLEVEL parameter controls the number of initiator messages that are
produced.

6.14.5 Creating a PDS member
There are several ways to create a new PDS member. Try each of the following,
using your own user ID. In the following steps, TEST3, TEST4, TEST5, and
TEST6 represent new member names. Enter a few lines of text in each case.
Use the ISPF edit panel:

� Go to the ISPF primary menu.

� Go to option 2 (Edit).

� In the Data Set Name line, enter JCL(TEST3) (no quotes!)

� Enter a few text lines and use PF3 to save the new member.
 Chapter 6. Using JCL and SDSF 225

A new member can be created while viewing the member list in edit mode:

� Use option 3.4 (or option 2) to edit yourid.JCL.

� While viewing the member list, enter S TEST4 in the command line.

� Enter a few text lines and use PF3 to save the new member.

A new member can be created while editing an existing member:

� Edit yourid.JCL(TEST1) or any other existing member.

� Select a block of lines by entering cc (in the line command area) in the first
and last lines of the block.

� Enter CREATE TEST5 on the command line. This will create member TEST5 in
the current library.

A new member can be created with JCL. Enter the following JCL in
yourid.JCL(TEST5) or any other convenient location:

//yourid1 JOB 1,JOE,MSGCLASS=X
//STEP1 EXEC PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=*
//SYSUT2 DD DISP=OLD,DSN= yourid.JCL(TEST6)
//SYSUT1 DD *
This is some text to put in the member
More text
/*

Save the member with this JCL. It will be used later.

6.14.6 Copying a PDS member
There are many ways to copy a library member. An earlier exercise used the
ISPF 3.3 panel function to copy all the members of a library. The same function
can be used to copy one or more members.

While editing a library member, we can copy another member of the library into it:

� Edit a library member.

� Mark a line in this member with a (after) or b (before) to indicate where the
other member should be copied.

� Enter COPY xxx on the command line, where xxx is the name of another
member in the current data set.
226 Introduction to the New Mainframe: z/OS Basics

We can copy a member from another data set (or a sequential data set) as
follows:

� Edit a member or sequential data set.

� Mark a line with A (after) or B (before) to indicate where to insert the new
material.

� Enter COPY on the command line to display the Edit/View-Copy panel.

� Enter the full sequential data set name (with single quotes, if necessary) or a
full library name (including member name) in the Data Set Name field.
 Chapter 6. Using JCL and SDSF 227

228 Introduction to the New Mainframe: z/OS Basics

Chapter 7. Batch processing and JES

7

Objective: As a mainframe professional, you will need to understand the ways
in which the system processes your company’s core applications, such as
payroll. Such workloads are usually performed through batch processing,
which involves executing one or more batch jobs in a sequential flow.

Further, you will need to understand how the job entry subsystem (JES)
enables batch processing. JES helps z/OS receive jobs, schedule them for
processing, and determine how job output is processed.

After completing this chapter, you will be able to:

� Give an overview of batch processing and how work is initiated and
managed in the system.

� Explain how JES governs the flow of work through a z/OS system.
© Copyright IBM Corp. 2006. All rights reserved. 229

7.1 What is batch processing?
The term batch job originated in the days when punched cards contained the
directions for a computer to follow when running one or more programs. Multiple
card decks representing multiple jobs would often be stacked on top of one
another in the hopper of a card reader, and be run in batches.

As a historical note, Herman Hollerith (1860-1929) created the punched card in
1890 while he worked as a statistician for the United States Census Bureau. To
help tabulate results for the 1890 U.S. census, Hollerith designed a paper card
with 80 columns and 12 rows; he made it equal to the size of a U.S. dollar bill of
that time. To represent a series of data values, he punched holes into the card at
the appropriate row/column intersections. Hollerith also designed an
electromechanical device to “read” the holes in the card, and the resulting
electrical signal was sorted and tabulated by a computing device. (Mr. Hollerith
later founded the Computing Tabulating Recording Company, which eventually
became IBM.)

Today, jobs that can run without end user interaction, or can be scheduled to run
as resources permit, are called batch jobs. A program that reads a large file and
generates a report, for example, is considered to be a batch job.

There is no direct counterpart to z/OS batch processing in PC or UNIX systems.
Batch processing is for those frequently used programs that can be executed
with minimal human interaction. They are typically executed at a scheduled time
or on an as-needed basis. Perhaps the closest comparison is with processes run
by an AT or CRON command in UNIX, although the differences are significant.
You might also consider batch processing as being somewhat analogous to the
printer queue as it is typically managed on an Intel-based operating system.
Users submit jobs to be printed, and the print jobs wait to be processed until
each is selected by priority from a queue of work called a print spool.

To enable the processing of a batch job, z/OS professionals use job control
language or JCL to tell z/OS which programs are to be executed and which files
will be needed by the executing programs. As we learned in Chapter 6, “Using
JCL and SDSF” on page 199, JCL allows the user to describe certain attributes
of a batch job to z/OS, such as:

� Who you are (the submitter of the batch job)
� What program to run
� Where input and output are located
� When a job is to run

After the user submits the job to the system, there is normally no further human
interaction with the job until it is complete.

Batch Job
Program that
can be
executed with
minimal human
interaction,
typically
executed at a
scheduled
time.
230 Introduction to the New Mainframe: z/OS Basics

7.2 What is JES?
z/OS uses a job entry subsystem or JES to receive jobs into the operating
system, to schedule them for processing by z/OS, and to control their output
processing. JES is the component of the operating system that provides
supplementary job management, data management, and task management
functions such as scheduling, control of job flow, and the reading and writing of
input and output streams on auxiliary storage devices, concurrently with job
execution (a process called spooling).

z/OS manages work as tasks and subtasks. Both transactions and batch jobs are
associated with an internal task queue that is managed on a priority basis. JES is
a component of z/OS that works on the front end of program execution to prepare
work to be executed. JES is also active on the back end of program execution to
help clean up after work is performed. This includes managing the printing of
output generated by active programs.

More specifically, JES manages the input and output job queues and data.

For example, JES handles the following aspects of batch processing for z/OS:

� Receiving jobs into the operating system
� Scheduling them for processing by z/OS
� Controlling their output processing

z/OS has two versions of job entry systems: JES2 and JES3. Of these, JES2 is
the most common by far and is the JES used in examples in this text. JES2 and
JES3 have many functions and features, but their most basic functions are as
follows:

� Accept jobs submitted in various ways:

– From ISPF through the SUBMIT command
– Over a network
– From a running program, which can submit other jobs through the JES

internal reader
– From a card reader (very rare!)

� Queue jobs waiting to be executed. Multiple queues can be defined for
various purposes.

� Queue jobs for an initiator, which is a system program that requests the next
job in the appropriate queue.

� Accept printed output from a job while it is running and queue the output.

� Optionally, send output to a printer, or save it on spool for PSF, InfoPrint, or
another output manager to retrieve.

JES
A collection of
programs that
handles the
batch workload
on z/OS.

Spooling
The reading
and writing (by
JES) of input
and output
streams on
auxiliary
storage
devices,
concurrently
with job
execution.
 Chapter 7. Batch processing and JES 231

JES uses one or more disk data sets for spooling, which is the process of
reading and writing input and output streams on auxiliary storage devices,
concurrently with job execution, in a format convenient for later processing or
output operations. Spool is an acronym that stands for simultaneous peripheral
operations online.

JES combines multiple spool data sets (if present) into a single conceptual data
set. The internal format is not in a standard access-method format and is not
written or read directly by applications. Input jobs and printed output from many
jobs are stored in the single (conceptual) spool data set. In a small z/OS system
the spool data sets might be a few hundred cylinders of disk space; in a large
installation they might be many complete volumes of disk space.

The basic elements of batch processing are shown in Figure 7-1.

Figure 7-1 Basic batch flow

The initiator is an integral part of z/OS that reads, interprets, and executes the
JCL. It is normally running in several address spaces (as multiple initiators). An
initiator manages the running of batch jobs, one at a time, in the same address
space. If ten initiators are active (in ten address spaces), then ten batch jobs can
run at the same time. JES does some JCL processing, but the initiator does the
key JCL work

Initiator
- Allocation
- Execution
- Cleanup

JOBs

JCL Processing

JES

SPOOLSPOOL

Initiator
- Allocation
- Execution
- Cleanup

Submit

Printer

Initiator
The part of the
operating
system that
reads and
processes
operation
control
language
statements from
the system input
device.
232 Introduction to the New Mainframe: z/OS Basics

The jobs in Figure 7-1 represent JCL and perhaps data intermixed with the JCL.
Source code input for a compiler is an example of data (the source statements)
that might be intermixed with JCL. Another example is an accounting job that
prepares the weekly payroll for different divisions of a firm (presumably, the
payroll application program is the same for all divisions, but the input and master
summary files may differ).

The diagram represents the jobs as punched cards (using the conventional
symbol for punched cards) although real punched card input is very rare now.
Typically, a job consists of card images (80-byte fixed-length records) in a
member of a partitioned data set.

7.3 What does an initiator do?
To run multiple jobs asynchronously, the system must perform a number of
functions:

� Select jobs from the input queues (JES does this).

� Ensure that multiple jobs (including TSO users and other interactive
applications) do not conflict in data set usage.

� Ensure that single-user devices, such as tape drives, are allocated correctly.

� Find the executable programs requested for the job.

� Clean up after the job ends and then request the next job.

Most of this work is done by the initiator, based on JCL information for each job.
The most complex function is to ensure there are no conflicts due to data set
utilization. For example, if two jobs try to write in the same data set at the same
time (or one reads while the other writes), there is a conflict.1 This event would
normally result in corrupted data. The primary purpose of JCL is to tell an initiator
what is needed for the job.

The prevention of conflicting data set usage is critical to z/OS and is one of the
defining characteristics of the operating system. When the JCL is properly
constructed, the prevention of conflicts is automatic. For example, if job A and job
B must both write to a particular data set, the system (through the initiator) does
not permit both jobs to run at the same time. Instead, whichever job starts first
causes an initiator attempting to run the other job to wait until the first job
completes.

1 There are cases where such usage is correct and JCL can be constructed for these cases. In the
case of simple batch jobs, such conflicts are normally unacceptable.
 Chapter 7. Batch processing and JES 233

7.4 Job and output management with JES and initiators
Let’s look at how JES and the z/OS initiators work together to process batch jobs,
using two scenarios.

7.4.1 Batch job Scenario 1

Imagine that you are a z/OS application programmer developing a program for
non-skilled users. Your program is supposed to read a couple of files, write to
another couple of files, and produce a printed report. This program will run as a
batch job on z/OS.

What sorts of functions are needed in the operating system to fulfill the
requirements of your program? And, how will your program access those
functions?

First, you need a sort of special language to inform the operating system about
your needs. On z/OS, this is Job Control Language (JCL). The use of JCL is
covered in detail in Chapter 6, “Using JCL and SDSF” on page 199, but for now
assume that JCL provides the means for you to request resources and services
from the operating system for a batch job.

Specifications and requests you might make for a batch job include the functions
you need to compile and execute the program, and allocate storage for the
program to use as it runs.

With JCL, you can specify the following:

� Who you are (important for security reasons).

� Which resources (programs, files, memory) and services are needed from the
system to process your program. You might, for example, need to do the
following:

– Load the compiler code in memory.
– Make accessible to the compiler your source code, that is, when the

compiler asks for a read, your source statements are brought to the
compiler memory.

– Allocate some amount of memory to accommodate the compiler code, I/O
buffers, and working areas.

– Make accessible to the compiler an output disk data set to receive the
object code, which is usually referred to as the object deck or simply OBJ.

– Make accessible to the compiler a print file where it will tell you your
eventual mistakes.

– Conditionally, have z/OS load the newly created object deck into memory
(but skip this step if the compilation failed).

– Allocate some amount of memory for your program to use.
234 Introduction to the New Mainframe: z/OS Basics

– Make accessible to your program all the input and output files.
– Make accessible to your program a printer for eventual messages.

In turn, you require the operating system to:

� Convert JCL to control blocks that describe the required resources.

� Allocate the required resources (programs, memory, files).

� Schedule the execution on a timely basis, for example, your program only
runs if the compilation succeeds.

� Free the resources when the program is done.

The parts of z/OS that perform these tasks are JES and a batch initiator program.

Think of JES as the manager of the jobs waiting in a queue. It manages the
priority of the set of jobs and their associated input data and output results. The
initiator uses the statements on the JCL cards to specify the resources required
of each individual job once it has been released (dispatched) by JES.

Your JCL as described is called a job—in this case formed by two sequential
steps, the compilation and execution. The steps in a job are always executed
sequentially. The job must be submitted to JES in order to be executed. In order
to make your task easier, z/OS provides a set of procedures in a data set called
SYS1.PROCLIB. A procedure is a set of JCL statements that are ready to be
executed.

Example 7-1 shows a JCL procedure that can compile, link-edit and execute a
program (these steps are described in Chapter 8, “Designing and developing
applications for z/OS” on page 255). The first step identifies the COBOL
compiler, as declared in //COBOL EXEC PGM=IGYCRCTL. The statement //SYSLIN
DD describes the output of the compiler (the object deck).

The object deck is the input for the second step, which performs link-editing
(through program IEWL). Link-editing is needed to resolve external references
and bring in or link the previously developed common routines (a type of code
re-use).

In the third step, the program is executed.

Example 7-1 Procedure to compile, link-edit, and execute programs

000010 //IGYWCLG PROC LNGPRFX='IGY.V3R2M0',SYSLBLK=3200,
000020 // LIBPRFX='CEE',GOPGM=GO
000030 //*
000040 //***
000050 //* *
000060 //* Enterprise COBOL for z/OS and OS/390 *
000070 //* Version 3 Release 2 Modification 0 *

Procedure
A set of JCL
statements.
 Chapter 7. Batch processing and JES 235

000080 //* *
000090 //* LICENSED MATERIALS - PROPERTY OF IBM. *
000100 //* *
000110 //* 5655-G53 5648-A25 (C) COPYRIGHT IBM CORP. 1991, 2002 *
000120 //* ALL RIGHTS RESERVED *
000130 //* *
000140 //* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, *
000150 //* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA *
000160 //* ADP SCHEDULE CONTRACT WITH IBM CORP. *
000170 //* *
000180 //***
000190 //*
000300 //COBOL EXEC PGM=IGYCRCTL,REGION=2048K
000310 //STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP,
000320 // DISP=SHR
000330 //SYSPRINT DD SYSOUT=*
000340 //SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSDA,
000350 // DISP=(MOD,PASS),SPACE=(TRK,(3,3)),
000360 // DCB=(BLKSIZE=&SYSLBLK)
000370 //SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
000440 //LKED EXEC PGM=HEWL,COND=(8,LT,COBOL),REGION=1024K
000450 //SYSLIB DD DSNAME=&LIBPRFX..SCEELKED,
000460 // DISP=SHR
000470 //SYSPRINT DD SYSOUT=*
000480 //SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,DELETE)
000490 // DD DDNAME=SYSIN
000500 //SYSLMOD DD DSNAME=&&GOSET(&GOPGM),SPACE=(TRK,(10,10,1)),
000510 // UNIT=SYSDA,DISP=(MOD,PASS)
000520 //SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
000530 //GO EXEC PGM=*.LKED.SYSLMOD,COND=((8,LT,COBOL),(4,LT,LKED)),
000540 // REGION=2048K
000550 //STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,
000560 // DISP=SHR
000570 //SYSPRINT DD SYSOUT=*
000580 //CEEDUMP DD SYSOUT=*
000590 //SYSUDUMP DD SYSOUT=*

To invoke a procedure, you can write some simple JCL, as shown in
Example 7-2. In this example, we added other DD statements, such as:

//COBOL.SYSIN DD *

It contains the COBOL source code.

Example 7-2 COBOL program

000001 //COBOL1 JOB (POK,999),MGELINSKI,MSGLEVEL=(1,1),MSGCLASS=X,
000002 // CLASS=A,NOTIFY=&SYSUID
000003 /*JOBPARM SYSAFF=*
236 Introduction to the New Mainframe: z/OS Basics

000004 // JCLLIB ORDER=(IGY.SIGYPROC)
000005 //*
000006 //RUNIVP EXEC IGYWCLG,PARM.COBOL=RENT,REGION=1400K,
000007 // PARM.LKED='LIST,XREF,LET,MAP'
000008 //COBOL.STEPLIB DD DSN=IGY.SIGYCOMP,
000009 // DISP=SHR
000010 //COBOL.SYSIN DD *
000011 IDENTIFICATION DIVISION.
000012 PROGRAM-ID. CALLIVP1.
000013 AUTHOR. STUDENT PROGRAMMER.
000014 INSTALLATION. MY UNIVERSITY
000015 DATE-WRITTEN. JUL 27, 2004.
000016 DATE-COMPILED.
000017 /
000018 ENVIRONMENT DIVISION.
000019 CONFIGURATION SECTION.
000020 SOURCE-COMPUTER. IBM-390.
000021 OBJECT-COMPUTER. IBM-390.
000022
000023 PROCEDURE DIVISION.
000024 DISPLAY "***** HELLO WORLD *****" UPON CONSOLE.
000025 STOP RUN.
000026
000027 //GO.SYSOUT DD SYSOUT=*
000028 //

During the execution of a step, the program is controlled by z/OS, not by JES
(Figure 7-2). Also, a spooling function is needed at this point in the process.
 Chapter 7. Batch processing and JES 237

Figure 7-2 Related actions with JCL

Spooling is the means by which the system manipulates its work, including:

� Using storage on direct access storage devices (DASDs) as buffer storage to
reduce processing delays when transferring data between peripheral
equipment and a program to be run.

� Reading and writing input and output streams on an intermediate device for
later processing or output.

� Performing an operation such as printing while the computer is busy with
other work.

There are two sorts of spooling: input and output. Both improve the performance
of the program reading the input and writing the output.

To implement input spooling in JCL, you declare // DD *, which defines one file
whose content records are in JCL between the // DD * statement and the /*
statements. All the logical records must have 80 characters. In this case this file
is read and stored in a specific JES2 spool area (a huge JES file on disk) as
shown in Figure 7-3.

USER ACTIONS SYSTEM ACTIONS

Determine
the need

and
characteristics

of the Job

Create
the JCL

Submit
the Job

JES interprets
JCL and

passes it to
z/OS initiator

z/OS
manages
each step

of execution

JES prints
output

JES collects
the output and

information
about the Job

User
views
and

interprets
output

System
Messages
238 Introduction to the New Mainframe: z/OS Basics

Figure 7-3 Spooling

Later, when the program is executed and asks to read this data, JES2 picks up
the records in the spool and delivers them to the program (at disk speed).

To implement output spooling in JCL, you specify the keyword SYSOUT on the DD
statement. SYSOUT defines an empty file in the spool, allocated with logical
records of 132 characters in a printed format (EBCDIC/ASCII/UNICODE). This
file is allocated by JES when interpreting a DD card with the SYSOUT keyword, and
used later for the step program. Generally, after the end of the job, this file is
printed by a JES function.

7.4.2 Batch job Scenario 2

Suppose now that you want to make a backup of one master file and then update
the master file with records read in from another file (the update file). If so, you
need a job with two steps. In Step 1, your job reads the master file and writes it to
tape. In Step 2, another program (which can be written in COBOL) is executed to
read a record from the update file and searches for its match in the master file.
The program updates the existing record (if it finds a match) or adds a new
record if needed.

In this scenario, what kind of functions are needed in the operating system to
meet your requirements?

spool

33

program

SYSOUT

write

22read

JCL

//DD1 DD *

/*
//DD2 DD SYSOUT=A

……...............
data

……...............

//DD1 DD *

/*
//DD2 DD SYSOUT=A

……...............
data

……...............

//DD1 DD *

/*
//DD2 DD SYSOUT=A

……...............
data

……...............

11JES

Printer

44JES
 Chapter 7. Batch processing and JES 239

Build a job with two steps that specify the following:

� Who you are

� What resources are needed by the job, such as the following:

– Load the backup program (that you already have compiled).
– How much memory the system needs to allocate to accommodate the

backup program, I/O buffers, and working areas.
– Make accessible to the backup program an output tape data set to receive

the backup, a copy, and the master file data set itself.
– At program end indicate to the operating system that now your update

program needs to be loaded into memory (however, this should not be
done if the backup program failed).

– Make accessible to the update program the update file and master file.
– Make accessible to your program a printer for eventual messages.

Your JCL must have two steps, the first one indicating the resources for the
backup program, and the second for the update program (Figure 7-4).

Figure 7-4 Scenario 2

First step

Program

Tape

Updates

Program

Printer

Master

Master

Master

Second step
240 Introduction to the New Mainframe: z/OS Basics

Logically, the second step will not be executed if the first one fails for any reason.
The second step will have a // DD SYSOUT statement to indicate the need for
output spooling.

The jobs are only allowed to start when there are enough resources available. In
this way, the system is made more efficient: JES manages jobs before and after
running the program; the base control program manages jobs during processing.

Two types of job entry subsystems are offered with z/OS: JES2 and JES3. This
section discusses JES2. For a brief comparison of JES2 and JES3, see 7.6,
“JES2 compared to JES3” on page 244.

7.5 Job flow through the system
Let us look in more detail at how a job is processed through the combination of
JES and a batch initiator program.

During the life of a job, JES2 and the base control program of z/OS control
different phases of the overall processing. The job queues contain jobs that are
waiting to run, currently running, waiting for their output to be produced, having
their output produced, and waiting to be purged from the system.

Generally speaking, a job goes through the following phases:

� Input
� Conversion
� Processing
� Output
� Print/punch (hard copy)
� Purge

During batch job processing, numerous checkpoints occur. A checkpoint is a
point in processing at which information about the status of a job and the system
can be recorded (in a file called a checkpoint data set). Checkpoints allow the job
step to be restarted later if it ends abnormally due to an error.

Figure 7-5 shows the different phases of a job during batch processing.

Checkpoint
A point at
which
information
about the
status of a job
and the system
can be
recorded so
that the job
step can be
started later.
 Chapter 7. Batch processing and JES 241

Figure 7-5 Job flow through the system

1. Input phase

JES2 accepts jobs, in the form of an input stream, from input devices, from
other programs through internal readers, and from other nodes in a job entry
network.

The internal reader is a program that other programs can use to submit jobs,
control statements, and commands to JES2. Any job running in z/OS can use
an internal reader to pass an input stream to JES2. JES2 can receive multiple
jobs simultaneously through multiple internal readers.

The system programmer defines internal readers to be used to process all
batch jobs other than started tasks (STCs) and TSO requests.

JES2 reads the input stream and assigns a job identifier to each JOB JCL
statement. JES2 places the job’s JCL, optional JES2 control statements, and
SYSIN data onto DASD data sets called spool data sets. JES2 then selects
jobs from the spool data sets for processing and subsequent running.

2. Conversion phase

JES2 uses a converter program to analyze a job’s JCL statements. The
converter takes the job’s JCL and merges it with JCL from a procedure library.
The procedure library can be defined in the JCLLIB JCL statement, or

INPUT

JOB

CONVERSION PROCESSING HARD-COPY PURGE

PURGE
QUEUE

HARD-COPY
QUEUE

OUTPUT
QUEUE

EXECUTION
QUEUE

CONVERSION
QUEUE

SYSOUTSYSIN

JCL

JCL & SYSIN

NON-PRINT/PUNCH
OUTPUT

OUTPUT

SPOOLSPOOL
DISKDISK

SYSOUT
242 Introduction to the New Mainframe: z/OS Basics

system/user procedure libraries can be defined in the PROCxx DD statement
of the JES2 startup procedure. Then, JES2 converts the composite JCL into
converter/interpreter text that both JES2 and the initiator can recognize. Next,
JES2 stores the converter/interpreter text on the spool data set. If JES2
detects any JCL errors, it issues messages, and the job is queued for output
processing rather than execution. If there are no errors, JES2 queues the job
for execution.

3. Processing phase

In the processing phase, JES2 responds to requests for jobs from the
initiators. JES2 selects jobs that are waiting to run from a job queue and
sends them to initiators.

An initiator is a system program belonging to z/OS, but controlled by JES or
by the workload management (WLM) component of z/OS, which starts a job
allocating the required resources to allow it to compete with other jobs that
are already running (WLM is discussed in WLM in 3.5, “What is workload
management?” on page 102).

JES2 initiators are initiators that are started by the operator or by JES2
automatically when the system initializes. They are defined to JES2 through
JES2 initialization statements. The installation associates each initiator with
one or more job classes in order to obtain an efficient use of available system
resources. Initiators select jobs whose classes match the initiator-assigned
class, obeying the priority of the queued jobs.

WLM initiators are started by the system automatically based on performance
goals, relative importance of the batch workload, and the capacity of the
system to do more work. The initiators select jobs based on their service
class and the order they were made available for execution. Jobs are routed
to WLM initiators through a JOBCLASS JES2 initialization statement.

4. Output phase

JES2 controls all SYSOUT processing. SYSOUT is system-produced output;
that is, all output produced by, or for, a job. This output includes system
messages that must be printed, as well as data sets requested by the user
that must be printed or punched. After a job finishes, JES2 analyzes the
characteristics of the job’s output in terms of its output class and device setup
requirements; then JES2 groups data sets with similar characteristics. JES2
queues the output for print or punch processing.

5. Hardcopy phase

JES2 selects output for processing from the output queues by output class,
route code, priority, and other criteria. The output queue can have output that
is to be processed locally or at a remote location. After processing all the
output for a particular job, JES2 puts the job on the purge queue.

SYSOUT
Specifies the
destination for
output from the
jobystem-
produced
output.
 Chapter 7. Batch processing and JES 243

6. Purge phase

When all processing for a job completes, JES2 releases the spool space
assigned to the job, making the space available for allocation to subsequent
jobs. JES2 then issues a message to the operator indicating that the job has
been purged from the system.

7.6 JES2 compared to JES3
As mentioned earlier, IBM provides two kinds of job entry subsystems: JES2 and
JES3. In many cases, JES2 and JES3 perform similar functions: they read jobs
into the system, convert them to internal machine-readable form, select them for
processing, process their output, and purge them from the system.

In a mainframe installation that has only one processor, JES3 provides tape
setup, dependent job control, and deadline scheduling for users of the system,
while JES2 in the same system would require its users to manage these activities
through other means. In an installation with a multi-processor configuration, there
are noticeable differences between the two, mainly in how JES2 exercises
independent control over its job processing functions. That is, within the
configuration, each JES2 processor controls its own job input, job scheduling,
and job output processing. Most installations use JES2, as do the examples in
this text.

Figure 7-6 lists some differences between JES2 and JES3.

Purge
Releasing the
spool space
assigned to a
job, when the
job completes.
244 Introduction to the New Mainframe: z/OS Basics

Figure 7-6 JES2/JES3 differences

In cases where multiple z/OS systems are clustered (a sysplex), it is possible to
configure JES2 to share spool and checkpoint data sets with other JES2 systems
in the same sysplex. This configuration is called Multi-Access Spool (MAS). In
contrast, JES3 exercises centralized control over its processing functions through
a single global JES3 processor. This global processor provides all job selection,
scheduling, and device allocation functions for all of the other JES3 systems.

7.7 Summary
Batch processing is the most fundamental function of z/OS. Many batch jobs are
run in parallel and JCL is used to control the operation of each job. Correct use of
JCL parameters (especially the DISP parameter in DD statements) allows
parallel, asynchronous execution of jobs that may need access to the same data
sets.

An initiator is a system program that processes JCL, sets up the necessary
environment in an address space, and runs a batch job in the same address
space. Multiple initiators (each in an address space) permit the parallel execution
of batch jobs.

A goal of an operating system is to process work while making the best use of
system resources. To achieve this goal, resource management is needed during
key phases to do the following:
 Chapter 7. Batch processing and JES 245

� Before job processing, reserve input and output resources for jobs.

� During job processing, manage spooled SYSIN and SYSOUT data.

� After job processing, free all resources used by the completed jobs, making
the resources available to other jobs.

z/OS shares with JES the management of jobs and resources. JES receives jobs
into the system, schedules them for processing by z/OS, and controls their output
processing. JES is the manager of the jobs waiting in a queue. It manages the
priority of the jobs and their associated input data and output results. The initiator
uses the statements in the JCL records to specify the resources required of each
individual job after it is released (dispatched) by JES.

IBM provides two kinds of job entry subsystems: JES2 and JES3. In many cases,
JES2 and JES3 perform similar functions.

During the life of a job, both JES and the z/OS base control program control
different phases of the overall processing. Jobs are managed in queues: Jobs
that are waiting to run (conversion queue), currently running (execution queue),
waiting for their output to be produced (output queue), having their output
produced (hard-copy queue), and waiting to be purged from the system (purge
queue).

7.8 Questions for review
To help test your understanding of the material in this chapter, complete the
following questions:

1. What is batch processing?

2. Why does z/OS need a JES?

3. During the life of a job, what types of processing does JES2 typically perform?

4. What does the acronym spool stand for?

5. What are some of the jobs performed by an initiator?

Key terms in this chapter

batch job checkpoint initiator

job entry subsystem or
JES

procedure purge

spooling SYSIN SYSOUT
246 Introduction to the New Mainframe: z/OS Basics

7.9 Exercises
These exercises cover the following topics:

� “Learning about system volumes” on page 247

� “Using a utility program in a job” on page 247

� “Examining the TSO logon JCL” on page 248

� “Exploring the master catalog” on page 248

� “Using SDSF” on page 248

� “Using TSO REXX and ISPF ” on page 250

7.9.1 Learning about system volumes
Use the ISPF functions to explore several system volumes. The following are of
interest:

� Examine the naming of VSAM data sets. Note the words DATA and INDEX as
the last qualifier.

� Find the spool area. This may involve a guess based on the data set name.
How large is it?

� Find the basic system libraries, such as SYS1.PROCLIB and so forth. Look at
the member names.

� Consider the ISPF statistics field that is displayed in a member list. How does
it differ for source libraries and execution libraries?

7.9.2 Using a utility program in a job
z/OS has a utility program named IEBGENER to copy data. It uses four DD
statements:

� SYSIN for control statements. We can code DD DUMMY for this statement,
because we do not have any control statements for this job.

� SYSPRINT for messages from the program. Use SYSOUT=X for this lab.

� SYSUT1 for the input data.

� SYSUT2 for the output data.

The basic function of the program is to copy the data set pointed to by SYSUT1
to the data set pointed to by SYSUT2. Both must be sequential data sets or
members of a library.
 Chapter 7. Batch processing and JES 247

The program automatically obtains the data control block (DCB) attributes from
the input data set and applies them to the output data set. Write the JCL for a job
to list the yourid.JCL(TEST1) member to SYSOUT=X.

7.9.3 Examining the TSO logon JCL
The password panel of the TSO logon process contains the name of the JCL
procedure used to create a TSO session. There are several procedures with
different characteristics.

Look at the ISPFPROC procedure. The instructor can help find the correct library
for ISPFPROC.

� What is the name of the basic TSO program that is executed?

� Why are there so many DD statements? Notice the concatenation.

Look for procedure IKJACCNT. This is a minimal TSO logon procedure.

7.9.4 Exploring the master catalog
Go to ISPF option 6 and do the following:

� Use a LISTC LEVEL(SYS1) command for a basic listing of all the SYS1 data
sets in the master catalog.

� Notice that they are either NONVASM or CLUSTER (and associated DATA
and INDEX entries). The CLUSTERs are for VSAM data sets.

� Use the PA1 key to end the listing (for help, see 3.3.3, “Using the PA1 key” on
page 3-14).

� Use a LISTC LEVEL(SYS1) ALL command for a more extended listing.

Note the volser and device type data for the NONVSAM data sets. This is the
basic information in the catalog.

� Use LISTC LEVEL(xxx) to view one of the ALIAS levels and note that it
comes from a user catalog.

Note: If you enter the profile command with NOPREFIX, it produces a
system-wide display when you enter the commands LISTC and LISTC ALL.
These commands allow you to see all of the entries in the master catalog,
including ALIAS entries.

7.9.5 Using SDSF
From the ISPF Primary Option Menu, locate and select the System Display and
Search Facility (SDSF). This utility allows you to display output data sets. The
248 Introduction to the New Mainframe: z/OS Basics

ISPF Primary Option Menu typically includes more selections than those listed
on first panel, with instructions about how to display the additional selections.

Return to 6.14.1, “Creating a simple job” on page 221 and repeat through Step 5
if needed. This will provide a job listing for this exercise.

SDSF Exercise 1
While viewing the output listing, assume that you want to save it permanently to a
data set for later viewing. At the command input line, enter PRINT D. A window will
prompt you to enter a data set name in which to save it. You can use an already
existing data set or create a new one.

For this example, create a new data set by entering yourid.cobol.list. In the
disposition field, enter NEW. Press Enter to return to the previous screen. Note that
the top right corner of the screen displays PRINT OPENED. This means you can
now print the listing. On the command input, enter PRINT. Displayed at the top
right of the screen will be the number of lines printed (xxx LINES PRINTED). This
means the listing has now been placed in the data set that you created. On the
command line, enter PRINT CLOSE. At the top right screen you should now see
PRINT CLOSED.

Now let’s look at the data set you created, yourid.cobol.list, and view the listing.
Go to =3.4 and enter your user ID. A listing of all your data sets should appear.
Locate yourid.cobol.list and enter a B next to it in the command area. You should
see the listing exactly as it appeared when you were using SDSF. You can now
return to SDSF ST and purge (P) your listing, because you now have a
permanent copy.

Return to the main SDSF panel and enter LOG to display a log of all activity in the
system. Here, you can see much the information that the Operations Staff might
see. For example, at the bottom of the list, you might see the outstanding Reply
messages to which an operator can reply.

/R xx,/DISP TRAN ALL

Scroll to the bottom to see results. Note that operator commands from the SDSF
LOG command must be preceded by a forward slash (/) so that it is recognized
as a system command.

Now, enter M in the command input and press F7; this will display the top of the
log. Type F and your user ID to display the first entry associated with your user
ID. Most likely this will be when you logged onto TSO. Next enter F youridX,
where X represents one of the jobs you submitted above. Here you should see
your job being received into the JES2 internal reader, and following that a few
lines indicating the status of your job as it runs. Perhaps you might see a JCL
error, or youridX started | ended.
 Chapter 7. Batch processing and JES 249

SDSF Exercise 2
This exercise uses the Print functions above. Save the log into a data set exactly
as you did in the Print exercise.

SDSF Exercise 3
In this exercise, you enter operator commands from the Log screen. Enter the
following at the Command input line and look at the resulting displays:

 /D A,L This lists all active jobs in the system.

/D U,,,A80,24 This lists currently online DASD VOLUMES.

/V A88,OFFLINE Scroll to the bottom to see results (M F8).

/D U,,,A88,2 Check its Status; note that VOLSER is not displayed for
offline volumes. While a volume is offline, you can run
utilities such as ICKDSF, which allows you to format a
volume.

/V A88,ONLINE Scroll to the bottom and see the results.

/D U,,,A88,2 Check its status; VOLSER is now displayed.

 /C U=yourid Cancels a job (your TSO session in this case).

Logon yourid Log back onto your ID.

7.9.6 Using TSO REXX and ISPF
In the data set USER.CLIST there is a REXX program called ITSODSN. This
program can be run by entering the following at any ISPF Command input: TSO
ITSODSN. It will prompt you to enter the name of the data set you want to create.
You do not need to enter yourid, as TSO will add it to the name if your prefix is
active. It will give you a choice of two types of data sets, sequential or partitioned,
and asks you what volume you want to store the data set on. It will then allocate
the data set with your user ID appended to it. Go to =3.4, locate the data set, and
examine it with an S option to be sure it is what you want.

REXX Exercise 1
In the REXX program you will find several characteristics of the data set that
have been coded for you, for example the LRECL and BLKSIZE. Modify the
program so that the user is prompted to enter any data set characteristics as they
wish. You may also change the program in any other way that you like. Hint:
Make a backup copy of the program before you begin.

REXX Exercise 2
REXX under TSO and batch can directly address other subsystems, as you have
already seen in this program when it directly allocates a data set using a TSO
250 Introduction to the New Mainframe: z/OS Basics

command enclosed in quotes. Another way of executing functions outside of
REXX is through a host command environment. A few examples of host
command environments are:

TSO
MVS For REXX running in a non-TSO environment
ISPEXEC Access to the ISPF environment under TSO

Modify the REXX program so that after the data set is allocated it opens it up with
the ISPF Edit command, enters some data, exits with PF3 and then uses =3.4 to
examine your data set. Remember that if the data set is partitioned (PO), you
have to open up a member. You can use whatever you want as a member name
in the format: yourid.name(membername).

Hints:

� It is easier to use the second format of the host command environment above.

� Notice the use of the REXX “if then else” logic and the “do end” within the
logic.

� Use the command: ADDRESS ISPEXEC “edit DATASET(….)”
 Chapter 7. Batch processing and JES 251

252 Introduction to the New Mainframe: z/OS Basics

Part 2 Application
programming
on z/OS

In this part, we introduce the tools and utilities for developing a simple program to
run on z/OS. The chapters that follow guide the student through the process of
application design, choosing a programming language, and using a runtime
environment.

Part 2
© Copyright IBM Corp. 2006. All rights reserved. 253

254 Introduction to the New Mainframe: z/OS Basics

Chapter 8. Designing and developing
applications for z/OS

8

Objective: As your company’s newest z/OS application designer or
programmer, you will be asked to design and write new programs, or modify
existing programs, to meet your company’s business goals. Such an
undertaking will require that you fully understand the various user
requirements for your application and know which z/OS system services to
exploit.

This chapter provides a brief review of the common design, code, and test
cycle for a new application. Much of this information is applicable to all
computing platforms in general, not just mainframes.

After completing this chapter, you will be able to:

� Describe the roles of the application designer and application programmer.

� List the major considerations for designing an application for z/OS.

� Describe the advantages and disadvantages of batch versus online for an
application.

� Briefly describe the process for testing a new application on z/OS.

� List three advantages for using z/OS as the host for a new application.
© Copyright IBM Corp. 2006. All rights reserved. 255

8.1 Application designers and programmers
The tasks of designing an application and developing one are distinct enough to
treat each in a separate textbook. In larger z/OS sites, separate departments
might be used to carry out each task. This chapter provides an overview of these
job roles and shows how each skill fits into the overall view of a typical application
development life cycle on z/OS.

The application designer is responsible for determining the best programming
solution for an important business requirement. The success of any design
depends in part on the designer’s knowledge of the business itself, awareness of
other roles in the mainframe organization such as programming and database
design, and understanding of the business’s hardware and software. In short, the
designer must have a global view of the entire project.

Another role involved in this process is the business systems analyst. This
person is responsible for working with users in a particular department
(accounting, sales, production control, manufacturing, and so on) to identify
business needs for the application. Like the application designer, the business
systems analyst requires a broad understanding of the organization’s business
goals, and the capabilities of the information system.

The application designer gathers requirements from business systems analysts
and end users. The designer also determines which IT resources will be
available to support the application. The application designer then writes the
design specifications for the application programmers to implement.

The application programmer is responsible for developing and maintaining
application programs. That is, the programmer builds, tests, and delivers the
application programs that run on the mainframe for the end users. Based on the
application designer’s specifications, the programmer constructs an application
program using a variety of tools. The build process includes many iterations of
code changes and compiles, application builds, and unit testing.

During the development process, the designer and programmer must interact
with other roles in the enterprise. The programmer, for example, often works on a
team of other programmers who are building code for related application
modules.

When the application modules are completed, they are passed through a testing
process that can include functional, integration, and system tests. Following this
testing process, the application programs must be acceptance-tested by the user
community to determine whether the code actually accomplishes what the users
desire.

Application
A set of files
that make up
software for the
user.
256 Introduction to the New Mainframe: z/OS Basics

Besides creating new application code, the programmer is responsible for
maintaining and enhancing the company’s existing mainframe applications. In
fact, this is frequently the primary job for many application programmers on the
mainframe today. While many mainframe installations still create new programs
with COBOL or PL/I, languages such as Java have become popular for building
new applications on the mainframe, just as on distributed platforms.

8.2 Designing an application for z/OS
During the early design phases, the application designer makes decisions
regarding the characteristics of the application. These decisions are based on
many criteria, which must be gathered and examined in detail to arrive at a
solution that is acceptable to the user. The decisions are not independent of each
other, in that one decision will have an impact on others and all decisions must
be made taking into account the scope of the project and its constraints.

Designing an application to run on z/OS shares many of the steps followed for
designing an application to run on other platforms, including the distributed
environment. z/OS, however, introduces some special considerations. This
chapter provides some examples of the decisions that the z/OS application
designer makes during the design process for a given application. The list is not
meant to be exhaustive, but rather to give you an idea of the process involved:

� “Designing for z/OS: Batch or online?” on page 258
� “Designing for z/OS: Data sources and access methods” on page 258
� “Designing for z/OS: Availability and workload requirements” on page 258
� “Designing for z/OS: Exception handling” on page 259

Beyond these decisions, other factors that might influence the design of a z/OS
application might include the choice of one or more programming languages and
development environments. Other considerations discussed in this chapter
include the following:

� Using mainframe character sets in “Using the EBCDIC character set” on
page 265.

� Use of an interactive development environment (IDE) in “Using application
development tools” on page 267.

� We discuss differences between the various programming languages in
Chapter 9, “Using programming languages on z/OS” on page 275.

Keep in mind that the best designs are those that start with the end result in
mind. We must know what it is that we are striving for before we start to design.

Design
The task of
determining
the best
programming
solution for a
given business
requirement.
 Chapter 8. Designing and developing applications for z/OS 257

8.2.1 Designing for z/OS: Batch or online?
When designing an application for z/OS and the mainframe, a key consideration
is whether the application will run as a batch program or an online program. In
some cases, the decision is obvious, but most applications can be designed to fit
either paradigm. How, then, does the designer decide which approach to use?

Reasons for using batch or online:

� Reasons for using batch

– Data is stored on tape.
– Transactions are submitted for overnight processing.
– User does not require online access to data.

� Reasons for using online:

– User requires online access to data.
– High response time requirements.

8.2.2 Designing for z/OS: Data sources and access methods
Here, the designer’s considerations typically include the following:

� What data must be stored?

� How will the data be accessed? This includes a choice of access method.

� Are the requests ad hoc or predictable?

� Will we choose PDS, VSAM, or a database management system (DBMS)
such as DB2?

8.2.3 Designing for z/OS: Availability and workload requirements
For an application that will run on z/OS, the designer must be able to answer the
following questions:

� What is the quantity of data to store and access?

� Is there a need to share the data?

� What are the response time requirements?

� What are the cost constraints of the project?

� How many users will access the application at once?

What is the availability requirement of the application (24 hours a day 7 days a
week or 8:00 AM to 5:00 PM weekdays, and so on)?
258 Introduction to the New Mainframe: z/OS Basics

8.2.4 Designing for z/OS: Exception handling
Are there any unusual conditions that might occur? If so, we need to incorporate
these in our design in order to prevent failures in the final application. We cannot
always assume, for example, that input will always be entered as expected.

8.3 Application development life cycle: An overview
An application is a collection of programs that satisfies certain specific
requirements (resolves certain problems). The solution could reside on any
platform or combination of platforms, from a hardware or operating system point
of view.

As with other operating systems, application development on z/OS is usually
composed of the following phases:

� Design phase
– Gather requirements.

User, hardware and software requirements

– Perform analysis.
– Develop the design in its various iterations:

• High-level design
• Detailed design

– Hand over the design to application programmers.
� Code and test application.
� Perform user tests.

User tests application for functionality and usability.

� Perform system tests.
– Perform integration test (test application with other programs to verify that

all programs continue to function as expected).
– Perform performance (volume) test using production data.

� Go production—hand off to operations.

Ensure that all documentation is in place (user training, operation
procedures).

� Maintenance phase—ongoing day-to-day changes and enhancements to
application.

Figure 8-1 shows the process flow during the various phases of the application
development life cycle.

Develop
Build, test, and
deliver an
application
program.
 Chapter 8. Designing and developing applications for z/OS 259

Figure 8-1 Application development life cycle

Figure 8-2 depicts the design phase up to the point of starting development.
Once all of the requirements have been gathered, analyzed, verified, and a
design has been produced, we are ready to pass on the programming
requirements to the application programmers.

Figure 8-2 Design phase

The programmers take the design documents (programming requirements) and
then proceed with the iterative process of coding, testing, revising, and testing
again, as we see in Figure 8-3.

Gather
requirements Analysis Design

Code & test User, System
tests

Go
production Maintenance

Requirements

Users

Analysis Design Design
documents

Business Technical

Constraints Verify

Revise Revise

Verify
260 Introduction to the New Mainframe: z/OS Basics

Figure 8-3 Development phase

After the programs have been tested by the programmers, they will be part of a
series of formal user and system tests. These are used to verify usability and
functionality from a user point of view, as well as to verify the functions of the
application within a larger framework (Figure 8-4).

Figure 8-4 Testing

The final phase in the development life cycle is to go to production and become
steady state. As a prerequisite to going to production, the development team
needs to provide documentation. This usually consists of user training and
operational procedures. The user training familiarizes the users with the new
application. The operational procedures documentation enables Operations to
take over responsibility for running the application on an ongoing basis.

In production, the changes and enhancements are handled by a group (possibly
the same programming group) that performs the maintenance. At this point in the
life cycle of the application, changes are tightly controlled and must be rigorously
tested before being implemented into production (Figure 8-5).

Design
documents

Coding Testing

Revise

TestedTested
programsprograms

User

Performance

Other
systems

TestedTested
programsprograms

Test data

Prod
data

Integration
tests

Validate
Test

results

Final
tested

programs
 Chapter 8. Designing and developing applications for z/OS 261

Figure 8-5 Production

As mentioned before, to meet user requirements or solve problems, an
application solution might be designed to reside on any platform or a combination
of platforms. As shown in Figure 8-6, our specific application can be located in
any of the three environments: Internet, enterprise network, or central site. The
operating system must provide access to any of these environments.

Figure 8-6 Growing infrastructure complexity

Promote
To

production
ProductionProduction
RepositoryRepository

Final
tested

programs

Business Systems
Databases

Business Systems
Applications

Business Systems
Front End

Browser

Browser

Browser

Server

Personal
Computer

"Dumb" Terminal

Browser
Web

Server
Appl.

Server

e-business

e-business
with Legacy Systems

Client-Server

GUI Front End

Terminal
Processing

Internet Enterprise Network Central Site

Web
Server

Appl.
Server

Personal Computer
262 Introduction to the New Mainframe: z/OS Basics

To begin the design process, we must first assess what we need to accomplish.
Based on the constraints of the project, we determine how and with what we will
accomplish the goals of the project. To do so, we conduct interviews with the
users (those requesting the solution to a problem) as well as the other
stakeholders.

The results of these interviews should inform every subsequent stage of the life
cycle of the application project. At certain stages of the project, we again call
upon the users to verify that we have understood their requirements and that our
solution meets their requirements. At these milestones of the project, we also ask
the users to sign off on what we have done, so that we can proceed to the next
step of the project.

8.3.1 Gathering requirements for the design
When designing applications, there are many ways to classify the requirements:
Functional requirements, non-functional requirements, emerging requirements,
system requirements, process requirements, constraints on the development and
on the operation—to name a few.

Computer applications operate on data, which resides somewhere and which
needs to be accessed from either a local or remote location. The applications
manipulate the data, performing some kind of processing on it, and then present
the results to whomever was asking for in the first place.

This simple description involves many processes and many operations that have
many different requirements, from computers to software products.

Although each application design is a separate case and can have many unique
requirements, some of these are common to all applications that are part of the
same system. Not only because they are part of the same set of applications that
comprise a given information system, but also because they are part of the same
installation, which is connected to the same external systems.

One of the problems faced by systems as a whole is that components are spread
across different machines, different platforms, and so forth, each one performing
its work in a server farm environment.

An important advantage to the zSeries approach is that applications can be
maintained using tools that reside on the mainframe. Some of these mainframe
tools make it possible to have different platforms sharing resources and data in a
coordinated and secure way according to workload or priority.

The following is a list of the various types of requirements for an application. The
list is not exclusive; some items already include others.

Platform
Often refers to
an operating
system,
implying both
the OS and the
hardware
(environment).
 Chapter 8. Designing and developing applications for z/OS 263

� Accessibility
� Recoverability
� Serviceability
� Availability
� Security
� Connectivity
� Performance objectives
� Resource management
� Usability
� Frequency of data backup
� Portability
� Web services
� Changeability
� Inter-communicable
� Failure prevention and fault analysis

8.4 Developing an application on the mainframe
After the analysis has been completed and the decisions have been made, the
process passes on to the application programmer. The programmer is not given
free reign, but rather must adhere to the specifications of the designer. However,
given that the designer is probably not a programmer, there may be changes
required because of programming limitations. But at this point in the project, we
are not talking about design changes, merely changes in the way the program
does what the designer specified it should do.

The development process is iterative, usually working at the module level. A
programmer will usually follow this process:

1. Code a module.

2. Test a module for functionality.

3. Make corrections to the module.

4. Repeat from step 2 until successful.

After testing has been completed on a module, it is signed off and effectively
frozen to ensure that if changes are made to it later, it will be tested again. When
sufficient modules have been coded and tested, they can be tested together in
tests of ever-increasing complexity.

This process is repeated until all of the modules have been coded and tested.
Although the process diagram shows testing only after development has been
completed, testing is continuously occurring during the development phase.
264 Introduction to the New Mainframe: z/OS Basics

8.4.1 Using the EBCDIC character set
z/OS data sets are encoded in the Extended Binary Coded Decimal Interchange
(EBCDIC) character set. This is an 8-bit character set that was developed before
8-bit ASCII (American Standard Code for Information Interchange) became
commonly used. In contrast, z/OS UNIX files are encoded in ASCII.

Most systems that you are familiar with use ASCII. You need to be aware of the
difference in encoding schemes when moving data from ASCII-based systems to
EBCDIC-encoded systems. Generally the conversion is handled internally, for
example when text is sent from a 3270 emulator running on a PC to a TSO
session. However, when transferring programs these must not normally be
translated and a binary transfer must be specified. Occasionally, even when
transferring text there are problems with certain characters such as the OR sign
(|) or the logical not, and the programmer must look at the actual value of the
translated character.

A listing of EBCDIC and ASCII bit assignments is presented in Appendix D,
“EBCDIC - ASCII table” on page 591 and might be useful for this discussion.
ASCII and EBCDIC are both 8-bit character sets. The difference is the way they
assign bits for specific characters. The following are a few examples:

Character EBCDIC ASCII
 A 11000001 (x'C1') 01000001 (x'41')
 B 11000010 (x'C2') 01000010 (x'42')

a 10000001 (x'81') 01100001 (x'61')
1 11110001 (x'F1') 00110001 (x'31')

 space 01000000 (x'40') 00100000 (x'20')

Although the ASCII arrangement might seem more logical, the huge amount of
existing data in EBCDIC and the large number of programs that are sensitive to
the character set make it impractical to convert all existing data and programs to
ASCII.

A character set has a collating sequence, corresponding to the binary value of
the character bits. For example, A has a lower value than B in both ASCII and
EBCDIC. The collating sequence is important for sorting and for almost any
program that scans and manipulates character strings. The general collating
sequence for common characters in the two character sets is as follows:

EBCDIC ASCII
Lowest value: space space

punctuation punctuation
lower case numbers
upper case upper case

Highest value: numbers lower case
 Chapter 8. Designing and developing applications for z/OS 265

For example, “a” is less than “A” in EBCDIC, but “a” is greater than “A” in ASCII.
Numeric characters are less than any alphabetic letter in ASCII but are greater
than any letter in EBCDIC. A-Z and a-z are two contiguous sequences in ASCII.
In EBCDIC there are gaps between some letters. If we subtract A from Z in ASCII
we have 25. If we subtract A from Z in EBCDIC we have 40 (due to the gaps in
binary values between some letters).

Converting simple character strings between ASCII and EBCDIC is trivial. The
situation is more difficult if the character being converted is not present in the
standard character set of the target code. A good example is a logical not symbol
that is used in a major mainframe programming language (PL/I); there is no
corresponding character in the ASCII set. Likewise, some ASCII characters used
for C programming were not present in the original EBCDIC character set,
although these were later added to EBCDIC. There is still some confusion about
the cent sign (¢) and the hat symbol (^), and a few more obscure symbols.

Mainframes also use several versions of double-byte character sets (DBCS),
mostly for Asian languages. The same character sets are used by some PC
programs.

Traditional mainframe programming does not use special characters to terminate
fields. In particular, nulls and new line characters (or CL/LF character pairs) are
not used. There is no concept of a binary versus a text file. Bytes can be
interpreted as EBCDIC or ASCII or something else if programmed properly. If
such files are sent to a mainframe printer, it will attempt to interpret them as
EBCDIC characters because the printer is sensitive to the character set. The
z/OS Web server routinely stores ASCII files because the data will be interpreted
by a PC browser program that expects ASCII data. Providing that no one
attempts to print the ASCII files on a mainframe printer (or display them on a
3270), the system does not care what character set is being used.

8.4.2 Unicode on the mainframe
Unicode, an industry standard, is a 16-bit character set intended to represent text
and symbols in all modern languages and I/T protocols. Mainframes (using
EBCDIC for single-byte characters), PCs, and various RISC systems use the
same Unicode assignments.

Unicode is maintained by the Unicode Consortium (http://www.unicode.org/).

There is increasing use of Unicode in mainframe applications. The latest zSeries
mainframes include a number of unique hardware instructions for Unicode. At the
time of writing, Unicode usage on mainframes is primarily in Java. However, z/OS
middleware products are also beginning to use Unicode, and this is certainly an
area of change for the near future.
266 Introduction to the New Mainframe: z/OS Basics

8.4.3 Interfaces for z/OS application programmers
When operating systems are developed to meet the needs of the computing
marketplace, applications are written to run on those operating systems. Over
the years, many applications have been developed that run on z/OS and, more
recently, UNIX. To accommodate customers with UNIX applications, z/OS
contains a full UNIX operating system in addition to its traditional z/OS interfaces.
The z/OS implementation of UNIX interfaces is known collectively as z/OS UNIX
System Services, or z/OS UNIX for short.

The most common interface for z/OS developers is TSO/E and its panel-driven
interface, ISPF, using a 3270 terminal. Generally, developers use 3270 terminal
emulators running on personal computers, rather than actual 3270 terminals.
Emulators can provide developers with auxiliary functions, such as multiple
sessions, and uploading and downloading code and data from the PC. TSO/E
and other z/OS user interfaces are described in Chapter 4, “TSO/E, ISPF, and
UNIX: Interactive facilities of z/OS” on page 125.

Program development on z/OS typically involves the use of a line editor to
manipulate source code files, the use of batch jobs for compilation, and a variety
of mechanisms for testing the code. Interactive debuggers, based on 3270
terminal functions, are available for common languages. This chapter introduces
the tools and utilities for developing a simple program to run on z/OS.

Development using only the z/OS UNIX portion of z/OS can be through Telnet
sessions (from which the vi editor is available) through 3270 and TSO/E using
other editors, or through X Window System sessions from personal computers
running X servers. The X server interfaces are less commonly used.

Alternate methods are available in conjunction with various middleware products.
For example, the WebSphere products provide GUI development facilities for
personal computers. These facilities integrate TCP/IP links with z/OS to
automatically invoke mainframe elements needed during development and
testing phases for a new application.

This text discusses the use of online applications and middleware products in
Part 3. “Online workloads for z/OS,” which includes topics on network
communications, database management and Web serving.

8.4.4 Using application development tools
Producing well-tested code requires the use of tools on the mainframe. The
primary tool for the programmer is the ISPF editor.

When developing traditional, procedural programs in languages such as COBOL
and PL/I, the programmer often logs on to the mainframe and uses an IDE or the
 Chapter 8. Designing and developing applications for z/OS 267

ISPF editor to modify the code, compile it, and run it. The programmer uses a
common repository (such as the IBM Software Configuration Library Manager or
SCLM) to store code that is under development. The repository allows the
programmer check code in or out, and ensures that programmers do not interfere
with each others’ work. SCLM is included with ISPF as an option from the main
menu.

For purposes of simplicity, the source code could be stored and maintained in a
partitioned data set (PDS). However, using a PDS would neither provide change
control nor prevent multiple updates to the same version of code in the way that
SCLM would. So, wherever we have written “checking out” or “saving” to SCLM,
assume that you could substitute this with “edit a PDS member” or “save a PDS
member.”

When the source code changes are complete, the programmer submits a JCL
file to compile the source code, bind the application modules, and create an
executable for testing. The programmer conducts “unit tests” of the functionality
of the program. The programmer uses job monitoring and viewing tools to track
the running programs, view the output, and make appropriate corrections to
source code or other objects. Sometimes, a program will create a “dump” of
memory when a failure occurs. The programmer can also use tools to interrogate
the dump output and to trace through executing code to identify the failure points.

Some mainframe application programmers have now switched to the use of
Interactive Development Environment (IDE) tools to accelerate the
edit/compile/test process. IDEs allow application programmers to edit, test, and
debug source code on a workstation instead of directly on the mainframe system.
The use of an IDE is particularly useful for building “hybrid” applications that
employ host-based programs or transactional systems, but also contain a Web
browser-like user interface.

After the components are developed and tested, the application programmer
packages them into the appropriate deployment format and passes them to the
team that coordinates production code deployments.

Application enablement services available on z/OS include:

� Language Environment®
� C/C++ IBM Open Class® Library
� DCE Application Support1
� Encina® Toolkit Executive2
� C/C++ with Debug Tool
� DFSORT
� GDDM®-PGF
� GDDM-REXX
� HLASM Toolkit

Executable
A program file
ready to run in
a particular
environment.
268 Introduction to the New Mainframe: z/OS Basics

� Traditional languages such as COBOL, PL/I, and Fortran

8.4.5 Conducting a debugging session
The application programmer conducts a “unit test” to test the functionality of a
particular module being developed. The programmer uses job monitoring and
viewing software such as SDSF (described in 6.8, “Understanding SDSF” on
page 213) to track the running compile jobs, view the compiler output, and verify
the results of the unit tests. If necessary, the programmer makes the appropriate
corrections to source code or other objects.

Sometimes, a program will create a “dump” of memory when a failure occurs.
When this happens, a z/OS application programmer might use tools such as IBM
Debug Tool and IBM Fault Analyzer to interrogate the dump output and to trace
through executing code to find the failure or misbehaving code.

A typical development session follows these steps:

1. Log on to z/OS.

2. Enter ISPF and open/check out source code from the SCLM repository (or
PDS).

3. Edit the source code to make necessary modifications.

4. Submit JCL to build the application and do a test run.

5. Switch to SDSF to view the running job status.

6. View the job output in SDSF to check for errors.

7. View the dump output to find bugs.1

8. Re-run the compile/link/go job and view the status.

9. Check the validity of the job output.

10.Save the source code in SCLM (or PDS).

Some mainframe application programmers have now switched to the use of
Interactive Development Environment (IDE) tools to accelerate the
edit/compile/test process. IDE tools such as the WebSphere Studio Enterprise
Developer are used to edit source code on a workstation instead of directly on

1 The origin of the term “programming bug” is often attributed to US Navy Lieutenant Grace Murray
Hopper in 1945. As the story goes, Lt. Hopper was testing the Mark II Aiken Relay Calculator at
Harvard University. One day, a program that worked previously mysteriously failed. Upon inspection,
the operator found that a moth was trapped between the circuit relay points and had created a short
circuit (early calculators occupied many square feet, and consisted of tens of thousands of vacuum
tubes). The September 9, 1945 log included both the moth and the entry: “First actual case of a bug
being found”, and that they had “debugged the machine”.
 Chapter 8. Designing and developing applications for z/OS 269

the host system, to run compiles “off-platform,” and to perform remote
debugging.

The use of the IDE is particularly useful if hybrid applications are being built that
employ host-based programs in COBOL or transaction systems such as CICS
and IMS, but also contain a Web browser-like user interface. The IDE provides a
unified development environment to build both the online transaction processing
(OLTP) components in a high-level language and the HTML front-end user
interface components. Once the components are developed and tested, they are
packaged into the appropriate deployment format and passed to the team that
coordinates production code deployments.

Besides new application code, the application programmer is responsible for the
maintenance and enhancement of existing mainframe applications. In fact, this is
the primary job for many high-level language programmers on the mainframe
today. And, while most z/OS customers are still creating new programs with
COBOL or PL/I, languages such as Java have become popular for building new
applications on the mainframe, just as on distributed platforms.

However, for those of us interested in the traditional languages, there is still
widespread development of programs on the mainframe in high-level languages
such as COBOL and PL/I. There are many thousands of programs in production
on mainframe systems around the world, and these programs are critical to the
day-to-day business of the corporations that use them. COBOL and other
high-level language programmers are needed to maintain existing code and
make updates and modifications to those programs.

Also, many corporations continue to build new application logic in COBOL and
other traditional languages, and IBM continues to enhance the high-level
language compilers to include new functions and features that allow these
languages to continue to exploit newer technologies and data formats.

8.4.6 Performing a system test
The difference between the testing done at this stage and the testing done during
the development phase is that we are now testing the application as a whole, as
well as in conjunction with other applications. We also carry out tests that can
only be done once the application coding has been completed because we need
to know how the whole application performs, and not just a portion of it.

The tests performed during this phase are:

� User testing—Testing the application for functionality and usability.

� Integration testing—The new application is tested together with other
applications to see if they interface as expected.

Transaction
An activity or
request. They
update master
files for orders,
changes,
additions, and
so on.
270 Introduction to the New Mainframe: z/OS Basics

� Performance or stress testing—The application is tested using real production
data or at least real production data volume to see how well the application
performs when there is high demand.

The results of the user and integration tests need to be verified to ensure that
they are satisfactory. In addition, the performance of the application must match
the requirements. Any issues coming out of these tests need to be addressed
before going into production. The number of issues encountered during the
testing phase are a good indication of how well we did our design work.

8.5 Going into production on the mainframe
The act of “going into production” is not simply turning on a switch that says now
the application is production-ready. It is much more complicated than that. And
from one project to the next, the way in which a program goes into production can
change. In some cases, where we have an existing system that we are replacing,
we might decide to run in parallel for a period of time prior to switching over to the
new application. In this case, we run both the old and the new systems against
the same data and then compare the results. If after a certain period of time we
are satisfied with the results, we switch to the new application. If we discover
problems, we can correct them and continue the parallel run until there aren’t any
new problems.

In other cases, we are dealing with a new system, and we might just have a
cut-over day when we start using it. Even in the case of a new system, we are
usually replacing some form of system, even if it’s a manual system, so we could
still do a parallel test if we wanted to.

Whichever method is used to go into production, there are still all of the loose
ends that need to be taken care of before we hand the system over to
Operations. One of the tasks is to provide documentation for the system, as well
as procedures for running and using it. We need to train everyone who interacts
with the system.

When all of the documentation and training has been done, we can hand over
responsibility for the running of the application to Operations and responsibility
for maintaining the application to the Maintenance group. In some cases, the
Development group also maintains applications.

At this point, the application development life cycle reaches a steady state and
we enter the maintenance phase of the application. From this point onward, we
only apply enhancements and day-to-day changes to the application. Because
the application now falls under a change control process, all changes require
 Chapter 8. Designing and developing applications for z/OS 271

testing according to the process for change control, before they are accepted into
production. In this way, a stable, running application is ensured for end users.

8.6 Summary
This chapter describes the roles of the application designer and application
programmer. The discussion is intended to highlight the types of decisions that
are involved in designing and developing an application to run in the mainframe
environment. This is not to say that the process is much different on other
platforms, but some of the questions and conclusions can be different.

This chapter then describes the life cycle of designing and developing an
application to run on z/OS. The process begins with the requirement gathering
phase, in which the application designer analyzes user requirements to see how
best to satisfy them. There might be many ways to arrive at a given solution; the
object of the analysis and design phases is to ensure that the optimal solution is
chosen. Here, “optimal” does not mean “quickest,” although time is an issue in
any project. Instead, optimal refers to the best overall solution, with regard to
user requirements and problem analysis.

The EBCDIC character set is different from the ASCII character set. On a
character-by-character basis, translation between these two character sets is
trivial. When collating sequences are considered, the differences are more
significant and converting programs from one character set to the other can be
trivial or it can be quite complex. The EBCDIC character set became an
established standard before the current 8-bit ASCII character set had significant
use.

At the end of the design phase, the programmer’s role takes over. The
programmer must now translate the application design into error-free program
code. Throughout the development phase, the programmer tests the code as
each module is added to the whole. The programmer must correct any logic
problems that are detected and add the updated modules to the completed suite
of tested programs.

An application rarely exists in isolation. Rather, an application is usually part of a
larger set of applications, where the output from one application is the input to
the next application. To verify that a new application does not cause problems
when incorporated into the larger set of applications, the application programmer
conducts a system test or integration test. These tests are themselves designed,
and many test results are verified by the actual application users. If any problems
are found during system test, they must be resolved and the test repeated before
the process can proceed to the next step.
272 Introduction to the New Mainframe: z/OS Basics

Following a successful system test, the application is ready to go into production.
This phase is sometimes referred to as promoting an application. Once
promoted, the application code is now more closely controlled. A business would
not want to introduce a change into a working system without being sure of its
reliability. At most z/OS sites, strict rules govern the promotion of applications (or
modules within an application) to prevent untested code from contaminating a
“pure” system.

At this point in the life cycle of an application, it has reached a steady state. The
changes that will be made to a production application are enhancements,
functional changes (for example, tax laws change, so payroll programs need to
change), or corrections.

8.7 Questions for review
To help test your understanding of the material in this chapter, complete the
following review questions:

1. What are the differences between an application designer and an application
programmer? Which role must have a global view of the entire project?

2. In which phase of the application development life cycle does the designer
conduct interviews?

3. What is the purpose for using a repository to manage source code?

4. What are the phases in an application development life cycle? State briefly
what happens in each phase.

5. If you were a designer on a specific project and the time line for getting the
new application into production was very short, what decisions might you
make to reduce the overall time line of the project?

6. As part of your system testing phase, you do a performance test on the
application. Why would you use production data to do this test?

7. Give some possible reasons for deciding to use batch for an application
versus online.

8. Why not store all documents in ASCII format, so they would not have to be
converted from EBCDIC?

Key terms in this chapter

application ASCII database

design develop EBCDIC

executable platform transaction
 Chapter 8. Designing and developing applications for z/OS 273

274 Introduction to the New Mainframe: z/OS Basics

Chapter 9. Using programming
languages on z/OS

9

Objective: As your company’s newest z/OS application programmer, you will
need to know which programming languages are supported on z/OS, and how
to determine which is best for a given set of requirements.

After completing this chapter, you will be able to:

� List several common programming languages for the mainframe.

� Explain the differences between a compiled language and an interpreted
language.

� Create a simple CLIST or REXX program.

� Choose an appropriate data file organization for an online application.

� Compare the advantages of a high level language to those of Assembler
language.

� Explain the relationship between a data set name, a DD name, and the file
name within a program.

� Explain how the use of z/OS Language Environment affects the decisions
made by the application designer.
© Copyright IBM Corp. 2006. All rights reserved. 275

9.1 Overview of programming languages
A computer language is the way that a human communicates with a computer. It
is needed because a computer works only with its machine language (bits and
bytes). This is slow and cumbersome for humans to use. Therefore, we write
programs in a computer language, which then gets converted into machine
language for the computer to process.

There are many computer languages, and they have been evolving from machine
language into a more natural way of writing. Some languages have been adapted
to the kind of application that they intended to solve and to the kind of approach
used in the design. The word generation has been used to indicate this evolution.

A classification of computer languages follows.

1. Machine language, the 1st generation, direct machine code.

2. Assembler, 2nd generation, using mnemonics to present the instructions to
be translated later into machine language by an assembly program, such as
Assembler language.

3. Procedural languages, 3rd generation, also known as high-level languages
(HLL), such as Pascal, FORTRAN, Algol, COBOL, PL/I, Basic, and C. The
coded program, called a source program, has to be translated through a
compilation step.

4. Non-procedural languages, 4th generation, also known as 4GL, used for
predefined functions in applications for databases, report generators, queries,
such as RPG, CSP, QMF™.

5. Visual Programming languages that use a mouse and icons, such as
VisualBasic and VisualC++.

6. HyperText Markup Language, used for writing of World Wide Web documents.

7. Object-oriented language, OO technology, such as Smalltalk, Java, and C++.

8. Other languages, for example 3D applications.

Each computer language evolved separately, driven by the creation of and
adaptation to new standards. In the following sections we describe several of the
most widely used computer languages supported by z/OS:

� Assembler - “Using Assembler language on z/OS” on page 278
� COBOL - “Using COBOL on z/OS” on page 280
� PL/I - “Using PL/I on z/OS” on page 288
� C/C++ - “Using C/C++ on z/OS” on page 292
� Java - “Using Java on z/OS” on page 292
� CLIST - “Using CLIST language on z/OS” on page 294
� REXX - “Using REXX on z/OS” on page 297

Programming
language
The means by
which a human
communicates
with a computer.

Generation
Stages in the
evolution of
computer
languages.
276 Introduction to the New Mainframe: z/OS Basics

To this list, we can add the use of shell script and PERL in the z/OS UNIX
System Services environment.

For the computer languages under discussion, we have listed their evolution and
classified them. There are procedural and non-procedural, compiled and
interpreted, and machine-dependent and non-machine-dependent languages.

Assembler language programs are machine-dependent, because the language is
a symbolic version of the machine’s language on which the program is running.
Assembler language instructions can differ from one machine to another, so an
Assembler language program written for one machine might not be portable to
another. Rather, it would most likely need to be rewritten to use the instruction set
of the other machine. A program written in a high-level language (HLL) would run
on other platforms, but it would need to be recompiled into the machine language
of the target platform.

Most of the HLLs that we touch upon in this chapter are procedural languages.
This type is well-suited to writing structured programs. The non-procedural
languages, such as SQL and RPG, are more suited for special purposes, such as
report generation.

Most HLLs are compiled into machine language, but some are interpreted.
Those that are compiled result in machine code which is very efficient for
repeated executions. Interpreted languages must be parsed, interpreted, and
executed each time that the program is run. The trade-off for using interpreted
languages is a decrease in programmer time, but an increase in machine
resources.

The advantages of compiled and interpreted languages are further explored in
9.11, “Compiled versus interpreted languages” on page 299.

9.2 Choosing a programming language for z/OS
In developing a program to run on z/OS, your choice of a programming language
might be determined by the following considerations:

� What type of application?
� What are the response time requirements?
� What are the budget constraints for development and ongoing support?
� What are the time constraints of the project?
� Do we need to write some of the subroutines in different languages because

of the strengths of a particular language versus the overall language of
choice?

� Do we use a compiled or an interpreted language?
 Chapter 9. Using programming languages on z/OS 277

The sections that follow look at considerations for several languages commonly
supported on the mainframe.

9.3 Using Assembler language on z/OS
Assembler language is a symbolic programming language that can be used to
code instructions instead of coding in machine language. It is the symbolic
programming language that is closest to the machine language in form and
content. Therefore, Assembler language is an excellent candidate for writing
programs in which:

� You need control of your program, down to the byte or bit level.

� You must write subroutines1 for functions that are not provided by other
symbolic programming languages, such as COBOL, FORTRAN, or PL/I.

Assembler language is made up of statements that represent either instructions
or comments. The instruction statements are the working part of the language,
and they are divided into the following three groups:

� A machine instruction is the symbolic representation of a machine language
instruction of instruction sets, such as:

– IBM Enterprise Systems Architecture/390 (ESA/390)
– IBM z/Architecture

It is called a machine instruction because the assembler translates it into the
machine language code that the computer can execute.

� An assembler instruction is a request to the assembler to do certain
operations during the assembly of a source module; for example, defining
data constants, reserving storage areas, and defining the end of the source
module.

� A macro instruction or macro is a request to the assembler program to
process a predefined sequence of instructions called a macro definition.
From this definition, the assembler generates machine and assembler
instructions, which it then processes as if they were part of the original input
in the source module.

The assembler produces a program listing containing information that was
generated during the various phases of the assembly process2. It is really a
compiler for Assembler language programs.

The assembler also produces information for other processors, such as a binder
(or linker, for earlier releases of the operating system). Before the computer can

1 Subroutines are programs that are invoked frequently by other programs and by definition should
be written with performance in mind. Assembler language is a good choice for a subroutine.

Assembler
A compiler for
Assembler
language
programs.

Compiler
Software that
converts a set
of high-level
language
statements into
a lower-level
representation.

Binder
Binds
(link-edits)
object decks
into load
modules.
278 Introduction to the New Mainframe: z/OS Basics

execute your program, the object code (called an object deck or simply OBJ) has
to be run through another process to resolve the addresses where instructions
and data will be located. This process is called linkage-editing (or link-editing,
for short) and is performed by the binder.

The binder or linkage editor (for more details, see 10.3.7, “How is a linkage editor
used?” on page 325) uses information in the object decks to combine them into
load modules. At program fetch time, the load module produced by the binder is
loaded into virtual storage. After the program is loaded, it can be run.

Figure 9-1 shows these steps.

Figure 9-1 Assembler source to executable module

Related reading: You can find more information about using Assembler
language on z/OS in the IBM publications, HLASM General Information,

2 A program listing does not contain all of the information that is generated during the assembly
process. To capture all of the information that could possibly be in the listing (and more), the z/OS
programmer can specify an assembler option called ADATA to have the assembler produce a
SYSADATA file as output. The SYSADATA file is not human-readable—its contents are in a form that
is designed for a tool to process. The use of a SYSADATA file is simpler for tools to process than the
older custom of extracting similar data through "listing scrapers".

Load module
Produced by the
linkage editor
from object
modules; is
ready to be
loaded and run.

Messages
and

listings

Assembler language
source statements

Machine language Machine language
version of the version of the

programprogram

High-level assembler

Binder

ExecutableExecutable
load moduleload module
 Chapter 9. Using programming languages on z/OS 279

GC26-4943, and HLASM Language Reference, SC26-4940. These books are
available on the Web at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/find_shelves.html

9.4 Using COBOL on z/OS
Common Business-Oriented Language (COBOL) is a programming language
similar to English that is widely used to develop business-oriented applications in
the area of commercial data processing. COBOL has been almost a generic term
for computer programming in this kind of computer language. However, as used
in this chapter, COBOL refers to the product IBM Enterprise COBOL for z/OS
and OS/390®.

In addition to the traditional characteristics provided by the COBOL language,
this version of COBOL is capable, through COBOL functions, of integrating
COBOL applications into Web-oriented business processes. With the capabilities
of this release, application developers can do the following:

� Utilize new debugging functions in Debug Tool

� Enable interoperability with Java when an application runs in an IMS
Java-dependent region

� Simplify the componentization of COBOL programs and enable
interoperability with Java components across distributed applications

� Promote the exchange and usage of data in standardized formats including
XML and Unicode

With Enterprise COBOL for z/OS and OS/390, COBOL and Java applications
can interoperate in the e-business world.

The COBOL compiler produces a program listing containing all the information
that it generated during the compilation. The compiler also produces information
for other processors, such as the binder.

Before the computer can execute your program, the object deck has to be run
through another process to resolve the addresses where instructions and data
will be located. This process is called linkage edition and is performed by the
binder.

The binder uses information in the object decks to combine them into load
modules (these are further discussed in 10.3.7, “How is a linkage editor used?”
on page 325). At program fetch time, the load module produced by the binder is
loaded into virtual storage. When the program is loaded, it can then be run.

Debug
Debugging
software
means locating
the errors in the
source code
(the program
logic).
280 Introduction to the New Mainframe: z/OS Basics

Figure 9-2 on page 281 illustrates the process of translating the COBOL source
language statements into an executable load module.

This process is similar to that of Assembler language programs. In fact, this same
process is used for all of the HLLs that are compiled.

Figure 9-2 HLL source to executable module

9.4.1 COBOL program format
With the exception of the COPY and REPLACE statements and the end program
marker, the statements, entries, paragraphs, and sections of a COBOL source
program are grouped into the following four divisions:

� IDENTIFICATION DIVISION, which identifies the program with a name and, if
you want, gives other identifying information.

� ENVIRONMENT DIVISION, where you describe the aspects of your program
that depend on the computing environment.

� DATA DIVISION, where the characteristics of your data are defined in one of
the following sections in the DATA DIVISION:

– FILE SECTION, to define data used in input-output operations

Messages
and

listings

HLL
source statements

Machine language Machine language
version of the version of the

programprogram

HLL compiler

Binder

ExecutableExecutable
load moduleload module
 Chapter 9. Using programming languages on z/OS 281

– LINKAGE SECTION, to describe data from another program.

When defining data developed for internal processing:

– WORKING-STORAGE SECTION, to have storage statically allocated and
remain for the life of the run unit.

– LOCAL-STORAGE SECTION, to have storage allocated each time a
program is called and de-allocated when the program ends.

– LINKAGE SECTION, to describe data from another program.

� PROCEDURE DIVISION, where the instructions related to the manipulation
of data and interfaces with other procedures are specified.

The PROCEDURE DIVISION of a program is divided into sections and
paragraphs, which contain sentences and statements, as described here:

– Section - a logical subdivision of your processing logic. A section has a
section header and is optionally followed by one or more paragraphs. A
section can be the subject of a PERFORM statement. One type of section
is for declaratives.

Declaratives are a set of one or more special purpose sections, written at
the beginning of the PROCEDURE DIVISION, the first of which is
preceded by the key word. DECLARATIVES and the last of which is
followed by the key word END DECLARATIVES.

– Paragraph - a subdivision of a section, procedure, or program. A
paragraph can be the subject of a statement.

– Sentence - is a series of one or more COBOL statements ending with a
period.

– Statement - performs a defined step of COBOL processing, such as
adding two numbers.

– Phrase - a subdivision of a statement.

Examples of COBOL divisions
Example 9-1 IDENTIFICATION DIVISION

IDENTIFICATION DIVISION.
 Program-ID. Helloprog.
 Author. A. Programmer.
 Installation. Computing Laboratories.
 Date-Written. 08/21/2002.
282 Introduction to the New Mainframe: z/OS Basics

Example 9-2 ENVIRONMENT DIVISION

Example of input-output coding

Explanations of the user-supplied information follow Example 9-3.

Example 9-3 Input and output files in FILE-CONTROL

IDENTIFICATION DIVISION.
 . . .
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT filename ASSIGN TO assignment-name
 ORGANIZATION IS org ACCESS MODE IS access
 FILE STATUS IS file-status
 . . .
 DATA DIVISION.
 FILE SECTION.
 FD filename
 01 recordname
 nn . . . fieldlength & type
 nn . . . fieldlength & type
 . . .
 WORKING-STORAGE SECTION
 01 file-status PICTURE 99.
 . . .
 PROCEDURE DIVISION.
 . . .
 OPEN iomode filename
 . . .
 READ filename
 . . .
 WRITE recordname

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. computer-name.
OBJECT-COMPUTER. computer-name.
SPECIAL-NAMES.
 special-names-entries.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT [OPTIONAL] file-name-1
 ASSIGN TO system-name [FOR MULTIPLE {REEL | UNIT}]
 [.... .
I-O-CONTROL.
 SAME [RECORD] AREA FOR file-name-1 ... file-name-n.
 Chapter 9. Using programming languages on z/OS 283

 . . .
 CLOSE filename
 . . .
 STOP RUN.

� org indicates the organization, which can be SEQUENTIAL, LINE
SEQUENTIAL, INDEXED, or RELATIVE.

� access indicates the access mode, which can be SEQUENTIAL, RANDOM,
or DYNAMIC.

� iomode is for INPUT or OUTPUT mode. If you are only reading from a file,
code INPUT. If you are only writing to it, code OUTPUT or EXTEND. If you are
both reading and writing, code I-O, except for organization LINE
SEQUENTIAL.

� Other values like filename, recordname, fieldname (nn in the example),
fieldlength and type are also specified.

9.4.2 COBOL relationship between JCL and program files
Example 9-4 depicts the relationship between JCL statements and the files in a
COBOL program. By not referring to physical locations of data files in a program,
we achieve device independence. That is, we can change where the data resides
and what it is called without having to change the program. We would only need
to change the JCL.

Example 9-4 COBOL relationship between JCL and program files

//MYJOB JOB
//STEP1 EXEC IGYWCLG
...
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT INPUT ASSIGN TO INPUT1
 SELECT DISKOUT ASSIGN TO OUTPUT1 ...
 FILE SECTION.
 FD INPUT1
 BLOCK CONTAINS...
 DATA RECORD IS RECORD-IN
 01 INPUT-RECORD
...
 FD OUTPUT1
 DATA RECORD IS RECOUT
 01 OUTPUT-RECORD
...
/*
284 Introduction to the New Mainframe: z/OS Basics

//GO.INPUT1 DD DSN=MY.INPUT,DISP=SHR
//GO.OUTPUT1 DD DSN=MY.OUTPUT,DISP=OLD

Example 9-4 shows a COBOL compile, link, and go job stream, listing the file
program statements and the JCL statements to which they refer.

The COBOL SELECT statements create the links between the DDNAMEs
INPUT1 and OUTPUT1, and the COBOL FDs INPUT1 and OUTPUT1,
respectively. The COBOL FDs are associated with group items INPUT-RECORD
and OUTPUT-RECORD.

The DD cards INPUT1 and OUTPUT1 are related to the data sets MY.INPUT and
MY.OUTPUT, respectively. The end result of this linkage in our example is that
records read from the file INPUT1 will be read from the physical data set
MY.INPUT and records written to the file OUTPUT1 will be written to the physical
data set MY.OUTPUT. The program is completely independent of the location of
the data and the name of the data sets.

Figure 9-3 shows the relationship between the physical data set, the JCL, and
the program for Example 9-4.

Figure 9-3 Relationship between JCL, program, and data set

Again, because the program does not make any reference to the physical data
set, we would not need to recompile the program if the name of the data set or its
location were to change.

9.4.3 Running COBOL programs under UNIX
To run COBOL programs in the UNIX environment, you must compile them with
the Enterprise COBOL or the COBOL for OS/390 and VM compiler. They must
be reentrant, so use the compiler and binder option RENT.

DDNAME DSNAME

OPEN FILE=INPUT1
READ FILE=INPUT1

...
CLOSE FILE=INPUT1

//INPUT1 DD DSNAME=MY.INPUT MY.INPUT

Program
JCL for JOB
 Chapter 9. Using programming languages on z/OS 285

9.4.4 Communicating with Java methods
To achieve inter-language interoperability with Java, you must follow certain rules
and guidelines for:

� Using services in the Java Native Interface (JNI)
� Coding data types
� Compiling your COBOL programs

You can invoke methods that are written in Java from COBOL programs, and you
can invoke methods that are written in COBOL from Java programs. For basic
Java object capabilities, you can use COBOL object-oriented language. For
additional Java capabilities, you can call JNI services.

Because Java programs might be multi-threaded and use asynchronous signals,
compile your COBOL programs with the THREAD option.

9.4.5 Creating a DLL or a DLL application
A dynamic link library or DLL is a file that contains executable code and data that
is bound to a program at run-time. The code and data in a DLL can be shared by
several applications simultaneously. Creating a DLL or a DLL application is
similar to creating a regular COBOL application. It involves writing, compiling,
and linking your source code.

Special considerations when writing a DLL or a DLL application include:

� Determining how the parts of the load module or the application relate to each
other or to other DLLs

� Deciding what linking or calling mechanisms to use

Depending on whether you want a DLL load module or a load module that
references a separate DLL, you need to use slightly different compiler and binder
options.

9.4.6 Structuring OO applications
You can structure applications that use object-oriented COBOL syntax in one of
three ways. An OO application can begin with:

� A COBOL program, which can have any name.

� A Java class definition that contains a method called main. You can run the
application with the Java command, specifying the name of the class that
contains main and zero or more strings as command-line arguments.
286 Introduction to the New Mainframe: z/OS Basics

� A COBOL class definition that contains a factory method called main. You can
run the application with the Java command, specifying the name of the class
that contains main and zero or more strings as command-line arguments.

Related reading: For more information about using COBOL on z/OS, see the
IBM publications Enterprise COBOL for z/OS and OS/390 V3R2 Language
Reference, SC27-1408, and Enterprise COBOL for z/OS and OS/390 V3R2
Programming Guide, SC27-1412. These books are available on the Web at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/find_shelves.html

9.5 HLL relationship between JCL and program files
In 9.4.2, “COBOL relationship between JCL and program files” on page 284, we
learned how to isolate a COBOL program from changes in data set name and
data set location. The technique of referring to physical files by a symbolic file
name is not restricted to COBOL; it is used by all HLLs and even in Assembler
language. See Example 9-5 for a generic HLL example of a program that
references data sets through symbolic file names.

Isolating your program from changes to data set name and location is the normal
objective. However, there could be cases when a program needs to access a
specific data set at a specific location on a direct access storage device (DASD).
This can be accomplished in Assembler language and even in some HLLs.

The practice of “hard-coding” data set names or other such information in a
program is not usually considered a good programming practice. Values that are
hard-coded in a program are subject to change and would therefore require that
the program be recompiled each time a value changed. Externalizing these
values from programs, as with the case of referring to data sets within a program
by a symbolic name, is a more effective practice that allows the program to
continue working even if the data set name changes.

Example 9-5 HLL Relationship between JCL and program files

//MYJOB JOB
//STEP1 EXEC CLG
...
 OPEN FILE=INPUT1
 OPEN FILE=OUTPUT1
 READ FILE=INPUT1
...
 WRITE FILE=OUTPUT1
...
 CLOSE FILE=INPUT1
 Chapter 9. Using programming languages on z/OS 287

 CLOSE FILE=OUTPUT1
/*
//GO.INPUT1 DD DSN=MY.INPUT,DISP=SHR
//GO.OUTPUT1 DD DSN=MY.OUTPUT,DISP=OLD

For a more detailed explanation of using a symbolic name to refer to a file, see
6.5, “Why z/OS uses symbolic file names” on page 207.

9.6 Using PL/I on z/OS
Programming Language/I (PL/I, pronounced “P-L one”), is a full-function,
general-purpose, high-level programming language suitable for the development
of:

� Commercial applications
� Engineering/scientific applications
� Many other applications

The process of compiling a PL/I source program and then link-editing the object
deck into a load module is basically the same as it is for COBOL. See
Example 9-2 on page 281, 10.3.7, “How is a linkage editor used?” on page 325
and Figure 9-3 on page 285.

The relationship between JCL and program files is the same for PL/I as it is for
COBOL and other HLLs. See Figure 9-3 on page 285 and Example 9-5 on
page 287.

9.6.1 PL/I program structure
PL/I is a block-structured language, consisting of packages, procedures,
statements, expressions, and built-in functions, as shown in Figure 9-4.

PL/I programs are made up of blocks. A block can be either a subroutine, or just
a group of statements. A PL/I block allows you to produce highly modular
applications, because blocks can contain declarations that define variable names
and storage classes. Thus, you can restrict the scope of a variable to a single
block or a group of blocks, or you can make it known throughout the compilation
unit or a load module.

Variable
Holds data
assigned to it
until a new
value is
assigned.
288 Introduction to the New Mainframe: z/OS Basics

Figure 9-4 PL/I application structure

A PL/I application consists of one or more separately loadable entities, known as
a load modules. Each load module can consist of one or more separately
compiled entities, known as compilation units. Unless otherwise stated, a
program refers to a PL/I application or a compilation unit.

A compilation unit is a PL/I package or an external procedure. Each package can
contain zero or more procedures, some or all of which can be exported. A PL/I
external or internal procedure contains zero or more blocks.

A PL/I block is either a PROCEDURE or a begin block, any of which contains
zero or more statements and/or zero or more blocks. A procedure is a sequence
of statements delimited by a procedure statement and a corresponding end
statement, as shown in Example 9-6. A procedure can be a main procedure, a
subroutine, or a function.

Example 9-6 A PROCEDURE block

A: procedure;
statement-1
statement-2

 .

Load
Module

Load
Module

Compilation
Unit

Compilation
Unit

Level 1
Procedure

Level 1
Procedure

Internal
Procedure

Begin
Blocks

Other
Statements

Package External
Procedures
 Chapter 9. Using programming languages on z/OS 289

 .

 .
statement-n
end Name;

A begin block is a sequence of statements delimited by a begin statement and a
corresponding end statement, as shown in Example 9-7. A program is
terminated when the main procedure is terminated.

Example 9-7 BEGIN block

B: begin;
 statement-1
 statement-2

 .

 .

 statement-n
 end B;

9.6.2 Preprocessors
The PL/I compiler allows you to select one or more of the integrated
preprocessors as required for use in your program. You can select the include
preprocessor, the macro preprocessor, the SQL preprocessor, or the CICS
preprocessor—and you can select the order in which you would like them to be
called.

Each preprocessor supports a number of options to allow you to tailor the
processing to your needs.

� Include preprocessor

This allows you to incorporate external source files into your programs by
using include directives other than the PL/I directive %INCLUDE (the
%INCLUDE directive is used to incorporate external text into the source
program).

� Macro preprocessor

Macros allow you to write commonly used PL/I code in a way that hides
implementation details and the data that is manipulated, and exposes only the

Preprocessor
Software that
performs some
preliminary
processing on
the input before
it is processed
by the main
program.
290 Introduction to the New Mainframe: z/OS Basics

operations. In contrast to a generalized subroutine, macros allow generation
of only the code that is needed for each individual use.

� SQL preprocessor

In general, the coding for your PL/I program will be the same whether or not
you want it to access a DB2 database. However, to retrieve, update, insert,
and delete DB2 data and use other DB2 services, you must use SQL
statements. You can use dynamic and static EXEC SQL statements in PL/I
applications.

To communicate with DB2, you need to do the following:

– Code any SQL statements you need, delimiting them with EXEC SQL.
– Use the DB2 precompiler or compile with the PL/I PP(SQL()) compiler

option.

Before you can take advantage of EXEC SQL support, you must have
authority to access a DB2 system.

Note that the PL/I SQL Preprocessor currently does not support DBCS.

� CICS preprocessor

You can use EXEC CICS statements in PL/I applications that run as
transactions under CICS.

Related reading: For more information about using PL/1 on z/OS, see the IBM
publications Enterprise PL/I for z/OS V3R3 Language Reference, SC27-1460,
and Enterprise PL/I for z/OS V3R3 Programming Guide, SC27-1457. These
books are available on the Web at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/find_shelves.html

9.6.3 Using the SAX parser
The PL/I compiler provides an interface called PLISAXx (x = A or B) that provides
you with basic XML capability. The support includes a high-speed XML parser,
which allows programs to accept inbound XML messages, check them for being
well-formed, and transform their contents to PL/I data structures.

The XML support does not provide XML generation, which must instead be
accomplished by PL/I program logic. The XML support has no special
environmental requirements. It executes in all the principal run-time
environments, including CICS, IMS, and MQ Series, as well as z/OS batch and
TSO.
 Chapter 9. Using programming languages on z/OS 291

9.7 Using C/C++ on z/OS
C is a programming language designed for a wide variety of programming
purposes, including:

� System-level code
� Text processing
� Graphics

The C language contains a concise set of statements with functionality added
through its library. This division enables C to be both flexible and efficient. An
additional benefit is that the language is highly consistent across different
systems.

The process of compiling a C source program and then link-editing the object
deck into a load module is basically the same as it is for COBOL. See
Example 9-2 on page 281, 10.3.7, “How is a linkage editor used?” on page 325,
and Figure 9-3 on page 285 to see this process. The relationship between JCL
and program files is the same for PL/I as it is for COBOL and other HLLs. See
Figure 9-3 on page 285 and Example 9-5 on page 287.

Related reading: For more information about using C and C++ on z/OS, see the
IBM publications, C/C++ Language Reference, SC09-4764, and C/C++
Programming Guide, SC09-4765. These books are available on the Web at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/find_shelves.html

9.8 Using Java on z/OS
Java is an object-oriented programming language developed by Sun™
Microsystems™ Inc. Java can be used for developing traditional mainframe
commercial applications as well as Internet and intranet applications that use
standard interfaces.

Java is an increasingly popular programming language used for many
applications across multiple operating systems. IBM is a major supporter and
user of Java across all of the IBM computing platforms, including z/OS. The z/OS
Java products provide the same, full function Java APIs as on all other IBM
platforms. In addition, the z/OS Java licensed programs have been enhanced to
allow Java access to z/OS unique file systems. Programming languages such as
Enterprise COBOL and Enterprise PL/I in z/OS provide interfaces to programs
written in Java. These languages provide a set of interfaces or facilities for
interacting with programs written in Java, as explained for COBOL in 9.4.4,
“Communicating with Java methods” on page 286 and for PL/I in 9.6.3, “Using
the SAX parser” on page 291.
292 Introduction to the New Mainframe: z/OS Basics

The various Java Software Development Kit (SDK) licensed programs for z/OS
help application developers use the Java APIs for z/OS, write or run applications
across multiple platforms, or use Java to access data that resides on the
mainframe. Some of these products allow Java applications to run in only a 31-bit
addressing environment. However, with 64-bit SDKs for z/OS, pure Java
applications that were previously storage-constrained by 31-bit addressing can
execute in a 64-bit environment. Also, some mainframes support a special
processor for running Java applications called the zSeries Application Assist
Processor (zAAP). Programs can be run interactively through z/OS UNIX or in
batch.

9.8.1 IBM SDK products for z/OS
As with Java SDKs for other IBM platforms, z/OS Java SDK licensed programs
are supplied for industry standard APIs. The z/OS SDK products are
independent of each other and can be ordered and serviced separately.

At the time of writing, the following Java SDKs are available for z/OS:

� The Java SDK1.3.1 product called IBM Developer Kit for OS/390, Java 2
Technology Edition works on z/OS as well as the older OS/390. This is a
31-bit product. Many z/OS customers have moved (or migrated) their Java
applications to the latest versions of Java.

� IBM SDK for z/OS, Java 2 Technology Edition, Version 1.4 is IBM's 31-bit port
of the Sun Microsystems Java Software Development Kit (SDK) to the z/OS
platform and is certified as a fully compliant Java product. IBM has
successfully executed the Java Certification Kit (JCK) 1.4 provided by Sun
Microsystems, Inc.

� IBM SDK for z/OS, Java 2 Technology Edition, Version 1.4 runs on z/OS
Version 1 Release 4 or later, or z/OS.e Version 1 Release 4 or later. It
provides a Java execution environment equivalent to that available on any
other server platform.

� IBM 64-bit SDK for z/OS, Java 2 Technology Edition, Version 1.4 allows Java
applications to execute in a 64-bit environment. It runs on z/OS Version 1
Release 6 or later. As with the 31-bit product, this product allows usage of the
Java SDK1.4 APIs.

IBM provides more information about its Java SDK products for z/OS on the Web
at:

http://www.ibm.com/servers/eserver/zseries/software/java/
 Chapter 9. Using programming languages on z/OS 293

9.8.2 Using the Java Native Interface (JNI)
The Java Native Interface (JNI) is the Java interface to native programming
languages and is part of the Java Development Kits. If the standard Java APIs do
not have the function you need, the JNI allows Java code that runs within a Java
Virtual Machine (JVM) to operate with applications and libraries written in other
languages, such as PL/I. In addition, the Invocation API allows you to embed a
Java Virtual Machine into your native PL/I applications.

Java is a fairly complete programming language; however, there are situations in
which you want to call a program written in another programming language. You
would do this from Java with a method call to a native language, known as a
native method. Programming through the JNI lets you use native methods to do
many different operations. A native method can:

� Use Java objects in the same way that a Java method uses these objects.

� Create Java objects, including arrays and strings, and then inspect and use
these objects to perform its tasks.

� Inspect and use objects created by Java application code.

� Update Java objects that it created or were passed to it; these updated
objects can then be made available to the Java application.

Lastly, native methods can also easily call already-existing Java methods,
capitalizing on the functionality already incorporated in the Java programming
framework. In this way, both the native language side and the Java side of an
application can create, update, and access Java objects, and then share these
objects between them.

9.9 Using CLIST language on z/OS
The CLIST language is an interpreted language. Like programs in other
high-level interpreted languages, CLISTs are easy to write and test. You do not
compile or link-edit them. To test a CLIST, you simply run it and correct any errors
that might occur until the program runs without error.

The CLIST and REXX languages are the two command languages available from
TSO/E. The CLIST language enables you to work more efficiently with TSO/E.

The term CLIST (pronounced “see list”) stands for command list; it is called this
because the most basic CLISTs are lists of TSO/E commands. When you invoke
such a CLIST, it issues the TSO/E commands in sequence.
294 Introduction to the New Mainframe: z/OS Basics

The CLIST programming language is used for:

� Performing routine tasks (such as entering TSO/E commands)

� Invoking other CLISTs

� Invoking applications written in other languages

� ISPF applications (such as displaying panels and controlling application flow)

9.9.1 Types of CLISTs
A CLIST can perform a wide range of tasks, but most fall into one of three
general categories:

� CLISTs that perform routine tasks

� CLISTs that are structured applications

� CLISTs that manage applications written in other languages

These are described in this section.

CLISTs that perform routine tasks
As a user of TSO/E, you will probably perform certain tasks on a regular basis.
These tasks might involve entering TSO/E commands to check on the status of
data sets, to allocate data sets for particular programs, or to print files.

You can write CLISTs that significantly reduce the amount of time that you have
to spend on these routine tasks. By grouping all the instructions required to
perform a task in a CLIST, you reduce the time, number of keystrokes, and errors
involved in performing the task and increase your productivity. A CLIST can
consist of TSO/E commands only or a combination of TSO/E commands and
CLIST statements.

CLISTs that are structured applications
The CLIST language includes the basic tools you need to write complete,
structured applications. Any CLIST can invoke another CLIST, which is referred
to as a nested CLIST. CLISTs can also contain separate routines called
sub-procedures. Nested CLISTs and sub-procedures let you separate your
CLISTs into logical units and put common functions in a single location. Specific
CLIST statements let you:

� Define common data for sub-procedures and nested CLISTs.

� Restrict data to certain sub-procedures and CLISTs.

� Pass specific data to a sub-procedure or nested CLIST.
 Chapter 9. Using programming languages on z/OS 295

For interactive applications, CLISTs can issue ISPF commands to display
full-screen panels. Conversely, ISPF panels can invoke CLISTs, based on input
that a user types on the panel.

CLISTs that manage applications written in other languages
Suppose you have access to applications written in other programming
languages, but the interfaces to these applications might not be easy to use or
remember. Rather than write new applications, you can write CLISTs that provide
easy-to-use interfaces between the user and such applications.

A CLIST can send messages to, and receive messages from, the terminal to
determine what the user wants to do. Then, based on this information, the CLIST
can set up the environment and issue the commands required to invoke the
program that performs the requested tasks.

9.9.2 Executing CLISTs
To execute a CLIST, use the EXEC command. From an ISPF command line, type
TSO at the beginning of the command. In TSO/E EDIT or TEST mode, use the
EXEC subcommand as you would use the EXEC command. (CLISTs executed
under EDIT or TEST can issue only EDIT or TEST subcommands and CLIST
statements, but you can use the END subcommand in a CLIST to end EDIT or
TEST mode and allow the CLIST to issue TSO/E commands.)

9.9.3 Other uses for the CLIST language
Besides issuing TSO/E commands, CLISTs can perform more complex
programming tasks. The CLIST language includes the programming tools you
need to write extensive, structured applications. CLISTs can perform any number
of complex tasks, from displaying a series of full-screen panels to managing
programs written in other languages.

CLIST language features include:

� An extensive set of arithmetic and logical operators for processing numeric
data

� String-handling functions for processing character data

� CLIST statements that let you structure your programs, perform I/O, define
and modify variables, and handle errors and attention interrupts
296 Introduction to the New Mainframe: z/OS Basics

9.10 Using REXX on z/OS
The Restructured Extended Executor (REXX) language is a procedural language
that allows programs and algorithms to be written in a clear and structural way. It
is an interpreted and compiled language. An interpreted language is different
from other programming languages, such as COBOL, because it is not
necessary to compile a REXX command list before executing it. However, you
can choose to compile a REXX command list before executing it to reduce
processing time.

The REXX programming language is typically used for:

� Performing routine tasks, such as entering TSO/E commands

� Invoking other REXX execs

� Invoking applications written in other languages

� ISPF applications (displaying panels and controlling application flow)

� One-time quick solutions to problems

� System programming

� Wherever we can use another HLL compiled language

REXX is also used in the Java environment, for example, a dialect of REXX
called NetRexx™ works seamlessly with Java. NetRexx programs can use any
Java classes directly, and can be used for writing any Java class. This brings
Java security and performance to REXX programs, and REXX arithmetic and
simplicity to Java. Thus, a single language, NetRexx, can be used for both
scripting and application development.

The structure of a REXX program is simple. It provides a conventional selection
of control constructs. For example, these include IF... THEN... ELSE... for simple
conditional processing, SELECT... WHEN... OTHERWISE... END for selecting
from a number of alternatives, and several varieties of DO... END for grouping
and repetitions. No GOTO instruction is included, but a SIGNAL instruction is
provided for abnormal transfer of control such as error exits and computed
branching.

The relationship between JCL and program files is the same for REXX as it is for
COBOL and other HLLs. See Figure 9-3 on page 285 and Example 9-5 on
page 287.
 Chapter 9. Using programming languages on z/OS 297

9.10.1 Compiling and executing REXX command lists
A REXX program compiled under z/OS can run under z/VM. Similarly, a REXX
program compiled under z/VM can run under z/OS. A REXX program compiled
under z/OS or z/VM can run under z/VSE if REXX/VSE is installed.

The process of compiling a REXX source program and then link-editing the
object deck into a load module is basically the same as it is for COBOL. See
Example 9-2 on page 281, 10.3.7, “How is a linkage editor used?” on page 325
and Figure 9-3 on page 285 to see this process.

There are three main components of the REXX language when using a compiler:

� IBM Compiler for REXX on zSeries. The Compiler translates REXX source
programs into compiled programs.

� IBM Library for REXX on zSeries. The Library contains routines that are
called by compiled programs at run-time.

� Alternate Library. The Alternate Library contains a language processor that
transforms the compiled programs and runs them with the interpreter. It can
be used by z/OS and z/VM users who do not have the IBM Library for REXX
on zSeries to run compiled programs.

The Compiler and Library run on z/OS systems with TSO/E, and under CMS on
z/VM systems. The IBM Library for REXX in REXX/VSE runs under z/VSE.

The Compiler can produce output in the following forms:

� Compiled EXECs

These behave exactly like interpreted REXX programs. They are invoked the
same way by the system's EXEC handler, and the search sequence is the
same. The easiest way of replacing interpreted programs with compiled
programs is by producing compiled EXECs. Users need not know whether the
REXX programs they use are compiled EXECs or interpretable programs.
Compiled EXECs can be sent to z/VSE to be run there.

� Object decks under z/OS or TEXT files under z/VM

� A TEXT file is an object code file whose external references have not been
resolved (this term is used on z/VM only). These must be transformed into
executable form (load modules) before they can be used. Load modules and
MODULE files are invoked the same way as load modules derived from other
compilers, and the same search sequence applies. However, the search
sequence is different from that of interpreted REXX programs and compiled
EXECs. These load modules can be used as commands and as parts of
REXX function packages. Object decks or MODULE files can be sent to
z/VSE to build phases.
298 Introduction to the New Mainframe: z/OS Basics

� IEXEC output

This output contains the expanded source of the REXX program being
compiled. Expanded means that the main program and all the parts included
at compilation time by means of the %INCLUDE directive are contained in the
IEXEC output. Only the text within the specified margins is contained in the
IEXEC output. Note, however, that the default setting of MARGINS includes
the entire text in the input records.

Related reading: You can find more information about REXX in the following
publications:

� The REXX Language, 2nd Ed., Cowlishaw, ZB35-5100
� Procedures Language Reference (Level 1), C26-4358 SAA® CPI
� REXX on zSeries V1R4.0 User’s Guide and Reference, SH19-8160
� Creating Java Applications Using NetRexx , SG24-2216

Also, visit the following Web site:

http://www.ibm.com/software/awdtools/REXX/language/REXXlinks.html

9.11 Compiled versus interpreted languages
During the design of an application, you might need to decide whether to use a
compiled language or an interpreted language for the application source code.
Both types of languages have their strengths and weaknesses. Usually, the
decision to use an interpreted language is based on time restrictions on
development or for ease of future changes to the program. A trade-off is made
when using an interpreted language. You trade speed of development for higher
execution costs. Because each line of an interpreted program must be translated
each time it is executed, there is a higher overhead. Thus, an interpreted
language is generally more suited to ad hoc requests than predefined requests.

9.11.1 Advantages of compiled languages
Assembler, COBOL, PL/I, C/C++ are all translated by running the source code
through a compiler. This results in very efficient code that can be executed any
number of times. The overhead for the translation is incurred just once, when the
source is compiled; thereafter, it need only be loaded and executed.

Interpreted languages, in contrast, must be parsed, interpreted, and executed
each time the program is run, thereby greatly adding to the cost of running the
program. For this reason, interpreted programs are usually less efficient than
compiled programs.
 Chapter 9. Using programming languages on z/OS 299

Some programming languages, such as REXX and Java, can be either
interpreted or compiled.

9.11.2 Advantages of interpreted languages
In “Advantages of compiled languages” we discussed the reasons for using
languages that are compiled. In “Using CLIST language on z/OS” and “Using
REXX on z/OS” we discussed the strong points of interpreted languages. There
is no simple answer as to which language is “better”—it depends on the
application. Even within an application we could end up using many different
languages. For example, one of the strengths of a language like CLIST is that it is
easy to code, test, and change. However, it is not very efficient. The trade-off is
machine resources for programmer time.

Keeping this in mind, we can see that it would make sense to use a compiled
language for the intensive parts of an application (heavy resource usage),
whereas interfaces (invoking the application) and less-intensive parts could be
written in an interpreted language. An interpreted language might also be suited
for ad hoc requests or even for prototyping an application.

One of the jobs of a designer is to weigh the strengths and weaknesses of each
language and then decide which part of an application is best served by a
particular language.

9.12 What is z/OS Language Environment?
As we mentioned in Chapter 8, “Designing and developing applications for z/OS”
on page 255an application is a collection of one or more programs cooperating
to achieve particular objectives, such as inventory control or payroll. The goals of
application development include modularizing and sharing code, and developing
applications on a workstation-based front end.

On z/OS, the Language Environment product provides a common environment
for all conforming high-level language (HLL) products. An HLL is a programming
language above the level of assembler language and below that of program
generators and query languages. z/OS Language Environment establishes a
common language development and execution environment for application
programmers on z/OS. Whereas functions were previously provided in individual
language products, Language Environment eliminates the need to maintain
separate language libraries.

In the past, programming languages had limited ability to call each other and
behave consistently across different operating systems. This characteristic
constrained programs that wanted to use several languages in an application.
300 Introduction to the New Mainframe: z/OS Basics

Programming languages had different rules for implementing data structures and
condition handling, and for interfacing with system services and library routines.

With Language Environment, and its ability to call one language from another,
z/OS application programmers can exploit the functions and features in each
language.

9.12.1 How Language Environment is used
Language Environment establishes a common run-time environment for all
participating HLLs. It combines essential run-time services, such as routines for
run-time message handling, condition handling, and storage management.
These services are available through a set of interfaces that are consistent
across programming languages. The application program can either call these
interfaces directly, or use language-specific services that call the interfaces.

With Language Environment, you can use one run-time environment for your
applications, regardless of the application's programming language or system
resource needs.

Figure 9-5 shows the components in the Language Environment, including:

� Basic routines that support starting and stopping programs, allocating
storage, communicating with programs written in different languages, and
indicating and handling conditions.

� Common library services, such as math or date and time services, that are
commonly needed by programs running on the system. These functions are
supported through a library of callable services.

� Language-specific portions of the run-time library.
 Chapter 9. Using programming languages on z/OS 301

Figure 9-5 z/OS Language Environment components

Language Environment is the prerequisite run-time environment for applications
generated with the following IBM compiler products:

� z/OS C/C++
� C/C++ Compiler for z/OS
� AD/Cycle® C/370™ Compiler
� VisualAge® for Java, Enterprise Edition for OS/390
� Enterprise COBOL for z/OS and OS/390
� COBOL for z/OS
� Enterprise PL/I for z/OS and OS/390
� PL/I for MVS and VM (formerly AD/Cycle PL/I for MVS and VM)
� VS FORTRAN and FORTRAN IV (in compatibility mode)

In many cases, you can run compiled code generated from the previous versions
of the above compilers. A set of assembler macros is also provided to allow
assembler routines to run with Language Environment.

9.12.2 A closer look at Language Environment
The language-specific portions of Language Environment provide language
interfaces and specific services that are supported for each individual language,
and that can be called through a common callable interface. In this section we
discuss some of these interfaces and services in more detail.

Figure 9-6 shows a common run-time environment established through
Language Environment.

C/C++
language-
specific
library

COBOL
language-
specific
library

FORTRAN
language-
specific
library

PL/I
language-
specific
library

Language Environment callable service interface, common
services, and support routines
302 Introduction to the New Mainframe: z/OS Basics

Figure 9-6 Language Environment’s common run-time environment

The Language Environment architecture is built from models for the following:

� Program management
� Condition handling
� Message services
� Storage management

Program management model
The Language Environment program management model provides a framework
within which an application runs. It is the foundation for all of the component
models (condition handling, run-time message handling, and storage
management) that comprise the Language Environment architecture.

The program management model defines the effects of programming language
semantics in mixed-language applications, and integrates transaction processing
and multithreading.

Some terms used to describe the program management model are common
programming terms; other terms are described differently in other languages. It is

FORTRAN

FORTRAN

COBOL

COBOL

PL/I

PL/I

C/C++

C/C++

Assembler

AssemblerAssembler

CELCEL
PL/I C/C++

COBOL FORTRAN

TSO

Operating System

Batch
UNIX
system
services

IMS
(FORTRAN
excluded)

DB2
(FORTRAN
excluded)

CICS
(FORTRAN
excluded)

Source
code

Compilers

Assembler
does not
require a
runtime
library
 Chapter 9. Using programming languages on z/OS 303

important that you understand the meaning of the terminology in a Language
Environment context as compared to other contexts.

Program management
Program management defines the program execution constructs of an
application, and the semantics associated with the integration of various
management components of such constructs.

Three entities, process, enclave, and thread, are at the core of the Language
Environment program management model.

Processes
The highest level component of the Language Environment program model is the
process. A process consists of at least one enclave and is logically separate from
other processes. Language Environment generally does not allow language file
sharing across enclaves nor does it provide the ability to access collections of
externally stored data.

Enclaves
A key feature of the program management model is the enclave, a collection of
the routines that make up an application. The enclave is the equivalent of any of
the following:

� A run unit, in COBOL
� A program, consisting of a main C function and its sub-functions, in C and

C++
� A main procedure and all of its subroutines, in PL/I
� A program and its subroutines, in Fortran

In Language Environment, environment is normally a reference to the run-time
environment of HLLs at the enclave level. The enclave consists of one main
routine and zero or more subroutines. The main routine is the first to execute in
an enclave; all subsequent routines are named as subroutines.

Threads
Each enclave consists of at least one thread, the basic instance of a particular
routine. A thread is created during enclave initialization with its own run-time
stack, which keeps track of the thread's execution, as well as a unique instruction
counter, registers, and condition-handling mechanisms. Each thread represents
an independent instance of a routine running under an enclave's resources.
304 Introduction to the New Mainframe: z/OS Basics

Figure 9-7 Full Language Environment program model

Figure 9-7 illustrates the full Language Environment program model, with its
multiple processes, enclaves, and threads. As the figure shows, each process is
within its own address space. An enclave consists of one main routine, with any
number of subroutines.

The threads can create enclaves, which can create more threads, and so on.

Condition-handling model
For single-language and mixed-language applications, the Language
Environment run-time library provides a consistent and predictable
condition-handling facility. It does not replace current HLL condition handling, but
instead allows each language to respond to its own unique environment as well
as to a mixed-language environment.

Main Sub Sub Main

Sub Sub

External
data X

External
data Y ... External

data Y
External
data Z ...

...

Thread Thread

Enclave Enclave

Main

External
data X

External
data Y ...

Thread

Enclave

Process

Process

Thread
 Chapter 9. Using programming languages on z/OS 305

Language Environment condition management gives you the flexibility to
respond directly to conditions by providing callable services to signal conditions
and to interrogate information about those conditions. It also provides functions
for error diagnosis, reporting, and recovery.

Message-handling model and national language support
A set of common message handling services that create and send run-time
informational and diagnostic messages is provided by Language Environment.

With the message handling services, you can use the condition token that is
returned from a callable service or from some other signaled condition, format it
into a message, and deliver it to a defined output device or to a buffer.

National language support callable services allow you to set a national language
that affects the language of the error messages and the names of the day, week,
and month. It also allows you to change the country setting, which affects the
default date format, time format, currency symbol, decimal separator character,
and thousands separator.

Storage management model
Common storage management services are provided for all Language
Environment-conforming programming languages; Language Environment
controls stack and heap storage used at run time. It allows single-language and
mixed-language applications to access a central set of storage management
facilities, and offers a multiple-heap storage model to languages that do not now
provide one. The common storage model removes the need for each language to
maintain a unique storage manager, and avoids the incompatibilities between
different storage mechanisms.

9.12.3 Running your program with Language Environment
After compiling your program you can do the following:

� Link-edit and run an existing object deck and accept the default Language
Environment run-time options

� Link-edit and run an existing object deck and specify new Language
Environment run-time options

� Call a Language Environment service

Accepting the default run-time options
To run an existing object deck under batch and accept all of the default Language
Environment run-time options, you can use a Language Environment-provided
link-edit and run cataloged procedure, CEEWLG (cataloged procedures were
306 Introduction to the New Mainframe: z/OS Basics

discussed in 6.7, “JCL procedures (PROCs)” on page 210). The CEEWLG
procedure identifies the Language Environment libraries that your object deck
needs to link-edit and run.

Run-time library services
The Language Environment libraries are located in data sets identified with a
high-level qualifier specific to the installation. For example, SCEERUN contains
the run-time library routines needed during execution of applications written in
C/C++, PL/I, COBOL, and FORTRAN. SCEERUN2 contains the run-time library
routines needed during execution of applications written in C/C++ and COBOL.

Applications that require the run-time library provided by Language Environment
can access the SCEERUN and SCEERUN2 data sets using one or both of these
methods:

� LNKLST
� STEPLIB

There are certain considerations that you must be aware of before link-editing
and running applications under Language Environment.

Language Environment callable services
COBOL application developers will find Language Environment's consistent
condition handling services especially useful. For all languages the same occurs
with common math services, as well as the date and time services.

Language Environment callable services are divided into the following groups:

� Communicating conditions services
� Condition handling services
� Date and time services
� Dynamic storage services
� General callable services
� Initialization and termination services
� Locale callable services
� Math services
� Message handling services
� National language support services

Important: Language Environment library routines are divided into two
categories: resident routines and dynamic routines. The resident routines are
linked with the application and include such things as initialization and
termination routines and pointers to callable services. The dynamic routines
are not part of the application and are dynamically loaded during run time.
 Chapter 9. Using programming languages on z/OS 307

Related reading: The callable services are more fully described in the IBM
publication, z/OS Language Environment Programming Reference, SA22-7562.

Language Environment calling conventions
Language Environment services can be invoked by HLL library routines, other
Language Environment services, and user-written HLL calls. In many cases,
services will be invoked by HLL library routines as a result of a user-specified
function. Following are examples of the invocation of a callable math service from
three of the languages we have described in this chapter. Also look at the
referenced examples in 9.9.3, “Other uses for the CLIST language” on page 296.

Example 9-8 shows how a COBOL program invokes the math callable services
CEESDLG1 for log base 10.

Example 9-8 Sample invocation of a math callable service from a COBOL program

77 ARG1RL COMP-2.
77 FBCODE PIC X(12).
77 RESLTRL COMP-2.

 CALL "CEESDLG1" USING ARG1RL , FBCODE ,
 RESLTRL.

9.13 Summary
This chapter outlines the many decisions you might need to make when you
design and develop an application to run on z/OS. Selecting a programming
language to use is one important step in the design phase of an application. The
application designer must be aware of the strengths as well as the weaknesses
of each language to make the best choice, based on the particular requirements
of the application.

A critical factor in choosing a language is determining which one is most used at
a given installation. If COBOL is used for most of the applications in an
installation, it will likely be the language of choice for the installation’s new
applications as well.

Understand that even when a choice for the primary language is made, however,
it does not mean that you are locked into that choice for all programs within the
application. There might be a case for using multiple languages, to take
advantage of the strengths of a particular language for only certain parts of the
application. Here, it might be best to write frequently invoked subroutines in
Assembler language to make the application as efficient as possible, even when
the rest of the application is written in COBOL or another high-level language.
308 Introduction to the New Mainframe: z/OS Basics

Many z/OS sites maintain a library of subroutines that are shared across the
business. The library might include, for example, date conversion routines. As
long as these subroutines are written using standard linkage conventions, they
can be called from other languages, regardless of the language in which the
subroutines are written.

Each language has its inherent strengths, and designers should exploit these
strengths. If a given application merits the added complication of writing it in
multiple languages, the designer should take advantage of the particular features
of each language. Keep in mind, however, that when it is time to update the
application, other people must be able to program these languages as well. This
is a cardinal rule of programming. The original programmer might be long gone,
but the application will live on and on.

Thus, complexity in design must always be weighed against ease of
maintenance.

9.14 Questions for review
To help test your understanding of the material in this chapter, complete the
following questions:

1. Why might a program be written in Assembler language?

2. Do companies continue to enhance the compilers for COBOL and PL/I?

3. Why are CLIST and REXX called interpreted languages?

4. What are the main areas of suitability for CLISTs and REXX?

5. Which interpreted language can also be compiled?

6. Is the use of Language Environment mandatory in z/OS application
development?

7. Which of the data file organizations are appropriate for online applications?
Which are appropriate for batch applications?

Key terms in this chapter

assembler binder compiler

debugging dynamic link library generation

I/O (input/output) interpreter load modules

preprocessor programming language variable
 Chapter 9. Using programming languages on z/OS 309

8. What is an HLL? What are some of the advantages of writing in an HLL
versus Assembler language?

9. Assume that program PROG1 is run using the JCL below:

//job JOB
//STEP010 EXEC PGM=PROG1
//STEPLIB DD DSN=MY.PROGLIB,DISP=SHR
//INPUT1 DD DSN=A.B.C,DISP=SHR
//OUTPUT1 DD DSN=X.Y.Z,DISP=SHR

If the INPUT1 DD card were changed to use the data set A1.B1.C1, would we
be able to use the same program to process it? Assume that the new data set
has the same characteristics as the old data set.

9.15 Topics for further discussion
1. If performance is a consideration, should you write a program in a compiled

language or an interpreted language?

2. If you have to develop a transaction system, which of the following is your best
choice?

a. COBOL or PL/I on CICS
b. C/C++ on CICS
c. A combination of the above?

3. Which language would you use to write an application that calculated
premiums on an insurance policy? Assume that this application will be
invoked by many other applications.

4. Can a COBOL program call an Assembler language program? Why would
you want to have this capability?
310 Introduction to the New Mainframe: z/OS Basics

Chapter 10. Preparing a program to run
on z/OS

10

Objective: As your company’s newest z/OS application programmer, you will
be asked to create new programs to run on z/OS. Doing so will require you to
know how to compile, link, and execute a program.

After completing this chapter, you will be able to:

� Explain the purpose of a compiler.

� Compile a source program.

� Explain the difference between the linkage editor and the binder.

� Create executable code from a compiled program.

� Explain the difference between an object deck and a load module.

� Run a program on z/OS.
© Copyright IBM Corp. 2006. All rights reserved. 311

10.1 Source, object, and load modules
A program can be divided into logical units that perform specific functions. A
logical unit of code that performs a function or several related functions is a
module. Separate functions should be programmed into separate modules, a
process called modular programming. Each module can be written in the
symbolic language that best suits the function to be performed.

Each module is assembled or compiled by one of the language translators. The
input to a language translator is a source module; the output from a language
translator is an object deck. Before an object deck can be executed, it must be
processed by the binder (or the linkage editor). The output of the binder is a load
module; see Figure 10-1.

Figure 10-1 Source, object, and load modules

Depending on the status of the module, whatever it is—source, object or load—it
can be stored in a library. A library is a partitioned data set (PDS) or a partitioned
data set extended (PDSE) on direct access storage. PDSs and PDSEs are
divided into partitions called members. In a library, each member contains a
program or part of a program.

10.2 What are source libraries?
Source programs (or source code) is a set of statements written in a computer
language, as discussed in Chapter 9, “Using programming languages on z/OS”
on page 275. Source programs, once they are error-free, are stored in a
partitioned data set known as a source library. Source libraries contain the
source code to be submitted for a compilation process, or to be retrieved for
modification by an application programmer.

A copybook is a source library containing pre-written text. It is used to copy text
into a source program, at compile time, as a shortcut to avoid having to code the
same set of statements over and over again. It is usually a shared library in which
programmers store commonly used program segments to be later included into
their source programs. It should not be confused with a subroutine or a program.
A copybook member is just text; it might not be actual programming language
statements.

Source module
The input to a
language
translator
(compiler).

BinderSource
module

Object
module

Load
modulePrecompiler Compiler

Copybook
A shared library
in which
programmers
store commonly
used program
segments.
312 Introduction to the New Mainframe: z/OS Basics

A subroutine is a commonly-called routine that performs a predefined function.
The purpose behind a copybook member and a subroutine are essentially the
same, to avoid having to code something that has previously been done.
However, a subroutine is a small program (compiled, link-edited and executable)
that is called and returns a result, based on the information that it was passed. A
copybook member is just text that will be included in a source program on its way
to becoming an executable program. The term copybook is a COBOL term, but
the same concept is used in most programming languages.

If you use copybooks in the program that you are compiling, you can retrieve
them from the source library by supplying a DD statement for SYSLIB or other
libraries that you specify in COPY statements. In Example 10-1, we insert the
text in member INPUTRCD from the library DEPT88.BOBS.COBLIB into the
source program that is to be compiled.

Example 10-1 Copybook in COBOL source code

//COBOL.SYSLIB DD DISP=SHR,DSN=DEPT88.BOBS.COBLIB
//SYSIN DD *

IDENTIFICATION DIVISION.
 . . .
 COPY INPUTRCD
 . . .

Libraries must reside on direct access storage devices (DASDs). They cannot be
in a hierarchical file system (HFS) when you compile using JCL or under TSO.

10.3 Compiling programs on z/OS
The function of a compiler is to translate source code into an object deck, which
must then be processed by a binder (or a linkage editor) before it is executed.
During the compilation of a source module, the compiler assigns relative
addresses to all instructions, data elements, and labels, starting from zero.

The addresses are in the form of a base address plus a displacement. This
allows programs to be relocated, that is, they do not have to be loaded into the
same location in storage each time that they are executed. (See 10.4, “Creating
load modules for executable programs” on page 330 for more information on
relocatable programs.) Any references to external programs or subroutines are
left as unresolved. These references will either be resolved when the object deck
is linked, or dynamically resolved when the program is executed.

To compile programs on z/OS, you can use a batch job, or you can compile under
TSO/E through commands, CLISTs, or ISPF panels. For C programs, you can

Linkage editor
Converts object
decks into
executable load
modules.
 Chapter 10. Preparing a program to run on z/OS 313

compile in a z/OS UNIX shell with the c89 command. For COBOL programs, you
can compile in a z/OS UNIX shell with the cob2 command.

For compiling through a batch job, z/OS includes a set of cataloged procedures
that can help you avoid some of the JCL coding you would otherwise need to do.
If none of the cataloged procedures meet your needs, you will need to write all of
the JCL for the compilation.

As part of the compilation step, you need to define the data sets needed for the
compilation and specify any compiler options necessary for your program and
the desired output.

The data set (library) that contains your source code is specified on the SYSIN
DD statement, as shown in Example 10-2.

Example 10-2 SYSIN DD statement for the source code

//SYSIN DD DSNAME=dsname,
// DISP=SHR

You can place your source code directly in the input stream. If you do so, use this
SYSIN DD statement:

//SYSIN DD *

When you use the DD * convention, the source code must follow the statement. If
another job step follows the compilation, the EXEC statement for that step follows
the /* statement or the last source statement.

10.3.1 What is a precompiler?
Some compilers have a precompile or preprocessor to process statements that
are not part of the computer programming language. If your source program
contains EXEC CICS statements or EXEC SQL statements, then it must first be
pre-processed to convert these statements into COBOL, PL/I or Assembler
language statements, depending on the language in which your program is
written.

10.3.2 Compiling with cataloged procedures
The simplest way to compile your program under z/OS is by using a batch job
with a cataloged procedure. A cataloged procedure is a set of job control
statements placed in a partitioned data set (PDS) called the procedure library
(PROCLIB). z/OS comes with a procedure library called SYS1.PROCLIB. This
system library is discussed more thoroughly in 16.3.7, “SYS1.PROCLIB” on
page 469. A simple way to look at the use of cataloged procedures is to think of
314 Introduction to the New Mainframe: z/OS Basics

them as copybooks. Instead of source statements, however, cataloged
procedures contain JCL statements. You do not need to code a JCL statement to
tell the system where to find them because they are located in a system library
which automatically gets searched when you execute JCL that references a
procedure.

You need to include the following information in the JCL for compilation:

� Job description

� Execution statement to invoke the compiler

� Definitions for the data sets needed but not supplied by the procedure

COBOL compile procedure
The JCL in Example 10-3 executes the IGYWC procedure, which is a single-step
procedure for compiling a source program. It produces an object deck that will be
stored in the SYSLIN data set, as we can see in Example 10-4.

Example 10-3 Basic JCL for compiling a COBOL source program inline

The SYSIN DD statement indicates the location of the source program. In this
case, the asterisk (*) indicates that it is in the same input stream.

For PL/I programs, in addition to the replacement of the source program, the
compile EXEC statement should be replaced by:

//compile EXEC IBMZC

The statements shown in Example 10-4 make up the IGYWC cataloged
procedure used in Example 10-3. As mentioned previously, the result of the
compilation process, the compiled program, is placed in the data set identified on
the SYSLIN DD statement.

Example 10-4 Procedure IGYWC - COBOL compile

//IGYWC PROC LNGPRFX='IGY.V3R2M0',SYSLBLK=3200
//*
//* COMPILE A COBOL PROGRAM

Cataloged
procedure
A set of job
control
statements in a
PDS called a
procedure
library.

Object deck
The output from
a language
translator.

//COMP JOB
//COMPILE EXEC IGYWC
//SYSIN DD *
 IDENTIFICATION DIVISION (source program)
.
.
.
/*
//
 Chapter 10. Preparing a program to run on z/OS 315

//*
//* PARAMETER DEFAULT VALUE
//* SYSLBLK 3200
//* LNGPRFX IGY.V3R2M0
//*
//* CALLER MUST SUPPLY //COBOL.SYSIN DD . . .
//*
//COBOL EXEC PGM=IGYCRCTL,REGION=2048K
//STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP,
// DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSDA,
// DISP=(MOD,PASS),SPACE=(TRK,(3,3)),
// DCB=(BLKSIZE=&SYSLBLK)
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

COBOL pre-processor and compile and link procedure
The JCL in Example 10-5 on page 317 executes the DFHEITVL procedure,
which is a three-step procedure for pre-processing a COBOL source program,
compiling the output from the pre-processing step, and then linking it into a load
library. The first step produces pre-processed source code in the SYSPUNCH
temporary data sets, with any CICS calls expanded into COBOL language
statements. The second step takes this temporary data set as input and
produces an object deck that is stored in the SYSLIN temporary data set, as
shown in Example 10-6 on page 317. The third step takes the SYSLIN temporary
data set as input, as well as any other modules that might need to be included,
and creates a load module in the data set referenced by the SYSLMOD DD
statement.

In Example 10-5 on page 317, you can see that the JCL is a bit more
complicated than in the simple compile job (Example 10-3 on page 315). Once
we go from one step to multiple steps, we must tell the system which step we are
referring to when we supply JCL overrides.

Looking at the JCL in Example 10-6 on page 317, we see that the first step (each
step is an EXEC statement, and the step name is the name on the same line as
the EXEC statement) is named TRN, so we must qualify the SYSIN DD
statement with TRN to ensure that it will be used in the TRN step.
316 Introduction to the New Mainframe: z/OS Basics

Similarly, the fourth step is called LKED, so we must qualify the SYSIN DD
statement with LKED in order for it to apply to the LKED step. See 6.7.1, “JCL
PROC statement override” on page 211 for more information on overriding a
cataloged procedure.

The end result of running the JCL in Example 10-5 (assuming that there are no
errors) should be to pre-process and compile our inline source program, link-edit
the object deck, and then store the load module called PROG1 in the data set
MY.LOADLIB.

Example 10-5 Basic JCL for pre-processing, compiling, and linking a COBOL source
program inline

//PPCOMLNK JOB
//PPCL EXEC DFHEITVL,PROGLIB=’MY.LOADLIB’
//TRN.SYSIN DD *
 IDENTIFICATION DIVISION (source program)
 EXEC CICS ...
...
 EXEC CICS ...
...
//LKED.SYSIN DD *
 NAME PROG1(R)
/*

The statements shown in Example 10-6 make up the DFHEITVL cataloged
procedure used in Example 10-5. As with the other compile and link procedures,
the result of the preprocessor, compile, and link steps, which is the load module,
is placed in the data set identified on the SYSLMOD DD statement.

Example 10-6 Procedure DFHEITVL - COBOL preprocessor, compile, and link

//DFHEITVL PROC SUFFIX=1$, Suffix for translator module
//*
//* This procedure has been changed since CICS/ESA Version 3
//*
//* Parameter INDEX2 has been removed
//*
// INDEX='CICSTS12.CICS', Qualifier(s) for CICS libraries
// PROGLIB=&INDEX..SDFHLOAD, Name of output library
// DSCTLIB=&INDEX..SDFHCOB, Name of private macro/DSECT lib
// COMPHLQ='SYS1', Qualifier(s) for COBOL compiler
// OUTC=A, Class for print output
// REG=2M, Region size for all steps
// LNKPARM='LIST,XREF', Link edit parameters
// STUB='DFHEILIC', Link edit INCLUDE for DFHECI
// LIB='SDFHCOB', Library
// WORK=SYSDA Unit for work data sets
 Chapter 10. Preparing a program to run on z/OS 317

//* This procedure contains 4 steps
//* 1. Exec the COBOL translator
//* (using the supplied suffix 1$)
//* 2. Exec the vs COBOL II compiler
//* 3. Reblock &LIB(&STUB) for use by the linkedit step
//* 4. Linkedit the output into data set &PROGLIB
//*
//* The following JCL should be used
//* to execute this procedure
//*
//* //APPLPROG EXEC DFHEITVL
//* //TRN.SYSIN DD *
//* .
//* . Application program
//* .
//* /*
//* //LKED.SYSIN DD *
//* NAME anyname(R)
//* /*
//*
//* Where anyname is the name of your application program.
//* (Refer to the system definition guide for full details,
//* including what to do if your program contains calls to
//* the common programming interface.)
//*
//TRN EXEC PGM=DFHECP&SUFFIX,
// PARM='COBOL2',
// REGION=®
//STEPLIB DD DSN=&INDEX..SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=&OUTC
//SYSPUNCH DD DSN=&&SYSCIN,
// DISP=(,PASS),UNIT=&WORK,
// DCB=BLKSIZE=400,
// SPACE=(400,(400,100))
//*
//COB EXEC PGM=IGYCRCTL,REGION=®,
// PARM='NODYNAM,LIB,OBJECT,RENT,RES,APOST,MAP,XREF'
//STEPLIB DD DSN=&COMPHLQ..COB2COMP,DISP=SHR
//SYSLIB DD DSN=&DSCTLIB,DISP=SHR
// DD DSN=&INDEX..SDFHCOB,DISP=SHR
// DD DSN=&INDEX..SDFHMAC,DISP=SHR
// DD DSN=&INDEX..SDFHSAMP,DISP=SHR
//SYSPRINT DD SYSOUT=&OUTC
//SYSIN DD DSN=&&SYSCIN,DISP=(OLD,DELETE)
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),
// UNIT=&WORK,SPACE=(80,(250,100))
//SYSUT1 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT2 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT3 DD UNIT=&WORK,SPACE=(460,(350,100))
318 Introduction to the New Mainframe: z/OS Basics

//SYSUT4 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT5 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT6 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT7 DD UNIT=&WORK,SPACE=(460,(350,100))
//*
//COPYLINK EXEC PGM=IEBGENER,COND=(7,LT,COB)
//SYSUT1 DD DSN=&INDEX..&LIB(&STUB),DISP=SHR
//SYSUT2 DD DSN=&©LINK,DISP=(NEW,PASS),
// DCB=(LRECL=80,BLKSIZE=400,RECFM=FB),
// UNIT=&WORK,SPACE=(400,(20,20))
//SYSPRINT DD SYSOUT=&OUTC
//SYSIN DD DUMMY
//*
//LKED EXEC PGM=IEWL,REGION=®,
// PARM='&LNKPARM',COND=(5,LT,COB)
//SYSLIB DD DSN=&INDEX..SDFHLOAD,DISP=SHR
// DD DSN=&COMPHLQ..COB2CICS,DISP=SHR
// DD DSN=&COMPHLQ..COB2LIB,DISP=SHR
//SYSLMOD DD DSN=&PROGLIB,DISP=SHR
//SYSUT1 DD UNIT=&WORK,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=&OUTC
//SYSLIN DD DSN=&©LINK,DISP=(OLD,DELETE)
// DD DSN=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN

COBOL compile and link procedure
The JCL in Example 10-7 executes the IGYWCL procedure, which is a two-step
procedure for compiling a source program and linking it into a load library. The
first step produces an object deck that is stored in the SYSLIN temporary data
set, as shown in Example 10-8 on page 320. The second step takes the SYSLIN
temporary data set as input, as well as any other modules that might need to be
included, and creates a load module in the data set referenced by the SYSLMOD
DD statement.

The end result of running the JCL in Example 10-7 (assuming that there are no
errors) should be to compile our inline source program, link-edit the object deck,
and then store the load module called PROG1 in the data set MY.LOADLIB.

Example 10-7 Basic JCL for compiling and linking a COBOL source program inline

//COMLNK JOB
//CL EXEC IGYWCL
//COBOL.SYSIN DD *
 IDENTIFICATION DIVISION (source program)
.
.

 Chapter 10. Preparing a program to run on z/OS 319

.
/*
//LKED.SYSLMOD DD DSN=MY.LOADLIB(PROG1),DISP=OLD

The statements shown in Example 10-8 on page 320 make up the IGYWCL
cataloged procedure used in Example 10-7. As mentioned previously, the result
of the compile and link steps, which is the load module, is placed in the data set
identified on the SYSLMOD DD statement.

Example 10-8 Procedure IGYWCL - COBOL compile and link

//IGYWCL PROC LNGPRFX='IGY.V2R1M0',SYSLBLK=3200,
// LIBPRFX='CEE',
// PGMLIB='&&GOSET',GOPGM=GO
//*
//* COMPILE AND LINK EDIT A COBOL PROGRAM
//*
//* PARAMETER DEFAULT VALUE
//* LNGPRFX IGY.V2R1M0
//* SYSLBLK 3200
//* LIBPRFX CEE
//* PGMLIB &&GOSET DATA SET NAME FOR LOAD MODULE
//* GOPGM GO MEMBER NAME FOR LOAD MODULE
//*
//* CALLER MUST SUPPLY //COBOL.SYSIN DD ...
//*
//COBOL EXEC PGM=IGYCRCTL,REGION=2048K
//STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP,
// DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSNAME=&&LOADSET,UNIT=VIO,
// DISP=(MOD,PASS),SPACE=(TRK,(3,3)),
// DCB=(BLKSIZE=&SYSLBLK)
//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT5 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT6 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT7 DD UNIT=VIO,SPACE=(CYL,(1,1))
//LKED EXEC PGM=HEWL,COND=(8,LT,COBOL),REGION=1024K
//SYSLIB DD DSNAME=&LIBPRFX..SCEELKED,
// DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSNAME=&PGMLIB(&GOPGM),
// SPACE=(TRK,(10,10,1)),
320 Introduction to the New Mainframe: z/OS Basics

// UNIT=VIO,DISP=(MOD,PASS)
//SYSUT1 DD UNIT=VIO,SPACE=(TRK,(10,10))

COBOL compile, link and go procedure
The JCL in Example 10-9 on page 321 executes the IGYWCLG procedure,
which is a three-step procedure for compiling a source program, linking it into a
load library, and then executing the load module. The first two steps are the same
as those in the compile and link example (Example 10-7 on page 319). However,
whereas in Example 10-7 on page 319 we override the SYSLMOD DD statement
in order to permanently save the load module, in Example 10-9, we do not need
to save it in order to execute it. That is why the override to the SYSLMOD DD
statement in Example 10-9 is enclosed in square brackets, to indicate that it is
optional.

If it is coded, then the load module PROG1 will be permanently saved in
MY.LOADLIB. If it is not coded, then the load module will be saved in a temporary
data set and deleted after the GO step.

In Example 10-9, you can see that the JCL is very similar to the JCL used in the
simple compile job (Example 10-3 on page 315). Looking at the JCL in
Example 10-10, the only difference between it and the JCL in Example 10-8 on
page 320 is that we have added the GO step. The end result of running the JCL
in Example 10-9 (assuming that there are no errors) should be to compile our
inline source program, link-edit the object deck, store the load module (either
temporarily or permanently), and then execute the load module.

Example 10-9 Basic JCL for compiling, linking and executing a COBOL source program
inline

//CLGO JOB
//CLG EXEC IGYWCLG
//COBOL.SYSIN DD *
 IDENTIFICATION DIVISION (source program)
.
.
.
/*
[//LKED.SYSLMOD DD DSN=MY.LOADLIB(PROG1),DISP=OLD]

The statements shown in Example 10-10 make up the IGYWCLG cataloged
procedure used in Example 10-9.

Example 10-10 Procedure IGYWCLG - COBOL compile, link, and go

//IGYWCLG PROC LNGPRFX='IGY.V2R1M0',SYSLBLK=3200,
 Chapter 10. Preparing a program to run on z/OS 321

// LIBPRFX='CEE',GOPGM=GO
//*
//* COMPILE, LINK EDIT AND RUN A COBOL PROGRAM
//*
//* PARAMETER DEFAULT VALUE USAGE
//* LNGPRFX IGY.V2R1M0
//* SYSLBLK 3200
//* LIBPRFX CEE
//* GOPGM GO
//*
//* CALLER MUST SUPPLY //COBOL.SYSIN DD ...
//*
//COBOL EXEC PGM=IGYCRCTL,REGION=2048K
//STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP,
// DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSNAME=&&LOADSET,UNIT=VIO,
// DISP=(MOD,PASS),SPACE=(TRK,(3,3)),
// DCB=(BLKSIZE=&SYSLBLK)
//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT3 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT5 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT6 DD UNIT=VIO,SPACE=(CYL,(1,1))
//SYSUT7 DD UNIT=VIO,SPACE=(CYL,(1,1))
//LKED EXEC PGM=HEWL,COND=(8,LT,COBOL),REGION=1024K
//SYSLIB DD DSNAME=&LIBPRFX..SCEELKED,
// DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSLMOD DD DSNAME=&&GOSET(&GOPGM),SPACE=(TRK,(10,10,1)),
// UNIT=VIO,DISP=(MOD,PASS)
//SYSUT1 DD UNIT=VIO,SPACE=(TRK,(10,10))
//GO EXEC PGM=*.LKED.SYSLMOD,COND=((8,LT,COBOL),(4,LT,LKED)),
// REGION=2048K
//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,
// DISP=SHR
//SYSPRINT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
322 Introduction to the New Mainframe: z/OS Basics

10.3.3 Compiling object-oriented (OO) applications
If you use a batch job or TSO/E to compile an OO COBOL program or class
definition, the generated object deck is written, as usual, to the data set that you
identify with the SYSLIN or SYSPUNCH ddname.

If the COBOL program or class definition uses the JNI1 environment structure to
access JNI callable services, copy the file JNI.cpy from the HFS to a PDS or
PDSE member called JNI, identify that library with a SYSLIB DD statement, and
use a COPY statement of the form COPY JNI in the COBOL source program.

As shown in Example 10-11, use the SYSJAVA ddname to write the generated
Java source file to a file in the HFS. For example:

Example 10-11 SYSJAVA ddname for a Java source file

//SYSJAVA DD PATH='/u/userid/java/Classname.java',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU,
// FILEDATA=TEXT

10.3.4 What is an object deck?
An object deck is a collection of one or more compilation units produced by an
assembler, compiler, or other language translator, and used as input to the binder
(or linkage editor).

An object deck is in relocatable format with machine code that is not executable.
A load module is also relocatable, but with executable machine code. A load
module is in a format that can be loaded into virtual storage and relocated by
program manager, a program that prepares load modules for execution by
loading them at specific storage locations.

Object decks and load modules share the same logical structure consisting of:

� Control dictionaries, containing information to resolve symbolic
cross-references between control sections of different modules, and to
relocate address constants

� Text, containing the instructions and data of the program

� An end-of-module indication, which is an END statement in an object deck, or
an end-of-module indicator in a load module

1 The Java Native Interface (JNI) is the Java interface to native programming languages and is part of
the Java Development Kits. By writing programs that use the JNI, you ensure that your code is
portable across many platforms.
 Chapter 10. Preparing a program to run on z/OS 323

Object decks are stored in a partitioned data set identified by the SYSLIN or
SYSPUNCH DD statement, which is input to the next linkage edition process.

10.3.5 What is an object library?
You can use an object library to store object decks. The object decks to be
link-edited are retrieved from the object library and transformed into an
executable or loadable program.

When using the OBJECT compiler option, you can store the object deck on disk
as a traditional data set, as an UNIX file, or on tape. The DISP parameter of the
SYSLIN DD statement indicates whether the object deck is to be:

� Passed to the binder (or linkage editor) after compile (DISP=PASS)

� Cataloged in an existent object library (DISP=OLD)

� Kept (DISP=KEEP)

� Added to a new object library, which is cataloged at the end of the step
(DISP=CATLG)

An object deck can be the primary input to the binder by specifying its data set
name and member name on the SYSLIN DD statement. In the following
example, the member named TAXCOMP in the object library USER.LIBROUT is
the primary input. USER.LIBROUT is a cataloged partitioned data set:

//SYSLIN DD DSNAME=USER.LIBROUT(TAXCOMP),DISP=SHR

The library member is processed as if it were a sequential data set.

10.3.6 How does program management work?
Although program management components provide many services, they are
used primarily to convert object decks into executable programs, store them in
program libraries, and load them into virtual storage for execution.

You can use the program management binder and loader to perform these tasks.
These components can also be used in conjunction with the linkage editor. A
load module produced by the linkage editor can be accepted as input by the
binder, or can be loaded into storage for execution by the program management
loader. The linkage editor can also process load modules produced by the
binder.

Figure 10-2 on page 325 shows how the program management components
work together, and how each one is used to prepare an executable program. We
have already discussed some of these components (source modules and object
decks), so now we take a look at the rest of them.
324 Introduction to the New Mainframe: z/OS Basics

Figure 10-2 Using program management components to create and load programs

10.3.7 How is a linkage editor used?
Linkage editor processing follows the source program assembly or compilation of
any problem program. The linkage editor is both a processing program and a
service program used in association with the language translators.

Linkage editor and loader processing programs prepare the output of language
translators for execution. The linkage editor prepares a load module that is to be
brought into storage for execution by the program manager.

The linkage editor accepts two major types of input:

� Primary input, consisting of object decks and linkage editor control
statements.

Source
modules

Assembler or
compiler

Object
modules

Program
management

binder

Program object
 PDSE program

library

Linkage Editor Batch loader

Load modules
in PDS program

library

Program
management

loader

Load modules
in virtual storage

ready for execution

AA

AA
 Chapter 10. Preparing a program to run on z/OS 325

� Additional user-specified input, which can contain either object decks and
control statements, or load modules. This input is either specified by you as
input, or is incorporated automatically by the linkage editor from a call library.

Output of the linkage editor is of two types:

� A load module placed in a library (a partitioned data set) as a named member.

� Diagnostic output produced as a sequential data set.

The loader prepares the executable program in storage and passes control to it
directly.

10.3.8 How a load module is created
In processing object decks and load modules, the linkage editor assigns
consecutive relative virtual storage addresses to control sections, and resolves
references between control sections. Object decks produced by several different
language translators can be used to form one load module.

An output load module is composed of all input object decks and input load
modules processed by the linkage editor. The control dictionaries of an output
module are, therefore, a composite of all the control dictionaries in the linkage
editor input. The control dictionaries of a load module are called the composite
external symbol dictionary (CESD) and the relocation dictionary (RLD). The load
module also contains the text from each input module, and an end-of-module
indicator.

Figure 10-3 on page 327 shows the process of compiling two source programs:
PROGA and PROGB. PROGA is a COBOL program and PROGB is an
Assembler language program. PROGA calls PROGB. In this figure we see that
after compilation, the reference to PROGB in PROGA is an unresolved
reference. The process of link-editing the two object decks resolves the reference
so that when PROGA is executed, the call to PROGB will work correctly. PROGB
will be transferred to, it will execute, and control will return to PROGA, after the
point where PROGB was called.
326 Introduction to the New Mainframe: z/OS Basics

Figure 10-3 Resolving references during load module creation

Using the binder
The binder provided with z/OS performs all of the functions of the linkage editor.
The binder link-edits (combines and edits) the individual object decks, load
modules, and program objects that comprise an application and produces a
single program object or load module that you can load for execution. When a
member of a program library is needed, the loader brings it into virtual storage
and prepares it for execution.

You can use the binder to:

� Convert an object deck or load module into a program object and store it in a
partitioned data set extended (PDSE) program library, or in a z/OS UNIX file.

� Convert an object deck or program object into a load module and store it in a
partitioned data set (PDS) program library. This is equivalent to what the
linkage editor does with object decks and load modules.

� Convert object decks or load modules, or program objects, into an executable
program in virtual storage and execute the program. This is equivalent to what
the batch loader does with object decks and load modules.

The binder processes object decks, load modules and program objects,
link-editing or binding multiple modules into a single load module or program
object. Control statements specify how to combine the input into one or more
load modules or program objects with contiguous virtual storage addresses.
Each object deck can be processed separately by the binder, so that only the
modules that have been modified need to be recompiled or reassembled. The
binder can create programs in 24-bit, 31-bit and 64-bit addressing modes.

COBOL
PROGA
. . .
Call PROGB
. . .

Assembler
PROGB
. . .
. . .

Source code

COBOLCOBOL
compilercompiler

AssemblerAssembler

PROGA
. . .
Call PROGB
. . .

PROGB
. . .
. . .

Object code

LinkageLinkage
editoreditor

Load module

PROGA
. . .
Call PROGB
. . .

PROGB
. . .
. . .

Program
library
A data set that
holds load
modules and
program
objects.
 Chapter 10. Preparing a program to run on z/OS 327

You assign an addressing mode (AMODE) to indicate which hardware
addressing mode is active when the program executes. Addressing modes are:

� 24, which indicates that 24-bit addressing must be in effect.
� 31, which indicates that 31-bit addressing must be in effect.
� 64, which indicates that 64-bit addressing must be in effect.
� ANY, which indicates that 24-bit, 31-bit, or 64-bit addressing can be in effect.
� MIN, which requests that the binder assign an AMODE value to the program

module.

The binder selects the most restrictive AMODE of all control sections in the input
to the program module. An AMODE value of 24 is the most restrictive; an
AMODE value of ANY is the least restrictive.

All of the services of the linkage editor can be performed by the binder. For more
information about the layout of an address and which areas of the address space
are addressable by 24 bits, 31 bits and 64 bits, see 3.4.9, “A brief history of
virtual storage and 64-bit addressability” on page 94.

Binder and linkage editor
The binder relaxes or eliminates many restrictions of the linkage editor. The
binder removes the linkage editor's limit of 64 aliases, allowing a load module or
program object to have as many aliases as desired. The binder accepts any
system-supported block size for the primary (SYSLIN) input data set, eliminating
the linkage editor's maximum block size limit of 3200 bytes. The binder also does
not restrict the number of external names, whereas the linkage editor sets a limit
of 32767 names.

By the way, the prelinker provided with z/OS Language Environment is another
facility for combining object decks into a single object deck. Following a pre-link,
you can link-edit the object deck into a load module (which is stored in a PDS), or
bind it into a load module or a program object (which is stored in a PDS, PDSE,
or zFS file). With the binder, however, z/OS application programmers no longer
need to pre-link, because the binder handles all of the functionality of the
pre-linker. Whether you use the binder or linkage editor is a matter of preference.
The binder is the latest way to create your load module.
328 Introduction to the New Mainframe: z/OS Basics

The primary input, required for every binder job step, is defined on a DD
statement with the ddname SYSLIN. Primary input can be:

� A sequential data set
� A member of a partitioned data set (PDS)
� A member of a partitioned data set extended (PDSE)
� Concatenated sequential data sets, or members of partitioned data sets or

PDSEs, or a combination
� A z/OS UNIX file

The primary data set can contain object decks, control statements, load modules
and program objects. All modules and control statements are processed
sequentially, and their order determines the order of binder processing. The
order of the sections after processing, however, might not match the input
sequence.

Binder example
Example 10-12 shows a job that can be used to link-edit an object deck. The
output from the LKED step will be placed in a private library identified by the
SYSLMOD DD. The input is passed from a previous job step to a binder job step
in the same job (for example, the output from the compiler is direct input to the
binder).

Example 10-12 Binder JCL example

//LKED EXEC PGM=IEWL,PARM='XREF,LIST', IEWL is IEWBLINK alias
// REGION=2M,COND=(5,LT,prior-step)
//*
//* Define secondary input
//*
//SYSLIB DD DSN=language.library,DISP=SHR optional
//PRIVLIB DD DSN=private.include.library,DISP=SHR optional
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) ignored
//*
//* Define output module library
//*
//SYSLMOD DD DSN=program.library,DISP=SHR required
//SYSPRINT DD SYSOUT=* required
//SYSTERM DD SYSOUT=* optional
//*
//* Define primary input
//*
//SYSLIN DD DSN=&&OBJECT,DISP=(MOD,PASS) required
// DD * inline control statements
 INCLUDE PRIVLIB(membername)

NAME modname(R)
/*
 Chapter 10. Preparing a program to run on z/OS 329

An explanation of the JCL statements follows:

EXEC Binds a program module and stores it in a program library.
Alternative names for IEWBLINK are IEWL, LINKEDIT,
EWL, and HEWLH096.
The PARM field option requests a cross-reference table
and a module map to be produced on the diagnostic
output data set.

SYSUT1 Defines a temporary direct access data set to be used as
the intermediate data set.

SYSLMOD Defines a temporary data set to be used as the output
module library.

SYSPRINT Defines the diagnostic output data set, which is assigned
to output class A.

SYSLIN Defines the primary input data set, &&OBJECT, which
contains the input object deck; this data set was passed
from a previous job step and is to be passed at the end of
this job step.

INCLUDE Specifies sequential data sets, library members, or z/OS
UNIX files that are to be sources of additional input for the
binder (in this case, a member of the private library
PRIVLIB).

NAME Specifies the name of the program module created from
the preceding input modules, and serves as a delimiter for
input to the program module. (R) indicates that this
program module replaces an identically named module in
the output module library.

10.4 Creating load modules for executable programs
A load module is an executable program stored in a partitioned data set program
library. Creating a load module to execute only, will require that you use a batch
loader or program management loader. Creating a load module that can be
stored in a program library requires that you use the binder or linkage editor. In all
cases, the load module is relocatable, which means that it can be located at any
address in virtual storage within the confines of the residency mode (RMODE).

Once a program is loaded, control is passed to it, with a value in the base
register. This gives the program its starting address, where it was loaded, so that
all addresses can be resolved as the sum of the base plus the offset. Relocatable
programs allow an identical copy of a program to be loaded in many different

Relocatable
The load
module can be
located at any
address in
virtual storage.
330 Introduction to the New Mainframe: z/OS Basics

address spaces, each being loaded at a different starting address. See 10.3,
“Compiling programs on z/OS” on page 313 for more discussion on relocatable
programs.

10.4.1 Batch loader
The batch loader combines the basic editing and loading services (which can
also be provided by the linkage editor and program manager) into one job step.
The batch loader accepts object decks and load modules, and loads them into
virtual storage for execution. Unlike the binder and linkage editor, the batch
loader does not produce load modules that can be stored in program libraries.
The batch loader prepares the executable program in storage and passes control
to it directly.

Batch loader processing is performed in a load step, which is equivalent to the
link-edit and go steps of the binder or linkage editor. The batch loader can be
used for both compile-load and load jobs. It can include modules from a call
library (SYSLIB), the link pack area (LPA), or both. Like the other program
management components, the batch loader supports addressing and residence
mode attributes in the 24-bit, 31-bit, and 64-bit addressing modes. The batch
loader program is reentrant and therefore can reside in the resident link pack
area.

Note: In more recent releases of z/OS, the binder replaces the batch loader.

10.4.2 Program management loader
The program management loader increases the services of the program
manager component by adding support for loading program objects. The loader
reads both program objects and load modules into virtual storage and prepares
them for execution. It resolves any address constants in the program to point to
the appropriate areas in virtual storage and supports the 24-bit, 31-bit and 64-bit
addressing modes.

In processing object and load modules, the linkage editor assigns consecutive
relative virtual storage addresses to control sections and resolves references
between control sections. Object decks produced by several different language
translators can be used to form one load module.

In Example 10-13 we have a compile, link-edit, and execute job, in this case for
an assembler program.

Example 10-13 Compile, link-edit, and execute JCL

//USUAL JOB A2317P,'COMPLGO'
//ASM EXEC PGM=IEV90,REGION=256K, EXECUTES ASSEMBLER
 Chapter 10. Preparing a program to run on z/OS 331

// PARM=(OBJECT,NODECK,'LINECOUNT=50')
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=3509 PRINT THE ASSEMBLY LISTING
//SYSPUNCH DD SYSOUT=B PUNCH THE ASSEMBLY LISTING
//SYSLIB DD DSNAME=SYS1.MACLIB,DISP=SHR THE MACRO LIBRARY
//SYSUT1 DD DSNAME=&&SYSUT1,UNIT=SYSDA, A WORK DATA SET
// SPACE=(CYL,(10,1))
//SYSLIN DD DSNAME=&&OBJECT,UNIT=SYSDA, THE OUTPUT OBJECT DECK
// SPACE=(TRK,(10,2)),DCB=BLKSIZE=3120,DISP=(,PASS)
//SYSIN DD * inline SOURCE CODE

.

.
code
.

/*
//LKED EXEC PGM=HEWL, EXECUTES LINKAGE EDITOR
// PARM='XREF,LIST,LET',COND=(8,LE,ASM)
//SYSPRINT DD SYSOUT=* LINKEDIT MAP PRINTOUT
//SYSLIN DD DSNAME=&&OBJECT,DISP=(OLD,DELETE) INPUT OBJECT DECK
//SYSUT1 DD DSNAME=&&SYSUT1,UNIT=SYSDA, A WORK DATA SET
// SPACE=(CYL,(10,1))
//SYSLMOD DD DSNAME=&&LOADMOD,UNIT=SYSDA, THE OUTPUT LOAD MODULE
// DISP=(MOD,PASS),SPACE=(1024,(50,20,1))
//GO EXEC PGM=*.LKED.SYSLMOD,TIME=(,30), EXECUTES THE PROGRAM
// COND=((8,LE,ASM),(8,LE,LKED))
//SYSUDUMP DD SYSOUT=* IF FAILS, DUMP LISTING
//SYSPRINT DD SYSOUT=*, OUTPUT LISTING
// DCB=(RECFM=FBA,LRECL=121)
//OUTPUT DD SYSOUT=A, PROGRAM DATA OUTPUT
// DCB=(LRECL=100,BLKSIZE=3000,RECFM=FBA)
//INPUT DD * PROGRAM DATA INPUT
 .
 .
 data
 .
/*
//
332 Introduction to the New Mainframe: z/OS Basics

10.4.3 What is a load library?
A load library contains programs ready to be executed. A load library can be any
of the following:

� System library
� Private library
� Temporary library

System library
Unless a job or step specifies a private library, the system searches for a program in the
system libraries when you code:

//stepname EXEC PGM=program-name

The system looks in the libraries for a member with a name or alias that is the
same as the specified program-name. The most-used system library is
SYS1.LINKLIB, which contains executable programs that have been processed
by the linkage editor. For more information about system libraries, see 16.3.1,
“z/OS system libraries” on page 464.

Private library
Each executable, user-written program is a member of a private library. To tell the
system that a program is in a private library, the DD statement defining that
library can be coded in one of the following ways:

� With a DD statement with the ddname JOBLIB after the JOB statement, and
before the first EXEC statement in the job

� If the library is going to be used in only one step, with a DD statement with the
ddname STEPLIB in the step

Notes:

� In the step ASM (compile), SYSIN DD is for the inline source code and
SYSLIN DD is for the output object deck.

� In the step LKED (linkage-edition), the SYSLIN DD is for the input object
deck and the SYSLMOD DD is for the output load module.

� In the step GO (execute the program), the EXEC JCL statement states that
it will execute a program identified in the SYSLMOD DD statement of the
previous step.

� This example does not use a cataloged procedure, as the COBOL
examples did; instead, all of the JCL has been coded inline. We could have
used an existing JCL procedure, or coded one and then only supplied the
overrides, such as the INPUT DD statement.
 Chapter 10. Preparing a program to run on z/OS 333

To execute a program from a private library, code:

//stepname EXEC PGM=program-name

When you code JOBLIB or STEPLIB, the system searches for the program to be
executed in the library defined by the JOBLIB or STEPLIB DD statement before
searching in the system libraries.

If an earlier DD statement in the job defines the program as a member of a
private library, refer to that DD statement to execute the program:

//stepname EXEC PGM=*.stepname.ddname

Private libraries are particularly useful for programs used too seldom to be
needed in a system library. For example, programs that prepare quarterly sales
tax reports are good candidates for a private library.

Temporary library
Temporary libraries are partitioned data sets created to store a program until it is
used in a later step of the same job. A temporary library is created and deleted
within a job.

When testing a newly written program, a temporary library is particularly useful
for storing the load module from the linkage editor until it is executed by a later
job step. Because the module will not be needed by other jobs until it is fully
tested, it should not be stored in a private library or a system library. In
Example 10-13 on page 331, the LKED step creates a temporary library called
&&LOADMOD on the SYSLMOD DD statement. In the GO step, we refer back to
the same temporary data set by coding:

//GO EXEC PGM=*.LKED.SYSLMOD,....

10.5 Overview of compilation to execution
In Figure 10-4 on page 335, we can see the relationship between the object
decks and the load module stored in a load library and then loaded into central
memory for execution.

We start with two programs, A and B, which are compiled into two object decks.
Then the two object decks are linked into one load module call MYPROG, which
is stored in a load library on direct access storage. The load module MYPROG is
then loaded into central storage by the program management loader, and control
is transferred to it to for execution.
334 Introduction to the New Mainframe: z/OS Basics

Figure 10-4 Program compile, link-edit, and execution

10.6 Using procedures
To save time and prevent errors, you can prepare sets of job control statements
and place them in a partitioned data set (PDS) or partitioned data set extended
(PDSE), known as a procedure library. This can be used, for example, to
compile, assemble, link-edit, and execute a program, as shown in Example 10-13
on page 331. For a more in-depth discussion on JCL procedures, see 6.7, “JCL
procedures (PROCs)” on page 210.

A procedure library is a library that contains procedures. A set of job control
statements in the system procedure library, SYS1.PROCLIB (or an
installation-defined procedure library), is called a cataloged procedure.
(SYS1.PROCLIB is shown in 6.10, “System libraries” on page 218.)

To test a procedure before storing it in a procedure library, add the procedure to
the input stream and execute it; a procedure in the input stream is called an
inline procedure. The maximum number of inline procedures you can code in any
job is 15. In order to test a procedure in the input stream, it must end with a
procedure end (PEND) statement. The PEND statement signals the end of the
PROC. This is only required when the procedure is coded inline. In a procedure
library, you do not require a PEND statement.

After Link-edit

PROGRAM B

PROGRAM A

0

140 KB

80 KB

After compilation

PROGRAM A

0 80 KB

PROGRAM B

60 KB 0

16 MB

2 GB

0

20 KB

Common

MYPROG

2-GB Virtual
Storage
Address Space

PROGRAM
LIBRARY

MYPROG

Object Modules

Load Module
 Chapter 10. Preparing a program to run on z/OS 335

An inline procedure must appear in the same job before the EXEC statement that
calls it.

Example 10-14 Sample definition of a procedure

//DEF PROC STATUS=OLD,LIBRARY=SYSLIB,NUMBER=777777
//NOTIFY EXEC PGM=ACCUM
//DD1 DD DSNAME=MGMT,DISP=(&STATUS,KEEP),UNIT=3400-6,
// VOLUME=SER=888888
//DD2 DD DSNAME=&LIBRARY,DISP=(OLD,KEEP),UNIT=3390,
// VOLUME=SER=&NUMBER

Three symbolic parameters are defined in the cataloged procedure shown in
Example 10-14; they are &STATUS, &LIBRARY, and &NUMBER. Values are
assigned to the symbolic parameters on the PROC statement. These values are
used if the procedure is called but no values are assigned to the symbolic
parameters on the calling EXEC statement.

In Example 10-15 we are testing the procedure called DEF. Note that the
procedure is delineated by the PROC and PEND statements. The EXEC
statement that follows the procedure DEF references the procedure to be
invoked. In this case, since the name DEF matches a procedure that was
previously coded inline, the system will use the procedure inline and will not
search any further.

Example 10-15 Testing a procedure inline

//TESTJOB JOB
//DEF PROC STATUS=OLD,LIBRARY=SYSLIB,NUMBER=777777
//NOTIFY EXEC PGM=ACCUM
//DD1 DD DSNAME=MGMT,DISP=(&STATUS,KEEP),UNIT=3400-6,
// VOLUME=SER=888888
//DD2 DD DSNAME=&LIBRARY,DISP=(OLD,KEEP),UNIT=3390,
// VOLUME=SER=&NUMBER
// PEND
//*
//TESTPROC EXEC DEF
//

10.7 Summary
This chapter describes the process for translating a source program into an
executable load module, and executing the load module. The basic steps for this
translation are to compile and link-edit, although there might be a third step to
pre-process the source prior to compiling it. The pre-processing step would be
336 Introduction to the New Mainframe: z/OS Basics

required if your source program issues CICS command language calls or SQL
calls. The output of the pre-processing step is then fed into the compile step.

The purpose of the compile step is to validate and translate source code into
relocatable machine language, in the form of object code. Although the object
code is machine language, it is not yet executable. It must be processed by a
linkage editor, binder, or loader before it can be executed.

The linkage editor, binder, and loader take as input object code and other load
modules, and then produce an executable load module and, in the case of the
loader, execute it. This process resolves any unresolved references within the
object code and ensures that everything that is required for this program to
execute is included within the final load module. The load module is now ready
for execution.

To execute a load module, it must be loaded into central storage. The binder or
program manager service loads the module into storage and then transfers
control to it to begin execution. Part of transferring control to the module is to
supply it with the address of the start of the program in storage. Because the
program’s instructions and data are addressed using a base address and a
displacement from the base, this starting address gives addressability to the
instructions and data within the limits of the range of displacement2.

10.8 Questions for review
To help test your understanding of the material in this chapter, complete the
following questions:

1. What steps are needed to be able to execute a source program?

2. How can I modify an object deck? A load module?

3. How many different types of load libraries can the system have?

2 The maximum displacement for each base register is 4096 (4K). Any program bigger than 4K must
have more than one base register in order to have addressability to the entire program.

Key terms in this chapter

binder copybook linkage editor

load module object deck object-oriented code

procedure procedure library program library

relocatable source module
 Chapter 10. Preparing a program to run on z/OS 337

4. What is a procedure library, and what is it used for?

5. What is the difference between the linkage editor and the binder?

6. How are copybooks and cataloged procedure libraries similar?

7. What is the purpose of a compiler? What are the inputs and outputs?

8. What does relocatable mean?

9. What is the difference between an object deck and a load module?

10.What is the SYSLMOD DD statement used for?

11.Why is a PEND statement required in an inline PROC and not in a cataloged
PROC?

10.9 Exercises
The lab exercises in this chapter help you develop skills in preparing programs to
run on z/OS. These skills are required for performing lab exercises in the
remainder of this text.

To perform the lab exercises, you or your team require a TSO user ID and
password (for assistance, see the instructor).

The exercises teach the following:

� “Exercise: compiling and linking a program” on page 338
� “Exercise: executing a program” on page 341

10.9.1 Exercise: compiling and linking a program
In this section, use at least two programming languages to compile and link; see
the JCL in:

yourid.LANG.CNTL(language)
where “language” is one of ASM, ASMLE, C, C2, COBOL, COBOL2, PL1,
PL12.

Do this exercise before attempting the exercise in 10.9.2, “Exercise: executing a
program” on page 341. The results of successfully running each job in this
exercise will be to create the load modules which will be executed in the next
exercise.
338 Introduction to the New Mainframe: z/OS Basics

1. Submit the following data set to compile and link a complex Assembler
language program:

yourid.LANG.CNTL(ASMLE)

2. Submit the following data set to compile and link a simple Assembler
language program:

yourid.LANG.CNTL(ASM)

3. Submit the following data set to compile and link a complex C language
program:

yourid.LANG.CNTL(C)

4. Submit the following data set to compile and link a simple C language
program:

Note: The JCL will need to be modified to specify the high-level qualifier
(HLQ) of the student submitting the jobs. In addition, any jobs referring to
Language Environment data sets might also need to be modified. See the
comment boxes for more information.

To submit the jobs, enter SUBMIT on the ISPF command line. Once the job
completes, you will need to use SDSF to view the output of the job.

Note: The student might need to modify the JCL for data sets beginning
with CEE. Ask your system programmer what the high-level qualifier (HLQ)
is for the Language Environment data sets. The JCL that might need to be
changed is highlighted here:

//C.SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=CEE.SCEEMAC,DISP=SHR
//C.SYSIN DD DSN=ZUSER##.LANG.SOURCE(ASMLE),DISP=SHR
//L.SYSLMOD DD DSN=ZUSER##.LANG.LOAD(ASMLE),DISP=SHR
//L.SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
// DD DSN=CEE.SCEELKEX,DISP=SHR

Note: The student might need to modify the JCL for data sets beginning
with CEE and CBC. Ask your system programmer what the high-level
qualifiers (HLQs) are for the Language Environment and C language data
sets. The JCL that might need to be changed is highlighted here:

//STEP1 EXEC PROC=EDCCB,LIBPRFX=CEE,LNGPRFX=CBC,
// INFILE='ZUSER##.LANG.SOURCE(C)',
// OUTFILE='ZUSER##.LANG.LOAD(C),DISP=SHR'
 Chapter 10. Preparing a program to run on z/OS 339

yourid.LANG.CNTL(C2)

5. Submit the following data set to compile and link a complex COBOL language
program:

yourid.LANG.CNTL(COBOL)

6. Submit the following data set to compile and link a simple COBOL language
program:

yourid.LANG.CNTL(COBOL2)

7. Submit the following data set to compile and link a complex PL/I language
program:

yourid.LANG.CNTL(PL1)

8. Submit the following data set to compile and link a simple PL/I language
program:

yourid.LANG.CNTL(PL12)

Note: The student might need to modify the JCL for data sets beginning
with CEE and CBC. Ask your system programmer what the high-level
qualifiers (HLQs) are for the Language Environment and C language data
sets. The JCL that might need to be changed is highlighted here:

//STEP1 EXEC PROC=EDCCB,LIBPRFX=CEE,LNGPRFX=CBC,
// INFILE='ZUSER##.LANG.SOURCE(C2)',
// OUTFILE='ZUSER##.LANG.LOAD(C2),DISP=SHR'

Note: The student might need to modify the JCL for data sets beginning
with CEE. Ask your system programmer what the high-level qualifier (HLQ)
is for the Language Environment data sets. The JCL that might need to be
changed is highlighted here:

//SYSIN DD DSN=ZUSER##.LANG.SOURCE(COBOL),DISP=SHR
//COBOL.SYSLIB DD DSN=CEE.SCEESAMP,DISP=SHR
//LKED.SYSLMOD DD DSN=ZUSER##.LANG.LOAD(COBOL),DISP=SHR

Note: The student might need to modify the JCL for data sets beginning
with CEE. Ask your system programmer what the high-level qualifier (HLQ)
is for the Language Environment data sets. The JCL that might need to be
changed is highlighted here:

//SYSIN DD DSN=ZUSER##.LANG.SOURCE(PL1),DISP=SHR
//PLI.SYSLIB DD DSN=CEE.SCEESAMP,DISP=SHR
//BIND.SYSLMOD DD DSN=ZUSER##.LANG.LOAD(PL1),DISP=SHR
340 Introduction to the New Mainframe: z/OS Basics

10.9.2 Exercise: executing a program
In this section, language examples you selected were compiled and linked in
exercise 10.9.1, “Exercise: compiling and linking a program” on page 338. Do not
attempt to run any of the following jobs if you have not successfully completed
the previous exercise, because they will end in errors.

The following exercise contains actions to perform for each language sample to
execute the load module that was previously stored when a compile and link job
was run. For the interpreted languages, you will execute the source members
directly from:

yourid.LANG.SOURCE(language)
where “language” is one of CLIST, REXX.

1. Submit the following data set to execute a complex Assembler language
program:

yourid.LANG.CNTL(USEASMLE)
This example accesses z/OS Language Environment and prints the
message:
“IN THE MAIN ROUTINE”.

2. Submit the following data set to execute a simple Assembler language
program:

yourid.LANG.CNTL(USEASM)

Note: The JCL will need to be modified to specify the HLQ of the student
submitting the jobs. To submit the jobs, enter SUBMIT on the ISPF command
line. Once the job completes, you will need to use SDSF to view the output of
the job.

In order for these jobs to run successfully, the student will have had to
complete the compile and link jobs in exercise 10.9.1, “Exercise: compiling
and linking a program” on page 338 in order to create the load modules in:

ZPROF.LANG.LOAD

If these jobs did not run successfully, then the student could receive errors in
the job log in SDSF similar to:

CSV003I REQUESTED MODULE ASM NOT FOUND
CSV028I ABEND806-04 JOBNAME=ZPROF2 STEPNAME=STEP1
IEA995I SYMPTOM DUMP OUTPUT 238
SYSTEM COMPLETION CODE=806 REASON CODE=00000004

The module name, JOBNAME and STEPNAME vary, according to which job
had been submitted.
 Chapter 10. Preparing a program to run on z/OS 341

This example sets the return code to 15 and exits.

3. Submit the following data set to execute a complex C language program:

yourid.LANG.CNTL(USEC)
This example prints out the local date and time.

4. Submit the following data set to execute a simple C language program:

yourid.LANG.CNTL(USEC2)
This example prints out the message “Hello World”.

5. Submit the following data set to execute a complex COBOL language
program:

yourid.LANG.CNTL(USECOBOL)
This example prints out the local date and time.

6. Submit the following data set to execute a simple COBOL language program:

yourid.LANG.CNTL(USECOBO2)
This example prints out the message “HELLO WORLD”.

7. Submit the following data set to execute a complex PL/I language program:

yourid.LANG.CNTL(USEPL1)
This example prints out the local date and time.

8. Submit the following data set to execute a simple PL/I language program:

yourid.LANG.CNTL(USEPL12)
This example prints out the message “HELLO WORLD”.

9. Execute the following complex CLIST language program:

yourid.LANG.SOURCE(CLIST)
This example prompts the user for a high-level qualifier (HLQ) and
then produces a formatted catalog listing for that HLQ.

On the ISPF command line type:
TSO EX ‘yourid.LANG.SOURCE(CLIST)’
When prompted, enter the HLQ yourid

10.Execute the following simple CLIST language program:

yourid.LANG.SOURCE(CLIST2)
This example prints out the message “HELLO WORLD”.

On the ISPF command line type:
TSO EX ‘yourid.LANG.SOURCE(CLIST2)’

11.Execute the following complex REXX language program:

yourid.LANG.SOURCE(REXX)
342 Introduction to the New Mainframe: z/OS Basics

This example prompts the user for a high-level qualifier (HLQ) and
then produces a formatted catalog listing for that HLQ.

On the ISPF command line type:
TSO EX ‘yourid.LANG.SOURCE(REXX)’
When prompted, enter the HLQ yourid

12.Execute the following simple REXX language program:

yourid.LANG.SOURCE(REXX2)
This example prints out the message “HELLO WORLD”.

On the ISPF command line type:
TSO EX ‘yourid.LANG.SOURCE(REXX2)’
 Chapter 10. Preparing a program to run on z/OS 343

344 Introduction to the New Mainframe: z/OS Basics

Part 3 Online
workloads for
z/OS

In this part, we examine the major categories of online or interactive workloads
performed on z/OS, such as transaction processing, database management, and
Web-serving. The chapters that follow guide the student through discussions of
network communications and several popular middleware products, including
DB2, CICS, and WebSphere.

Part 3
© Copyright IBM Corp. 2006. All rights reserved. 345

346 Introduction to the New Mainframe: z/OS Basics

Chapter 11. Transaction management
systems on z/OS

11

Objective: To expand your knowledge of mainframe workloads, you must
understand the role of mainframes in today’s online world. This chapter
introduces concepts and terminology for transactional processing, and
presents an overview of the major types of system software used to process
online workloads on the mainframe. In this chapter, we focus on two of the
most widely used transaction management products for z/OS: CICS and IMS.

After completing this chapter, you will be able to:

� Describe the role of large systems in a typical online business.

� List the attributes common to most transaction systems.

� Explain the role of CICS in online transaction processing.

� Describe CICS programs, CICS transactions, and CICS tasks.

� Explain what conversational and pseudo-conversational programming is.

� Explain CICS and Web-enabling.

� Discuss the IMS components.
© Copyright IBM Corp. 2006. All rights reserved. 347

11.1 Online processing on the mainframe
In earlier chapters, we discussed the possibilities of batch processing—but those
are not the only applications running on z/OS and the mainframe. Online
applications also run on z/OS, as we show in this chapter. We also describe what
online, or interactive, applications are and discuss their common elements in the
mainframe environment.

We examine databases, which are a common way of storing application data.
Databases make development easier—especially in the case of a relational
database management system (RDBMS)—by removing the burden from the
programmer organizing and managing the data. Later in this chapter, we discuss
several widely used transaction management systems for mainframe-based
enterprises.

We begin with the example of a travel agency with a requirement common to
many mainframe customers: Provide customers with more immediate access to
services and exploit the benefits of Internet-based commerce.

11.2 Example of global online processing - the new big
picture

A big travel agency has relied on a mainframe-based batch system for many
years. Over the years, the agency’s customers have enjoyed excellent service,
and the agency has continuously improved its systems.

When the business was begun, their IT staff designed some applications to
support the agency’s internal and external processes: Employee information,
customer information, contacts with car rental companies, hotels all over the
world, scheduled flights of airlines, and so on. At first these application were
updated periodically by batch processing.

This kind of data is not static, however, and has become increasingly prone to
frequent change. Because prices, for example, change frequently, it became
more difficult over time to maintain current information. The agency’s customers
wanted their information now and that was not always possible through fixed
intervals of batch updates (consider the time difference between Asia, Europe,
and America).

If these workloads were to be done through traditional mainframe batch jobs, it
would mean a certain time lapse between the reception of the change and the
actual update. The agency needed a way to update small amounts of data
348 Introduction to the New Mainframe: z/OS Basics

provided in bits and pieces—by phone, fax, or e-mail—the instant that changes
occur (Figure 11-1 on page 349).

Figure 11-1 A practical example

Therefore, the agency IT staff created some new applications. Since changes
need to be immediately reflected to the applications’s end-users, the new
applications are transactional in nature. The applications are called transaction
or interactive applications because changes in the system data are effective
immediately.

The travel agency contacted its suppliers to see what could be done. They
needed a way to let the computers talk to each other. Some of the airlines were
also working on mainframes, others were not, and everybody wanted to keep
their own applications.

Eventually, they found a solution! It made communicating easy: you could just
ask a question and some seconds later get the result—great stuff.

Car Rental Agency Hotel Airline

Travel Agency

WAP HTTP
 Chapter 11. Transaction management systems on z/OS 349

More innovations were required because the customers also evolved. The
personal computer got into their homes, so they wanted to see travel possibilities
through the Internet. Some customers used their mobile computers as a wireless
access point (WAP).

11.3 Transaction systems for the mainframe
Transactions occur in everyday life, for example, when you exchange money for
goods and services or do a search on the Internet. A transaction is an exchange,
usually a request and response, that occurs as a routine event in running the
day-to-day operations of an organization.

Transactions have the following characteristics:

� Small amount of data is processed and transferred per transaction
� Large numbers of users
� Are executed in large numbers

11.3.1 What are transaction programs?
A business transaction is a self-contained business deal. Some transactions
involve a short conversation (for example, an address change). Others involve
multiple actions that take place over an extended period (for example, the
booking of a trip, including car, hotel, and airline tickets).

A single transaction might consist of many application programs that carry out
the processing needed. Large-scale transaction systems (such as the IBM CICS
product) rely on the multitasking and multithreading capabilities of z/OS to allow
more than one task to be processed at the same time, with each task saving its
specific variable data and keeping track of the instructions each user is
executing.

Multitasking is essential in any environment in which thousands of users can be
logged on at the same time. When a multitasking transaction system receives a
request to run a transaction, it can start a new task that is associated with one
instance of the execution of the transaction; that is, one execution of a
transaction, with a particular set of data, usually on behalf of a particular user at
a particular terminal. You might also consider a task to be analogous to a UNIX
thread. When the transaction completes, the task is ended.

Multithreading allows a single copy of an application program to be processed by
several transactions concurrently. Multithreading requires that all transactional
application programs be reentrant; that is, they must be serially reusable
between entry and exit points. Among programming languages, reentrance is

Multithreading
A single copy of
an application
can be
processed by
several
transactions
concurrently.
350 Introduction to the New Mainframe: z/OS Basics

ensured by a fresh copy of working storage section being obtained each time the
program is invoked.

11.3.2 What is a transaction system?
Figure 11-2 on page 351 shows the main characteristics of a transaction system.
Before the advent of the Internet, a transaction system served hundreds or
thousands of terminals with dozens or hundreds of transactions per second. This
workload was rather predictable both in transaction rate and mix of transactions.

Figure 11-2 Characteristics of a transaction system

Transaction systems must be able to support a high number of concurrent users
and transaction types.

One of the main characteristics of a transaction or online system is that the
interactions between the user and the system are very brief. Most transactions

Many users

Repetitive

Short interactions

Shared data

Data integrity

Low cost / transaction

Transaction
A unit of work
performed by
one or more
transaction
programs,
involving a
specific set of
input data and
initiating a
specific
process or job.
 Chapter 11. Transaction management systems on z/OS 351

are executed in short time periods—one second, in some cases. The user will
perform a complete business transaction through short interactions, with
immediate response time required for each interaction. These are mission-critical
applications; therefore, continuous availability, high performance, and data
protection and integrity are required.

Online transaction processing (OLTP) is transaction processing that occurs
interactively; it requires:

� Immediate response time
� Continuous availability of the transaction interface to the end user
� Security
� Data integrity

Online transactions are familiar to many people. Some examples include:

� ATM transactions such as deposits, withdrawals, inquiries, and transfers
� Supermarket payments with debit or credit cards
� Buying merchandise over the Internet

In fact, an online system has many of the characteristics of an operating system:

� Managing and dispatching tasks
� Controlling user access authority to system resources
� Managing the use of memory
� Managing and controlling simultaneous access to data files
� Providing device independence

11.3.3 What are the typical requirements of a transaction system?
In a transaction system, transactions must comply with four primary
requirements known jointly by the mnemonic A-C-I-D or ACID:

� Atomicity. The processes performed by the transaction are done as a whole
or not at all.

� Consistency. The transaction must work only with consistent information.

� Isolation. The processes coming from two or more transactions must be
isolated from one another.

� Durability. The changes made by the transaction must be permanent.

Usually, transactions are initiated by an end user who interacts with the
transaction system through a terminal. In the past, transaction systems
supported only terminals and devices connected through a teleprocessing
network. Today, transaction systems can serve requests submitted in any of the
following ways:

� Web page
352 Introduction to the New Mainframe: z/OS Basics

� Remote workstation program
� Application in another transaction system
� Triggered automatically at a predefined time

11.3.4 What is commit and roll back?
In transaction systems, commit and roll back refers to the set of actions used to
ensure that an application program either makes all changes to the resources
represented by a single unit of recovery (UR), or makes no changes at all. The
two-phase commit protocol provides commit and rollback. It verifies that either all
changes or no changes are applied even if one of the elements (like the
application, the system, or the resource manager) fails. The protocol allows for
restart and recovery processing to take place after system or subsystem failure.

The two-phase commit protocol is initiated when the application is ready to
commit or back out its changes. At this point, the coordinating recovery manager,
also called the syncpoint manager, gives each resource manager participating in
the unit of recovery an opportunity to vote on whether its part of the UR is in a
consistent state and can be committed. If all participants vote YES, the recovery
manager instructs all the resource managers to commit the changes. If any of the
participants vote NO, the recovery manager instructs them to back out the
changes. This process is usually represented as two phases.

In phase 1, the application program issues the syncpoint or rollback request to
the syncpoint coordinator. The coordinator issues a PREPARE command to send
the initial syncpoint flow to all the UR agent resource managers. In response to
the PREPARE command, each resource manager involved in the transaction
replies to the syncpoint coordinator stating whether it is ready to commit or not.

When the syncpoint coordinator receives all the responses back from all its
agents, phase 2 is initiated. In this phase the syncpoint coordinator issues the
commit or rollback command based on the previous responses. If any of the
agents responded with a negative response, the syncpoint initiator causes all of
the syncpoint agents to roll back their changes.

The instant when the coordinator records the fact that it is going to tell all the
resource managers to either commit or roll back is known as the atomic instant.
Regardless of any failures after that time, the coordinator assumes that all
changes will either be committed or rolled back. A syncpoint coordinator usually
logs the decision at this point. If any of the participants abnormally end (or
abend) after the atomic instant, the abending resource manager must work with
the syncpoint coordinator, when it restarts, to complete any commits or rollbacks
that were in process at the time of the abend.
 Chapter 11. Transaction management systems on z/OS 353

On z/OS, the primary syncpoint coordinator is called Resource Recovery
Services (RRS). Also, the IBM transaction manager product, CICS, includes its
own built-in syncpoint coordinator.

During the first phase of the protocol, the agents do not know whether the
syncpoint coordinator will commit or roll back the changes. This time is known as
the indoubt period. The UR is described as having a particular state depending
on what stage it is at in the two-phase commit process:

� Before a UR makes any changes to a resource, it is described as being
In-reset.

� While the UR is requesting changes to resources, it is described as being
In-flight.

� Once a commit request has been made (Phase 1), it is described as being
In-prepare.

� Once the syncpoint manager has made a decision to commit (phase 2 of the
two-phase commit process), it is In-commit.

� If the syncpoint manager decides to back out, it is In-backout.

Figure 11-3 illustrates the two-phase commit.

Figure 11-3 Two-phase commit

Most widely used transaction management systems on z/OS, such as CICS or
IMS, support two-phase commit protocols. CICS, for example, supports full

INITIATOR Agent of A Agent of B

Update local resources Update local resources Update local resources

Prepare Receive

Prepare Receive

SYNCPOINT

SYNCPOINT

Commit

Commit

SYNCPOINT

Phase 1

Phase 2

AA BB CC
354 Introduction to the New Mainframe: z/OS Basics

two-phase commit in transactions with IMS and the DB2 database management
system, and supports two-phase commit across distributed CICS systems.

There are many restrictions imposed on application developers attempting to
develop new applications that require updates in many different resource
managers, perhaps across a number of systems. Many of these new applications
use technologies like DB2 stored procedures and Enterprise Java Beans, and
use client attachment facilities of CICS or IMS that do not support two-phase
commit. If any of these resource managers are used by an application to update
resources, it is not possible to have a global coordinator for the syncpoint.

The lack of a global syncpoint coordinator might influence an application design
for the following reasons:

� The application is not capable of having complex and distributed transactions
if not all of the resource managers are participating in the two-phase commit
protocol.

� The application cannot be designed as a single application (or unit of
recovery) across multiple systems (except for CICS).

The application programmer would have to program around these limitations. For
example, the programmer could limit the choice of where to put the business data
to ensure that all the data could be committed in a single unit of recovery.

Also, these limitations could affect the recoverability of the protected resources or
their integrity in case of a failure of one of the components, because resource
managers have no way to either commit or roll back the updates.

11.4 What is CICS?
CICS stands for Customer Information Control System. It is a general-purpose
transaction processing subsystem for the z/OS operating system. CICS provides
services for running an application online, by request, at the same time as many
other users are submitting requests to run the same applications, using the same
files and programs.

CICS manages the sharing of resources, the integrity of data and prioritization of
execution, with fast response. CICS authorizes users, allocates resources (real
storage and cycles), and passes on database requests by the application to the
appropriate database manager (such as DB2). We could say that CICS acts like,
and performs many of the same functions as the z/OS operating system.

A CICS application is a collection of related programs that together perform a
business operation, such as processing a travel request or preparing a company
 Chapter 11. Transaction management systems on z/OS 355

payroll. CICS applications execute under CICS control, using CICS services and
interfaces to access programs and files.

CICS applications are traditionally run by submitting a transaction request.
Execution of the transaction consists of running one or more application
programs that implement the required function. In CICS documentation you may
find CICS application programs sometimes simply called “programs,” and
sometimes the term “transaction” is used to imply the processing done by the
application programs.

CICS applications can also take the form of Enterprise Java Beans. You can find
out more about this form of programming in Java Applications in CICS in the
CICS Information Center.

11.4.1 CICS in a z/OS system
In a z/OS system, CICS provides a layer of function for managing transactions,
while the operating system remains the final interface with the computer
hardware. CICS essentially separates a particular kind of application program
(namely, online applications) from others in the system, and handles these
programs itself.

When an application program accesses a terminal or any device, for example, it
doesn’t communicate directly with it. The program issues commands to
communicate with CICS, which communicates with the needed access methods
of the operating system. Finally, the access method communicates with the
terminal or device.
356 Introduction to the New Mainframe: z/OS Basics

Figure 11-4 Transactional system and the operating system

A z/OS system might have multiple copies of CICS running at one time. Each
CICS starts as a separate z/OS address space. CICS provides an option called
multi-region operation (MRO), which enables the separation of different CICS
functions into different CICS regions (address spaces); so a specific CICS
address space (or more) might do the terminal control and will be named
terminal owning region (TOR). Other possibilities include application-owning
regions (AORs) for applications and file-owning regions (FORs) for files.

11.4.2 CICS programs, transactions and tasks
CICS allows you to keep your application logic separate from your application
resources. To develop and run CICS applications, you need to understand the
relationship between CICS programs, transactions, and tasks. These terms are
used throughout CICS publications and appear in many commands:

� Transaction

A transaction is a piece of processing initiated by a single request. This is
usually from an end user at a terminal, but might also be made from a Web
page, from a remote workstation program, from an application in another
CICS system, or triggered automatically at a predefined time. The CICS
Internet Guide and the CICS External Interfaces Guide describe different
ways of running CICS transactions.

A CICS transaction is given a 4-character name, which is defined in the
program control table (PCT).

z/OSz/OS

Transactional
system (CICS)

ApplicationApplication
ProgramProgramDATADATA

User
 Chapter 11. Transaction management systems on z/OS 357

� Application program

A single transaction consists of one or more application programs that, when
run, carry out the processing needed.

However, the term transaction is used in CICS to mean both a single event
and all other transactions of the same type. You describe each transaction
type to CICS with a transaction resource definition. This definition gives the
transaction type a name (the transaction identifier or TRANSID) and tells
CICS several things about the work to be done, such as what program to
invoke first and what kind of authentication is required throughout the
execution of the transaction.

You run a transaction by submitting its TRANSID to CICS. CICS uses the
information recorded in the TRANSACTION definition to establish the correct
execution environment, and starts the first program.

� Unit of work

The term transaction is now used extensively in the IT industry to describe a
unit of recovery or what CICS calls a unit of work. This is typically a complete
operation that is recoverable; it can be committed or backed out as an entirety
as a result of a programmed command or system failure. In many cases, the
scope of a CICS transaction is also a single unit of work, but you should be
aware of the difference in meaning when reading non-CICS publications.

� Task

You will also see the word task used extensively in CICS publications. This
word also has a specific meaning in CICS. When CICS receives a request to
run a transaction, it starts a new task that is associated with this one instance
of the execution of the transaction—that is, one execution of a transaction,
with a particular set of data, usually on behalf of a particular user at a
particular terminal. You can also consider it analogous to a thread. When the
transaction completes, the task is terminated.

11.4.3 Using programming languages
You can use COBOL, OO COBOL, C, C++, Java, PL/I, or Assembler language to
write CICS application programs to run on z/OS. Most of the processing logic is
expressed in standard language statements, but you use CICS commands, or
the Java and C++ class libraries, to request CICS services.

Most of the time, you use the CICS command level programming interface, EXEC
CICS. This is the case for COBOL, OO COBOL, C, C++, PL/I and assembler
programs. These commands are defined in detail in the CICS Application
Programming Reference.

Unit of work
A transaction; a
complete
operation that
is recoverable.
358 Introduction to the New Mainframe: z/OS Basics

Programming in Java with the JCICS class library is described in the Java
Applications in CICS component of the CICS Information Center.

Programming in C++ with the CICS C++ classes is described in the CICS C++
OO Class Libraries documentation.

11.4.4 Conversational and pseudo-conversational programming
In CICS, when the programs being executed enter into a conversation with the
user, it is called a conversational transaction (also see Figure 11-5 on
page 360). A non-conversational transaction (also see Figure 11-6 on page 361),
by contrast, processes one input, responds, and ends (disappears). It never
pauses to read a second input from the terminal, so there is no real conversation.

There is a technique in CICS called pseudo-conversational processing, in which
a series of non-conversational transactions gives the appearance (to the user) of
a single conversational transaction. No transaction exists while the user waits for
input; CICS takes care of reading the input when the user gets around to sending
it. Figure 11-5 on page 360 and Figure 11-6 on page 361 show different types of
conversation in an example of a record update in a banking account.

Conversational
transaction
A program
conducts a
conversation
with a user.
 Chapter 11. Transaction management systems on z/OS 359

Figure 11-5 Example of a conversational transaction

In a conversational transaction, programs hold resources while waiting to receive
data. In a pseudo-conversational model, no resources are held during these
waits (Figure 11-6 on page 361).

More information about these topics can be found in CICS Application
Programming Guide.

Conversational:

User
types
input

PROGV000

WAIT

Menu

Enter account ______
Function code______

Menu

Enter account 1234_
Function code M____

Record Update

Enter account 1234
Name: Smith
Amount: $10.00
Date: 05/28/04

Menu

Enter account ______
Function code______
"Update confirmed"

User
types
changes

SEND MAP

RECEIVE MAP
READ FILE UPDATE

SEND MAP

RECEIVE MAP
REWRITE FILE

SEND MAP
RETURN

WAIT
360 Introduction to the New Mainframe: z/OS Basics

Figure 11-6 Example of a pseudo-conversational transaction

11.4.5 CICS programming commands
The general format of a CICS command is EXECUTE CICS (or EXEC CICS)
followed by the name of the command and possibly one or more options.

You can write many application programs using the CICS command-level
interface without any knowledge of, or reference to, the fields in the CICS control
blocks and storage areas. However, you might need to get information that is
valid outside the local environment of your application program.

Pseudo-Conversational:

User
types
input

PROGV000

Menu

Enter account ______
Function code______

Menu

Enter account 1234_
Function code M____

Record Update

Enter account 1234
Name: Smith
Amount: $10.00
Date: 05/28/04

Menu

User
types
changes

SEND MAP...
RETURN TRANSID(V001)....

Enter account 1234
Name: Smith
Amount: $99.50
Date: 05/28/04
"Update Confirmed"

PROGV001

RECEIVE MAP...
....
READ FILE...
....
SEND MAP...
...
RETURN TRANSID (V002)....

PROGV002

RECEIVE MAP...
....
READ FILE UPDATE....
REWRITE FILE....
....
SEND MAP...
...
RETURN TRANSID (V000)...

Pseudo-
conversational
A series of non-
conversational
transactions
appears to the
user as a
conversation.
 Chapter 11. Transaction management systems on z/OS 361

When you need a CICS system service, for example when reading a record from
a file, you just include a CICS command in your code. In COBOL, for example,
CICS commands look like this:

EXEC CICS function option option ... END-EXEC.

The “function” is the action you want to perform. Reading a file is READ, writing
to a terminal is SEND, and so on.

An “option” is some specification that’s associated with the function. Options are
expressed as keywords. For example, the options for the READ command
include FILE, RIDFLD, UPDATE and others. FILE tells CICS which file you want
to read, and is always followed by a value indicating or pointing to the file name.
RIDFLD (record identification field, that is, the key) tells CICS which record and
likewise needs a value. The UPDATE option, on the other hand, simply means
that you intend to change the record, and it doesn’t take any value. So, to read
with intent to modify, a record from a file known to CICS as ACCTFIL, using a key
that we stored in working storage as ACCTC, we issued the command shown in
Example 11-1.

Example 11-1 CICS command example

EXEC CICS
READ FILE(‘ACCTFIL’)

RIDFLD(ACCTC) UPDATE ...
END-EXEC.

You can use the ADDRESS and ASSIGN commands to access such information.
For programming information about these commands, see CICS Application
Programming Reference. When using the ADDRESS and ASSIGN commands,
various fields can be read but should not be set or used in any other way. This
means that you should not use any of the CICS fields as arguments in CICS
commands, because these fields may be altered by the EXEC interface modules.

11.4.6 How a CICS transaction flows
To begin an online session with CICS, users usually begin by “signing on,” the
process which identifies them to CICS. Signing on to CICS gives users the
authority to invoke certain transactions. When signed on, users invoke the
particular transaction they intend to use. A CICS transaction is usually identified
by a 1- to 4-character transaction identifier or TRANSID, which is defined in a
table that names the initial program to be used for processing the transaction.

Application programs are stored in a library on a direct access storage device
(DASD) attached to the processor. They can be loaded when the system is
started, or simply loaded as required. If a program is in storage and isn’t being
362 Introduction to the New Mainframe: z/OS Basics

used, CICS can release the space for other purposes. When the program is next
needed, CICS loads a fresh copy of it from the library.

In the time it takes to process one transaction, the system may receive messages
from several terminals. For each message, CICS loads the application program
(if it isn’t already loaded), and starts a task to execute it. Thus, multiple CICS
tasks can be running concurrently.

Multithreading is a technique that allows a single copy of an application program
to be processed by several transactions concurrently. For example, one
transaction may begin to execute an application program (a traveller requests
information). While this happens, another transaction may then execute the same
copy of the application program (another traveller requests information).
Compare this with single-threading, which is the execution of a program to
completion: processing of the program by one transaction is completed before
another transaction can use it. Multithreading requires that all CICS application
programs be quasi-reentrant; that is, they must be serially reusable between
entry and exit points. CICS application programs using the CICS commands
obey this rule automatically.

CICS maintains a separate thread of control for each task. When, for example,
one task is waiting to read a disk file, or to get a response from a terminal, CICS
is able to give control to another task. Tasks are managed by the CICS task
control program.

CICS manages both multitasking and requests from the tasks themselves for
services (of the operating system or of CICS itself). This allows CICS processing
to continue while a task is waiting for the operating system to complete a request
on its behalf. Each transaction that is being managed by CICS is given control of
the processor when that transaction has the highest priority of those that are
ready to run.

While it runs, your application program requests various CICS facilities to handle
message transmissions between it and the terminal, and to handle any
necessary file or database accesses. When the application is complete, CICS
returns the terminal to a standby state. Figure 11-7, Figure 11-8, and Figure 11-9
help you understand what goes on.
 Chapter 11. Transaction management systems on z/OS 363

Figure 11-7 CICS transaction flow (part 1)

The flow of control during a transaction (code ABCD) is shown by the sequence of
numbers 1 to 8. (We’re only using this transaction to show some of the stages
than can be involved.) The meanings of the eight stages are as follows:

1. Terminal control accepts characters ABCD, typed at the terminal, and puts
them in working storage.

2. System services interpret the transaction code ABCD as a call for an application
program called ABCD00. If the terminal operator has authority to invoke this
program, it is either found already in storage or loaded into storage.

3. Modules are brought from the program library into working storage.

Figure 11-8 CICS transaction flow (part 2)

Operating System

ABCDABCD Terminal
Control

Storage
Mgmt.

ProgramProgram
LibraryLibrary

File or DBFile or DB

System
Services

11

22

33

z/OS

ProgramProgram
LibraryLibrary

File or DBFile or DB

(menu
screen)

ProgramProgram
ABCD00ABCD00

44

File
Control

Basic
Mapping
Support
(BMS)

55
364 Introduction to the New Mainframe: z/OS Basics

4. A task is created. Program ABCD00 is given control on its behalf.

5. ABCD00 invokes Basic mapping support (BMS) and terminal control to send a
menu to the terminal, allowing the user to specify precisely what information
is needed.

Figure 11-9 CICS transaction flow (part 3)

6. BMS and terminal control also handle the user’s next input, returning it to
ABCD01 (the program designated by ABDC00 to handle the next response from
the terminal) which then invokes file control.

7. File control reads the appropriate file for the invocation the terminal user has
requested.

8. Finally, ABCD01 invokes BMS and terminal control to format the retrieved data
and present it on the terminal.

11.4.7 CICS services for application programs
CICS applications execute under CICS control, using CICS services and
interfaces to access programs and files.

Application programming interface
You use the application programming interface or API to access CICS services
from the application program. You write a CICS program in much the same way
as you write any other program. Most of the processed logic is expressed in
standard language elements, but you can use CICS commands to request CICS
services.

z/OS

ProgramProgram
LibraryLibrary

File or DBFile or DB

User's
Next
Input

ProgramProgram
ABCD01ABCD01

66

88

File
Control

77

BMS
 Chapter 11. Transaction management systems on z/OS 365

Terminal control services
These services allow a CICS application program to communicate with terminal
devices. Through these services, information may be sent to a terminal screen
and the user input may be retrieved from it. It’s not easy to deal with terminal
control services in a direct way. Basic Mapping Support, or BMS, lets you
communicate with a terminal with a higher language level. It formats your data,
and you do not need to know the details of the data stream.

File and database control services
We may differentiate the following two different CICS data management services:

1. CICS file control offers you access to data sets that are managed by either
the Virtual Storage Access Method (VSAM) or the Basic Direct Access
Method (BDAM). CICS file control lets you read, update, add, and browse
data in VSAM and BDAM data sets and delete data from VSAM data sets.

2. Database control lets you access DL/I and DB2 databases. Although CICS
has two programming interfaces to DL/I, we recommend that you use the
higher-level EXEC DL/I interface. CICS has one interface to DB2: the EXEC
SQL interface, which offers powerful statements for manipulating sets of
tables, thus relieving the application program of record-by-record (or
segment-by-segment, in the case of DL/I) processing.

Other CICS services
� Task control can be used to control the execution of a task. You may suspend

a task or schedule the use of a resource by a task by making it serially
reusable. Also, the priority assigned to a task may be changed.

� Program control governs the flow of control between application programs in
a CICS system. The name of the application referred to in a program control
command must have been defined as a program to CICS. You can use
program control commands to link one of your application programs to
another, and transfer control from one application program to another, with no
return to the requesting program.

� Temporary Storage (TS) and Transient Data (TD) control. The CICS
temporary storage control facility provides the application programmer with
the ability to store data in temporary storage queues, either in main storage or
in auxiliary storage on a direct-access storage device, or, in the case of
temporary storage, the coupling facility. The CICS transient data control
facility provides a generalized queuing facility to queue (or store) data for
subsequent or external processing.

� Interval control services provide functions that are related to time. Using
interval control commands, you can start a task at a specified time or after a
specified interval, delay the processing of a task, and request notification
when a specified time has expired, among other actions.
366 Introduction to the New Mainframe: z/OS Basics

� Storage control facility controls requests for main storage to provide
intermediate work areas and other main storage needed to process a
transaction. CICS makes working storage available with each program
automatically, without any request from the application program, and provides
other facilities for intermediate storage both within and among tasks. In
addition to the working storage provided automatically by CICS, however, you
can use other CICS commands to get and release main storage.

� Dump and trace control. The dump control provides a transaction dump when
an abnormal termination occurs during the execution of an application
program. CICS trace is a debugging aid for application programmers that
produces trace entries of the sequence of CICS operations.

11.4.8 Program control
A transaction (task) may execute several programs in the course of completing its
work.

The program definition contains one entry for every program used by any
application in the CICS system. Each entry holds, among other things, the
language in which the program is written. The transaction definition has an entry
for every transaction identifier in the system, and the important information kept
about each transaction is the identifier and the name of the first program to be
executed on behalf of the transaction.

You can see how these two sets of definitions, transaction and program, work in
concert:

� The user types in a transaction identifier at the terminal (or the previous
transaction determined it).

� CICS looks up this identifier in the list of installed transaction definitions.

� This tells CICS which program to invoke first.

� CICS looks up this program in the list of installed transaction definitions, finds
out where it is, and loads it (if it isn’t already in the main storage).

� CICS builds the control blocks necessary for this particular combination of
transaction and terminal, using information from both sets of definitions. For
programs in command-level COBOL, this includes making a private copy of
working storage for this particular execution of the program.

� CICS passes control to the program, which begins running using the control
blocks for this terminal. This program may pass control to any other program
in the list of installed program definitions, if necessary, in the course of
completing the transaction.
 Chapter 11. Transaction management systems on z/OS 367

There are two CICS commands for passing control from one program to another.
One is the LINK command, which is similar to a CALL statement in COBOL. The
other is the XCTL (transfer control) command, which has no COBOL counterpart.
When one program links another, the first program stays in main storage. When
the second (linked-to) program finishes and gives up control, the first program
resumes at the point after the LINK. The linked-to program is considered to be
operating at one logical level lower than the program that does the linking.

Figure 11-10 Transferring control between programs (normal returns)

In contrast, when one program transfers control to another, the first program is
considered terminated, and the second operates at the same level as the first.
When the second program finishes, control is returned not to the first program,
but to whatever program last issued a LINK command.

Some people like to think of CICS itself as the highest program level in this
process, with the first program in the transaction as the next level down, and so
on. Figure 11-10 illustrates this concept.

The LINK command looks like this:

CICS
Level
 0
CICS

Program1
LINK
 ...RETURN

Program 2
XCTL

Program 3
LINK

...RETURN

Program 4

.....RETURN

Level
 1

Level
 2

Level
 3
368 Introduction to the New Mainframe: z/OS Basics

EXEC CICS LINK PROGRAM(pgmname)
COMMAREA(commarea) LENGTH(length) END-EXEC.

where pgmname is the name of the program to which you wish to link. Commarea is
the name of the area containing the data to be passed and/or the area to which
results are to be returned. The COMMAREA interface is also an option to invoke
CICS programs.

A sound principle of CICS application design is to separate the presentation logic
from the business logic; communication between the programs is achieved by
using the LINK command and data is passed between such programs in the
COMMAREA. Such a modular design provides not only a separation of
functions, but also much greater flexibility for the Web enablement of existing
applications using new presentation methods.

11.4.9 CICS programming roadmap
Typical steps for developing a CICS application that uses the EXEC CICS
command level programming interface are as follows:

1. Design the application, identifying the CICS resources and services you will
use. See the chapter on Application Design of CICS Application Programming
Guide.

2. Write the program in the language of your choice, including EXEC CICS
commands to request CICS services. See CICS Application Programming
Reference for a list of CICS commands.

One of the needed components for online transactions is the screen
definition, that is, the layout of what is displayed on the screen (such as a Web
page); in CICS we call this a map.

3. Depending on the compiler, you might only need to compile the program and
install it in CICS, or you might need to define translator options for the
program and then translate and compile your program. See CICS Application
Programming Guide for more details.

4. Define your program and related transactions to CICS with PROGRAM
resource definitions and TRANSACTION resource definitions, as described in
CICS Resource Definition Guide.

5. Define any CICS resources that your program uses, such as files, queues, or
terminals.

6. Make the resources known to CICS using the CEDA INSTALL command
described in CICS Resource Definition Guide.
 Chapter 11. Transaction management systems on z/OS 369

11.4.10 Our online example
Referring back to our travel agency example of Chapter 11, “Transaction
management systems on z/OS” on page 347, examples of CICS transactions
might be:

� Adding, updating and/or deleting employee information
� Adding, updating and/or deleting available cars by rental company
� Getting the number of available cars by rental company
� Updating prices of rental cars
� Adding, updating and/or deleting regular flights by airline
� Getting the number of sold tickets by airline or by destination

Figure 11-11 shows how a user can calculate the average salary by department.
The department is entered by the user and the transaction calculates the
average salary.

Figure 11-11 CICS application user screen

Notice that you can add PF key definitions to the user screens in your CICS
applications.

11.5 What is IMS?
Created in 1969 as Information Management System/360, IMS is both a
transaction manager and a database manager for z/OS. IMS consists of three
components: the Transaction Manager (TM), the Database Manager (DB), and a

A B C D A v e ra g e s a la ry b y d e p a r tm e n t

T y p e a d e p a r tm e n t n u m b e r a n d p re s s e n te r .

D e p a rtm e n t n u m b e r : A 0 2

A v e ra g e s a la ry ($): 5 8 2 1 1 .5 8

F 3 : E x it

IMS
An IBM product
that supports
hierarchical
databases,
data
communication,
translation
processing, and
database
backout and
recovery.
370 Introduction to the New Mainframe: z/OS Basics

set of system services that provide common services to the other two
components (see Figure 11-12 on page 371).

As IMS developed over the years, new interfaces were added to meet new
business requirements. It is now possible to access IMS resources using a
number of interfaces to the IMS components.

In this chapter, we look at the transaction manager functions of IMS; we discuss
the database functions more thoroughly in Chapter 12, “Database management
systems on z/OS” on page 379.

Figure 11-12 Overview of the IMS product

You write an IMS program in much the same way you write any other program.
You can use COBOL, OO COBOL, C, C++, Java, PL/I, or Assembler language to
write IMS application programs. More information about programming in Java
can be found in the IBM publication IMS Java Guide and Reference.

IMS System

Transaction
Manager

Database
Manager

IMS
Message
Queues

IMS
Databases

IMS
Logsz/OS

Console
 Chapter 11. Transaction management systems on z/OS 371

IMS Transaction Manager
The IMS Transaction Manager provides users of a network with access to
applications running under IMS. The users can be people at terminals or
workstations, or they can be other application programs either on the same z/OS
system, on other z/OS systems, or on non-z/OS platforms.

A transaction is a setup of input data that triggers the execution of a specific
business application program. The message is destined for an application
program, and the return of any results is considered one transaction.

IMS Database Manager
The IMS Database Manager component of IMS provides a central point of
control and access for the data that is processed by IMS applications. It supports
databases using the IMS hierarchical database model and provides access to
these databases from applications running under the IMS Transaction Manager,
the CICS transaction monitor (now known as Transaction Server for z/OS), and
z/OS batch jobs.

The Database Manager component provides facilities for securing
(backup/recovery) and maintaining the databases. It allows multiple tasks (batch
and/or online) to access and update the data, while retaining the integrity of that
data. It also provides facilities for tuning the databases by reorganizing and
restructuring them. IMS databases are organized internally using a number of
IMS database organization access methods. The database data is stored on disk
storage using the normal operating system access methods.

We look at the Database Manager component of IMS in more detail in
Chapter 12, “Database management systems on z/OS” on page 379.

IMS System Services
There are a number of functions that are common to both the Database Manager
and Transaction Manager:

� Restart and recovery of the IMS subsystems following failures
� Security: controlling access to IMS resources
� Managing the application programs: dispatching work, loading application

programs, providing locking services
� Providing diagnostic and performance information
� Providing facilities for the operation of the IMS subsystems
� Providing an interface to other z/OS subsystems with which IMS applications

interface
372 Introduction to the New Mainframe: z/OS Basics

11.5.1 IMS in a z/OS system
IMS runs on zSeries and earlier forms of the S/390 architecture or compatible
mainframes, and on z/OS and earlier forms of the operating system. An IMS
subsystem runs in several address spaces in a z/OS system. There is one
controlling address space and several dependent address spaces providing IMS
services and running IMS application programs.

For historical reasons, some documents describing IMS use the term region to
describe a z/OS address space, for example, IMS Control Region. In this book
we use the term region whenever this is in common usage. You can take the term
region as being the same as a z/OS address space.

To make the best use of the unique strengths of z/OS, IMS does the following:

� Runs in multiple address spaces - IMS subsystems (except for IMS/DB batch
applications and utilities) normally consist of a control region address space,
dependent address spaces providing system services, and dependent
address spaces for application programs.

� Runs multiple tasks in each address space - IMS, particularly in the control
regions, creates multiple z/OS subtasks for the various functions to be
performed. This allows other IMS subtasks to be dispatched by z/OS while
one IMS subtask is waiting for system services.

� Uses z/OS cross-memory services to communicate between the various
address spaces making up an IMS subsystem. It also uses the z/OS
Common System Area (CSA) to store IMS control blocks that are frequently
accessed by the IMS address spaces, thus minimizing the overhead of using
multiple address spaces.

� Uses the z/OS subsystem feature - IMS dynamically registers itself as a z/OS
subsystem. It uses this facility to detect when dependent address spaces fail,
and prevent cancellation of dependent address spaces (and to interact with
other subsystems like DB2 and WebSphere MQ).

� Can make use of a z/OS sysplex - Multiple IMS subsystems can run on the
z/OS systems making up the sysplex and access the same IMS databases.

11.5.2 IMS Transaction Manager messages
The network inputs and outputs to IMS Transaction Manager take the form of
messages that are input and output to and from IMS and the physical terminals
or application programs on the network. These messages are processed
asynchronously (that is, IMS will not always send a reply immediately, or indeed
ever, when it receives a message, and unsolicited messages may also be sent
from IMS).
 Chapter 11. Transaction management systems on z/OS 373

The messages can be of four types:

� Transactions - Data in these messages is passed to IMS application programs
for processing.

� Messages to go to other logical destinations, such as network terminals.

� Commands for IMS to process.

� Messages for the IMS APPC feature to process. Since IMS uses an
asynchronous protocol for messages, but APPC uses synchronous protocols
(that is, it always expects a reply when a message is sent), the IMS TM
interface for APPC has to perform special processing to accommodate this.

If IMS is not able to process an input message immediately, or cannot send an
output message immediately, the message is stored on a message queue
external to the IMS system. IMS will not normally delete the message from the
message queue until it has received confirmation that an application has
processed the message, or it has reached its destination.

11.6 Summary
In this chapter we learned that transaction applications keep changing,
depending on the needs of the organization, its customers, and suppliers. At
other times, changes are implemented through new technologies, but the
dependable, solid application remains unchanged. Interaction with the computer
happens online through the help of a transaction manager. Many transaction
managers and database managers exist, but their principles are the same.

CICS is a transactional processing subsystem. That means that it runs
applications on your behalf online, by request, at the same time as many other
users may be submitting requests to run the same applications, using the same
files and programs. CICS manages the sharing of resources, integrity of data,
and prioritization of execution, with fast response. CICS applications are
traditionally run by submitting a transaction request. Execution of the transaction
consists of running one or more application programs that implement the
required function.

You write a CICS program in much the same way as you write any other program.
You can use COBOL, C, C++, Java, PL/I, or Assembler language to write CICS
application programs. Most of the processing logic is expressed in standard
language statements, but you also use CICS commands. The CICS commands
are grouped according to their function, terminal interaction, access to files, or
program linking. Most of the CICS resources may be defined and altered online
through CICS-supplied transactions. Other supplied transactions allow you to
monitor the CICS system. The continued growth of the Internet has caused many
374 Introduction to the New Mainframe: z/OS Basics

corporations to consider the best ways to make their existing systems available
to users on the Internet. A brief overview of the different technologies available
for Web-enablement of CICS applications has been shown.

Information Management System (IMS) consists of three components: the
Transaction Manager (TM), the Database Manager (DB), and a set of system
services that provide common services to the other two components. You write
an IMS program in much the same way you write any other program. You can use
COBOL, OO COBOL, C, C++, Java, PL/I, or assembler language to write IMS
application programs.

11.7 Questions for review
To help test your understanding of the material in this chapter, complete the
following questions:

1. What might be some typical online transactions that you perform frequently?

2. Why are multitasking and multithreading important to online transaction
processing?

3. What are some common characteristics of an online transaction system?

4. Explain two-phase commit.

5. Describe the main phases in the CICS programming road map.

6. How might the meaning of “business transaction” differ from “CICS
transaction”?

7. How do you define resources in CICS?

8. What are the major components of IMS, and what are their tasks?

9. What are the four types of IMS messages?

Key terms in this chapter

IMS TM conversational pseudo-conversational

IRLM CICS TS Information Management
System (IMS)

CICS command region basic mapping support
(BMS)

multi-threading transaction unit of work
 Chapter 11. Transaction management systems on z/OS 375

11.8 Exercises
In this exercise, you create a simple CICS program.

Related reading: For more information about CICS application programming,
see the IBM publication CICS Application Programming Guide.

Analyze and update the class program
� Think of a possible use of the COMMAREA.

Think of passing data between programs called with LINK or XCTL. A generic
program for error processing may be developed; all the invocations to it may
be done passing the required error data through the COMMAREA. Also, the
COMMAREA option of the return command is designed for passing data
between successive transactions in a pseudo-conversational sequence.

The state of a resource may be passed by the first transaction through
COMMAREA in order to be compared to its current state by the second
transaction. It may be necessary to know if this has changed since the last
interaction before allowing an update. In Web applications, the business logic
in a CICS application can be invoked using the COMMAREA interface.

� Several simple updates to the class program transaction may be done quite
easily:

– Include one additional output field in the screen. The maximum value of
employee commissions could be an example.

A new field has to be defined in the map source. Perhaps some literals
have to be changed. Assemble the map and generate the new copy file.
Modify the program to have another column in the SQL statement and
move its content after retrieval to the corresponding new output field in the
map. Execute the preparation job for the user program. New copies for
program and map are required in the CICS session.

– Create a transaction that could be like a main menu; one of the options
would start the current program.

Only two variable fields are required in the map for this transaction: the
option field and the message line. Only one option has to be initially
included, the one for the current ABCD transaction. The same mapset may
be used to include the new map. The ABCD transaction has to be modified
to do the RETURN TRANSID to the new transaction. Only the following
resources have to be added to the CICS system: the new transaction and
programs (user program and map).

– Learn about the CICS HANDLE CONDITION statement and find out
where it may be used.
376 Introduction to the New Mainframe: z/OS Basics

Try to add error control to the RECEIVE CICS command. The MAPFAIL
condition occurs when no usable data is transmitted from the terminal after
a RECEIVE command.

Business transaction
Analyze a typical business transaction. Think of different CICS programs and
transactions that could be needed to accomplish this. Draw a diagram to show
the flow of the process.

The example that is developed in CICS Application Programming Primer could
be appropriate. A department store with credit customers keeps a master file of
its customers’ accounts. The application performs the following actions:

� Displays customer account records
� Adds new account records
� Modifies or deletes existing account records
� Prints a single copy of a customer account record
� Accesses records by name
 Chapter 11. Transaction management systems on z/OS 377

378 Introduction to the New Mainframe: z/OS Basics

Chapter 12. Database management
systems on z/OS

12

Objective: You will need a good working understanding of the major types of
system software used to process online workloads on the mainframe. In this
chapter, we focus on two of the most widely used database management
system (DBMS) products for z/OS: DB2 and IMS DB.

After completing this chapter, you will be able to:

� Explain how databases are used in a typical online business.

� Describe two models for network connectivity for large systems.

� Explain the role of DB2 in online transaction processing.

� List common DB2 data structures.

� Compose simple SQL queries to run on z/OS.

� Give an overview of application programming with DB2.

� Explain what the IMS components are.

� Describe the structure of the IMS DB subsystem.
© Copyright IBM Corp. 2006. All rights reserved. 379

12.1 Database management systems for the mainframe
This section gives an overview of basic database (DB) concepts, what they are
used for, and what the advantages are. There are many databases, but here we
limit the scope to the two types that are used most on mainframes: hierarchical
and relational databases.

12.2 What is a database?
A database provides for the storing and control of business data. It is
independent from (but not separate from the processing requirements of) one or
more applications. If properly designed and implemented, the database should
provide a single consistent view of the business data, so that it can be centrally
controlled and managed.

One way of describing a logical view of this collection of data is to use an entity
relationship model. The database records details (attributes) of particular items
(entities) and the relationships between the different types of entities. For
example, for the stock control area of an application, you would have Parts,
Purchase Orders, Customers, and Customer Orders (entities). Each entity would
have attributes—the Part would have a Part No, Name, Unit Price, Unit Quantity,
and so on.

These entities would also have relationships between them, for example a
Customer would be related to orders placed, which would be related to the part
that had been ordered, and so on. Figure 12-1 on page 381 illustrates an entity
relationship model.
380 Introduction to the New Mainframe: z/OS Basics

Figure 12-1 Entities, attributes, and relationships

A database management system (DBMS), such as the IMS Database Manager
(IMS/DB) component or the DB2 product, provides a method for storing and
using the business data in the database.

12.3 Why use a database?
When computer systems were first developed, the data was stored on individual
files that were unique to an application or even a small part of an individual
application. But a properly designed and implemented DBMS provides many
advantages over a flat file PDS system:

� It reduces the application programming effort.

� It manages more efficiently the creation and modification of, and access to,
data than a non-DBMS system. As you know, if new data elements need to be
added to a file, then all applications that use that file must be rewritten, even
those that do not use the new data element. This need not happen when

Relationships

Shipment Customer Customer Order

Part

Purchase Order

Shipment

to Customer

Customer

orders parts

Order for part

Purchase of
part

Attributes

Part No

Name

Unit Price

Shipment No

Dispatch

Date

Customer No

Customer

Address

Order No

Quantity

Delivery

Address

Order No

Quantity

DBMS
Database
management
system that
provides a
method of
storing and
using data in a
database.
 Chapter 12. Database management systems on z/OS 381

using a DBMS. Although many programmers have resorted to “tricks” to
minimize this application programming rewrite task, it still requires effort.

� It provides a greater level of data security and confidentiality than a flat file
system. Specifically, when accessing a logical record in a flat file, the
application can see all data elements—including any confidential or
privileged data. To minimize this, many customers have resorted to putting
sensitive data into a separately managed file, and linking the two as
necessary. This may cause data consistency issues.

With a DBMS, the sensitive data can be isolated in a separate segment (in
IMS/DB) or View (in DB2) that prevents unauthorized applications from
seeing it. But these data elements are an integral part of the logical record!

However, the same details might be stored in several different places; for
example, the details of a customer might be in both the ordering and invoicing
application. This causes a number of problems:

� Because the details are stored and processed independently, details that are
supposed to be the same (for example, a customer’s name and address),
might be inconsistent in the various applications.

� When common data has to be changed, it must be changed in several places,
causing a high workload. If any copies of the data are missed, it results in the
problems detailed in the previous point.

� There is no central point of control for the data to ensure that it is secure, both
from loss and from unauthorized access.

� The duplication of the data wastes space on storage media.

The use of a database management system such as IMS/DB or DB2 to
implement the database also provides additional advantages. The DBMS:

� Allows multiple tasks to access and update the data simultaneously, while
preserving database integrity. This is particularly important where large
numbers of users are accessing the data through an online application.

� Provides facilities for the application to update multiple database records and
ensures that the application data in the various records remains consistent
even if an application failure occurs.

� Is able to put confidential or sensitive data in a separate segment (in IMS) or
table (in DB2). In contrast, in a PDS or VSAM flat file, the application program
gets access to every data element in the logical record. Some of these
elements might contain data that should be restricted.

� Provides utilities that control and implement backup and recovery of the data,
preventing loss of vital business data.

� Provides utilities to monitor and tune access to the data.

Segment
Any partition,
reserved area,
partial
component or
piece of a
larger
structure.
382 Introduction to the New Mainframe: z/OS Basics

� Is able to change the structure of the logical record (by adding or moving data
fields). Such changes usually require that every application that accesses the
VSAM or PDS file must be reassembled or recompiled, even if it does not
need the added or changed fields. A properly designed data base insulates
the application programmer from such changes.

Keep in mind, however, that the use of a database and database management
system will not, in itself, produce the advantages detailed here. It also requires
the proper design and administration of the databases, and development of the
applications.

12.4 Who is the database administrator?
Database administrators (DBAs) are primarily responsible for specific databases
in the subsystem. In some companies, DBAs are given the special group
authorization, SYSADM, which gives them the ability to do almost everything in
the DB2 subsystem, and gives them jurisdiction over all the databases in the
subsystem. In other shops, a DBA's authority is limited to individual databases.

The DBA creates the hierarchy of data objects, beginning with the database, then
table spaces, tables, and any indexes or views that are required. This person
also sets up the referential integrity definitions and any necessary constraints.

The DBA essentially implements the physical database design. Part of this
involves having to do space calculations and determining how large to make the
physical data sets for the table spaces and index spaces, and assigning storage
groups (also called storgroups).

There are many tools that can assist the DBA in these tasks. DB2, for example,
provides the Administration Tool and the DB2 Estimator. If objects increase in
size, the DBA is able to alter certain objects to make changes.

The DBA can be responsible for granting authorizations to the database objects,
although sometimes there is a special security administration group that does
this.

The centralization of data and control of access to this data is inherent to a
database management system. One of the advantages of this centralization is
the availability of consistent data to more than one application. As a
consequence, this dictates tighter control of that data and its usage.

Responsibility for an accurate implementation of control lies with the DBA.
Indeed, to gain the full benefits of using a centralized database, you must have a
central point of control for it. Because the actual implementation of the DBA
function is dependent on a company’s organization, we limit ourselves to a
 Chapter 12. Database management systems on z/OS 383

discussion of the roles and responsibilities of a DBA. The group fulfilling the DBA
role will need experience in both application and systems programming.

In a typical installation, the DBA is responsible for:

� Providing the standards for, and the administration of, databases and their
use

� Guiding, reviewing, and approving the design of new databases

� Determining the rules of access to the data and monitoring its security

� Ensuring database integrity and availability, and monitoring the necessary
activities for reorganization backup and recovery

� Approving the operation of new programs with existing production databases,
based on results of testing with test data

In general, the DBA is responsible for the maintenance of current information
about the data in the database. Initially, this responsibility might be carried out
using a manual approach. But it can be expected to grow to a scope and
complexity sufficient to justify, or necessitate, the use of a data dictionary
program.

The DBA is not responsible for the actual content of databases. This is the
responsibility of the user. Rather, the DBA enforces procedures for accurate,
complete, and timely update of the databases.

12.5 How is a database designed?
The process of database design, in its simplest form, can be described as the
structuring of the data elements for the various applications, in such an order
that:

� Each data element is readily available by the various applications, now and in
the foreseeable future.

� The data elements are efficiently stored.

� Controlled access is enforced for those data elements with specific security
requirements.

A number of different models for databases have been developed over the years
(such as hierarchical, relational, or object) so that there is no consistent
vocabulary for describing the concepts involved.
384 Introduction to the New Mainframe: z/OS Basics

12.5.1 Entities
A database contains information about entities. An entity is something that:

� Can be uniquely defined.

� We may collect substantial information about, now or in the future.

In practice, this definition is limited to the context of the applications and business
under consideration. Examples of entities are parts, projects, orders, customers,
trucks, etc. It should be clear that defining entities is a major step in the database
design process. The information we store in databases about entities is
described by data attributes.

12.5.2 Data attributes
A data attribute is a unit of information that specifies a fact about an entity. For
example, suppose the entity is a part. Name=Washer, Color=Green, and
Weight=143 are three facts about that part. Thus these are three data attributes.

A data attribute has a name and a value. A data attribute name tells the kind of
fact being recorded; the value is the fact itself. In this example, Name, Color, and
Weight are data attribute names; while Washer, Green and 143 are values. A
value must be associated with a name to have a meaning.

An occurrence is the value of a data attribute for a particular entity. An attribute is
always dependent on an entity. It has no meaning by itself. Depending on its
usage, an entity can be described by one single data attribute, or more. Ideally,
an entity should be uniquely defined by one single data attribute, for example, the
order number of an order. Such a data attribute is called the key of the entity. The
key serves as the identification of a particular entity occurrence, and is a special
attribute of the entity. Keys are not always unique. Entities with equal key values
are called synonyms.

For instance, the full name of a person is generally not a unique identification. In
such cases we have to rely on other attributes such as full address, birthday, or
an arbitrary sequence number. A more common method is to define a new
attribute that serves as the unique key, for example, employee number.

12.5.3 Entity relationships
The entities identified will also have connections between them, called
relationships. For example, an order might be for a number of parts. Again these
relationships only have meaning within the context of the application and
business. These relationships can be one-to-one (that is, one occurrence of an
entity relates to a single occurrence of another entity), one-to-many (one
 Chapter 12. Database management systems on z/OS 385

occurrence of an entity relates to many occurrences of another entity), or
many-to-many (many occurrences of one entity have a relationship with many
occurrences of another entity).

Relationships can also be recursive, that is, an entity can have a relationship with
other occurrences of the same entity. For example a part, say a fastener, may
consist of several other parts: bolt, nut, and washer.

12.5.4 Application functions
Data itself is not the ultimate goal of a database management system. It is the
application processing performed on the data that is important. The best way to
represent that processing is to take the smallest application unit representing a
user interacting with the database—for example, one single order, one part’s
inventory status. In the following sections we call this an application function.

Functions are processed by application programs. In a batch system, large
numbers of functions are accumulated into a single program (that is, all orders of
a day), then processed against the database with a single scheduling of the
desired application program. In the online system, just one or two functions may
be grouped together into a single program to provide one iteration with a user.

Although functions are always distinguishable, even in batch, some people prefer
to talk about programs rather than functions. But a clear understanding of
functions is mandatory for good design, especially in a DB environment. Once
you have identified the functional requirements of the application, you can decide
how to best implement them as programs using CICS or IMS. The function is, in
some way, the individual use of the application by a particular user. As such, it is
the focal point of the DB system.

12.5.5 Access paths
Each function bears in its input some kind of identification with respect to the
entities used (for example, the part number when accessing a Parts database).
These are referred to as the access paths of that function. In general, functions
require random access, although for performance reasons sequential access is
sometimes used. This is particularly true if the functions are batched, and if they
are numerous relative to the database size, or if information is needed from most
database records. For efficient random access, each access path should utilize
the entities key.
386 Introduction to the New Mainframe: z/OS Basics

12.6 What is a database management system?
A database management system (or DBMS) is essentially nothing more than a
computerized data-keeping system. Users of the system are given facilities to
perform several kinds of operations on such a system for either manipulation of
the data in the database or the management of the database structure itself.
Database Management Systems (DBMSs) are categorized according to their
data structures or types.

There are several types of databases that can be used on a mainframe to exploit
z/OS: inverted list, hierarchic, network, or relational.

Mainframe sites tend to use a hierarchical model when the data structure (not
data values) of the data needed for an application is relatively static. For
example, a Bill of Material (BOM) database structure always has a high level
assembly part number, and several levels of components with subcomponents.
The structure usually has a component forecast, cost, and pricing data, and so
on. The structure of the data for a BOM application rarely changes, and new data
elements (not values) are rarely identified. An application normally starts at the
top with the assembly part number, and goes down to the detail components.

Both database systems offer the benefits listed in 12.3, “Why use a database?”
on page 381. RDBMS has the additional, significant advantage over the
hierarchical DB of being non-navigational. By navigational, we mean that in a
hierarchical database, the application programmer must know the structure of the
database. The program must contain specific logic to navigate from the root
segment to the desired child segments containing the desired attributes or
elements. The program must still access the intervening segments, even though
they are not needed.

The remainder of this section discusses the relational database structure.

12.6.1 What structures exist in a relational database?
Relational databases include the following structures:

� Database

A database is a logical grouping of data. It contains a set of related table
spaces and index spaces. Typically, a database contains all the data that is
associated with one application or with a group of related applications. You
could have a payroll database or an inventory database, for example.

� Table

A table is a logical structure made up of rows and columns. Rows have no
fixed order, so if you retrieve data you might need to sort the data. The order

Root
The top level of
a hierarchy.
 Chapter 12. Database management systems on z/OS 387

of the columns is the order specified when the table was created by the
database administrator. At the intersection of every column and row is a
specific data item called a value, or, more precisely, an atomic value. A table
is named with a high-level qualifier of the owner's user ID followed by the table
name, for example TEST.DEPT or PROD.DEPT. There are three types of
tables:

– A base table that is created and holds persistent data
– A temporary table that stores intermediate query results
– A results table that is returned when you query tables

Figure 12-2 Example of a DB2 table (department table)

In this table we use:

• Columns - The ordered set of columns are DEPTNO, DEPTNAME,
MGRNO, and ADMRDEPT. All the data in a given column must be of
the same data type.

• Rows - Each row contains data for a single department.

• Values - At the intersection of a column and row is a value. For
example, PLANNING is the value of the DEPTNAME column in the row
for department B01.

� Indexes

An index is an ordered set of pointers to rows of a table. Unlike the rows of a
table that are not in a specific order, an index must always be maintained in
order by DB2. An index is used for two purposes:

– For performance, to retrieve data values more quickly

– For uniqueness

By creating an index on an employee's name, you can retrieve data more
quickly for that employee than by scanning the entire table. Also, by creating a
unique index on an employee number, DB2 will enforce the uniqueness of
each value. A unique index is the only way DB2 can enforce uniqueness.

SQL
Structured
Query
Language - a
language used
to interrogate
and process
data in a
relational
database.
388 Introduction to the New Mainframe: z/OS Basics

Creating an index automatically creates the index space, the data set that
contains the index.

� Keys

A key is one or more columns that are identified as such in the creation of a
table or index, or in the definition of referential integrity.

– Primary key

A table can only have one primary key because it defines the entity. There
are two requirements for a primary key:

i. It must have a value, that is, it cannot be null.

ii. It must be unique, that is, it must have a unique index defined on it.

– Unique key

We already know that a primary key must be unique, but it is possible to
have more than one unique key in a table. In our EMP table example (see
“Employee table (EMP)” on page 575), the employee number is defined as
the primary key and is therefore unique. If we also had a social security
value in our table, hopefully that value would be unique. To guarantee this,
you could create a unique index on the social security column.

– Foreign key

A foreign key is a key that is specified in a referential integrity constraint to
make its existence dependent on a primary or unique key (parent key) in
another table.

The example given is that of an employee's work department number relating
to the primary key defined on the department number in the DEPT table. This
constraint is part of the definition of the table.

12.7 What is DB2?
The general concepts of a relational database management system (RDBMS)
are discussed in Chapter 11, “Transaction management systems on z/OS” on
page 347. Most table examples in this chapter can be found in Appendix B, “DB2
sample tables” on page 573. These tables, such as EMP and DEPT, are part of
the Sample Database that comes with the DB2 product on all platforms. We are
using Version 8 in the screen captures. Therefore, the owner of our tables is
DSN8810.

The elements that DB2 manages can be divided into two categories: Data
structures that are used to organize user data, and system structures that are
controlled by DB2. Data structures can be further broken down into basic
structures and schema structures. Schema structures are fairly new objects that
 Chapter 12. Database management systems on z/OS 389

were introduced on the mainframe for compatibility within the DB2 family. A
schema is a logical grouping of these new objects.

12.7.1 Data structures in DB2
Earlier in this chapter we discussed most of the basic structures common to
DBRMs. Now, let’s look at several structures that are specific to DB2.

Views
A view is an alternative way of looking at the data in one or more tables. It is like
an overlay that you would put over a transparency to only allow people to see
certain aspects of the base transparency. For example, you can create a view on
the department table to only let users have access to one particular department
in order to update salary information. You don't want them to see the salaries in
other departments. You create a view of the table that only lets the users see one
department, and they use the view like a table. Thus, a view is used for security
reasons. Most companies will not allow users to access their tables directly, but
instead use a view to accomplish this. The users get access through the view. A
view can also be used to simplify a complex query for less experienced users.

Table space
A table is just a logical construct. It is kept in an actual physical data set called a
table space. Table spaces are storage structures and can contain one or more
tables. A table space is named using the database name followed by the table
space name, such as PAYROLL.ACCNT_RECV. There are three types of table
spaces: Simple, Segmented, and Partitioned. For more detailed information, see
DB2 UDB for z/OS: SQL Reference.

DB2 uses VSAM data sets. That is, each segment is a VSAM data set.

Index space
An index space is another storage structure that contains a single index. In fact,
when you create an index, DB2 automatically defines an index space for you.

Storage groups
A storage group consists of a set of volumes on disks (DASD) that hold the data
sets in which tables and indexes are actually stored.

View
A way of
looking at the
data in a table
so as to control
who can see
what.
390 Introduction to the New Mainframe: z/OS Basics

Figure 12-3 There is a hierarchy to the objects in a DB2 subsystem

12.7.2 Schema structures

User-defined Data Type (UDT)
A UDT is a way for users to define their own data types above and beyond the
usual character and numeric data types. However, UDTs are based upon the
already existing DB2 data types. If you dealt in international currencies, you
would most likely want to differentiate the various types of monies. With a UDT
definition, you could define the EURO, based on the decimal data type, as a
distinct data type in addition to YEN or US_DOLLAR. As a result, you could not
add a YEN to a EURO since they are distinct data types.

User-Defined Function (UDF)
A UDF can be simply defined on an already existing DB2 function, such as
rounding or averaging, or can be more complex and written as an application
program that could be accessed by an SQL statement. In our international

VSAM
LDS

VSAM
LDS

Storage group

Database

Table Space

Table

Index Space

Index

Views
 Chapter 12. Database management systems on z/OS 391

currency example, we could use a UDF to convert one currency value to another
in order to do arithmetic functions.

Trigger
A trigger defines a set of actions that are executed when an insert, update, or
delete operation occurs on a specific table. For example, let's say that every time
you insert an employee into your EMP table, you also want to add one to an
employee count that you keep in a company statistics table. You can define a
trigger that will get “fired” when you do an insert into EMP. This firing will
automatically add one to the appropriate column in the COMPANY_STATS table.

Large Object (LOB)
An LOB is a data type used by DB2 to manage unstructured data. There are
three types of LOBs:

� Binary Large Objects (BLOBs) - These are used for photographs and
pictures, audio and sound clips, and video clips.

� Character Large Objects (CLOBs) - These are used for large text documents.

� Double Byte Character Large Objects (DBCLOBs) - These are used for
storing large text documents written in languages that require double-byte
characters, such as Kanji.

LOBs are stored in special auxiliary tables that use a special LOB table space. In
your EMP base table, text material such as a resume can be included for
employees. Since this is a large amount of data, it is contained in its own table. A
column in the EMP table, defined as a CLOB, would have a pointer to this special
LOB auxiliary table that is stored in an LOB table space. Each column defined as
an LOB would have its own associative auxiliary table and LOB table space.

Stored procedure
A stored procedure is a user-written application program that typically is stored
and run on the server (but it can be run for local purposes as well). Stored
procedures were specifically designed for the client/server environment where
the client would only have to make one call to the server, which would then run
the stored procedure to access DB2 data and return the results. This eliminated
having to make several network calls to run several individual queries against the
database, which can be expensive.

You can think of a stored procedure as being somewhat like a subroutine that can
be called to perform a set of related functions. It is an application program, but is
defined to DB2 and managed by the DB2 subsystem.
392 Introduction to the New Mainframe: z/OS Basics

System structures
Catalog and directory
DB2 itself maintains a set of tables that contain metadata or data about all the
DB2 objects in the subsystem. The catalog keeps information about all the
objects, such as the tables, views, indexes, table spaces, and so on, while the
directory keeps information about the application programs. The catalog can be
queried to see the object information; the directory cannot.

When you create a user table, DB2 automatically records the table name,
creator, its table space, and database in the catalog and puts this information in
the catalog table called SYSIBM.SYSTABLES. All the columns defined in the
table are automatically recorded in the SYSIBM.SYSCOLUMNS table.

In addition, to record that the owner of the table has authorization on the table, a
row is automatically inserted into SYSIBM.SYSTABAUTH. Any indexes created
on the table would be recorded in the SYSIBM.SYSINDEXES table.

Buffer pools
Buffer pools are areas of virtual storage in which DB2 temporarily stores pages
of table spaces or indexes. They act as a cache area between DB2 and the
physical disk storage device where the data resides. A data page is retrieved
from disk and placed in a buffer pool page. If the needed data is already in a
buffer, expensive I/O access to the disk can be avoided.

Active and archive logs
DB2 records all data changes and other significant events in a log. This
information is used to recover data in the event of a failure, or DB2 can roll the
changes back to a previous point in time. DB2 writes each log record to a data
set called the active log.

When the active log is full, DB2 copies the contents to a disk or tape data set
called the archive log. A bootstrap data set keeps track of these active and
archive logs. DB2 uses this information in recovery scenarios, for system
restarts, or for any activity that requires reading the log. A bootstrap data set
allows for point-in-time recovery.

12.7.3 DB2 address spaces
DB2 is a multi-address space subsystem requiring a minimal of three address
spaces:

� System services
� Database services
� Lock manager services (IRLM)
 Chapter 12. Database management systems on z/OS 393

In addition, Distributed Data Facility (DDF) is used to communicate with other
DB2 Subsystems. Figure 12-4 shows these address spaces.

Figure 12-4 DB2 minimum address spaces

12.7.4 Using DB2 utilities
On z/OS, the DBA maintains database objects through a set of utilities and
programs, which are submitted using JCL jobs. Usually a company will have a
data set library for these jobs that DBAs copy and use. However, there are tools
that will generate the JCL, such as the Administration Tool and the Utility option
on the DB2I panel.

The utilities help the DBAs do their jobs. You could divide the utilities into
categories:

� Data Organization utilities

After tables are created, the DBA uses the LOAD utility to populate them, with
the ability to compress large amounts of data. There is the UNLOAD utility or
the DSNTIAUL assembler program that can let the DBA move or copy data
from one subsystem to another.

It is possible to keep the data in a certain order with the REORG utility.
Subsequent insertions and loads can disturb this order, and the DBA must
schedule subsequent REORGs based on reports from the RUNSTATS utility,
which provides statistics and performance information. You can even run
RUNSTATS against the system catalogs.

� Backup and Recovery utilities

It is vital that a DBA take image copies of the data and the indexes with the
COPY utility in order to recover data. A DBA can make a full copy or an
incremental copy (only for data). Since recovery can only be done to a full
copy, the MERGECOPY utility is used to merge incremental copies with a full
one. The RECOVER utility can recover back to an image copy for a
394 Introduction to the New Mainframe: z/OS Basics

point-in-time recovery. More often, it is used to recover to an image copy, and
then information from the logs, which record all data changes, is applied in
order to recover forward to a current time. Without an image copy, an index
can be recreated with REBUILD INDEX.

� Data consistency utilities

One of the important data consistency utilities is the CHECK utility, which can
be used to check and help correct referential integrity and constraint
inconsistencies, especially after an additional population or after a recovery.

A typical use of utilities is to run RUNSTATS, then EXPLAIN, and then
RUNSTATS again.

12.7.5 Using DB2 commands
Both the system administrator and the DBA use DB2 commands to monitor the
subsystem. The DB2I panel and the Administration Tool provide you with a
means to easily enter these commands. The -DISPLAY DATABASE command
displays the status of all table spaces and index spaces within a database. For
example, without an image copy, your table can be put in a copy pending status,
requiring that you run the COPY utility. There are several other display
commands, such as DISPLAY UTILITY for the status of a utility job, or you can
display buffer pool, thread, and log information.

There are also DSN commands that you can issue from a TSO session or batch
job. However, these can be more simply entered using the options from the DB2I
panel: BIND, DCLGEN, RUN, and so on. (In some shops, DBAs are responsible
for binds, although these are usually done by programmers as part of the compile
job.)

12.8 What is SQL?
Structured Query Language (SQL) is a high-level language that is used to
specify what information a user needs without having to know how to retrieve it.
The database is responsible for developing the access path needed to retrieve
the data. SQL works at a set level, meaning that it is designed to retrieve one or
more rows. Essentially, it is used on one or more tables and returns the result as
a results table.

SQL has three categories based on the functionality involved:

� DML - Data manipulation language used to read and modify data

� DDL - Data definition language used to define, change, or drop DB2 objects

� DCL - Data control language used to grant and revoke authorizations
 Chapter 12. Database management systems on z/OS 395

Several tools can be used to enter and execute SQL statements. Here we focus
on SPUFI, which stands for SQL Processing Using File Input. SPUFI is part of
the DB2 Interactive (DB2I) menu panel, which is a selection from your ISPF
panel when DB2 is installed. (This, of course, depends on how your system
people set up your system's menu panels.)

SPUFI is most commonly used by database administrators. It allows you to write
and save one or more SQL statements at a time. DBAs use it to grant or revoke
authorizations; sometimes even to create objects, when that needs to be done
urgently. SPUFI is also often used by developers to test their queries. This way
they are sure that the query returns exactly what they want.

Another tool that you might encounter on the mainframe is the Query
Management Facility (QMF), which allows you to enter and save just one SQL
statement at a time. QMF's main strength is its reporting facility1. It enables you
to design flexible and reusable report formats, including graphs. In addition, it
provides a Prompted Query capability that helps users unfamiliar with SQL to
build simple SQL statements. Another tool is the Administration Tool, which has
SPUFI capabilities as well as a query building facility.

Figure 12-5 shows how SQL is entered using SPUFI. It is the very first selection
on the DB2I panel. Note that the name of this DB2 subsystem is DB8H.

1 QMF includes a governor function to cap the amount of CPU that might be consumed by a poorly
constructed or runaway query.
396 Introduction to the New Mainframe: z/OS Basics

Figure 12-5 Entering SQL using SPUFI

SPUFI uses file input and output, so it is necessary to have two data sets
pre-allocated:

� The first, which can be named ZPROF.SPUFI.CNTL, is typically a partitioned
data set in order to keep or save your queries as members. A sequential data
set would write over your SQL.

� The output file, which can be named ZPROF.SPUFI.OUTPUT, must be
sequential, which means your output is written over for the next query. If you
want to save it, you must rename the file, using the ISPF menu edit facilities.

In Figure 12-6 you can see how that fits in.
 Chapter 12. Database management systems on z/OS 397

Figure 12-6 Assigning SPUFI data sets

Notice option 5, which you can change to YES temporarily to see the default
values. One value you might want to change is the maximum number of rows
retrieved.

With option 5 at NO, if you press the Enter key, SPUFI will put you in the input file,
ZPROF.SPUFI.CNTL(DEPT), in order to enter or edit an SQL statement. By
entering recov on in the command and pressing Enter, the warning on top of the
screen will disappear. This option is part of the profile, mentioned earlier in this
book. The screen is shown in Figure 12-7 on page 399.
398 Introduction to the New Mainframe: z/OS Basics

Figure 12-7 Editing the input file

If your profile is set to CAPS ON, the SQL statement you have just typed will
normally change to capital letters at the Enter. But this is not needed.

Notice that we have mentioned DSN8810.DEPT as table name. This is the
qualified name of the table, since we want to use the sample tables, which are
created by user DSN8810.

If you enter just one SQL statement, you do not need to use the SQL terminator,
which is a semi-colon (;), since this is specified in the defaults (but you can
change this; remember option 5 of the previous screen). However, if you enter
more than one SQL statement, you need to use a semicolon at the end of each
statement to indicate that you have more than one.

At this point, you need to go back to the first panel of SPUFI by pressing the F3
key. You will then see Figure 12-8 on page 400.
 Chapter 12. Database management systems on z/OS 399

Figure 12-8 Returning to the first SPUFI panel

Notice that there is an asterisk (*) for option 6 since you just finished editing your
SQL. At this point, if you press Enter, you will execute your SQL statement and
you will automatically be put into your output file, since BROWSE OUTPUT is set
to YES. The first part of the output is shown in Figure 12-9 on page 401.
400 Introduction to the New Mainframe: z/OS Basics

Figure 12-9 First part of the SPUFI query results

To get the second (and in this case, final) result screen, press F8, and you will
see Figure 12-10.

Figure 12-10 Second result screen
 Chapter 12. Database management systems on z/OS 401

Notice that you have a result table with just one column. This is what was
specified in SELECT, just DEPTNO. We have retrieved the DEPTNO from all the
(14) rows in the table. There are a few messages. One gives the number of rows
retrieved. Another indicates that SQLCODE (an SQL return code indicating
success or not) is 100, which means end of file, therefore no more results to
show.

Related reading: For more information about SQL, see the IBM publication, DB2
UDB for z/OS: SQL Reference. You can find this and other related publications at
the z/OS Internet Library Web site:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

12.9 Application programming for DB2
SQL is not a full programming language, but it is necessary for accessing and
manipulating data in a DB2 database. It is a 4GL nonprocedural language that
was developed in the mid 1970s to use with DB2. SQL can either be used
dynamically with an interpretive program like SPUFI, or it can be imbedded and
compiled or assembled in a host language.

So how do you write an application program that accesses DB2 data?

To do this, SQL is embedded in the source code of a programming language,
such as Java, Smalltalk, REXX, C, C++, COBOL, Fortran, PL/I, and high-level
Assembler. There are two categories of SQL statements that can be used in a
program: static and dynamic.

� Static

SQL refers to complete SQL statements that are written in the source code. In
the program preparation process, DB2 develops access paths for the
statements, and these are recorded in DB2. The SQL never changes from
one run to another, and the same determined access paths are used without
DB2 having to create them again, a process that can add overhead. (Note: All
SQL statements must have an access path.)

� Dynamic

SQL refers to SQL statements that are only partially or totally unknown when
the program is written. Only when the program runs does DB2 know what the
statements are and is able to determine the appropriate access paths. These
do not get recorded since the statements can change from one run to
another. An example of this is SPUFI. SPUFI is actually an application
program that accepts dynamic SQL statements. These are the SQL
statements that you enter in the input file. Each time you use SPUFI, the SQL
402 Introduction to the New Mainframe: z/OS Basics

can change, so special SQL preparation statements are embedded in the
application to handle this.

We now concentrate on Static SQL, to get an idea of the processes involved
when using DB2. We also want to add that it may seem complex, but each action
has a good reason for being there.

12.9.1 DB2 program preparation: the flow
The traditional program preparation process, compile and linkedit, must have
some additional steps to prepare SQL because compilers do not recognize SQL.
These steps, including compile and linkedit, can be done with the DB2I panel,
although the whole process is usually done in one JCL jobstream except for
DCLGEN. Use Figure 12-11 on page 405 to follow the explanations.

DCLGEN
DCLGEN is a way to automatically generate your source definitions for the DB2
objects that will be used in your program. This is set up in a member of a
DCLGEN library that can optionally be included in your source program. If you do
not include it, you must manually code the definitions. The DB2 database
administrator usually creates these, based on the company’s rules. During this
phase, you need a running DB2 system, because the definitions are taken from
the DB2 catalog.

PRECOMPILE
Because compilers cannot handle SQL, the precompile step comments out the
SQL statements and leaves behind a CALL statement to DB2. This passes some
parameters such as host variable addresses (to retrieve data into), statement
numbers, and (very importantly!) a modified timestamp called a consistency
token (but often referred to as the timestamp). During this phase, you do not
need a running DB2 system—everything is done without accessing DB2.

The precompiler identifies the SQL by special beginning and ending flags that
must be included for each SQL statement. The beginning flag, EXEC SQL, is the
same for all programming languages. The ending flag differs. COBOL uses
END-EXEC. (period), while C and other languages use a semi-colon. Here is a
COBOL example:

EXEC SQL
 SELECT EMPNO, LASTNAME
 INTO :EMPNO, :LASTNAME
 FROM EMP
END-EXEC.
 Chapter 12. Database management systems on z/OS 403

In this example, EMPNO and LASTNAME are retrieved into host variables, which
are preceded by a colon. Host variables (HVs) are variables defined in the “host”
language (COBOL, PL/1, and so on), the language that embeds the SQL. During
the DCLGEN phase, a set of these variables are also defined. The HV name is
here the same as the column name, which is not a requirement—it can be any
name with a datatype compatible with the columns datatype.

After the precompile, our program is divided into two parts:

� The modified source code; this is the original source code, were the SQL is
commented out and replaced by CALLs.

� The database request module (DBRM), which is usually a member of a PDS
library and contains the SQL statements of the program.

The modified source code is passed on to the compiler to be compiled and
linkedited to create an executable load module, just like any program that does
not contain SQL.

By the way, you can embed any type of SQL into your program: DML, DDL, and
DCL, as long as the authorization rules are respected.
404 Introduction to the New Mainframe: z/OS Basics

Figure 12-11 Program preparation flow

BIND
BIND can be thought of as the DB2 equivalent compile process for the DBRM.
Bind does three things:

� Checks your syntax for errors.

� Checks authorization.

� Most importantly, it determines the access paths for your statements. DB2
has a component called the optimizer, which assesses all the different ways
that your data can be accessed, such as scanning an entire table, using an
index, which index, etc. It weighs the costs of each and picks the least. It is
referred to as a cost-based optimizer (as opposed to a rule-based optimizer).

SourceSource
ProgramProgram

Precompile

IncludeInclude
MemberMember

Compile

Linkedit

Modified
Source

Object
Module

Load
Module

DBRM

Bind

Package

Bind

Plan

DCLGEN

RUN
 Chapter 12. Database management systems on z/OS 405

The SQL with its access path (and the consistency token/timestamp) is stored as
a package in a DB2 directory. Other information, such as package information
and the actual SQL, is stored in the catalog. The bind creates the executable
SQL code for one application in a package. Now DB2 has all the information it
needs to get to the requested data for this program.

Often programs call subroutines, which also contain SQL calls. Each of these
subroutines then also has a package. You need to group all DB2 information
together. Therefore, we need another step: another bind, but this time to create a
plan.

Even if you are not using a subroutine, you still need to create a plan. The plan
may contain more information than just your program info. This is common
practice: The plan contains all packages of one project and every run uses the
same plan.

To be complete, we need to add that originally the DBRMs were bound straight
into the plan (they are called instream DBRMs). However, if there is one small
change to one of the programs, you need to rebind the whole plan. The same
needs to be done when an index is added.

During this binding process, as you know, DB2 updates its directory and catalog.
Updating means preventing other people from updating (data is locked from
them), so most other actions against DB2 were nearly impossible. To avoid this
constraint, packages were introduced. Now you only need to rebind the one
package, so the duration of the update is very short, and impact on other users is
almost zero. There are still plans around with instream DBRMs, although most
companies choose to convert them into packages.

Plans are unique to the mainframe environment. Other platforms do not use
them.

RUN
When you execute your application program, the load module is loaded into main
storage. When an SQL statement is encountered, the CALL to DB2, which
replaced the SQL statement, passes its parameters to DB2. One of those is the
consistency token. This token, or timestamp, is also in the package. The
packages in the specified plan of DB2 are then searched for the corresponding
timestamp, and the appropriate package is loaded and executed. So, for the run,
you need to specify the plan name as a parameter.

One last note: The result of an SQL statement is usually a result set (more than
one row). An application program can only deal with one record, or row, at a time.
There is a special construction added to DB2, called a cursor (essentially a
406 Introduction to the New Mainframe: z/OS Basics

pointer), which allows you, in your embedded SQL, to fetch, update, or delete
one row at a time, from your result set.

Related reading: To learn more, see the IBM publication, DB2 UDB for z/OS:
Application Programming and SQL Guide.

12.10 Functions of the IMS Database Manager
A database management system (DBMS) provides facilities for business
application transactions or processes to access stored information. The role of a
DBMS is to provide the following functions:

� Allow access to the data for multiple users from a single copy of the data.

� Control concurrent access to the data so as to maintain integrity for all
updates.

� Minimize hardware device and operating system access method
dependencies.

� Reduce data redundancy by maintaining only one copy of the data.

12.11 Structure of the IMS Database subsystem
The IMS Database Manager provides a central point for the control and access
to application data. IMS provides a full set of utility programs to provide all these
functions within the IMS product. This section describes the various types of
z/OS address spaces and their relationships with each other. The core of an IMS
subsystem is the control region, running in one z/OS address space. This has a
number of dependent address spaces running in other regions that provide
additional services to the control region, or in which the IMS application
programs run.

In addition to the control region, some applications and utilities used with IMS run
in separate batch address spaces. These are separate from an IMS subsystem
and its control region, and have no connection with it.

For historical reasons, some documents describing IMS use the term region to
describe a z/OS address space, for example, IMS Control Region. In this course
we use the term region wherever this is in common usage. You can take the term
region as being the same as a z/OS address space.

Figure 12-12 illustrates the IMS DB/DC subsystem. If you want more details, we
refer you to An Introduction to IMS (ISBN 0-13-185671-5).
 Chapter 12. Database management systems on z/OS 407

Figure 12-12 Structure of the IMS DB/DC subsystem

12.11.1 The IMS hierarchical database model
IMS uses a hierarchical model as the basic method for storing data, which is a
pragmatic way of storing the data and implementing the relationships between
the various types of entities.

In this model, the individual entity types are implemented as segments in a
hierarchical structure. The hierarchical structure is determined by the designer of
the database, based on the relationships between the entities and the access
paths required by the applications.

Note that in the IMS program product itself, the term database is used slightly
differently from its use in other DBMSs. In IMS, a database is commonly used to
describe the implementation of one hierarchy, so that an application would
normally access a large number of IMS databases. Compared to the relational
model, an IMS database is approximately equivalent to a table.

DL/I allows a wide variety of data structures. The maximum number of segment
types is 255 per hierarchical data structure. A maximum of 15 segment levels can
be defined in a hierarchical data structure. There is no restriction on the number

System Address Space Application Region Address Space
Up to 99 in total

IMS System

DLI
Separate
Address
Space

DBRC
Region

MPP IFP BMP

Application
Program

Application
Program

Application
Program

IMS Libraries

IMS Message Queues Logs

Fast Patch DBs

Full Function DBs RECONs

Control
Region
Address
Space

Dependent
Region
Address
Space

Network
408 Introduction to the New Mainframe: z/OS Basics

of occurrences of each segment type, except as imposed by physical access
method limits.

Sequence to access the segments
The sequence of traversing the hierarchy is top to bottom, left to right, front to
back (for twins).

Segment code numbers do not take twins into account and sequential
processing of a database record is in hierarchic sequence. All segments of a
database record are included so twins do have a place in hierarchic sequences.
Segments may contain sequence fields that determine the order in which they
are stored and processed.

Figure 12-13 The sequence

The hierarchical data structure in Figure 12-13 describes the data of one
database record as seen by the application program. It does not represent the
physical storage of the data. The physical storage is of no concern to the
application program.

The basic building element of a hierarchical data structure is the parent/child
relationship between segments of data, also illustrated in Figure 12-13.

ROOT
(1)

Segment A2
(8)

Segment A1
(2)

Segment D3
(9)

Segment D2
(4)

Segment E3
(7)

Segment D1
(3)

Segment E2
(6)

Segment E1
(5)

Segment B2
(14)

Segment B1
(10)

Segment G2
(12)

Segment H1
(13)

Segment G1
(11)
 Chapter 12. Database management systems on z/OS 409

12.11.2 IMS use of z/OS services
IMS is designed to make the best use of the features of the z/OS operating
system. This includes:

� It runs in multiple address spaces

IMS subsystems (except for IMS/DB batch applications and utilities) normally
consist of a control region address space, dependent address spaces
providing system services, and dependent address spaces for application
programs. Running in multiple address spaces gives the following
advantages:

– Maximizes use of CPUs when running on a multiple-processor CPC.

– Address spaces can be dispatched in parallel on different CPUs.

– Isolates the application programs from the IMS systems code, and
reduces outages from application failures.

� It runs multiple tasks in each address space

IMS, particularly in the control regions, creates multiple z/OS subtasks for the
various functions to be performed. This allows other IMS subtasks to be
dispatched by z/OS while one IMS subtask is waiting for system services.

� It uses z/OS cross-memory services to communicate between the various
address spaces making up an IMS subsystem. It also uses the z/OS
Common System Area (CSA) to store IMS control blocks that are frequently
accessed by the address spaces making up the IMS subsystem. This
minimizes the overhead of running in multiple address spaces.

� It uses the z/OS subsystem feature to detect when dependent address
spaces fail, to prevent cancellation of dependent address spaces, and to
interact with other subsystems such as DB2 and WebSphere MQ.

� It can make use of a z/OS sysplex (discussed later in this text). Multiple IMS
subsystems can run on the z/OS systems making up the sysplex and access
the same IMS databases. This provides:

– Increased availability - z/OS systems and IMS subsystems can be
switched in and out without interrupting the service.

– Increased capacity - The multiple IMS subsystems can process far greater
volumes.

12.11.3 Evolution of IMS
Initially, all IMS/DB online applications used IMS/TM as the interface to the
database. However, with the growing popularity of DB2, many customers began
to develop online applications using DB2 as a database, next to their existing
410 Introduction to the New Mainframe: z/OS Basics

good applications. That is why you see a lot of mixed environments in the real
world.

12.11.4 Our online example
Looking back to our travel agent example in Chapter 11, “Transaction
management systems on z/OS” on page 347, examples of IMS transactions
could be in the part of the airline company:

� Some of the batch may be to update daily, such as the payments executed by
travel agents and other customers.

� Another batch part may be the reminders to send out to the travel agents and
other customers to make some payment.

� Checking whether reservations are made (and paid) can be an online
application.

� Checking whether there are available seats.

12.12 Summary
Data can be stored in a flat file, but this usually results in lots of duplication,
which may result in inconsistent data. Therefore, it is better to create central
databases, which can be accessed (for reading and changing) from various
places. The handling of consistency, security, and so on, is done by the database
management system; the users and developers do not need to worry about it.

The relational database is the predominant approach to data organization in
today's business world. IBM’s DB2 implements such relational principles as
primary keys, referential integrity, a language to access the database (SQL),
nulls, and normalized design. In a relational database, the most fundamental
structure is the table with columns and rows.

There is a hierarchical dependency to the basic objects in DB2. The table
structure can have indexes and views created on it. If a table is removed, these
objects also get removed. Tables are contained in a physical data set called the
table space, which is associated with a database that is a logical grouping of
table spaces. Newer schema objects in DB2 include UDTs, UDFs, LOBs,
triggers, and stored procedures.

DB2 also has system structures that help manage the subsystem. The catalog
and directory keep metadata about all the objects in the RDBMS. Buffer pools
are used to hold pages of data from disk storage for faster retrieval; the active or
archive logs and the BSDS are a way for DB2 to record all the changes made to
the data for recovery purposes.
 Chapter 12. Database management systems on z/OS 411

The only way to access the data in DB2 databases is with SQL. It is not a full
programming language, and it works at the set level, using a result table when it
manipulates data. SQL has three categories based on functionality: DML, DDL,
and DCL. On the mainframe, SPUFI is a tool used to enter SQL statements.

Some special steps are needed to use SQL in application programs because
traditional 3GL compilers do not recognize SQL. The precompiler comments out
SQL statements in a program, copies them to a DBRM with a consistency token,
and replaces them with calls to DB2. The modified source code is then compiled
and link-edited. The DBRM performs a bind process that determines the access
path and stores this executable SQL code in a package. Packages are then
logically associated with a plan. When run, the call to DB2 in the load module
passes its consistency token to DB2 to be matched to its twin in the appropriate
plan in order to execute the SQL.

SQL can handle both static and dynamic statements, and EXPLAIN can be used
to find out what access path the optimizer chose for the SQL.

The EXPLAIN statement defines an access path for a query to improve its
performance. EXPLAIN statements are especially useful for multi-table,
multi-access database queries.

12.13 Questions for review
To help test your understanding of the material in this chapter, complete the
following questions:

1. What are some of the responsibilities of a database administrator (DBA)?

2. What DB2 objects define a physical storage area? Does a table?

3. What are some of the problems with the following SQL statement?

SELECT *
FROM PAYROLL;

Key terms in this chapter

full-function database DL/I modified source

SPUFI SQL SYSADM

EXPLAIN view DBMS

multitasking multithreading database administrator
(DBA)
412 Introduction to the New Mainframe: z/OS Basics

4. What category of SQL would you use to define objects to DB2?

5. How does the precompiler find an SQL statement in a program?

6. How does a load module get put back together with the SQL statements?

7. How could you find out what access path the optimizer chose? What process
creates this path?

8. What is a stored procedure?

9. What are some of the responsibilities of a system administrator?

10.What are some of the responsibilities of a database administrator (DBA)?

11.What are some of the ways that security is handled by DB2?

12.What is the database structure of IMS-DB? Describe it.

12.14 Exercises
In this exercise, you use SPUFI in a COBOL program. To complete the exercise,
you will need a connection to DB2.

12.14.1 Step 1: Create files
Before you start with the DB2 exercise, you need to create two more PDSs:

� ZUSER##.DB2.INCLUDE, to store your DCLGENs
� ZUSER##.DB2.DBRM, to store your DBRMs

You can use ZUSER##.LANG.CNTL as base.

Furthermore, you also need a ZUSER##.SPUFI.OUTPUT file, which should be a
flat file of record format VB, with a record length of 4092 and block length of
4096.

12.14.2 Step 2: DCLGEN
DCLGEN is an easy way to generate COBOL definition statements for the DB2
information that you use in an application program. These statements can then
be included in the source program.

First, from the DB2I (DB2 Interactive) menu, choose D for DB2I Defaults
(Figure 12-14) and press Enter.
 Chapter 12. Database management systems on z/OS 413

Figure 12-14 DB2I menu

On the DB2I Defaults Panel 1, specify IBMCOB for option 3 Application
Language (Figure 12-15).

Figure 12-15 DB2I default panel 1

Press Enter, and on DB2I Defaults Panel 2, specify DEFAULT for the COBOL
string delimiter under option 2 and G for the DBCS symbol for DCLGEN for
option 3. Press Enter (Figure 12-16).
414 Introduction to the New Mainframe: z/OS Basics

Figure 12-16 DB2I Default panel 2

This is just to make sure that you have the correct language.

After Enter, you are back on the main DB2I panel (Figure 12-14 on page 414);
now select option 2, DCLGEN.

You need to have a destination data set already allocated to hold your DCLGEN
definition (ZUSER##.DB2.INCLUDE); it should be created for you. If you do not
have one, go to the ISPF menu and create a PDS file.

Figure 12-17 DCLGEN
 Chapter 12. Database management systems on z/OS 415

As Figure 12-17 shows, you need to specify the table, the table owner, your PDS
file, and the action ADD. The resulting message should be:

If the definition of the table changes, you must also change DCLGEN and use
REPLACE.

12.14.3 Step 3: Test your SQL
Go to SPUFI; use your SPUFI.CNTL PDS. In that PDS you find the member
SELECT. This is the SQL statement you will use in your program. The
where-clause is not there, so that you can see all the results you can get. It also
gives you the opportunity to know what departments are available in the table.

Surely, for more complex queries, this is common practice. As an application
developer you are sure to execute the right SQL.

12.14.4 Step 4: Create the program
Here, you can create a program, or use the program that is supplied for you in
LANG.SOURCE(COBDB2). This sample program calculates the average salary
for one department. You specify the department and get the result. To end the
program, enter 999.

To modify this program, add the following:

� Your variables (include the member you have created in step 1).
� Specify the SQL delimiters for COBOL.

If you search for “???” you will find the locations to do this.

12.14.5 Step 5: Complete the program
Edit the LANG.CNTL(COBDB2) job and make the changes stated at the top of
the job.

You find the following steps in this job:

� Step PC: this is the DB2 precompile; it splits your source into two parts: the
DBRM and the modified source.

� Steps COB, PLKED and LKED: these do the compile and linking of your
modified source.
416 Introduction to the New Mainframe: z/OS Basics

� Step BIND: this does the bind of the package and the plan.

Question: If you needed to change your program, which bind could be left
out? Feel free to change the program. Instead of the average, you can ask the
minimum or maximum salary within a department (then you just need to
change the SQL).

� Step Run: this runs the program in batch for two departments: A00 and D21.

12.14.6 Step 6: Run the program from TSO
Instead of running your program in batch, try running it from the TSO READY
prompt. To do so, you must allocate both files to your session (this must be done
before you run the job).

Enter the following and press Enter after each line:

TSO alloc da(*) f(sysprint) reuse
tso alloc da(*) f(sysin) reuse

Then return to your DB2I screen.

Select option 6 RUN. Here, you enter the file name and the plan name
(Figure 12-18).

Figure 12-18 Ready to execute

1

2

2

 Chapter 12. Database management systems on z/OS 417

Figure 12-19 The execution of the program
418 Introduction to the New Mainframe: z/OS Basics

Chapter 13. z/OS HTTP Server

13

Objective: As a mainframe professional, you will need to know how to deploy
a Web application on z/OS and how to enable z/OS for serving Web-based
workloads.

After completing this chapter, you will be able to:

� List the three server modes.

� Explain static and dynamic Web pages.

� List at least two functions from each of the groups: basic, security, and
caching.
© Copyright IBM Corp. 2006. All rights reserved. 419

13.1 Introduction to Web-based workloads on z/OS
As enterprises move many of their applications to the Web, mainframe
organizations face the complexity of enabling and managing new Web-based
workloads in addition to more traditional workloads, such as batch processing.

The next chapters show how middleware products are used to supply the key
functions needed to enable z/OS for processing Web-based workloads:

� Chapter 13, “z/OS HTTP Server” on page 419

� Chapter 14, “WebSphere Application Server on z/OS” on page 431

� Chapter 15, “Messaging and queuing” on page 447

These chapters use IBM products in the examples, but many such middleware
products exist in the marketplace today.

13.2 What is z/OS HTTP Server?
z/OS HTTP Server serves static and dynamic Web pages. HTTP Server has the
same capabilities as any other Web server, but it also has some features that are
z/OS-specific. You can run HTTP Server in any of three modes, with each
offering advantages for handling Web-based workloads:

Stand-alone server This mode is typically used for HTTP Server-only
implementations (simple Web sites). Its main role is to
provide a limited exposure to the Internet.

Scalable server This mode is typically used for interactive Web sites,
where the traffic volume increases or declines
dynamically. It is intended for a more sophisticated
environment, in which servlets and JSPs are invoked.

Multiple servers This mode uses a combination of stand-alone and
scalable servers to improve scalability and security
throughout the system. For example, a stand-alone server
could be used as a gateway to scalable servers, and the
gateway could verify the user authentication of all
requests, and reroute requests to the other servers.

13.2.1 Serving static Web pages on z/OS
With a Web server on z/OS, such as HTTP Server, the serving of static Web
pages is similar to Web servers on other platforms. The user sends an HTTP
request to HTTP Server to obtain a specific file. HTTP Server retrieves the file
420 Introduction to the New Mainframe: z/OS Basics

from its file repository and sends it to the user, along with information about the
file (such as mime type and size) in the HTTP header.

HTTP Server has a major difference from other Web servers, however. Because
z/OS systems encode files in EBCDIC, the documents on z/OS must first be
converted to the ASCII format typically used on the Internet (binary documents
such as pictures need not be converted).

HTTP Server performs these conversions, thus saving the programmer from
performing this step. However, the programmer must use FTP to load documents
on the server. That is, the programmer specifies ASCII as the FTP transport
format to have the file converted from EBCDIC. For binary transfers, the file is not
converted.

13.2.2 Serving dynamic Web pages on z/OS
Dynamic Web pages are an essential part of Web-based commerce. Every kind
of interaction and personalization requires dynamic content. When a user fills out
a form on a Web site, for example, the data in the form must be processed, and
feedback must be sent to the user.

Two approaches for serving dynamic Web pages on z/OS are:

� “Using CGI for dynamic Web pages” on page 421

� “Using the plug-in interface” on page 422

Using CGI for dynamic Web pages
One way to provide dynamic Web pages is through the Common Gateway
Interface (CGI), which is part of the HTTP protocol. CGI is a standard way for a
Web server to pass a Web user’s HTTP request to an application. GCI generates
the output and passes it back to HTTP Server, which sends it back to the user in
an HTTP response (Figure 13-1).

CGI is not limited to returning only HTML pages; the application can also create
plain text documents, XML documents, pictures, PDF documents, and so on. The
mime type must reflect the content of the HTTP response.

CGI has one major disadvantage, which is that each HTTP request requires a
separate address space. This causes a lack of efficiency when there are many
requests at a time.

To avoid this problem, FastCGI was created. Basically, the HTTP Server FastCGI
plug-in is a program that manages multiple CGI requests in a single address
space, which saves many program instructions for each request. More
 Chapter 13. z/OS HTTP Server 421

information about HTTP Server plug-ins is provided in “Using the plug-in
interface” on page 422.

Figure 13-1 How the CGI works

Using the plug-in interface
Another way of providing dynamic content is by using the plug-in interface of
HTTP Server, which allows one of several products to interface with HTTP
Server. Here, for example, are some ways in which HTTP Server can pass
control to WebSphere;

� WebSphere plug-in, same address space

Figure 13-2 shows a simple configuration in which no J2EE™ server is
needed. This servlet can connect to CICS or IMS, or to DB2 through JDBC™.
However, coding business logic inside servlets is not recommended.

HTTP Server
Address Space

http://www.myzseries.com/cgi-bin/test.cgi

httpd.conf
URL

Response

Client
Browser

11

22

33

CGI
application

test2.cgi

CGI
application

test.cgi

z/OS
Address Spaces
422 Introduction to the New Mainframe: z/OS Basics

Figure 13-2 Accessing servlets using the WebSphere plug-in

� Web container inside HTTP Server, separate EJB™ container

Figure 13-3 shows a more usable configuration in which the servlets run in a
different address space than the EJBs, so the EJBs are invoked from remote
calls. The EJBs then get information from other servers.

Figure 13-3 Accessing EJBs from a WebSphere plug-in

� Separate J2EE server with both Web container and EJB container

In addition to running your servlets locally within the WebSphere plug-in, you
can also use the WebSphere plug-in to run servlets remotely in a Web

HTTP Serverhttp://www.myzseries.com/my.jsp

was.conf

CICS Server
or

IMS Server

httpd.conf

WAS
plug-in

Servlet

URL

Response

Client
Browser

HTTP Serverhttp://www.myzseries.com/my.jsp

was.conf
EJB
Container

httpd.conf

WAS
plug-in

Servlet

URL

Response

Client
Browser

CICS Server
or

IMS Server

EJB

J2EE Server
 Chapter 13. z/OS HTTP Server 423

container, as shown in Figure 13-4. This allows you to localize your servlets
and EJBs to the same z/OS address space, so that no remote EJB calls are
required.

Figure 13-4 Accessing servlets in a Web container using the WebSphere plug-in

If you are using WebSphere Application Server, HTTP Server might not be
needed, yet there are several ways in which HTTP Server can interact with
WebSphere Application Server. These possibilities are mentioned here.

13.3 HTTP Server capabilities
HTTP Server provides capabilities similar to other Web servers, but with some
functions specific to z/OS as well. The z/OS-specific functions can be grouped as
follows:

� Basic functions
� Security functions
� File caching

13.3.1 Basic functions
� EBCDIC/ASCII file access

The server accesses files and converts them, if needed, from EBCDIC to
ASCII encoding.

� Performance and usage monitoring

As part of the z/OS features, HTTP Server can produce system management
facilities (SMF1) records that the system programmer can retrieve later to do
performance and usage analysis.

HTTP Serverhttp://www.myzseries.com/my.jsp

was.conf

EJB
Containerhttpd.conf

WAS
plugin

URL

Response

Client
Browser

CICS Server
or

IMS Server

EJB

J2EE Server

Web
Container

Servlet

JSPs
424 Introduction to the New Mainframe: z/OS Basics

� Tracing and logging

HTTP Server comes with a complete set of logging, tracing, and reporting
capabilities that allow you to keep track of every HTTP request.

� Server Side Include (SSI)

Server Side Include allows you to insert information into documents (static or
dynamic) that the server sends to the clients. This could be a variable (like the
“Last modified” date), the output of a program, or the content of another file.
Enabling this function, but not using it, can have a serious performance
impact.

� Simple Network Management Protocol (SNMP) Management Information
Base (MIB)

HTTP Server provides an SNMP MIB and SNMP subagent, so you can use
any SNMP-capable network management system to monitor your server’s
health, throughput, and activity. It can then notify you if specified threshold
values are exceeded.

� Cookies support

Because HTTP is a stateless protocol, a state can be added with the help of
cookies, which store information on the client’s side. This support is useful for
multiple Web pages, for example to achieve customized documents or for
banner rotation.

� Multi-Format Processing

This feature is used for personalization of Web pages. The browser sends
header information along with the request, including the accept header. This
information includes the language of the user. HTTP Server can make use of
the contents of the accept header to select the appropriate document to
return to the client.

� Persistent connections

With the help of this HTTP/1.1-specific feature, not every request has to
establish a new connection. Persistent connections stay “alive” for a certain
amount of time to enable the use of a given connection to another request.

� Virtual hosts

Virtual hosts allow you to run one Web server while making it appear to
clients as if you are running several. This is achieved by the use of different
DNS names for the same IP and/or different IP addresses bound to the same
HTTP Server.

1 SMF is an optional feature of z/OS that provides you with the means for gathering and recording
information that can be used to evaluate system usage for accounting, charge-back, and
performance tuning.
 Chapter 13. z/OS HTTP Server 425

13.3.2 Security functions
� Thread level security

An independent security environment can be set for each thread running
under HTTP Server, which basically means that every client connecting to the
server will have its own security environment.

� HTTPS/SSL support

HTTP Server has full support for the Secure Socket Layer (SSL) protocol.
HTTPS uses SSL as a sublayer under the regular HTTP layer to encrypt and
decrypt HTTP requests and HTTP responses. HTTPS uses port 443 for
serving instead of HTTP port 80.

� LDAP support

The Lightweight Data Access Protocol (LDAP) specifies a simplified way to
retrieve information from an X.500-compliant directory in an asynchronous,
client/server type of protocol.

� Certificate authentication

As part of the SSL support, HTTP Server can use certificate authentication
and act as a certificate authority.

� Proxy support

HTTP Server can act as a proxy server. You cannot, however, use the Fast
Response Cache Accelerator (FRCA).

13.3.3 File caching
Performance can be significantly increased by using any of the following file
caching (buffering) possibilities:

� HTTP Server caching HFS files
� HTTP Server caching z/OS data sets
� z/OS UNIX caching HFS files
� Fast Response Cache Accelerator (FRCA)

13.3.4 Plug-in code
The WebSphere HTTP Server plug-in is code that runs inside various Web
servers: IBM HTTP Server, Apache, IIS, Sun Java™ System. Requests are
passed over to the plug-in, where they are handled based on a configuration file.

The plug-in is code supplied with WebSphere that runs inside various HTTP
servers. Those HTTP servers may be the IBM HTTP Server on z/OS. As
workload comes into the HTTP Server, directives in the HTTP Server's
426 Introduction to the New Mainframe: z/OS Basics

configuration file (httpd.conf) are used to make a decision: is the work request
coming in something the HTTP Server handles or is it something that's to be
passed over the plug-in itself.

Once inside the plug-in, the logic that acts upon the request is determined by the
plug-in's configuration file, not the HTTP Server's. That configuration file is by
default called the plugin-cfg.xml file. Information on which of the backed
application servers the request is to go to is defined in this file. This file is
something that is created by WebSphere Application Server and doesn't
necessarily need modifying, although you have the flexibility to do so.

Note: In general, plug-ins provide functionality extensions for HTTP Server.
Figure 13-5 shows one example of its use, although there are many different
plug-ins that can be configured to assist in customization of your Web
environment. Another popular plug-in is the Lightweight Directory Access
Protocol Server (LDAP) used for security authentication.

Figure 13-5 Example of a plug-in
 Chapter 13. z/OS HTTP Server 427

13.4 Summary
z/OS provides HTTP Server for both static and dynamic Web pages. HTTP
Server supports the WebSphere plug-in (which handles EJB containers and
J2EE), and security and file caching. These features make it easier to work with
dynamic Web pages.

13.5 Questions for review
To help test your understanding of the material in this chapter, complete the
following questions:

1. List the three server modes.
2. Explain static and dynamic Web pages.
3. List at least two functions from each of the three groups: basic, security, and

caching.

13.6 Exercises
Use the ISHELL or OMVS shell for this exercise. Also, you will need to know:

� The location of the HTTP Server configuration file httpd.conf
� The IP address or the name of the HTTP Server

Do each of the following steps and answer the questions:

1. Browse the httpd.conf file of the HTTP Server product installed on z/OS. In
which directory are the Web documents stored (F “URL translation rules”)?
Also, which port should be used? (F “Port directive”)?

2. From a Web browser window, display the class HTTP Server. How is
WebSphere plugged into this HTTP Server? (F “Websphere”)?

3. Use OEDIT to create an HTML document in the Web documents folder. Name
it youridtest.html. Here is an example:

<!doctype html public "//W3//Comment//EN">

Key terms in this chapter

CGI dynamic FRCA

HTTP J2EE LDAP

SSL static
428 Introduction to the New Mainframe: z/OS Basics

<html>
<head>
<META content="text/html; charset=iso-8859-1">
<title> This is a simple HTML Exercise</title>
</head>
<body bgcolor="#FFFFFF">
<p>Hello World
</body>
</html>

4. Open a Web browser to your HTML document, for example:

www.yourserver.com/youridtest.html

What needs to be done to install your own CGI?

5. Examine the httpd.conf file. Is the HTCounter CGI option “Date and Time”
enabled? If so, change youridtext.html and add the following line to the
body section:

Save the file. What has changed?
 Chapter 13. z/OS HTTP Server 429

430 Introduction to the New Mainframe: z/OS Basics

Chapter 14. WebSphere Application
Server on z/OS

14

Objective: As a mainframe professional, you will need to know how to deploy
a Web application on z/OS. You will also need to know how to enable z/OS for
processing Web-based workloads.

After completing this chapter, you will be able to:

� List the six qualities of the J2EE Application model.

� Give three reasons for running WebSphere Application Server under z/OS.

� Name three connectors to CICS, DB2, and IMS.
© Copyright IBM Corp. 2006. All rights reserved. 431

14.1 What is WebSphere Application Server for z/OS?
As enterprises move many of their applications to the Web, mainframe
organizations face the complexity of enabling and managing new Web-based
workloads in addition to more traditional workloads, such as batch processing.

WebSphere Application Server is a comprehensive, sophisticated, Java 2
Enterprise Edition (J2EE) and Web services technology-based application
system. WebSphere Application Server on z/OS is the J2EE implementation
conforming to the current Software Development Kit (SDK) specification
supporting applications at an API level. As mentioned, it is a Java Application
deployment and run-time environment built on open standards-based technology
supporting all major functions such as servlets, Java server pages (JSPs), and
Enterprise Java Beans (EJBs) including the latest technology integration of
services and interfaces.

The application server run-time is highly integrated with all inherent features and
services offered on z/OS. The application server can interact with all major
subsystems on the operating system including DB2, CICS, and IMS. It has
extensive attributes for security, performance, scalability and recovery. The
application server also uses sophisticated administration and tooling functions,
thus providing seamless integration into any data center or server environment.

WebSphere Application Server is an e-business application deployment
environment. It is built on open standards-based technology such as CORBA,
HTML, HTTP, IIOP, and J2EE-compliant Java technology standards for servlets,
Java Server Pages (JSP™) technology, and Enterprise Java Beans (EJB), and it
supports all Java APIs needed for J2EE compliance.

The Controller Address Space will automatically start a servant region as work
arrives. As shown in Figure 14-1, an application server instance is composed of
a controller region (CR) and one or more servant regions (SRs).

Figure 14-1 An application server instance

The application server on z/OS supports two types of configurations: Base and
Network Deployment. Each configuration uses essentially the same architectural

Application
Server =
Instance

CR

SR
432 Introduction to the New Mainframe: z/OS Basics

hierarchy, comprised of servers, nodes and cells. However, cells and nodes play
an important role only in the Network Deployment configuration.

14.2 Servers
A server is the primary run-time component; this is where your application
actually executes. The server provides containers and services that specialize in
enabling the execution of specific Java application components. Each application
server runs in its own Java Virtual Machine (JVM).

Depending on the configuration, servers might work separately or in
combination, as follows:

� In a Base configuration, each application server functions as a separate
entity. There is no workload distribution or common administration among the
application servers.

� In a Network Deployment configuration, multiple application servers are
maintained from a central administration point.

In addition, you can cluster application servers for workload distribution.

Note: A special type of application server called a JMS Server is not covered in
this book.

14.3 Nodes (and node agents)
A node is a logical grouping of WebSphere-managed server processes that
share common configuration and operational control. A node is generally
associated with one physical installation of the application server.

As you move up to the more advanced application server configurations, the
concepts of configuring multiple nodes from one common administration server
and workload distribution among nodes are introduced. In these centralized
management configurations, each node has a node agent that works with a
Deployment Manager to manage administration processes.

14.4 Cells
A cell is a grouping of nodes into a single administrative domain. In the Base
configuration, a cell contains one node. That node may have multiple servers, but
the configuration files for each server are stored and maintained individually
(XML-based).
 Chapter 14. WebSphere Application Server on z/OS 433

With the Network Deployment configuration, a cell can consist of multiple nodes,
all administered from a single point. The configuration and application files for all
nodes in the cell are centralized into a cell master configuration repository. This
centralized repository is managed by the Deployment manager process and
synchronized out to local copies held on each of the nodes.

In the address spaces used for the application server, there is a concept of
containers, which provide run-time separation between the various elements that
execute. A single container, known as an EJB container, is used to run Enterprise
Java Beans. Another container, known as the Web container, is used to execute
Web-related elements such as HTML, GIF files, servlets, and Java server pages
(JSPs). Together, they make up the application server run-time within the JVM.

14.5 J2EE application model on z/OS
The J2EE Application Model on z/OS is exactly the same as on other platforms,
and it follows the SDK specification, exhibiting the following qualities:

� Functional - satisfies user requirements

� Reliable - performs under changing conditions

� Usable - enables easy access to application functions

� Efficient - uses system resources wisely

� Maintainable - can be modified easily

� Portable - can be moved from one environment to another

WebSphere Application Server on z/OS supports four major models of
application design: Web-based computing, integrated enterprise computing,
multithreading distributed business computing, and service-oriented computing.
All these design models focus on separating the application logic from the
underlying infrastructure; that is, the physical topology and explicit access to the
information system are distinct from the programming model for the application.

The J2EE programming model supported by WebSphere Application Server for
z/OS makes it easier to build applications for new business requirements
because it separates the details from the underlying infrastructure. It provides for
the deployment of the component and service-oriented programming model
offered by J2EE.
434 Introduction to the New Mainframe: z/OS Basics

14.6 Running WebSphere Application Server on z/OS
WebSphere Application Server runs as a standard subsystem on z/OS.
Therefore, it inherits all the characteristics of mainframe qualities and
functionality that accompany that platform, such as its unique capacity for
running hundreds of heterogeneous workloads concurrently, and meeting service
level objectives as defined by the user.

14.6.1 Consolidation of workloads
As discussed in previous chapters, a mainframe can be used to consolidate
workloads from many individual servers. Therefore, if there is a large
administration overhead or a physical capacity concern of many individual
servers, the mainframe can take on the role of a single server environment
managing those workloads. It can present a single view of administration,
performance and recovery for applications that harness the mainframe’s services
during execution.

Several application servers can easily be migrated into one logical partition of a
mainframe’s resources, thus providing ease of management and monitoring
(logical partitions, or LPARs, are discussed in “Mainframe hardware systems and
high availability” on page 35). Consolidation also allows for instrumentation and
metric gathering, resulting in easier capacity analysis.

14.6.2 WebSphere for z/OS security
The combination of zSeries hardware- and software-based security, along with
incorporated J2EE security, offers significant defense against possible intrusions.
The product security is a layered architecture built on top of the operating system
platform, the Java Virtual Machine (JVM), and Java2 security.

WebSphere Application Server for z/OS integrates infrastructure and
mechanisms to protect sensitive J2EE resources and administrative resources
addressing the enterprise from an end-to-end security perspective based on
industry standards.

The open architecture possesses secure connectivity and interoperability with all
mainframe Enterprise Information Systems, which includes:

� CICS Transaction Server (TS)
� DB2
� Lotus® Domino®
� IBM Directory
 Chapter 14. WebSphere Application Server on z/OS 435

WebSphere Application Server integrates with RACF and WebSEAL Secure
Proxy (Trusted Association Interceptor), providing a unified, policy-based and
permission-based model for securing all Web resources and Enterprise Java
Bean components, as defined in the J2EE specification.

14.6.3 Continuous availability
WebSphere for z/OS uses the zSeries platform’s internal error detection and
correction internal capabilities. WebSphere for z/OS has recovery termination
management that detects, isolates, corrects and recovers from software errors.
WebSphere for z/OS can differentiate and prioritize work based on service level
agreements. It offers clustering capability as well as the ability to make
non-disruptive changes to software components, such as resource managers.

In a critical application, WebSphere for z/OS can implement a failure
management facility of z/OS called automatic restart manager or ARM. This
facility can detect application failures, and restart servers when failures occur.
WebSphere uses ARM to recover application servers (servants). Each
application server running on a z/OS system is registered with an ARM restart
group.

WebSphere for z/OS can implement a feature called clustering. Clustering
technology is used extensively in high availability solutions involving WebSphere,
as shown in Figure 14-2.

A cluster consists of multiple copies of the same component with the expectation
that at least one of the copies will be available to service a request. In general,
the cluster works as a unit where there is some collaboration among the
individual copies to ensure that the request can be directed toward a copy that is
capable of servicing the request.

Designers of a high availability solution participate in establishing a service level
as they determine the number and placement of individual members of clusters.
WebSphere for z/OS provides management for some of the clusters needed to
create the desired service level. Greater service levels of availability can be
obtained as WebSphere clusters are supplemented with additional cluster
technologies.
436 Introduction to the New Mainframe: z/OS Basics

Figure 14-2 Clustering of servers in a cell

A WebSphere Application Server cluster is composed of individual cluster
members, with each member containing the same set of applications. In front of
a WebSphere Application Server cluster is a workload distributor, which routes
the work to individual members.

Clusters can be vertical within an LPAR (that is, two or more members residing in
a z/OS system) or they can be placed horizontally across LPARs to obtain the
highest availability in the event an LPAR containing a member has an outage.

Workload in this case can still be taken on from the remaining cluster members.
Also within these two configurations, it is possible to have a hybrid in which the
cluster is composed of vertical and horizontal members (see Figure 14-3).

Cluster
servers B

 and D

Install
Application
 into cluster

through ISPF

BrowserBrowser

Deployment Manager

AA

Daemon

CR CR SR

Server A

CR SR

Server B

z/OS system

Daemon

CR CR SR

Server C

CR SR

Server D

z/OS system

Cluster

APP APPAPP

HFSHFS HFSHFS

SYSA SYSB

CF
 Chapter 14. WebSphere Application Server on z/OS 437

Figure 14-3 Vertical and horizontal clusters

You might wonder when to use vertical clustering as opposed to horizontal
clustering? You might use vertical clustering to check the dispatching efficiency
of a single system. In a vertical cluster, the servers compete with each other for
resources.

14.6.4 Performance
Performance is highly dependent on application design and coding, regardless of
the power of the run-time platform—a defectively written application will perform
just as poorly on z/OS as it would on another platform.

WebSphere Application Server for z/OS uses the mainframe qualities in
hardware, and software characteristics incorporating Workload Management
schemes, dynamic LPAR configuration, and Parallel Sysplex functionality.
Specifically, it uses the three distinct functions of z/OS workload management
(WLM):

z/OS system z/OS system

"Vertical"
Cluster
Two or more
servers in the
same system
or LPAR

DM

CR AA

Node Agent

CR

CR SR

Server A

CR SR

Server B

Node

Node

CR SR

Server C

Daemon

CR

Daemon

CR

Node Agent

CR

CR SR

Server D

CR SR

Server E

Node

CR SR

Server F

Cell A CF

"Horizontal"
Cluster
Two or more
servers across
multiple nodes
(or systems)

Servers are
clustered through
the administrative
interface.

Any given server
may be a member
of only one cluster
at a time.

You cannot have
Server_C be a
member of two
different
clusters, for
example.

Hybrid of vertical
and horizontal is
permitted.
438 Introduction to the New Mainframe: z/OS Basics

� Routing

WLM routing services are used to direct clients to servers on a specific
system based on measuring current system utilization, known as the
Performance Index (PI).

� Queuing

The WLM queuing service is used to dispatch work requests from a Controller
Region to one or more Server Regions. It is possible for a Work Manager to
register with WLM as a Queuing Manager. This tells WLM that this server
would like to use WLM-managed queues to direct work to other servers,
which allows WLM to manage server spaces to achieve the specified
performance goals established for the work.

� Prioritize

The application server provides for starting and stopping Server Regions to
set work priority. This allows WLM to manage application server instances in
order to achieve goals specified by the business.

WLM maintains a performance index (PI) for each service class period to
measure how actual performance varies from the goal. Because there are
several types of goals, WLM needs some way of comparing how well or poorly
work in one service class is doing compared to other work. A service class (SC)
is used to describe a group of work within a workload with equivalent
performance characteristics.

14.7 Application server configuration on z/OS
An application server configuration on z/OS includes the following:

� Base server node
� Network Deployment Manager

14.7.1 Base server node
The base application server node is the simplest operating structure in the
Application Server for z/OS. It consists of an application server and a daemon
server (one node and one cell), as shown in Figure 14-4 on page 440. All of the
configuration files and definitions are kept in the HFS directory structure created
for this base application server. The daemon server is a special server with one
controller region. The system architecture of WebSphere for z/OS calls for one
daemon server per cell per system or LPAR.

Each base application server node contains administration for its own cell
domain and a separate repository for its configuration. Therefore, you can have
 Chapter 14. WebSphere Application Server on z/OS 439

many base application servers, each isolated from the others, having their own
administration policy for their specific business needs.

Figure 14-4 Base server node

14.7.2 Network Deployment Manager
Network Deployment Manager (Figure 14-5 on page 441) is an extension to the
base application server. It allows the system to administer multiple application
servers from one centralized location. Here, application servers are attached to
nodes, and multiple nodes belong to a cell. With the Deployment Manager,
horizontally and vertically scaled systems, as well as distributed applications, can
be easily administered.

The Network Deployment Manager also manages the repositories on each node,
performing such tasks as creating, maintaining, and removing the repositories.
The system uses an extract/modify method to update the configuration.

Location Service Daemon
(BBODMNB)

Controller

Application server node

Cell

J2EE scalable
application server
(server1) HTTP

internal
transport

Controller Servant

V6 run-time
environment

HTTP server

z/OS functions
UNIX System Services
TCP/IP
FTP
RRS
Workload Management
Language Environment
Security Server
ARM
IMS/TM
CICS/TS
MQ
440 Introduction to the New Mainframe: z/OS Basics

Figure 14-5 Network Deployment Manager

14.8 Connectors for Enterprise Information Systems
The ability of applications to interface with resources outside of the application
server process and to use those resources efficiently has always been an
important requirement. Equally important is the ability for vendors to plug in their
own solutions for connecting to and using their resources.

An application might require access to many types of resources, which may or
may not be located in the same machine as the application. Therefore, access to
a resource begins with a connection that is a pathway from an application to a
resource, which might be another transaction manager or database manager.

Java program access to a broad range of back-end resources is performed
through a resource adapter. This is a system-level software driver that plugs into
an application server and enables a Java application to connect to various
back-end resources.

Cell

Location Service
Daemon
(BBODMNB)

Controller

z/OS functions
UNIX System
Services
TCP/IP
FTP
RRS
Workload
Management
Language
Environment
Security Server
ARM
IMS/TM
CICS/TS
MQ

Node 1: Deployment manager

Deployment manager
(BBODMGR)

Controller

Node 2: Application server

Node agent
(BBON001)

Controller

JMS server
(BBOJ001)

Controller

J2EE scalable
application server
(server1)

Controller Servants

HTTP
internal

transport

v5 run-time
environment
 Chapter 14. WebSphere Application Server on z/OS 441

The following considerations are common to all connections:

� Creating a connection can be expensive. Setting up a connection can take a
long time when compared to the amount of time the connection is actually
used.

� Connections must be secure. This is often a joint effort between the
application and the server working with the resource.

� Connections must perform well. Performance can be critical to the success of
an application, and it is a function of the application’s overall performance.

� Connections must be monitorable and have good diagnostics. The quality of
the diagnostics for a connection depends on the information regarding the
status of the server and the resource.

� Methods for connecting to and working with a resource. Different database
architectures require different means for access from an application server.

� Quality of service, which becomes a factor when accessing resources outside
of the application server. The application might require the ACID (Atomicity,
Consistency, Isolation, and Durability) properties that can be obtained when
using data in managing a transaction.

Enterprise resources are often older resources that were developed over time by
a business and are external to the application server process. Each type of
resource has its own connection protocol and proprietary set of interfaces to the
resource. Therefore, the resource has to be adapted in order to for it to be
accessible from a JVM process as contained in an application server.

WebSphere Application Server has facilities to interface with other z/OS
subsystems such as CICS, DB2 and IMS. This is done through a resource
adapter and a connector. Accessing back-end Enterprise Information Systems
(EIS) extends the functionality of the application server into existing business
functions, providing enhanced capabilities.

The Java Cryptography Architecture (JCA) defines the contracts between the
application, the connector, and the application server where the application is
deployed. The application has a component called the resource adapter. This is
contained within the application code handling the interface to the connector
which the application developer creates.

From a programming perspective, this means that programmers can use a single
unified interface to obtain data from the EIS. The resource adapter will sort out
the different elements and provide a programming model that is independent of
the actual EIS behavior and communication requirements.
442 Introduction to the New Mainframe: z/OS Basics

Figure 14-6 Basic architecture of a connector to an EIS

14.8.1 z/OS connectors
WebSphere for z/OS provides the following connectors to allow Web applications
on z/OS to interface with the mainframe middleware products CICS, IMS, and
DB2:

� CICS Transaction Gateway
� IMS Connect
� “DB2 JDBC” on page 444

CICS Transaction Gateway
Customer Information Control System (CICS) has the CICS Transaction Gateway
(CTG) to connect from the application server to CICS. CTG provides the
interface between Java and CICS application transactions. It is a set of client and
server software components incorporating the services and facilities to access
CICS from the application server. CTG uses special APIs and protocols in
servlets or EJBs to request services and functions of the CICS Transaction
Manager.

WebSphere
Application Server

Server A

RA EIS/DB

RACF RRS

z/OS

C

memory
to

memory

C=connector
RA=resource adapter
 Chapter 14. WebSphere Application Server on z/OS 443

IMS Connect
IMS Connect is the connector TCP/IP server that enables an application server
client to exchange messages with IMS Open Transaction Manager Access
(OTMA). This server provides communication links between TCP/IP clients and
IMS databases. It supports multiple TCP/IP clients accessing multiple
databases. To protect information that is transferred through TCP/IP, IMS
Connect provides Secure Sockets Layer (SSL) support.

IMS Connect can also perform router functions between application server
clients and local option clients with databases and IMSplex resources. Request
messages received from TCP/IP clients using TCP/IP connections, or local
option clients using the z/OS Program Call (PC), are passed to a database
through cross-system coupling facility (XCF) sessions. IMS Connect receives
response messages from the database and then passes them back to the
originating TCP/IP or local option clients.

IMS Connect supports TCP/IP clients communicating with socket calls, but it can
also support any TCP/IP client that communicates with a different input data
stream format. User-written message exits can execute in the IMS Connect
address space to convert the z/OS installation’s message format to OTMA
message format before IMS Connect sends the message to IMS. The
user-written message exits also convert OTMA message format to the
installation’s message format before sending a message back to IMS Connect.
IMS Connect then sends output to the client.

DB2 JDBC
The Java Database Connectivity (JDBC) is an application programming interface
(API) that the Java programming language uses to access different forms of
tabular data, as well as some hierarchical systems such as IMS. JDBC
specifications were developed by Sun Microsystems together with relational
database providers such as Oracle and IBM to ensure portability of Java
applications across database platforms.

This interface does not necessarily fall into the category of “connector” because
there is no separate address space required for its implementation. The interface
is a Java construct that looks like a Java class but does not provide an
implementation of its methods. For JDBC, the actual implementation of the JDBC
interface is provided by the database vendor as a “driver”. This provides
portability because all access using the JDBC is through standard calls with
standard parameters. Thus an application can be coded with little regard to the
database being used, because all of the platform-dependent code is stored in the
JDBC drivers.

As a result, JDBC must be flexible with regard to what functionality it does and
does not provide, solely based on the fact that different database systems have
444 Introduction to the New Mainframe: z/OS Basics

different levels of functionality. JDBC drivers provide the physical code that
implements the objects, methods, and data types defined in the specification.
JDBC standards define four types of drivers, numbered 1 through 4. The
distinction between them is based on how the driver is physically implemented
and how it communicates with the database.

z/OS supports only Type 2 and Type 4 drivers, as follows:

� Type 2

The JDBC API calls platform- and database-specific code to access the
database. This is the most common driver type used, and offers the best
performance. However, because the driver code is platform-specific, a
different version has to be coded (by the database vendor) for each platform.

� Type 4

A Type 4 driver is fully written in Java, and accesses the target database
directly using the protocol of the database itself. (In the case of DB2, this is
DRDA.) Because the driver is fully written in Java, it can be ported to any
platform that supports that DBMS protocol without change, thus allowing
applications to also use it across platforms without change.

A Java application, running under WebSphere Application Server, talks to the
(Universal) Type 4 JDBC driver that supports two-phase commit, and the
driver talks directly to the remote database server through DRDA. The
Universal Type 4 driver implements DRDA Application Requester
functionality.

To access DB2 on z/OS, IBM provides a Type 2 driver and a driver that combines
Type 2 and Type 4 JDBC implementations. In general, JDBC Type 2 connectivity
is used for Java programs that run on the same z/OS system with the target DB2
subsystem. JDBC Type 4 connectivity is used for Java programs that run on a
z/OS system other than that of the target DB2 subsystem.
 Chapter 14. WebSphere Application Server on z/OS 445

14.9 Questions for review
To help test your understanding of the material in this chapter, complete the
following review questions:

1. List the six qualities of the J2EE Application model.
2. List three reasons for running WebSphere Application Server under z/OS.
3. Name three connectors.
4. What is a major difference between HTTP Server and WebSphere Application

Server for z/OS?
5. When should connectors not be used?

Key terms in this chapter

cell CS CGI

EIS JMX™ J2EE

SR cluster node
446 Introduction to the New Mainframe: z/OS Basics

Chapter 15. Messaging and queuing

15

Objective: As a mainframe professional, you will need to understand
messaging and queuing. These functions are needed for communication
between heterogeneous applications and platforms.

After completing this chapter, you will be able to:

� Explain why messaging and queuing is used.

� Describe the asynchronous flow of messages.

� Explain the function of a queue manager.

� List three z/OS-related adapters.
© Copyright IBM Corp. 2006. All rights reserved. 447

15.1 What WebSphere MQ is
Most large organizations today have an inheritance of IT systems from various
manufacturers, which often makes it difficult to share communications and data
across systems. Many of these organizations also need to communicate and
share data electronically with suppliers and customers—who might have other
disparate systems. It would be handy to have a message handling tool that could
receive from one type of system and send to another type.

IBM WebSphere MQ facilitates application integration by passing messages
between applications and Web services. It is used on more than 35 hardware
platforms and for point-to-point messaging from Java, C, C++ and COBOL
applications. Three-quarters of enterprises that buy inter-application messaging
systems buy WebSphere MQ. In the largest installation, over 250 million
messages a day are transmitted.

Where data held on different databases on different systems must be kept
synchronized, little is available in the way of protocols to coordinate updates and
deletions and so on. Mixed environments are difficult to keep aligned; complex
programming is often required to integrate them.

Message queues, and the software that manages them, such as IBM
WebSphere MQ for z/OS, enable program-to-program communication. In the
context of online applications, messaging and queuing can be understood as
follows:

� Messaging means that programs communicate by sending each other
messages (data), rather than by calling each other directly.

� Queuing means that the messages are placed on queues in storage, so that
programs can run independently of each other, at different speeds and times,
in different locations, and without having a logical connection between them.

15.2 Synchronous communication
Figure 16-1 shows the basic mechanism of program-to-program communication
using a synchronous communication model.

Program A prepares a message and puts it on Queue 1. Program B gets the
message from Queue 1 and processes it. Both Program A and Program B use an
application programming interface (API) to put messages on a queue and get
messages from a queue. The WebSphere MQ API is called the Message Queue
Interface (MQI).
448 Introduction to the New Mainframe: z/OS Basics

When Program A puts a message on Queue 1, Program B might not be running.
The queue stores the message safely until Program B starts and is ready to get
the message. Likewise, at the time Program B gets the message from Queue 1,
Program A might no longer be running. Using this model, there is no requirement
for two programs communicating with each other to be executing at the same
time.

There is clearly a design issue, however, about how long Program A should wait
before continuing with other processing. This design might be desirable in some
situations, but when the wait is too long, it is not so desirable any more.
Asynchronous communication is designed to handle those situations.

Figure 15-1 Synchronous application design model

15.3 Asynchronous communication
Using the asynchronous model, Program A puts messages on Queue 1 for
Program B to process, but it is Program C, acting asynchronously to Program A,
which gets the replies from Queue 2 and processes them. Typically, Program A

AA

BB

MQI

MQI

MQI

MQI

Queue 1

Queue 2
 Chapter 15. Messaging and queuing 449

and Program C would be part of the same application. You can see the flow of
this activity in Figure 15-2.

Figure 15-2 Asynchronous application design model

The asynchronous model is natural for WebSphere MQ. Program A can continue
to put messages on Queue 1 and is not blocked by having to wait for a reply to
each message. It can continue to put messages on Queue 1 even if Program B
fails. If so, Queue 1 stores the messages safely until Program B is restarted.

In a variation of the asynchronous model, Program A could put a sequence of
messages on Queue 1, optionally continue with some other processing, and then
return to get and process the replies itself. This property of WebSphere MQ, in
which communicating applications do not have to be active at the same time, is
known as time independence.

15.4 Message types
WebSphere MQ uses four types of messages:

AA

BB

MQI

MQI

MQI

MQI

Queue 1

Queue 2

CC
450 Introduction to the New Mainframe: z/OS Basics

Datagram A message for which no response is expected.
Request A message for which a reply is requested.
Reply A reply to a request message.
Report A message that describes an event such as the occurrence of

an error or a confirmation on arrival or delivery.

15.5 Message queues and the queue manager
A message queue is used to store messages sent by programs. They are defined
as objects belonging to the queue manager.

When an application puts a message on a queue, the queue manager ensures
that the message is:

� Stored safely
� Is recoverable
� Is delivered once, and once only, to the receiving application

This is true even if a message has to be delivered to a queue owned by another
queue manager, and is known as the assured delivery property of WebSphere
MQ.

15.5.1 Queue manager
The component of software that owns and manages queues is called a queue
manager (QM). In WebSphere MQ, the message queue manager is called the
MQM, and it provides messaging services for applications, ensures that
messages are put in the correct queue, routes messages to other queue
managers, and processes messages through a common programming interface
called the Message Queue Interface (MQI).

The queue manager can retain messages for future processing in the event of
application or system outages. Messages are retained in a queue until a
successful completion response is received through the MQI.

There are similarities between queue managers and database managers. Queue
managers own and control queues similar to the way that database managers
own and control their data storage objects. They provide a programming interface
to access data, and also provide security, authorization, recovery and
administrative facilities.

There are also important differences, however. Databases are designed to
provide long-time data storage with sophisticated search mechanisms, whereas
queues are not designed for this. A message on a queue generally indicates that
a business process is incomplete; it might represent an unsatisfied request, an
 Chapter 15. Messaging and queuing 451

unprocessed reply, or an unread report. Figure 15-4 on page 455 shows the flow
of activity in queue managers and database managers.

15.5.2 Types of message queues
Several types of message queues exist. In this text, the most relevant are the
following:

� Local queue

A queue is local if it is owned by the queue manager to which the application
program is connected. It is used to store messages for programs that use the
same queue manager. The application program doesn’t have to run on the
same machine as the queue manager.

� Remote queue

A queue is remote if it is owned by a different queue manager. A remote
queue is not a real queue; it is only the definition of a remote queue to the
local queue manager. Programs cannot read messages from remote queues.
Remote queues are associated with a transmission queue.

� Transmission queue

This local queue has a special purpose: it is used as an intermediate step
when sending messages to queues that are owned by a different queue
manager. Transmission queues are transparent to the application; that is, they
are used internally by the queue manager initiation queue.

This is a local queue to which the queue manager writes (transparently to the
programmer) a trigger message when certain conditions are met on another
local queue, for example, when a message is put into an empty message
queue or in a transmission queue. Two WebSphere MQ applications monitor
initiation queues and read trigger messages, the trigger monitor and the
channel initiator. The trigger manager can start applications, depending on
the message. The channel initiator starts the transmission between queue
managers.

� Dead-letter queue

A queue manager (QM) must be able to handle situations when it cannot
deliver a message, for example:

– Destination queue is full.
– Destination queue does not exist.
– Message puts have been inhibited on the destination queue.
– Sender is not authorized to use the destination queue.
– Message is too large.
– Message contains a duplicate message sequence number.
452 Introduction to the New Mainframe: z/OS Basics

When one of these conditions occurs, the message is written to the
dead-letter queue. This queue is defined when the queue manager is created,
and each QM should have one. It is used as a repository for all messages that
cannot be delivered.

15.6 What is a channel?
A channel is a logical communication link. The conversational style of
program-to-program communication requires the existence of a communications
connection between each pair of communicating applications. Channels shield
applications from the underlying communications protocols.

WebSphere MQ uses two kinds of channels:

� Message channel

A message channel connects two queue managers through message
channel agents (MCAs). A message channel is unidirectional, comprised of
two message channel agents (a sender and a receiver) and a communication
protocol. An MCA transfers messages from a transmission queue to a
communication link, and from a communication link to a target queue. For
bidirectional communication, it is necessary to define a pair of channels,
consisting of a sender and a receiver.

� MQI channel

An MQI channel connects a WebSphere MQ client to a queue manager.
Clients do not have a queue manager of their own. An MQI channel is
bidirectional.

15.7 How transactional integrity is ensured
A business might require two or more distributed databases to be maintained in
step. WebSphere MQ offers a solution involving multiple units of work acting
asynchronously, as shown in Figure 15-3.

The top half of Figure 15-3 shows a two-phase commit structure, while the
WebSphere MQ solution is shown in the lower half, as follows:

� The first application writes to a database, places a message on a queue, and
issues a syncpoint to commit the changes to the two resources. The message
contains data which is to be used to update a second database on a separate
system. Because the queue is a remote queue, the message gets no further
than the transmission queue within this unit of work. When the unit of work is
committed, the message becomes available for retrieval by the sending MCA.
 Chapter 15. Messaging and queuing 453

� In the second unit of work, the sending MCA gets the message from the
transmission queue and sends it to the receiving MCA on the system with the
second database, and the receiving MCA places the message on the
destination queue. This is performed reliably because of the assured delivery
property of WebSphere MQ. When this unit of work is committed, the
message becomes available for retrieval by the second application.

� In the third unit of work, the second application gets the message from the
destination queue and updates the database using the data contained in the
message.

Figure 15-3 Data integrity

It is the transactional integrity of units of work 1 and 3, and the once and once
only, assured delivery property of WebSphere MQ used in unit of work 2, which
ensures the integrity of the complete business transaction.

If the business transaction is a more complex one, many units of work may be
involved.

15.8 Example of messaging and queuing
Now let’s return to the earlier example of a travel agency to see how messaging
facilities play a role in booking a vacation. Assume that the travel agent must
reserve a flight, a hotel room, and a rental car. All of these reservations must

DBDB
Write
Send

Syncpoint

Receive
Write DBDB

Syncpoint
2-phase
commit

Synchronous
model

Unit of work

DBDB Write

Put
SyncpointUnit of work 1

Unit of work 2

Unit of work 3

q
q Get

Write
Syncpoint

DBDB

Asynchronous
model
454 Introduction to the New Mainframe: z/OS Basics

succeed before the overall business transaction can be considered complete
(Figure 15-4).

With a message queue manager such as WebSphere MQ, the application can
send several requests at once; it need not wait for a reply to one request before
sending the next. A message is placed on each of three queues, serving the
flight reservations application, the hotel reservations application, and the car
rental application. Each application can then perform its respective task in
parallel with the other two and place a reply message on the reply-to queue. The
agent's application waits for these replies and produces a consolidated answer
for the travel agent.

Designing the system in this way can improve the overall response time.
Although the application might normally process the replies only when they have
all been received, the program logic may also specify what to do when only a
partial set of replies is received within a given period of time.

Figure 15-4 Parallel processing

MQPUT CAR RENTAL

MQPUT FLIGHT

MQPUT HOTEL

MQGET Reply-to-queue

Car rental

Flight

Hotel

Car

Flight

Hotel

MQPUT

MQPUT

MQPUT

Reply-to
queue
 Chapter 15. Messaging and queuing 455

15.9 Interfacing with CICS, IMS, batch, or TSO/E
WebSphere MQ is available for a variety of platforms. WebSphere MQ for z/OS
includes several adapters to provide messaging and queuing support for:

� CICS: the WebSphere MQ-CICS bridge
� IMS: the WebSphere MQ-IMS bridge
� Batch or TSO/E

15.10 Summary
In an online application environment, messaging and queueing enables
communication between applications on different platforms. IBM WebSphere MQ
for z/OS is an example of software that manages messaging and queuing in the
mainframe and other environments. With messaging, programs communicate by
through messages, rather than by calling each other directly. With queuing,
messages are retained on queues in storage, so that programs can run
independently of each other (asynchronously).

Here are some of the functional benefits of WebSphere MQ:

1. A common application programming interface, the MQI, which is consistent
across the supported platforms.

2. Data transfer data with assured delivery. Messages are not lost, even if a
system fails. Nor is there duplicate delivery of messages.

3. Asynchronous communication. That is, communicating applications need not
be active at the same time.

4. Message-driven processing as a style of application design. An application is
divided into discrete functional modules that can run on different systems, be
scheduled at different times, or act in parallel.

5. Application programming is made faster when the programmer is shielded
from the complexities of the network.

Key terms in this chapter

local queue channel message-driven

MQI asynchronous application dead-letter queue

QM remote queue syncpoint
456 Introduction to the New Mainframe: z/OS Basics

15.11 Questions for review
To help test your understanding of the material in this chapter, complete the
following questions:

1. Why is messaging and queuing needed for communication between
heterogeneous applications and platforms?

2. Describe the asynchronous flow of messages.
3. Explain the function of a queue manager.
4. List three z/OS-related adapters.
5. What is the purpose of MQI?
6. What is a dead-letter queue used for?
 Chapter 15. Messaging and queuing 457

458 Introduction to the New Mainframe: z/OS Basics

Part 4 System programming on
z/OS

In this part we reveal the inner workings of z/OS with discussions of system
libraries, security, and procedures for starting (IPLing) and stopping a z/OS
system. This part also includes chapters on hardware details and virtualization,
and the clustering of multiple z/OS systems in a sysplex.

Part 4
© Copyright IBM Corp. 2006. All rights reserved. 459

460 Introduction to the New Mainframe: z/OS Basics

Chapter 16. Overview of system
programming

16

Objective: As a z/OS system programmer, you need to know how z/OS
works.

After completing this chapter, you will be able to:

� Discuss the responsibilities of a z/OS system programmer.

� Explain system libraries, their use, and methods for managing their
content.

� List the different types of operator consoles.

� Describe the process of IPLing a system.
© Copyright IBM Corp. 2006. All rights reserved. 461

16.1 The role of the system programmer
The system programmer is responsible for managing the mainframe hardware
configuration, and installing, customizing, and maintaining the mainframe
operating system. Installations need to ensure that their system and its services
are available and operating to meet service level agreements. Installations with
24-hour, 7-day operations need to plan for minimal disruption of their operation
activities.

In this chapter, we examine several areas of interest for the would-be z/OS
system programmer. While this text cannot cover every aspect of system
programming, it’s important to learn that the job of the z/OS system programmer
is very complex and requires skills in many aspects of the system, such as:

� Device I/O configurations
� Processor configurations
� Console definitions
� System libraries where the software is placed
� System data sets and their placement
� Customization parameters that are used to define your z/OS configuration
� Security administration

As shown in Figure 16-1 on page 463, the role of system programmer usually
includes some degree of involvement in all of the following aspects of system
operation:

� “Customizing the system” on page 464
� “Managing system performance” on page 476
� “Configuring I/O devices” on page 476
� “Following a process of change control” on page 477
� “Configuring consoles” on page 480
� “Initializing the system” on page 483
462 Introduction to the New Mainframe: z/OS Basics

Figure 16-1 Some areas in which the system programmer is involved

16.2 What is meant by separation of duties
In a large z/OS installation, there is usually a “separation of duties” both among
members of the system programming staff, and between the system
programming department and other departments in the IT organization.

A typical z/OS installation includes the following roles and more:

� z/OS system programmer
� CICS system programmer
� Database system programmer
� Database administrator

System performance
and workload
management

z/OS new features
implementation and z/OS system

maintenance

Controlling operating
 activities and functions

System
parameters
and system

libraries
management

SYSTEM PROGRAMMING
Security, Availability

and Integrity

Hardware I/O
configuration

iodfxxiodfxx
 Chapter 16. Overview of system programming 463

� Network system programmer
� Automation specialist
� Security manager
� Hardware management
� Production control analyst
� System operator
� Network operator
� Security administrator
� Service manager

In part, the separation is an audit requirement—ensuring that one person does
not have too much power on a system.

When a new application is to be added to a system, for example, a number of
tasks need to be performed before the application can be used by end users. A
production control analyst is needed to add batch applications into the batch
scheduling package, add the new procedures to a procedure library, and set up
the operational procedures. The system programmer is needed to perform tasks
concerned with the system itself, such as setting up security privileges and
adding programs to system libraries. The programmer is also involved with
setting up any automation for the new application.

On a test system, however, a single person might have to perform all the roles,
including being the operator, and this is often the best way to learn how
everything works.

16.3 Customizing the system
This section describes the following topics:

� System libraries where the software is located
� System data sets and their placement
� I/O device configuration
� Console definitions
� Customization parameters used to define the z/OS configuration
� z/OS implementation and maintenance

16.3.1 z/OS system libraries
As can be seen in Figure 16-2 on page 465, different types of data exist in a
system.

First there is the z/OS software as supplied by IBM. This is usually installed to a
series of disk volumes known as the system residence volumes (SYSRES).
464 Introduction to the New Mainframe: z/OS Basics

Much of the flexibility of z/OS is built on these SYSRES sets. They make it
possible to apply maintenance to a new set that is cloned from the production set
while the current set is running production work. A short outage can then be
taken to IPL from the new set—and the maintenance has been implemented!
Also, the change can be backed out by IPLing from the old set.

Fixes to z/OS are managed with a product called System Modification
Program/Extended (SMP/E). Indirect cataloging using system symbols is used
so that a particular library is cataloged as being on, for example, SYSRES
volume 2, and the name of that volume is resolved by the system at IPL time from
the system symbols. Symbols are discussed in 16.3.11, “What system symbols
are” on page 474.

Figure 16-2 Types of data

Another group of volumes are the non-z/OS and non-IBM software volumes.
These may be combined into one group. The majority of non-z/OS software is not
usually on the SYSRES volumes, as the SYSRES sets are usually managed as
one entity by SMP/E. The other software is then managed separately. These
volumes do not form part of the SYSRES sets, and therefore there is only one

z/OS software

Non-IBM software

Non-z/OS (CICS, DB2)

Customization data

User-defined exits

User data

Mainframe
 Chapter 16. Overview of system programming 465

copy of each library. As many volumes as required can be added to this group,
each with an individual disk name.

Customization data refers to items such as SYS1.PARMLIB, SYS1.PROCLIB,
the master catalog, the IODF, page data sets, JES spools, the /etc directory, and
other items essential to the running of the system. It is also where SMP/E data is
stored to manage the software.

These data sets are not always located on separate DASD volumes from
IBM-supplied z/OS software; some installations place the PARMLIB and
PROCLIB on the first SYSRES pack, others place them on the master catalog
pack or elsewhere. This is a matter of choice and is dependent on how the
SYSRES volumes are managed. Each installation will have a preferred method.

On many systems, some of the IBM-supplied defaults are not appropriate, so
they need to be modified. User exits and user modifications (usermods) are
made to IBM code so that it will behave as the installation requires. The
modifications are usually managed using SMP/E.

Finally, there is user data, which is usually the largest pool of disk volumes. This
is not part of the system libraries, but is presented here for completeness. It
contains production, test, and user data. It is often split into pools and managed
by System Managed Storage (SMS), which can target data to appropriately
managed volumes. For example, production data can be placed on volumes that
are backed up daily, whereas user data may only be captured weekly and may be
migrated to tape after a short period of inactivity to free up the disk volumes for
further data.

z/OS has many standard system libraries, such as: SYS1.PARMLIB,
SYS1.LINKLIB, SYS1.LPALIB, SYS1.PROCLIB, and SYS1.NUCLEUS. Some of
these are related to IPL processing, while others are related to the search order
of invoked programs or to system security, as described here:

� SYS1.PARMLIB contains control parameters for the whole system.

� SYS1.LINKLIB has many execution modules of the system.

� SYS1.LPALIB contains the system execution modules that are loaded into the
link pack area when the system initializes.

� SYS1.PROCLIB contains JCL procedures distributed with z/OS.

� SYS1.NUCLEUS has the basic supervisor modules of the system.

� SYS1.SVCLIB has the supervisor call routines.
466 Introduction to the New Mainframe: z/OS Basics

16.3.2 SYS1.PARMLIB
SYS1.PARMLIB is a required partitioned data set that contains IBM-supplied and
installation-created members. It must reside on a direct access volume, which
can be the system residence volume. PARMLIB is an important data set in a
z/OS operating system, and can be thought of as performing a function similar to
/etc on a UNIX system.

The purpose of the PARMLIB is to provide many initialization parameters in a
pre-specified form in a single data set, and thus minimize the need for the
operator to enter parameters.

All parameters and members of the SYS1.PARMLIB data set are described in
z/OS MVS Initialization and Tuning Reference, SA22-7592. Some of the most
important PARMLIB members are discussed in this section.

16.3.3 Link pack area (LPA)
The link pack area (LPA) is a section of the common area of an address space. It
exists below the system queue area (SQA) and consists of the pageable link
pack area (PLPA), then the fixed link pack area (FLPA), if one exists, and finally
the modified link pack area (MLPA).

Link pack area (LPA) modules are loaded in common storage, and shared by all
address spaces in the system. Because these modules are reentrant and are not
self-modifying, each can be used by a number of tasks in any number of address
spaces at the same time. Modules found in LPA do not need to be brought into
virtual storage because they are already in virtual storage.

Modules placed anywhere in the LPA are always in virtual storage, and modules
placed in FLPA are also always in central storage. LPA modules must be
referenced very often in order to prevent their pages from being stolen. When a
page in LPA (other than in FLPA) is not continually referenced by multiple
address spaces, it tends to be stolen.

16.3.4 Pageable link pack area (PLPA)
The PLPA is an area of common storage that is loaded at IPL time (when a cold
start is done and the CLPA option is specified). This area contains read-only
system programs, along with any read-only reenterable user programs selected
by an installation that can be shared among users of the system. The PLPA and
extended PLPA contain all members of SYS1.LPALIB and other libraries that are
specified in the active LPALSTxx through the LPA parameter in IEASYSxx or
from the operator’s console at system initialization (this would override the
PARMLIB specification).
 Chapter 16. Overview of system programming 467

You may use one or more LPALSTxx members in SYS1.PARMLIB to
concatenate your installation’s program library data sets to SYS1.LPALIB. You
can also use the LPALSTxx member to add your installation’s read-only
reenterable user programs to the pageable link pack area (PLPA). The system
uses this concatenation, which is referred to as the LPALST concatenation, to
build the PLPA during the nucleus initializing process. SYS1.LPALIB must reside
in a direct access volume, which can be the system residence volume.

Figure 16-3 shows an example of the LPALSTxx member.

Figure 16-3 Example of the LPALST PARMLIB member

16.3.5 Fixed link pack area (FLPA)
The FLPA is loaded at IPL time, with the modules listed in the active IEAFIXxx
member of SYS1.PARMLIB. This area should be used only for modules that
significantly increase performance when they are fixed rather than pageable. The
best candidates for the FLPA are modules that are infrequently used, but are
needed for fast response.

Modules from the LPALST concatenation, the linklist concatenation,
SYS1.MIGLIB, and SYS1.SVCLIB can be included in the FLPA. FLPA is selected
through specification of the FIX parameter in IEASYSxx, which is appended to

 F ile E d it E d it_ S e tt in g s M e n u U t ili t ie s C o m p ile rs Te s t H e lp
- -
E D IT S Y S 1 .P A R M L IB (L P A L S T 7 B) - 0 1 .0 3 C o lu m n s 0 0 0 0 1 0 0 0 7 2
C o m m a n d = = = > S c ro ll = = = > C S R
* * * * * * * To p o f D a ta *
0 0 0 2 0 0 S Y S 1 .L P A L IB ,
0 0 0 2 2 0 S Y S 1 .S E R B L P A ,
0 0 0 3 0 0 IS F.S IS F L P A ,
0 0 0 5 0 0 IN G .S IN G M O D 3 ,
0 0 0 6 0 0 N E T V IE W .S C N M L P A 1 ,
0 0 0 7 0 0 S D F 2 .V 1 R 4 M 0 .S D G IL P A ,
0 0 0 8 0 0 R E X X .S E A G L P A ,
0 0 1 0 0 0 S Y S 1 .S IA T L P A ,
0 0 1 1 0 0 E O Y .S E O Y L P A ,
0 0 1 2 0 0 S Y S 1 .S B D T L P A ,
0 0 1 3 0 0 C E E .S C E E L P A ,
0 0 1 4 0 0 IS P .S IS P L P A ,
0 0 1 6 0 0 S Y S 1 .S O R T L P A ,
0 0 1 7 0 0 S Y S 1 .S IC E L P A ,
0 0 1 8 0 0 E U V .S E U V L P A ,
0 0 1 9 0 0 T C P IP .S E Z A L P A ,
0 0 2 0 0 0 E Q A W .S E Q A L P A ,
0 0 2 0 0 1 ID I.S ID IA L P A ,
0 0 2 0 0 2 ID I.S ID IL P A 1 ,
0 0 2 0 0 3 D W W .S D W W L P A (S B O X 2 0) ,
0 0 2 0 1 0 S Y S 1 .S D W W D L P A ,
0 0 2 0 2 0 D V G .N F T P 2 3 0 .S D V G L P A ,
0 0 2 2 0 0 C IC S T S 2 2 .C IC S .S D F H L P A (S B O X D 3)
* * * * * * * B o t to m o f D a ta *
468 Introduction to the New Mainframe: z/OS Basics

IEAFIX to form the IEAFIXxx PARMLIB member, or from the operator’s console
at system initialization.

Figure 16-4 shows an IEAFIX PARMLIB member; part of the modules for FLPA
belong to the SYS1.LPALIB library.

Figure 16-4 The IEAFIX PARMLIB member

16.3.6 Modified link pack area (MLPA)
The MLPA can be used to contain reenterable routines from APF-authorized
libraries (see 18.7.1, “Authorized programs” on page 535) that are to be part of
the pageable extension to the link pack area during the current IPL. Note that the
MLPA exists only for the duration of an IPL. Therefore, if an MLPA is desired, the
modules in the MLPA must be specified for each IPL (including quick start and
warm start IPLs). When the system searches for a routine, the MLPA is searched
before the PLPA. The MLPA can be used at IPL time to temporarily modify or
update the PLPA with new or replacement modules.

16.3.7 SYS1.PROCLIB
SYS1.PROCLIB is a required partitioned data set that contains the JCL
procedures used to perform certain system functions. The JCL can be for system

 File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT SYS1.PARMLIB(IEAFIX00) - 01.00 Columns 00001
00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data ******************************
000001 INCLUDE LIBRARY(SYS1.LPALIB) MODULES(
000002 IEAVAR00
000003 IEAVAR06
000004 IGC0001G
000005)
000006 INCLUDE LIBRARY(FFST.V120ESA.SEPWMOD2) MODULES(
000007 EPWSTUB
000008)
****** **************************** Bottom of Data ****************************
 Chapter 16. Overview of system programming 469

tasks or for processing program tasks invoked by the operator or the
programmer.

16.3.8 The master scheduler subsystem
The master scheduler subsystem is used to establish communication between the
operating system and the primary job entry subsystem, which can be JES2 or
JES3. When you start z/OS, master initialization routines initialize system
services, such as the system log and communication task, and start the master
scheduler address space, which becomes address space number one (ASID=1).

Then, the master scheduler may start the job entry subsystem (JES2 or JES3).
JES is the primary job entry subsystem. On many production systems JES is not
started immediately; instead, the automation package starts all tasks in a
controlled sequence. Then other defined subsystems are started. All subsystems
are defined in the PARMLIB library, member IEFSSNxx. These subsystems are
secondary subsystems.

An initial MSTJCL00 load module can be found in the SYS1.LINKLIB library. If
modifications are required, the recommended procedure is to create an
MSTJCLxx member in the PARMLIB data set. The suffix is specified by the
MSTRJCL parameter in the IEASYSxx member of PARMLIB. The MSTJCLxx
member is commonly called master JCL. It contains data definition (DD)
statements for all system input and output data sets that are needed to do the
communication between the operating system and JES.

Example 16-1 shows a sample MSTJCLxx member.

Example 16-1 Sample master JCL

File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT SYS1.PARMLIB(MSTJCL00) - 01.07 Columns 00001 00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data ******************************
000100 //MSTRJCL JOB MSGLEVEL=(1,1),TIME=1440
000200 // EXEC PGM=IEEMB860,DPRTY=(15,15)
000300 //STCINRDR DD SYSOUT=(A,INTRDR)
000400 //TSOINRDR DD SYSOUT=(A,INTRDR)
000500 //IEFPDSI DD DSN=SYS1.PROCLIB,DISP=SHR
000600 // DD DSN=CPAC.PROCLIB,DISP=SHR
000700 // DD DSN=SYS1.IBM.PROCLIB,DISP=SHR
000800 //IEFJOBS DD DSN=SYS1.STCJOBS,DISP=SHR
000900 //SYSUADS DD DSN=SYS1.UADS,DISP=SHR
****** **************************** Bottom of Data ****************************
470 Introduction to the New Mainframe: z/OS Basics

When the master scheduler has to process the start of a started task, the system
determines whether the START command refers to a procedure or to a job. If the
IEFJOBS DD exists in the MSTJCLxx member, the system searches the
IEFJOBS DD concatenation for the member requested in the START command.

If there is no member by that name in the IEFJOBS concatenation, or if the
IEFJOBS concatenation does not exist, the system searches the IEFPDSI DD for
the member requested in the START command. If a member is found, the system
examines the first record for a valid JOB statement and, if one exists, uses the
member as the JCL source for the started task. If the member does not have a
valid JOB statement in its first record, the system assumes that the source JCL is
a procedure and creates JCL to invoke the procedure.

After the JCL source has been created (or found), the system processes the JCL.
As shipped, MSTJCL00 contains an IEFPDSI DD statement that defines the data
set that contains procedure source JCL for started tasks. Normally this data set
is SYS1.PROCLIB; it may be a concatenation. For useful work to be performed,
SYS1.PROCLIB must at least contain the procedure for the primary JES, as
shown in the next section.

16.3.9 A job procedure library
SYS1.PROCLIB contains the JES2 cataloged procedure. This procedure defines
the job-related procedure libraries, as shown in Example 16-2.

Example 16-2 How to specify procedure libraries in the JES2 procedure

//PROC00 DD DSN=SYS1.PROCLIB,DISP=SHR
// DD DSN=SYS3.PROD.PROCLIB,DISP=SHR
//PROC01 DD DSN=SYS1.PROC2,DISP=SHR
...
//PROC99 DD DSN=SYS1.LASTPROC,DISP=SHR
...

Many installations have very long lists of procedure libraries in the JES
procedure. This is because JCLLIB is a relatively recent innovation.

Care should be taken as to the number of users who can delete these libraries
because JES will not start if one is missing. Normally a library that is in use
cannot be deleted, but JES does not hold these libraries although it uses them all
the time.

You can override the default specification by specifying this statement:

/*JOBPARM PROCLIB=
 Chapter 16. Overview of system programming 471

After the name of the procedure library, you code the name of the DD statement
in the JES2 procedure that points to the library to be used. For example, in
Figure 16-2, let’s assume that you run a job in class A and that class has a
default PROCLIB specification on PROC00. If you want to use a procedure that
resides in SYS1.LASTPROC, you’ll need to include this statement in the JCL:

/*JOBPARM PROCLIB=PROC99

Another way to specify a procedure library is to use the JCLLIB JCL statement.
This statement allows you to code and use procedures without using system
procedure libraries. The system searches the libraries in the order in which you
specify them on the JCLLIB statement, prior to searching any unspecified default
system procedure libraries.

Example 16-3 shows the use of the JCLLIB statement.

Example 16-3 Sample JCLLIB statement

//MYJOB JOB
//MYLIBS JCLLIB ORDER=(MY.PROCLIB.JCL,SECOND.PROCLIB.JCL)
//S1 EXEC PROC=MYPROC1
...

Assuming that the system default procedure library includes SYS1.PROCLIB
only, the system searches the libraries for procedure MYPROC1 in the following
order:

1. MY.PROCLIB.JCL
2. SECOND.PROCLIB.JCL
3. SYS1.PROCLIB

16.3.10 Search order for programs
When a program is requested through a system service (like LINK, LOAD, XCTL,
or ATTACH) using default options, the system searches for it in the following
sequence:

1. Job pack area (JPA)

A program in JPA has already been loaded in the requesting address space. If
the copy in JPA can be used, it will be used. Otherwise, the system either
searches for a new copy or defers the request until the copy in JPA becomes
available. (For example, the system defers a request until a previous caller is
finished before reusing a serially-reusable module that is already in JPA.)

2. TASKLIB

A program can allocate one or more data sets to a TASKLIB concatenation.
Modules loaded by unauthorized tasks that are found in TASKLIB must be
472 Introduction to the New Mainframe: z/OS Basics

brought into private area virtual storage before they can run. Modules that
have previously been loaded in common area virtual storage (LPA modules or
those loaded by an authorized program into CSA) must be loaded into
common area virtual storage before they can run.

3. STEPLIB or JOBLIB

These are specific DD names that can be used to allocate data sets to be
searched ahead of the default system search order for programs. Data sets
can be allocated to both the STEPLIB and JOBLIB concatenations in JCL or
by a program using dynamic allocation. However, only one or the other will be
searched for modules. If both STEPLIB and JOBLIB are allocated for a
particular jobstep, the system searches STEPLIB and ignores JOBLIB.

Any data sets concatenated to STEPLIB or JOBLIB will be searched after any
TASKLIB but before LPA. Modules found in STEPLIB or JOBLIB must be
brought into private area virtual storage before they can run. Modules that
have previously been loaded in common area virtual storage (LPA modules or
those loaded by an authorized program into CSA) must be loaded into
common area virtual storage before they can run.

4. LPA, which is searched in this order:

a. Dynamic LPA modules, as specified in PROGxx members
b. Fixed LPA (FLPA) modules, as specified in IEAFIXxx members
c. Modified LPA (MLPA) modules, as specified in IEALPAxx members
d. Pageable LPA (PLPA) modules, loaded from libraries specified in

LPALSTxx or PROGxx

LPA modules are loaded in common storage, shared by all address spaces in
the system. Because these modules are reentrant and are not self-modifying,
each can be used by any number of tasks in any number of address spaces at
the same time. Modules found in LPA do not need to be brought into virtual
storage, because they are already in virtual storage.

5. Libraries in the linklist, as specified in PROGxx and LNKLSTxx

By default, the linklist begins with SYS1.LINKLIB, SYS1.MIGLIB, and
SYS1.CSSLIB. However, you can change this order using SYSLIB in
PROGxx and add other libraries to the linklist concatenation. The system
must bring modules found in the linklist into private area virtual storage before
the programs can run.

The default search order can be changed by specifying certain options on the
macros used to call programs. The parameters that affect the search order the
system will use are EP, EPLOC, DE, DCB, and TASKLIB. For more information
about these parameters, see the topic about the search for the load module in
z/OS MVS Programming: Assembler Services Guide. Some IBM subsystems
(notably CICS and IMS) and applications (such as ISPF) use these facilities to
establish other search orders for programs.
 Chapter 16. Overview of system programming 473

16.3.11 What system symbols are
System symbols are elements that allow different z/OS systems to share
PARMLIB definitions while retaining unique values in those definitions. System
symbols act like variables in a program; they can take on different values, based
on the input to the program. When you specify a system symbol in a shared
PARMLIB definition, the system symbol acts as a “placeholder”. Each system
that shares the definition replaces the system symbol with a unique value during
initialization.

Each system symbol has a name (which begins with an ampersand (&) and
optionally ends with a period (.)) and a substitution text, which is the character
string that the system substitutes for a symbol each time it appears.

There are two types of system symbols:

Dynamic The substitution text can change at any point in an IPL.

Static The substitution text is defined at system initialization and remains
fixed for the life of an IPL.

Some symbols are reserved for system use. You can display the symbols in your
system by entering the D SYMBOLS command. Example 16-4 shows the result
of entering this command.

Example 16-4 Partial output of the D SYMBOLS command (some lines removed)

HQX7708 ----------------- SDSF PRIMARY OPTION MENU --
COMMAND INPUT ===> -D SYMBOLS
 IEA007I STATIC SYSTEM SYMBOL VALUES
 &SYSALVL. = "2"
 &SYSCLONE. = "70"
 &SYSNAME. = "SC70"
 &SYSPLEX. = "SANDBOX"
 &SYSR1. = "Z17RC1"
 &ALLCLST1. = "CANCEL"
 &CMDLIST1. = "70,00"
 &COMMDSN1. = "COMMON"
 &DB2. = "V8"
 &DCEPROC1. = "."
 &DFHSMCMD. = "00"
 &DFHSMHST. = "6"
 &DFHSMPRI. = "NO"
 &DFSPROC1. = "."
 &DLIB1. = "Z17DL1"
 &DLIB2. = "Z17DL2"
 &DLIB3. = "Z17DL3"
 &DLIB4. = "Z17DL4"
 &IEFSSNXX. = "R7"
474 Introduction to the New Mainframe: z/OS Basics

 &IFAPRDXX. = "4A"

The IEASYMxx PARMLIB member provides a single place to specify system
parameters for each system in a multisystem environment. IEASYMxx contains
statements that define static system symbols and specify IEASYSxx PARMLIB
members that contain system parameters (the SYSPARM statement).

Example 16-5 shows an IEASYMxx PARMLIB member.

Example 16-5 Partial IEASYMxx PARMLIB member (some lines removed)

SYSDEF SYSCLONE(&SYSNAME(3:2))
 SYMDEF(&SYSR2='&SYSR1(1:5).2')
 SYMDEF(&SYSR3='&SYSR1(1:5).3')
 SYMDEF(&DLIB1='&SYSR1(1:3).DL1')
 SYMDEF(&DLIB2='&SYSR1(1:3).DL2')
 SYMDEF(&DLIB3='&SYSR1(1:3).DL3')
 SYMDEF(&DLIB4='&SYSR1(1:3).DL4')
 SYMDEF(&ALLCLST1='CANCEL')
 SYMDEF(&CMDLIST1='&SYSCLONE.,00')
 SYMDEF(&COMMDSN1='COMMON')
 SYMDEF(&DFHSMCMD='00')
 SYMDEF(&IFAPRDXX='00')
 SYMDEF(&DCEPROC1='.')
 SYMDEF(&DFSPROC1='.')
 SYSDEF HWNAME(SCZP901)
 LPARNAME(A13)
 SYSNAME(SC70)
 SYSPARM(R3,70)
 SYMDEF(&IFAPRDXX='4A')
 SYMDEF(&DFHSMHST='6')
 SYMDEF(&DFHSMPRI='NO')
 SYMDEF(&DB2='V8')

In the example, the variable &SYSNAME will have the value specified by the
SYSNAME keyword; SC70 in this case. Because each system in a sysplex has a
unique name, we can use &SYSNAME in the specification of system-unique
resources, where permitted. As an example, we could specify the name of an
SMF data set as SYS1.&SYSNAME..MAN1, with substitution resulting in the
name SYS1.SC70.MAN1 when running on SC70.

You can use variables to construct the values of other variables. In Figure 16-5,
we see &SYSCLONE taking on the value of &SYSNAME beginning at position 3
for a length of 2. Here, &SYSCLONE will have a value of 70. Similarly, we see
&SYSR2 constructed from the first 5 positions of &SYSR1 with a suffix of 2.
Where is &SYSR1 defined? &SYSR1 is system-defined with the VOLSER of the
 Chapter 16. Overview of system programming 475

IPL volume. If you refer back to Figure 16-4 on page 474, you will see the values
of &SYSR1 and &SYSR2.

We also see here the definition of a global variable defined to all
systems—&IFAPRDXX with a value of 00—and its redefinition for SC70 to a
value of 4A.

System symbols are used in cases where multiple z/OS systems share a single
PARMLIB. Here, the use of symbols allows individual members to be used with
symbolic substitution, as opposed to having each system require a unique
member. The LOADxx member specifies the IEASYMxx member that the system
is to use.

16.4 Managing system performance
The task of “tuning” a system is an iterative and continuous process, and it is the
discipline that most directly impacts all users of system resources in an
enterprise. The z/OS Workload Management (WLM) component, which we
discussed in “What is workload management?” on page 102, is an important part
of this process and includes initial tuning of selecting appropriate parameters for
various system components and subsystems.

After the system is operational and criteria have been established for the
selection of jobs for execution through job classes and priorities, WLM controls
the distribution of available resources according to the parameters specified by
the installation.

WLM, however, can only deal with available resources. If these are inadequate to
meet the needs of the installation, even optimal distribution may not be the
answer; other areas of the system should be examined to determine the
possibility of increasing available resources. When requirements for the system
increase and it becomes necessary to shift priorities or acquire additional
resources (such as a larger processor, more storage, or more terminals), the
system programmer needs to modify WLM parameters to reflect changed
conditions.

16.5 Configuring I/O devices
The I/O configurations to the operating system (software) and the channel
subsystem (hardware) must be defined. The Hardware Configuration Definition
(HCD) component of z/OS consolidates the hardware and software I/O
configuration processes under a single interactive end-user interface. The output
of HCD is an I/O definition file (IODF), which contains I/O configuration data. An
476 Introduction to the New Mainframe: z/OS Basics

IODF is used to define multiple hardware and software configurations to the z/OS
operating system.

When a new IODF is activated, HCD defines the I/O configuration to the channel
subsystem and/or the operating system. With the HCD activate function or the
z/OS ACTIVATE operator command, changes can be made in the current
configuration without having to initial program load (IPL) the software or
power-on reset (POR) the hardware. Making changes while the system is
running is known as dynamic configuration or dynamic reconfiguration.

16.6 Following a process of change control
Data center management is typically held accountable for Service Level
Agreements (SLAs), often through a specialist team of service managers.
Change control mechanics and practices in a data center are implemented to
ensure that SLAs are met.

The implementation of any change must be under the control of the Operations
staff. When a change is introduced into a production environment that results in
problems or instability, Operations staff are responsible for observing, reporting,
and then managing the activities required to correct the problem or back out the
change.

Although system programmers will normally originate and implement their own
changes, sometimes changes are based on a request through the change
management system. Any instructions for Operations or other groups would be in
the change record, and the approval of each group is required.

Implementing business application changes would normally be handled by a
production control analyst. Application changes will normally reside in test
libraries, and an official request (with audit trail) would result in the programs in
the test libraries being promoted to the production environment.

Procedures involved in the change must be circulated to all interested parties.
When all parties consider the change description to be complete, then it is
considered for implementation and either scheduled, deferred, or possibly
rejected.

The factors that need to be considered when planning a change are:

� The benefits that will result from the change
� What will happen if the change is not done
� The resources required to implement the change
� The relative importance of the change request compared to others
� Any interdependency of change requests
 Chapter 16. Overview of system programming 477

All change involves risk. One of the advantages of the mainframe is the very high
availability that it offers. All change must therefore be carefully controlled and
managed. A high proportion of any system programmer’s time is involved in the
planning and risk assessment of change. One of the most important aspects of
change is how to reverse it and go back to the previous state.

16.6.1 Risk assessment
It is common practice for data center management to have a weekly change
control meeting to discuss, approve, or reject changes. These changes might be
for applications, a system, a network, hardware, or power.

An important part of any change is risk assessment, in which the change is
considered and evaluated from the point of view of risk to the system. Low risk
changes may be permitted during the day, while higher risk changes would be
scheduled for an outage slot.

It is also common practice for a data center to have periods of low and high risk,
which will influence decisions. For example, if the system runs credit
authorizations, then the periods around major public holidays are usually
extremely busy and may cause a change freeze. Also, annual sales are
extremely busy periods in retailing and may cause changes to be rejected.

IT organizations achieve their goals through disciplined change management
processes and policy enforcement. These goals include:

� High service availability
� Increased security
� Audit readiness
� Cost savings

16.6.2 Change control record system
A change control record system is typically in place to allow for the requesting,
tracking, and approval of changes. This is usually the partner of a problem
management system. For example, if a production system has a serious problem
on a Monday morning, then one of the first actions will be to examine the
changes that were implemented over the weekend to determine if these have any
bearing on the problem.

These records also show that the system is under control, which is often
necessary to prove to auditors, especially in the heavily regulated financial
services sector. The Sarbanes-Oxley Act of 2002 in the United States, which
addresses corporate governance, has established the need for an effective
internal control system. Demonstrating strong change management and problem
478 Introduction to the New Mainframe: z/OS Basics

management in IT services is part of compliance with this measure. Additionally,
the 8th Directive on Company Law in the European Union, which is under
discussion at the time of writing, will address similar areas to Sarbanes-Oxley.

For these reasons, and at a bare minimum, before any change is implemented
there should be a set of controlled documents defined, which are known as
change request forms. These should include the following:

� Who - that is, the department, group or person that requires the change, who
is responsible for implementing the change, completing the successful test
and responsible for backout if required. Also who will “sign off” the change as
successful.

� What - that is, the affected systems or services (for example e-mail, file
service, domain, and so on). Include as much detail as possible. Ideally,
complete instructions should be included so that the change could be
performed by someone else in an emergency.

� When - that is, start date and time and estimated duration of the change.
There are often three dates: requested, scheduled. and actual.

� Where - that is, scope of change, the business units, buildings, departments
or groups affected or required to assist with the change.

� How - the implementation plan and a plan for backing off the changes, if the
need arises.

� Priority - that is, high, medium, low, business as usual, emergency, dated (for
example clock change).

� Risk - that is, high, medium, low

� Impact - that is, what will happen if the change is implemented; what will
happen if it is not; what other systems may be affected; what will happen if
something unexpected occurs.

16.6.3 Production control
Production control usually involves a specialized staff to manage batch
scheduling, using a tool such as Tivoli® Workload Scheduler to build and
manage a complex batch schedule. This work might involve daily and weekly
backups running at particular points within a complex sequence of application
suites. Databases and online services might also be taken down and brought
back up as part of the schedule. While making such changes, production control
often needs to accommodate public holidays and other special events such as (in
the case of a retail sales business) a winter sale.

Production control is also responsible for taking a programmer’s latest program
and releasing it to production. This task typically involves moving the source
 Chapter 16. Overview of system programming 479

code to a secure production library, recompiling the code to produce a production
load module, and placing that module in a production load library. JCL is copied
and updated to production standards and placed in appropriate procedure
libraries, and application suites added to the job scheduler.

There might also be an interaction with the system programmer if a new library
needs to be added to the linklist, or authorized.

16.7 Configuring consoles
Operating z/OS involves managing hardware such as processors and peripheral
devices (including the consoles where your operators do their work); and
software such as the z/OS operating control system, the job entry subsystem,
subsystems (such as NetView®) that can control automated operations, and all
the applications that run on z/OS.

The operation of a z/OS system involves the following:

� Message and command processing that forms the basis of operator
interaction with z/OS and the basis of z/OS automation

� Console operations, or how operators interact with z/OS to monitor or control
the hardware and software

Planning z/OS operations for a system must take into account how operators use
consoles to do their work and how to manage messages and commands. The
system programmer needs to ensure that operators receive the necessary
messages at their consoles to perform their tasks, and select the proper
messages for suppression, automation, or other kinds of message processing.

In terms of z/OS operations, how the installation establishes console recovery or
whether an operator must re-IPL a system to change processing options are
important planning considerations.

Because messages are also the basis for automated operations, the system
programmer needs to understand message processing to plan z/OS automation.

As more installations make use of multisystem environments, the need to
coordinate the operating activities of those systems becomes crucial. Even for
single z/OS systems, an installation needs to think about controlling
communication between functional areas.

In both single and multisystem environments, the commands that operators can
enter from consoles can be a security concern that requires careful coordination.
As a planner, the system programmer needs to make sure that the right people
are doing the right tasks when they interact with z/OS.
480 Introduction to the New Mainframe: z/OS Basics

A console configuration consists of the various consoles that operators use to
communicate with z/OS. Your installation first defines the I/O devices it can use
as consoles through the Hardware Configuration Definition (HCD), an interactive
interface on the host that allows the system programmer to define the hardware
configuration for both the channel subsystem and operating system.

Hardware Configuration Manager (HCM) is the graphical user interface to HCD.
HCM interacts with HCD in a client/server relationship (that is, HCM runs on a
workstation and HCD runs on the host). The host systems require an internal
model of their connections to devices, but it can be more convenient and efficient
for the system programmer to maintain (and supplement) that model in a visual
form. HCM maintains the configuration data as a diagram in a file on the
workstation in sync with the IODF on the host. While it is possible to use HCD
directly for hardware configuration tasks, many customers prefer to use HCM
exclusively, due to its graphical interface.

Besides HCD, Once the devices have been defined, z/OS is told which devices to
use as consoles by specifying the appropriate device numbers in the CONSOLxx
PARMLIB member.

Generally, operators on a z/OS system receive messages and enter commands
on MCS and SMCS consoles. They can use other consoles (such as NetView
consoles) to interact with z/OS, but here we describe the MCS, SMCS, and
EMCS consoles as they are commonly used at z/OS sites:

� Multiple Console Support (MCS) consoles are devices that are locally
attached to a z/OS system and provide the basic communication between
operators and z/OS. MCS consoles are attached to control devices that do
not support systems network architecture or SNA protocols.

� SNA Multiple Console Support (SMCS) consoles are devices that do not have
to be locally attached to a z/OS system and provide the basic communication
between operators and z/OS. SMCS consoles use z/OS Communications
Server to provide communication between operators and z/OS, instead of
direct I/O to the console device.

� Extended Multiple Console Support (EMCS) consoles are devices (other than
MCS or SMCS consoles) from which operators or programs can enter
commands and receive messages. Defining EMCS consoles as part of the
console configuration allows the system programmer to extend the number of
consoles beyond the MCS console limit, which is 99 for each z/OS system in
a sysplex.

The system programmer defines these consoles in a configuration according to
their functions. Important messages that require action can be directed to the
operator, who can act by entering commands on the console. Another console
can act as a monitor to display messages to an operator working in a functional
 Chapter 16. Overview of system programming 481

area like a tape pool library, or to display messages about printers at your
installation.

Figure 16-5 shows a console configuration for a z/OS system that also includes
the system console, an SMCS console, NetView, and TSO/E.

Figure 16-5 Sample console configuration for a z/OS system

The system console function is provided as part of the Hardware Management
Console (HMC). An operator can use the system console to start up z/OS and
other system software, and during recovery situations when other consoles are
unavailable.

In addition to MCS and SMCS consoles, the z/OS system shown in Figure 16-5
has a NetView console defined to it. NetView works with system messages and
command lists to help automate z/OS operator tasks. Many system operations
can be controlled from a NetView console.

System console
(attached to the
processor
controller)

MCS console

MCS status
display
console

MCS message
stream console

SMCS
console

TSO/E
session with

SDSF

TSO/E session
with RMF

EMCS console

NetView
console

MVS

VTAM
(SMCS) TSO/E

N
E
T
V
I
E
W

482 Introduction to the New Mainframe: z/OS Basics

Users can monitor many z/OS system functions from TSO/E terminals. Using the
System Display and Search Facility (SDSF) and the Resource Measurement
Facility (RMF™), TSO/E users can monitor z/OS and respond to workload
balancing and performance problems. An authorized TSO/E user can also initiate
an extended MCS console session to interact with z/OS.

The MCS consoles shown in Figure 16-5 are:

� An MCS console from which an operator can view messages and enter z/OS
commands This console is in full capability mode because it can receive
messages and accept commands. An operator can control the operations for
the z/OS system from an MCS or SMCS console.

� An MCS status display console

An operator can view system status information from DEVSERV, DISPLAY,
TRACK, or CONFIG commands. However, because this is a status display
console, an operator cannot enter commands from the console. An operator
on a full capability console can enter these commands and route the output to
a status display console for viewing.

� An MCS message-stream console

A message-stream console can display system messages. An operator can
view messages routed to this console. However, because this is a
message-stream console, an operator cannot enter commands from here.
Routing codes and message level information for the console are defined so
that the system can direct relevant messages to the console screen for
display. Thus, an operator who is responsible for a functional area like a tape
pool library, for example, can view MOUNT messages.

In many installations, this proliferation of screens has been replaced by operator
workstations that combine many of these screens onto one windowed display.
Generally, the hardware console is separate, but most other terminals are
combined. The systems are managed by alerts for exception conditions from the
automation product.

The IBM Open Systems Adapter-Express Integrated Console Controller
(OSA-ICC) is the modern way of connecting consoles. OSA-ICC uses TCP/IP
connections over Ethernet LAN to attach to personal computers as consoles
through a TN3270 connection (telnet).

16.8 Initializing the system
An initial program load (IPL) is the act of loading a copy of the operating system
from disk into the processor’s real storage and executing it.
 Chapter 16. Overview of system programming 483

z/OS systems are designed to run continuously with many months between
reloads, allowing important production workloads to be continuously available.
Change is the usual reason for a reload, and the level of change on a system
dictates the reload schedule. For example:

� A test system may be IPLed daily or even more often.

� A high-availability banking system may only be reloaded once a year, or even
less frequently, to refresh the software levels.

� Outside influences may often be the cause of IPLs, such as the need to test
and maintain the power systems in the machine room.

� Sometimes badly behaved software uses up system resources that can only
be replenished by an IPL, but this sort of behavior is normally the subject of
investigation and correction.

Many of the changes that required an IPL in the past can now be done
dynamically. Examples of these tasks are:

� Adding a library to the linklist for a subsystem such as CICS
� Adding modules to LPA

z/OS is IPLed using the Hardware Management Console (HMC). You need to
supply the following information to IPL z/OS:

� The device address of the IPL volume
� The LOADxx member that contains pointers to system parameters
� The IODF data set that contains the configuration information
� The device address of the IODF volume

16.8.1 Initialization process
The system initialization process (Figure 16-6 on page 485) prepares the system
control program and its environment to do work for the installation. This process
essentially consists of:

� System and storage initialization, including the creation of system component
address spaces

� Master scheduler initialization and subsystem initialization

When the system is initialized and the job entry subsystem is active, the
installation can submit jobs for processing by using the START, LOGON, or
MOUNT command.

The initialization process begins when the system programmer selects the LOAD
function at the Hardware Management Console (HMC). z/OS locates all usable
central storage that is online and available, and begins creating the various
system areas.
484 Introduction to the New Mainframe: z/OS Basics

Figure 16-6 IPLing the machine

Not all disks attached to a CPU have loadable code on them. A disk that does is
generally referred to as an “IPLable” disk, and more specifically as the SYSRES
volume.

IPLable disks contain a bootstrap module at cylinder 0 track 0. At IPL, this
bootstrap is loaded into storage at real address zero and control is passed to it.
The bootstrap then reads the IPL control program IEAIPL00 (also known as IPL
text) and passes control to it. This in turn starts the more complex task of loading
the operating system and executing it.

After the bootstrap is loaded and control is passed to IEAIPL00, IEAIPL00
prepares an environment suitable for starting the programs and modules that
make up the operating system, as follows:

1. It clears central storage to zeros before defining storage areas for the master
scheduler.

2. It locates the SYS1.NUCLEUS data set on the SYSRES volume and loads a
series of programs from it known as IPL Resource Initialization Modules
(IRIMs).

LOADPARM

IPL

bootstrap
IPL ccuu

SYSRES

IPLtext

IODF ccuu LOADxx IMSI Alt
Nuc

1 - 4 5 - 6 7 8
 Chapter 16. Overview of system programming 485

3. These IRIMs begin creating the normal operating system environment of
control blocks and subsystems.

Some of the more significant tasks performed by the IRIMs are as follows:

� Read the LOADPARM information entered on the hardware console at the
time the IPL command was executed.

� Search the volume specified in the LOADPARM member for the IODF data
set. IRIM will first attempt to locate LOADxx in SYS0.IPLPARM. If this is
unsuccessful, it will look for SYS1.IPLPARM, and so on, up to and including
SYS9.IPLPARM. If at this point it still has not been located, the search
continues in SYS1.PARMLIB. (If LOADxx cannot be located, the system loads
a wait state.)

� If a LOADxx member is found, it is opened and information including the
nucleus suffix (unless overridden in LOADPARM), the master catalog name,
and the suffix of the IEASYSxx member to be used, is read from it.

� Load the operating system’s nucleus.

� Initialize virtual storage in the master scheduler address space for the System
Queue Area (SQA), the Extended SQA (ESQA), the Local SQA (LSQA), and
the Prefixed Save Area (PSA). At the end of the IPL sequence, the PSA will
replace IEAIPL00 at real storage location zero, where it will then stay.

� Initialize real storage management, including the segment table for the master
scheduler, segment table entries for common storage areas, and the page
frame table.

The last of the IRIMs then loads the first part of the Nucleus Initialization
Program (NIP), which invokes the Resource Initialization Modules (RIMs), one of
the earliest of which starts up communications with the NIP console defined in
the IODF.

The system continues the initialization process, interpreting and acting on the
system parameters that were specified. NIP carries out the following major
initialization functions:

� Expands the SQA and the extended SQA by the amounts specified on the
SQA system parameter.

� Creates the pageable link pack area (PLPA) and the extended PLPA for a cold
start IPL; resets tables to match an existing PLPA and extended PLPA for a
quick start or a warm start IPL. For more information about quick starts and
warm starts, see z/OS MVS Initialization and Tuning Reference.

� Loads modules into the fixed link pack area (FLPA) or the extended FLPA.
Note that NIP carries out this function only if the FIX system parameter is
specified.
486 Introduction to the New Mainframe: z/OS Basics

� Loads modules into the modified link pack area (MLPA) and the extended
MLPA. Note that NIP carries out this function only if the MLPA system
parameter is specified.

� Allocates virtual storage for the common service area (CSA) and the
extended CSA. The amount of storage allocated depends on the values
specified on the CSA system parameter at IPL.

� Page-protects the NUCMAP, PLPA and extended PLPA, MLPA and extended
MLPA, FLPA and extended FLPA, and portions of the nucleus.

Note: An installation can override page protection of the MLPA and FLPA by
specifying NOPROT on the MLPA and FIX system parameters.

IEASYSnn, a member of PARMLIB, contains parameters and pointers that
control the direction that the IPL takes. See Example 16-6.

Example 16-6 Partial listing of IEASYS00 member

--
File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT SYS1.PARMLIB(IEASYS00) - 01.68 Columns 00001 00072
Command ===> Scroll ===> CSR
****** ***************************** Top of Data ******************************
000001 ALLOC=00,
000002 APG=07,
000003 CLOCK=00,
000004 CLPA,
000005 CMB=(UNITR,COMM,GRAPH,CHRDR),
000006 CMD=(&CMDLIST1.),
000007 CON=00,
000008 COUPLE=00, WAS FK
000009 CSA=(2M,128M),
000010 DEVSUP=00,
000011 DIAG=00,
000012 DUMP=DASD,
000013 FIX=00,
000014 GRS=STAR,
000015 GRSCNF=ML,
000016 GRSRNL=02,
000017 IOS=00,
000018 LNKAUTH=LNKLST,
000019 LOGCLS=L,
000020 LOGLMT=999999,
000021 LOGREC=SYS1.&SYSNAME..LOGREC,
000022 LPA=(00,L),
000023 MAXUSER=1000,
000024 MSTRJCL=00,
000025 NSYSLX=250,
 Chapter 16. Overview of system programming 487

000026 OMVS=&OMVSPARM.,

To see information on how your system was IPLed, you can issue the D IPLINFO
command, as Example 16-7 shows.

Example 16-7 Output of the D IPLINFO command

D IPLINFO
IEE254I 11.11.35 IPLINFO DISPLAY 906
 SYSTEM IPLED AT 10.53.04 ON 08/15/2005
 RELEASE z/OS 01.07.00 LICENSE = z/OS
 USED LOADS8 IN SYS0.IPLPARM ON C730
 ARCHLVL = 2 MTLSHARE = N
 IEASYM LIST = XX
 IEASYS LIST = (R3,65) (OP)
 IODF DEVICE C730
 IPL DEVICE 8603 VOLUME Z17RC1

System address space creation
In addition to initializing system areas, z/OS establishes system component
address spaces. It establishes an address space for the master scheduler and
other system address spaces for various subsystems and system components.
Some of the component address spaces are: *MASTER*, ALLOCAS, APPC,
CATALOG, and so on.

Master scheduler initialization
Master scheduler initialization routines initialize system services such as the
system log and communications task, and start the master scheduler itself. They
also cause creation of the system address space for the job entry subsystem
(JES2 or JES3), and then start the job entry subsystem.

Subsystem initialization
Subsystem initialization is the process of readying a subsystem for use in the
system. IEFSSNxx members of SYS1.PARMLIB contain the definitions for the
primary subsystems such as JES2 or JES3, and the secondary subsystems
such as NetView and DB2. For detailed information about the data contained in
IEFSSNxx members for secondary systems, refer to the installation manual for
the specific system.

During system initialization, the defined subsystems are initialized. You should
define the primary subsystem (JES) first because other subsystems, such as
DB2, require the services of the primary subsystem in their initialization routines.
Problems can occur if subsystems that use the subsystem affinity service in their
488 Introduction to the New Mainframe: z/OS Basics

initialization routines are initialized before the primary subsystem. After the
primary JES is initialized, the subsystems are initialized in the order in which the
IEFSSNxx PARMLIB members are specified by the SSN parameter. For
example, for SSN=(aa,bb), PARMLIB member IEFSSNaa would be processed
before IEFSSNbb.

START/LOGON/MOUNT processing
After the system is initialized and the job entry subsystem is active, jobs can be
submitted for processing. When a job is activated through START (for batch
jobs), LOGON (for time-sharing jobs), or MOUNT, a new address space is
allocated. Note that before LOGON, the operator must have started VTAM and
TSO, which have their own address spaces.

Figure 16-7 shows some of the important system address spaces and VTAM,
CICS, TSO, a TSO user and a batch initiator. Each address space has 2 GB of
virtual storage by default, whether the system is running in 31-bit or 64-bit mode.

Figure 16-7 Virtual storage layout for multiple address spaces

Recall that each address space is mapped as shown in Figure 3-9, “Storage
areas in an address space” on page 99. The private areas are available only to
that address space, but common areas are available to all.

Started tasks

*
M
A
S
T
E
R
*

P
C
A
U
T
H

R
A
S
P

T
R
A
C
E

. . .

C
A
T
A
L
O
G

C
O
N
S
O
L
E

A
L
L
O
C
A
S

V
L
F

L
L
A

J
E
S

V
T
A
M

C
I
C
S

T
S
O

T
S
O

U
S
E
R

I
N
I

T
/
J
O
B

Batch
job

TSO
Logon

System and
subsystem

address spaces

S
M
S

 Chapter 16. Overview of system programming 489

During initialization of a z/OS system, the operator uses the system console or
hardware management console, which is connected to the support element.
From the system console, the operator initializes the system control program
during the Nucleus Initialization Program (NIP) stage.

During the NIP stage, the system might prompt the operator to provide system
parameters that control the operation of z/OS. The system also issues
informational messages that inform the operator about the stages of the
initialization process.

16.8.2 IPL types
Several types of IPL exist; these are described as follows:

� Cold start

An IPL that loads (or reloads) the PLPA and clears the VIO data set pages.
The first IPL after system installation is always a cold start because the PLPA
is initially loaded. Subsequent IPLs are cold starts when the PLPA is
reloaded, either to alter its contents or to restore its contents if they were lost.
This is usually done when changes have been made to the LPA (for example,
when a new SYSRES containing maintenance is being loaded).

� Quick start

An IPL that does not reload the PLPA, but clears the VIO data set pages. (The
system resets the page and segment tables to match the last-created PLPA.)
This is usually done when there have been no changes to LPA, but VIO must
be refreshed. This prevents the warm start of jobs that were using VIO data
sets.

� Warm start

An IPL that does not reload the PLPA, and preserves journaled VIO data set
pages. This will allow jobs that were running at the time of the IPL to restart
with their journaled VIO data sets.

Often, the preferred approach is to do a cold start IPL (specifying CLPA). The
other options can be used, but extreme care must be taken to avoid unexpected
change or backout of change. A warm start could be used when you have
long-running jobs which you want to restart after IPL, but an alternative approach
is to break down those jobs into smaller pieces which pass real data sets rather

Note: VIO is a method of using memory to store small temporary data sets
for rapid access. However, unlike a RAM disk on a PC, these are actually
backed up to disk and so can be used as a restart point. Obviously there
should not be too much data stored in this way, so the size is restricted.
490 Introduction to the New Mainframe: z/OS Basics

than use VIO. Modern disk controllers with large cache memory have reduced
the need for VIO data to be kept for long periods.

Also, do not confuse a cold start IPL (CLPA would normally be used rather than
the term “cold start”) with a JES cold start. Cold starting JES is something that is
done extremely rarely, if ever, on a production system, and totally destroys the
existing data in JES.

16.8.3 Shutting down the system
To shut down the system each task must be closed in turn, in the correct order.
On modern systems, this is the task of the automation package. Shutting down
the system usually requires a single command. This will remove most tasks
except Automation itself. The Automation task is closed manually, and then any
commands needed to remove the system from a sysplex or serialization ring are
issued.

16.9 Summary
The role of the z/OS system programmer is to install, customize, and maintain
the operating system.

The system programmer must understand the following areas (and more):

� System customization
� Workload management
� System performance
� I/O device configuration
� Operations

To maximize the performance of the task of retrieving modules, the z/OS
operating system has been designed to maintain in memory those modules that
are needed for fast response to the operating system, as well as for critical
applications. Link pack area (LPA), linklist, and authorized libraries are the
cornerstones of the fetching process.

Also discussed is the system programmer’s role in configuring consoles and
setting up message-based automation.

System start-up or IPL is introduced with the following topics.

� IPL and the initialization process
� Types of IPLs: cold start, quick start, and warm start
� Reasons for IPLing
 Chapter 16. Overview of system programming 491

16.10 Questions for review
To help test your understanding of the material in this chapter, complete the
following review questions:

1. In Example Example 16-2 on page 471, assume that the class assigned to a
certain job has a default PROCLIB concatenation of PROC00. The job needs
a procedure that resides in SYS1.OTHERPRO. What can be done to
accomplish this? Which procedure libraries would be searched if nothing
were done?

2. Why are console operations often automated?

3. Why does a message and command structure lend itself to automation?

4. Why are system reloads necessary?

5. What are the three types of reloads and how do they differ?

16.11 Topics for further discussion
1. One reason the mainframe is considered secure is because it does not permit

“plug-in” devices; only devices defined by the system programmer can be
connected and used. In your opinion is this correct?

2. Compare the “Search order for programs” on page 472 to the search paths
used in other operating systems.

3. Discuss the following statement in relation to z/OS and other operating
systems you are familiar with: The main goal of a system programmer is to
avoid system reloads.

Key terms in this section

HCD IODF SYSRES

SMP/E linklist IPL

WTOR PARMLIB PROCLIB

system symbols PSA LPA

nucleus LOADPARM SQA
492 Introduction to the New Mainframe: z/OS Basics

16.12 Exercises
1. Find out which IEASYSxx members were used in the current IPL. Did the

operator specify the suffix of an alternate IEASYSxx?

2. Did the operator specify any parameter in response to the message SPECIFY
SYSTEM PARAMETERS? If the answer is Y, find the related PARMLIB members for
that parameter and obtain the parameter value that would be active if that
operator response hadn’t occurred.

3. Do the following:

a. On your system, find out the IPL device address and the IPL Volume. Go
to SDSF, enter ULOG, and then /D IPLINFO.

b. What is the IODF device address?

c. What is the LOADxx member that was used for IPL? What is the data set
that contains this LOADxx member?

d. Browse this member; what is the name of the system catalog used by the
system?

e. What is the name of the IODF data set currently used? Enter /D
IOS,CONFIG.

f. The system parameters can come from a number of PARMLIB data sets.
Enter /D PARMLIB. What are the PARMLIB data sets used by your
system?
 Chapter 16. Overview of system programming 493

494 Introduction to the New Mainframe: z/OS Basics

Chapter 17. Using SMP/E

Objective: As a z/OS system programmer, it will be your responsibility to
ensure that all software products and their modifications are properly installed
on the system. You will also have to ensure that all products are installed at
the proper level so that the elements of the system can work together. At first,
that might not sound too difficult, but as the complexity of the software
configuration increases, so does the task of monitoring all the elements of the
system.

SMP/E is the primary means of installing and updating the software in a z/OS
system. SMP/E consolidates installation data, allows more flexibility in
selecting changes to be installed, provides a dialog interface, and supports
dynamic allocation of data sets.

After completing this chapter, you will be able to explain:

� What SMP/E is.

� What system modifications are.

� The data sets used by SMP/E.

� How SMP/E can help you install and maintain products, and monitor
changes to products.

17
© Copyright IBM Corp. 2006. All rights reserved. 495

17.1 What is SMP/E?
SMP/E is the z/OS tool for managing the installation of software products on a
z/OS system and for tracking modifications to those products. SMP/E controls
these changes at the component level by:

� Selecting the proper levels of code to be installed from a large number of
potential changes.

� Calling system utility programs to install the changes.

� Keeping records of the installed changes by providing a facility to enable you
to inquire on the status of your software and to reverse the change if
necessary.

All code and its modifications are located in the SMP/E database called the
consolidated software inventory (CSI), which is comprised of one or more VSAM
data sets.

SMP/E can be run either using batch jobs or using dialogs under ISPF/PDF. With
SMP/E dialogs, you can interactively query the SMP/E database and create and
submit jobs to process SMP/E commands. We discuss the basic commands for
working with SMP/E in 17.11, “Working with SMP/E” on page 512.

Related reading: A standard reference for information about SMP/E is the IBM
publication, SMP/E User's Guide. You can find this and related publications at the
z/OS Internet Library Web site:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

17.2 The SMP/E view of the system
A z/OS system might appear to be one big block of code that drives the CPU.
Actually, z/OS is a complex system comprising many different smaller blocks of
code. Each of those smaller blocks of code perform a specific function within the
system (Figure 17-1).
496 Introduction to the New Mainframe: z/OS Basics

Figure 17-1 SMP/E view of the system

For example, some of the functions that can appear in a z/OS system include:

� Base Control Program (BCP)
� CICS
� DFSMS
� HTTP Server
� ISPF
� JES2 or JES3
� Open Systems Adapter/Support Facility (OSA/SF)
� Resource Measurement Facility (RMF)
� System Display and Search Facility (SDSF)
� SMP/E
� Time Sharing Option/Extensions (TSO/E)
� WebSphere MQ
� z/OS UNIX System Services (z/OS UNIX)

Each system function is composed of one or more load modules. In a z/OS
environment, a load module represents the basic unit of machine-readable,
executable code. Load modules are created by combining one or more object
modules and processing them with a link-edit utility. The link-editing of modules is
a process that resolves external references and addresses. The functions on
your system, therefore, are one or more object modules that have been
combined and link-edited.

To see where the object module comes from, let’s look at the example in
Figure 17-2.

RACF

NetView

DB2 MVS CICS

ISPF TSO SMP/E EREP MQ

JES RMF HTTP IMS VTAM

WAS DFSMS PSF RRS
 Chapter 17. Using SMP/E 497

Figure 17-2 Load module creation

Most of the time, object modules are sent to you as part of a product. In this
example, the object module MOD1 was sent as part of the product. Other times,
you might need to assemble source code sent to you by product packagers to
create the object module. You can modify the source code and then assemble it
to produce an object module. In the example, SRCMOD2 is source code that you
assemble to create object module MOD2. When assembled, you link-edit object
module MOD2 with object module MOD1 to form the load module LMOD1.

In addition to object modules and source code, most products distribute many
other parts, such as macros, help-panels, CLISTs and other z/OS library
members. These modules, macros and other types of data and code are the
basic building blocks of your system. All of these building blocks are called
elements.

Elements are associated with, and depend upon, other products or services that
may be installed on the same z/OS system. They describe the relationship the
software has with other products or services that may be installed on the same
z/OS system.

17.3 Changing the elements of the system
Over time, you will need to change the software on your z/OS system. These
changes may be necessary to improve the usability or reliability of a product. You
may want to add some new functions to your system, upgrade some of the
elements of your system, or modify some elements for a variety of reasons.
Software, whether it is a product or service, consists of elements such as
498 Introduction to the New Mainframe: z/OS Basics

macros, modules, source, and other types of data (such as CLISTs or sample
procedures).

17.3.1 What is a SYSMOD?
SMP/E can install a large variety of system updates, provided they are packaged
as a system modification or SYSMOD. A SYSMOD is the actual package of
elements and control information that SMP/E needs to install and track system
modifications.

SYSMODs are composed of a combination of elements and control information.
They are comprised of two parts, as follows:

� Modification control statements (MCSs), designated by ++ as the first two
characters, that tell SMP/E:

– What elements are being updated or replaced

– How the SYSMOD relates to product software and other SYSMODs

– Other specific installation information

� Modification text, which is the object modules, macros, and other elements
supplied by the SYSMOD

17.3.2 Types of SYSMODS
There are four different categories of SYSMODs, each supporting a task you
might want to perform:

FUNCTION This type of SYSMOD introduces a new product, a new version
or release of a product, or updated functions for an existing
product into the system.

PTF A program temporary fix (PTF) is an IBM-supplied correction for
a reported problem. They are meant to be installed in all
environments. PTFs may be used as preventive service to avoid
certain known problems that may have not yet appeared on your
system, or they may be used as corrective service to fix problems
you have already encountered. The installation of a PTF must
always be preceded by that of a function SYSMOD, and often
other PTFs as well.

APAR An authorized program analysis report (APAR) is a temporary fix
designed to correct or bypass a problem for the first reporter of
the problem. An APAR might not be applicable to your
environment. The installation of an APAR must always be
preceded by that of a function SYSMOD, and sometimes of a

SYSMOD
The input data
to SMP/E that
defines the
introduction,
replacement,
or updating of
elements in
z/OS.
 Chapter 17. Using SMP/E 499

particular PTF. That is, an APAR is designed to be installed on a
particular preventive-service level of an element.

USERMOD This type of SYSMOD is created by you, either to change IBM
code or to add independent functions to the system. The
installation of a USERMOD must always be preceded by that of a
function SYSMOD, sometimes certain PTFs, APAR fixes, or
other USERMODs.

SMP/E keeps track of the functional and service levels of each element and uses
this SYSMOD hierarchy to determine such things as which functional and service
levels of an element should be installed and the correct order for installing
updates for elements.

17.4 Introducing an element into the system

One way you can modify your system is to introduce new elements into that
system. To accomplish this with SMP/E, you can install a function SYSMOD. The
function SYSMOD introduces a new product, a new version or release of a
product, or updated functions for an existing product into the system. All other
types of SYSMODs are dependent upon the function SYSMOD, because they
are all modifications of the elements originally introduced by the function
SYSMOD.

When we refer to installing a function SYSMOD, we are referring to the
placement of all the product's elements in the system data sets, or libraries.
Examples of these libraries are SYS1.LPALIB, SYS1.MIGLIB, and
SYS1.SVCLIB.

Figure 17-3 shows the process of creating executable code in the production
system libraries.
500 Introduction to the New Mainframe: z/OS Basics

Figure 17-3 Introducing an element

In Figure 17-3, the installation of a function SYSMOD link-edits object modules
MOD1, MOD2, MOD3, and MOD4 to create load module LMOD2. The
executable code created in load module LMOD2 is installed in the system
libraries through the installation of the function SYSMOD.

There are two types of function SYSMODs:

� A base function SYSMOD adds or replaces an entire system function.
Examples of base functions are SMP/E and JES2.

� A dependent function SYSMOD provides an addition to an existing system
function. It is called dependent because its installation depends upon a base
function already being installed. Examples of dependent functions are the
language features for SMP/E.

Both base function SYSMODs and dependent function SYSMODs are used to
introduce new elements into the system. Figure 17-4 shows an example of a
simple function SYSMOD that introduces four elements.
 Chapter 17. Using SMP/E 501

Figure 17-4 Example of a simple function SYSMOD

17.5 Preventing or fixing problems with an element
When a problem with a software element is discovered, IBM supplies its
customers with a tested fix for that problem. This fix comes in the form of a
program temporary fix (PTF). Although you may not have experienced the
problem the PTF is intended to prevent, it is wise to install the PTF on your
system. The PTF SYSMOD is used to install the PTF, thereby preventing the
occurrence of that problem on your system.

Usually, PTFs are designed to replace or update one or more complete elements
of a system function. Let's look at Figure 17-5 on page 502.

Figure 17-5 Preventing problems with an element
502 Introduction to the New Mainframe: z/OS Basics

In Figure 17-5, we see a previously installed load module, LMOD2. If we want to
replace the element MOD1, we should install a PTF SYSMOD that contains the
module MOD1. That PTF SYSMOD replaces the element in error with the
corrected element. As part of the installation of the PTF SYSMOD, SMP/E relinks
LMOD2 to include the new and corrected version of MOD1.

Figure 17-6 shows an example of a simple PTF SYSMOD.

Figure 17-6 Example of a simple PTF SYSMOD

PTF SYSMODs are always dependent upon the installation of a function
SYSMOD. In some cases, some PTF SYSMODs may also be dependent upon
the installation of other PTF SYSMODs. These dependencies are called
prerequisites. We will look at a typical PTF prerequisite when we discuss the
complexity of keeping track of the elements of the system.

17.6 Fixing problems with an element
You may sometimes find it is necessary to correct a serious problem that occurs
on your system before a PTF is ready for distribution. In this situation, IBM
supplies you with an authorized program analysis report (APAR). An APAR is a
fix designed to quickly correct a specific area of an element or replace an
element in error. You install an APAR SYSMOD to implement a fix, thereby
updating the incorrect element.

In Figure 17-7, the shaded section shows an area of MOD2 containing an error.

APAR
A temporary
correction of a
defect in an
IBM system
control
program or
licensed
program that
affects a
specific user.
 Chapter 17. Using SMP/E 503

Figure 17-7 Fixing problems with an element

The processing of the APAR SYSMOD provides a modification for object module
MOD2. During the installation of the APAR SYSMOD, MOD2 is updated (and
corrected) in load module LMOD2.

Figure 17-8 shows an example of a simple APAR SYSMOD.

Figure 17-8 Example of a simple APAR SYSMOD

The APAR SYSMOD always has the installation of a function SYSMOD as a
prerequisite, and can also be dependent upon the installation of other PTF or
APAR SYSMODs.
504 Introduction to the New Mainframe: z/OS Basics

17.7 Customizing an element - USERMOD SYSMOD
If you had a requirement for a product to perform differently from the way it was
designed, you might want to customize that element of your system. IBM
provides you with certain modules that allow you to tailor IBM code to meet your
specific needs. After making the desired changes, you add these modules to
your system by installing a USERMOD SYSMOD. This SYSMOD can be used to
replace or update an element, or to introduce a totally new user-written element
into the system. In either case, the USERMOD SYSMOD is built by you either to
change IBM code or to add your own code to the system.

In Figure 17-9, MOD3 has been updated through the installation of a USERMOD
SYSMOD.

Figure 17-9 Customizing an element

Figure 17-10 shows an example of a simple USERMOD SYSMOD.

Figure 17-10 Example of a simple USERMOD SYSMOD
 Chapter 17. Using SMP/E 505

Prerequisites for USERMOD SYSMODs are the installation of a function
SYSMOD, and possibly the installation of other PTF, APAR, or USERMOD
SYSMODs.

17.7.1 SYSMOD prerequisites and corequisites
As you have learned, PTF, APAR, and USERMOD SYSMODs all have the
function SYSMOD as a prerequisite. In addition to their dependencies on the
function SYSMOD:

� PTF SYSMODs might be dependent upon other PTF SYSMODs.

� APAR SYSMODs might be dependent upon PTF SYSMODs and other APAR
SYSMODs.

� USERMOD SYSMODs might be dependent upon PTF SYSMODs, APAR
SYSMODs, and other USERMOD SYSMODs.

Sometimes a PTF or even an APAR is dependent upon other PTF SYSMODs
called corequisites.

Consider the complexity of these dependencies. When you multiply that
complexity by hundreds of load modules in dozens of libraries, the need for a tool
like SMP/E becomes apparent.

Let's examine the impact of these dependencies on the maintenance of software
in a z/OS environment.

17.8 Keeping track of the elements of the system
The importance of keeping track of system elements and their modifications
becomes readily apparent when we examine the z/OS maintenance process.
Often, a PTF contains multiple element replacements.

In the example shown in Figure 17-11 on page 507, PTF1 contains replacements
for two modules, MOD1 and MOD2. Although load module LMOD2 contains four
modules, only two of those modules are being replaced.
506 Introduction to the New Mainframe: z/OS Basics

Figure 17-11 PTF replacement

But what happens if a second PTF replaces some of the code in a module that
was replaced by PTF1? Let's look at Figure 17-12.

Figure 17-12 PTF prerequisite

In this example, PTF2 contains replacements for MOD2 and MOD3. For MOD1,
MOD2, and MOD3 to interface successfully, PTF1 must be installed before
 Chapter 17. Using SMP/E 507

PTF2. That's because MOD3 supplied in PTF2 may depend on the PTF1 version
of MOD1 to be present. It is this dependency that constitutes a prerequisite.
SYSMOD prerequisites are identified in the modification control statements
(MCS) part of the SYSMOD package we discussed in "Changing the elements of
the system" in topic 1.1.2.

In addition to tracking prerequisites, there is another important reason to track
system elements. The same module is often part of many different load modules.
Let's take a look at the example in Figure 17-13.

Figure 17-13 Load module constructions

In Figure 17-13, the same MOD2 module is present in LMOD1, LMOD2, and
LMOD3. When a PTF is introduced that replaces the element MOD2, that
module must be replaced in all the load modules in which it exists. Therefore, it is
imperative that we keep track of all load modules and the modules they contain.

You can now appreciate how complicated the tracking of system elements and
their modification levels can become. Let's take a brief look at how we implement
the tracking capabilities of SMP/E.
508 Introduction to the New Mainframe: z/OS Basics

17.9 Tracking and controlling requisites
To track and control elements successfully, all elements and their modifications
and updates must be clearly identified to SMP/E. SMP/E relies on modification
identifiers to accomplish this. There are three modification identifiers associated
with each element:

� Function Modification Identifiers (FMIDs) identify the function SYSMOD that
introduces the element into the system.

� Replacement Modification Identifiers (RMIDs) identify the last SYSMOD (in
most cases a PTF SYSMOD) to replace an element.

� Update Modification Identifiers (UMIDs) identify the SYSMOD that an update
to an element since it was last replaced.

SMP/E uses these modification identifiers to track all SYSMODs installed on your
system. This ensures that they are installed in the proper sequence. Now that we
realize the need for element tracking and know the types of things SMP/E tracks,
let's look at how SMP/E performs its tracking function.

17.10 How does SMP/E work?
Let's review our discussion of how functions are installed into the system. We
begin with elements, such as modules, macros, and source code. These
elements are then processed by utilities, such as an assembler or link-editor, to
create load modules. The load modules contain the machine-readable,
executable code.

Your production system in a z/OS environment consists of the z/OS operating
system and all the code needed to do your everyday work. That's fine, but where
is all that stuff kept, and how is it organized? Let's find out.

17.10.1 The distribution and target libraries
To properly perform its processing, SMP/E must maintain a great deal of
information about the structure, content, and modification status of the software it
manages. Think of all the information SMP/E has to maintain as if it were all the
information contained in the public library.

In a public library, you see bookshelves filled with books and a card catalog with
drawers containing a card for each book in the library. These cards contain
information, such as the title, author, publishing dates, type of book, and a pointer
to the actual book on the shelf.
 Chapter 17. Using SMP/E 509

In the SMP/E environment, there are two distinct types of “bookshelves.” They
are referred to as the distribution libraries and the target libraries. In much the
same way the bookshelves in the public library hold the library books, the
distribution and target libraries hold the elements of the system.

Distribution libraries contain all the elements, such as modules and macros,
that are used as input for running your system. One very important use of the
distribution libraries is for backup. Should a serious error occur with an element
on the production system, the element can be replaced by a stable level found in
the distribution libraries.

Target libraries contain the executable code that is needed to run the system.

17.10.2 The consolidated software inventory (CSI)
As you think of the analogy of the public library, you can see that there is one
important piece of that picture that we have not yet considered. In the public
library, there is a card catalog to help you find the book or piece of information
you are looking for. SMP/E provides the same type of tracking mechanism in the
form of the consolidated software inventory (CSI).

The CSI data sets contain all the information SMP/E needs to track the
distribution and target libraries. As the card catalog contains a card for each book
in the library, the CSI contains an entry for each element in its libraries. The CSI
entries contain the element name, type, history, how the element was introduced
into the system, and a pointer to the element in the distribution and target
libraries. The CSI does not contain the element itself, but rather a description of
the element it represents.

Let's see exactly how these entries are arranged in the CSI.

The SMP/E zones
The cards in the public library card catalog are arranged alphabetically by the
author's last name, and by the topic and title of the book. In the CSI, entries for
the elements in the distribution and target libraries are grouped according to their
installation status. That is, entries representing elements found in the distribution
libraries are contained in the distribution zone. Entries representing elements
found in the target libraries are contained in the target zone. Both of these zones
serve the same purpose as the drawers of the public library card catalog.

In addition to the distribution and target zones, the SMP/E CSI also contains a
global zone. Figure 17-14 shows the relationship between SMPE zones and
libraries.

CSI
The SMP/E
data set that
contains
information
about the
structure of a
user's system.
510 Introduction to the New Mainframe: z/OS Basics

Figure 17-14 Relationship between SMP/E zones and libraries

The global zone contains:

� Entries needed to identify and describe each target and distribution zone to
SMP/E

� Information about SMP/E processing options

� Status information for all SYSMODs SMP/E has begun to process

� Exception data for SYSMODs requiring special handling or that are in error.

In SMP/E, when we speak of exception data, we are usually referring to
HOLDDATA. HOLDDATA is often supplied for a product to indicate a specified
SYSMOD should be held from installation. Reasons for holding a SYSMOD can
be:

� A PTF is in error and should not be installed until the error is corrected
(ERROR HOLD).

� Certain system actions may be required before SYSMOD installation
(SYSTEM HOLD).

� The user may want to perform some actions before installing the SYSMOD
(USER HOLD).

Now you can see how all the elements of the system fit together, and how they
can be installed, modified, and tracked using SMP/E.

CSI
Distribution

Zone

CSI
Global
Zone

CSI
Target
Zone

TLIBs DLIBs

CSI
Distribution

Zone

CSI
Global
Zone

CSI
Target
Zone

TLIBs DLIBs
 Chapter 17. Using SMP/E 511

17.11 Working with SMP/E
Now that you are familiar with SMP/E and what it can do, you are probably
wondering what you need to know to get started using SMP/E. The SMP/E
process is performed by three simple basic commands, RECEIVE, APPLY, and
ACCCEPT. Let's take a look at these commands.

17.11.1 Using the RECEIVE command
The RECEIVE command allows you to take a SYSMOD that is outside of SMP/E
and stage it into the SMP/E library domain which begins to construct the CSI
entries that describe them. This allows them to be queried for input into later
processes. More recently the source can be electronic from a Web site, although
usually it comes from a tape or even a third-party vendor media.

This process’s role accomplishes several tasks (Figure 17-15):

Figure 17-15 SMP/E RECEIVE processing

� Constructing entries in the Global Zone for describing the SYSMOD.

� Ensuring the SYSMOD is valid, such as the syntax for modification control
statements (MCS) associated to the products installed in the CSI.

� Installing the SYSMOD into the libraries. Example: the PTF temporary store
library.

� Assessing the HOLDDATA to ensure errors are not introduced.

SMPPTS
MCS Entries

Global Zone
SYSMOD ENTRIES
HOLDDATA ENTRIES

SMPTLIB
RELATIVE FILES

web
site

E
C

V
E

Target
Libraries

Target
Zone

Distribution
Libraries

Distribution
Zone

SMPPTS
MCS Entries

Global Zone
SYSMOD ENTRIES
HOLDDATA ENTRIES

SMPTLIB
RELATIVE FILES

Web
site R

E
I

Target
Libraries

Target
Zone

Distribution
Libraries

Distribution
Zone
512 Introduction to the New Mainframe: z/OS Basics

During the RECEIVE processing the MCS for each SYSMOD is copied to an
SMP/E temporary storage area called the SMPPTS data set containing the inline
element replacement or update for that SYSMOD. There are also RELFILEs that
package the elements in relative files that are separate from MCSs, which are
mostly used by function SYSMODs. Relative files are stored in another
temporary storage area called SMPTLIB data sets.

SMP/E updates the global zone with information about the SYSMODs that it has
received:

In the course of maintaining the system, you need to install service and process
the related HOLDDATA. For example, assume that IBM has supplied you with a
service tape (such as a CBPDO or ESO tape) and you want to install it on the
system. The first step is to receive the SYSMODs and HOLDDATA that are
contained on the tape by entering these commands:

SET BDY(GLOBAL).
RECEIVE.

Doing so causes SMP/E to receive all the SYSMODs and HOLDDATA on the
tape.

Examples of RECEIVE commands
To receive only HOLDDATA that might require special handling or that is in error,
you use this command:

SET BDY(GLOBAL).
RECEIVE HOLDDATA.

To receive only SYSMODs for installation into the global zone, you use this
command:

SET BDY(GLOBAL).
RECEIVE SYSMODS.

To receive all SYSMODs, including HOLDDATA, for a specific product (for
example, WebSphere Application Server), you use a command like the following:

SET BDY(GLOBAL).
RECEIVE FORFMID(H28W500).

17.11.2 Using the APPLY command
The APPLY command specifies which of the received SYSMODs are to be
selected for installation in the target libraries (TLIBs). SMP/E also ensures that all
other required SYSMODs (prerequisites) have been installed or are being
installed concurrently as well as in the proper sequence. The source of the
 Chapter 17. Using SMP/E 513

elements is the SMPTLIB data sets, the SMPPTS data set or indirect libraries
depending on how is was packaged. This phase of the SMP/E process entails
the following:

� Executing the appropriate utility to install the SYSMOD into the target library,
depending on the type of input text supplied and target module being
changed.

� Ensuring that the relationship of the new SYSMOD with other SYSMODs in
the target zone is correct.

� The CSI is modified displaying the updated modules.

The APPLY command updates the system libraries and should be carefully used
on a live production system. It is recommended that you initially use a copy of the
production target libraries and zones.

The target zone reflects the content of the target libraries. Therefore, after the
utility is completed and the zone updated, it will accurately reflect the status of
those libraries.

Figure 17-16 SMP/E APPLY processing

Target
Libraries

Target
Zone

SMPPTS

Global Zone
SYSMOD ENTRIES

Updated !

SMPTLIB

Distribution
Libraries

Distribution
Zone

{
A
P
P
L
Y

SYSMODs
ELEMENTs

Target
Libraries

Target Zone

SMPPTS

Global Zone
SYSMOD ENTRIES

Updated !

SMPTLIB

SMPPTS

Global Zone
SYSMOD ENTRIES

Updated !

SMPTLIB

Distribution
Libraries

Distribution
Zone

{
A
P
P
L
Y

A
P
P
L
Y

SYSMODs Entries

ELEMENTs Created
514 Introduction to the New Mainframe: z/OS Basics

The APPLY processing (Figure 17-16) is where the target zone is accurately
updated:

� All SYSMOD entries in the Global Zone are updated to reflect that the
SYSMOD has been applied to the target zone.

� The target zone accurately reflects each SYSMOD entry applied. Element
entries (such as MOD and LMOD) are also created in the target zone.

� BACKUP entries are created in the SMPSCDS data set so the SYSMOD can
be restored, if at all necessary.

Similar to the RECEIVE process, the APPLY command has many different
operands for flexibility to select SYSMODs you would like to see for installation in
the target libraries, and provides an assortment of output. The directives used
instruct SMP/E what you want installed.

To install only PTF SYSMODs, enter a command like the following:

SET BDY(ZOSTGT1).
APPLY PTFS.

To select PTF SYSMODs, you name them in the directives, for example:

SET BDY(ZOSTGT1).
APPLY SELECT(UZ00001, UZ00002).

Sometimes, you might want to install only corrective fixes (APARs) or user
modifications (USERMODs) into the target library, for example:

SET BDY(ZOSTGT1).
APPLY APARS
USERMODS.

At other times, you might want to update a selected product from a distribution
tape:

SET BDY(ZOSTGT1).
APPLY PTFS
FORFMID(H28W500).

or

SET BDY (ZOSTGT1).
APPLY FORFMID(H28W500).

In these two examples, SMP/E applies all applicable PTFs for the FMID. Unless
you specify otherwise, PTFs are the default SYSMOD type.
 Chapter 17. Using SMP/E 515

Using APPLY CHECK
There might be times when you want to see which SYSMODs are included
before you actually install them. You can do this by including the CHECK operand
with commands such as the following:

SET BDY(MVSTGT1).
APPLY PTFS
APARS
FORFMID(HOP1)
GROUPEXTEND CHECK.

When these commands complete, you can check the SYSMOD status report to
see which SYSMODs would have been installed if you had not specified the
CHECK operand. If you are satisfied with the results of this trial run, you can
enter the commands again, without the CHECK operand, to actually install the
SYSMODs.

17.11.3 Using the ACCEPT command
When a SYSMOD is installed into its target library, and you have tested it, you
then accept the change through the ACCEPT command. This step takes the
selected SYSMODs and installs them into the associated distribution libraries.

On the ACCEPT command, you specify operands to indicate which of the
received SYSMODs are to be selected for installation. During this phase, SMP/E
also ensures that the correct functional level of each element is selected.
516 Introduction to the New Mainframe: z/OS Basics

Figure 17-17 SMP/E ACCEPT processing

The ACCEPT command performs the following tasks (Figure 17-17):

� Updates CSI entries with the targeted elements in the distribution zone.

� Rebuilds or creates the targeted elements in the distribution libraries using
the content of the SYSMOD as input.

� Verifies the target zone CSI entries for the affected modules and SYSMODs,
ensuring that they are consistent with the library content.

� Performs housekeeping of obsolete or expired elements. ACCEPT processing
deletes the global zone CSI entries, PTS members and SMPTLIBs for those
SYSMODs affected. For example, ACCEPT deletes the global zone
SYSMOD entries and MCS statements in the SMPPTS data set for those
SYSMODs that have been accepted into the distribution zone.

As a further option, you can skip having SMP/E clean up the global zone
cleanup. If so, SMP/E saves this information.

SMPPTS
MCS Entries
“deleted”

Global Zone
SYSMOD ENTRIES

“deleted”

SMPTLIB
RELATIVE FILES

Target
Libraries

Target
Zone

Distribution
Libraries

Distribution
Zone

SYSMOD Entries
Element Entries

“created”

A
C
C
E
P
T

}SMPPTS
MCS Entries
“deleted”

Global Zone
SYSMOD ENTRIES

“deleted”

SMPTLIB
RELATIVE FILES

Target
Libraries

Target
Zone

Distribution
Libraries

Distribution
Zone

SYSMOD Entries
Element Entries

“created”

Distribution
Libraries

Distribution
Zone

SYSMOD Entries
Element Entries

“created”

A
C
C
E
P
T

}

 Chapter 17. Using SMP/E 517

There is a “stop” ACCEPT processing that SMP/E provides so you can ensure
that all prerequisites are satisfied before the installation of the SYSMODs. This is
a check for you to see what will happen (assist you in detecting problems) without
actually modifying the distribution libraries.

After applying the SYSMODs into the Target zone, you can then tell SMP/E to
install only the eligible PTF SYSMODs into the Distribution zone:

SET BDY(ZOSDLB1).
ACCEPT PTFS.

To install PTF SYSMODS selecting the particular ones:

SET BDY(ZOSDLB1).
ACCEPT SELECT(UZ00001,UZ00002).

There are situations where you may want to update a particular product with all
SYSMODs:

SET BDY(ZOSDLB1).
ACCEPT PTFS
FORFMID(H28W500).

or

SET BDY(ZOSDLB1).
ACCEPT FORFMID(H28W500).

ACCEPTING Prerequisite SYSMODs
When installing a SYSMOD, you may not know whether it has prerequisites
(sometimes, an ERROR SYSMOD is held). In these situations, you can direct
SMP/E to check whether an equivalent (or superseding) SYSMOD is available by
specifying the GROUPEXTEND operand:

Important: Should the SYSMOD be in error, do not ACCEPT it. By using the
RESTORE process that takes the modules updated by the selected SYSMOD
and rebuilds the copies in the Target libraries from the specific modules in the
Distribution libraries as input. Also, RESTORE updates the Target zone CSI
entries to reflect the removal of the SYSMOD. When ACCEPT processing is
completed, there is no way it can be backed out, therefore the changes are
permanent.

Note: In the two cases above, SMP/E accepts all applicable PTFs for the
product whose FMID is H28W500 located in the Distribution zone ZOSDLB1.
518 Introduction to the New Mainframe: z/OS Basics

SET BDY(ZOSDLB1).
ACCEPT PTFS
FORFMID(H28W500)
GROUPEXTEND.

A good way to see which SYSMODs are included before you actually install them
is with the CHECK operand:

SET BDY(ZOSTGT1).
ACCEPT PTFS
FORMFMID(H28W500)
GROUPEXTEND
CHECK.

ACCEPT Reporting
When this last phase is completed., the following reports will assist you to assess
the results:

� SYSMOD Status Report - provides a summary of the processing that took
place for each SYSMOD, based on the operands you specified on the
ACCEPT command.

� Element Summary Report - provides a detailed look at each element affected
by the ACCEPT processing and in which libraries they reside.

� Causer SYSMOD Summary Report - provides a list of SYSMODs that caused
other SYSMODs to fail and describes the errors that must be fixed in order to
be successfully processed.

� File Allocation Report - provides a list of the data sets used for the ACCEPT
processing and supplies information about these data sets.

Note: If SMP/E cannot find a required SYSMOD, it looks for and uses a
SYSMOD that supersedes the required one.
 Chapter 17. Using SMP/E 519

Figure 17-18 Overview of the SMP/E process

CSI
Distribution

Zone

CSI
Global
Zone

CSI
Target
Zone

TLIBs DLIBs
SMPTLIBs

PTS

RECEIVE APPLY
ACCEPT

RESTORE

CSI
Distribution

Zone

CSI
Global
Zone

CSI
Target
Zone

TLIBs DLIBs
SMPTLIBs

PTS

RECEIVE APPLY
ACCEPT

RESTORE
520 Introduction to the New Mainframe: z/OS Basics

Figure 17-19 Example of a CSI VSAM Cluster Definition
 Chapter 17. Using SMP/E 521

Figure 17-20 SMP batch Job example

17.11.4 Other SMP/E facilities
All the information located in the Global Zone (Figure 17-18 on page 520),
combined with the information found in the Target and Distribution Zones, make
up the data that SMP/E requires to install and track the system’s software, which
is often a great deal of data. You can display this information using the following
SMP/E facilities:

� The LIST command creates a hardcopy that lists information about the
system.

� The REPORT command checks, compares, and generates a hardcopy of the
information about zone content.

� QUERY dialogs through ISPF.

� The SMP/E CSI API, which can be used to write application programs to
query the content of the system.

17.12 Data sets used by SMP/E
Let's review our discussion of how SMP/E stores information about the system.
When SMP/E processes SYSMODs, it installs the elements in the appropriate
522 Introduction to the New Mainframe: z/OS Basics

libraries and updates its own records of the processing it has done. SMP/E
installs program elements into two types of libraries:

� Target libraries contain the executable code needed to run your system (for
example, the libraries from which you run your production system or your test
system).

� Distribution libraries (DLIBs) contain the master copy of each element for a
system. They are used as input to the SMP/E GENERATE command or the
system generation process to build target libraries for a new system. They are
also used by SMP/E for backup when elements in the target libraries have to
be replaced or updated.

To install elements in these libraries, SMP/E uses a database made up of several
types of data sets:

� SMPCSI (CSI) data sets are VSAM data sets used to control the installation
process and record the results of processing. A CSI can be divided into
multiple partitions through the VSAM key structure. Each partition is referred
to as a zone.

There are three types of zones:

– A single global zone is used to record information about SYSMODs that
have been received into the SMPPTS data set. The global zone also
contains information enabling SMP/E to access the other two types of
zones, information about system utilities that SMP/E calls to install
elements from SYSMODs, and information allowing you to tailor SMP/E
processing.

– One or more target zones are used to record information about the status
and structure of the operating system (or target) libraries. Each target
zone also points to the related distribution zone, which can be used during
APPLY, RESTORE, and LINK when SMP/E is processing a SYSMOD and
needs to check the level of the elements in the distribution libraries.

– One or more distribution zones are used to record information about the
status and structure of the distribution libraries (DLIBs). Each DLIB zone
also points to the related target zone, which is used when SMP/E is
accepting a SYSMOD and needs to check if the SYSMOD has already
been applied.

There can be more than one zone in an SMPCSI data set (in fact, there can
be up to 32766 zones per data set). For example, an SMPCSI data set can
contain a global zone, several target zones, and several distribution zones.
The zones can also be in separate SMPCSI data sets. One SMPCSI data set
can contain just the global zone, a second SMPCSI data set the target zones,
and a third SMPCSI data set the distribution zones.
 Chapter 17. Using SMP/E 523

� An SMPPTS (PTS) data set is a data set for temporary storage of SYSMODs
waiting to be installed. The PTS is used strictly as a storage data set for
SYSMODs. The RECEIVE command stores SYSMODs directly on the PTS
without any modifications of SMP/E information. The PTS is related to the
global zone in that both data sets contain information about the received
SYSMODs. Only one PTS can be used for a given global zone. Therefore,
you can look at the global zone and the PTS as a pair of data sets that must
be processed (for example, deleted, saved, or modified) concurrently.

� The SMPSCDS (SCDS) data set contains backup copies of target zone
entries modified during APPLY processing. Therefore, each SCDS is directly
related to a specific target zone, and each target zone must have its own
SCDS. SCDS data sets are used by SMP/E to store backup copies of target
zone entries modified during APPLY processing. Therefore, each SCDS is
directly related to a specific target zone, and each target zone must have its
own SCDS.

SMP/E also uses the following data sets:

� The SMPMTS (MTS) data set is a library in which SMP/E stores copies of
macros during installation when no other target macro library is identified.
Therefore, the MTS is related to a specific target zone, and each target zone
must have its own MTS data set.

� The SMPSTS (STS) data set is a library in which SMP/E stores copies of
source during installation when no other target source library is identified.
Therefore, the STS is related to a specific target zone, and each target zone
must have its own STS data set.

� The SMPLTS (LTS) data set is a library that maintains the base version of a
load module. The load module in this library specifies a SYSLIB allocation in
order to implicitly include modules. Therefore, the LTS is related to a specific
target zone, and each target zone must have its own LTS data set.

� Other utility and work data sets.

SMP/E uses information in the CSI data sets to select proper element levels for
installation, to determine which libraries should contain which elements, and to
identify which system utilities should be called for the installation.

System programmers can also use the CSI data sets to obtain the latest
information on the structure, content, and status of the system. SMP/E provides
this information in reports, listings, and dialogs to help you:

� Investigate function and service levels

� Understand intersections and relationships of SYSMODs (either installed or
waiting to be installed)

� Build job streams for SMP/E processing
524 Introduction to the New Mainframe: z/OS Basics

17.13 Summary
As a z/OS system programmer, it will be your responsibility to ensure that all
software products and their modifications are properly installed on the system.
On z/OS, the primary means for managing changes to the system software is
through SMP/E.

SMP/E can be run either using batch jobs or using dialogs under Interactive
System Productivity Facility/Program Development Facility (ISPF/PDF). With
SMP/E dialogs, you can interactively query the SMP/E database and create and
submit jobs to process SMP/E commands.

Software to be installed by SMP/E must be packaged as system modifications or
SYSMODs, which combine the updated element with control information. This
information describes the elements and any relationships the software has with
other products or service that may also be installed on the same system.

The SMP/E JCL and commands will be used frequently by a large enterprise
z/OS system programmer, however, SMP/E MCS instructions will rarely be
coded by the same system programmer. The product and SYSMOD packaging
will include the necessary MCS statements.

A critical responsibility of the system programmer is to work with IBM defect
support when a problem surfaces in z/OS or optional IBM products. Problem
resolution requires the system programmer to receive and apply fixes to the
enterprise system.

17.14 Questions for review
To help test your understanding of the material in this chapter, complete the
following questions:

1. What purpose does SMP/E serve in a z/OS system?

2. What are the two types of function SYSMODs? How are they different?

Key terms in this section

authorized program
analysis report (APAR)

consolidated service
inventory (CSI)

distribution library (DLIB)

distribution zone global zone program temporary fix
(PTF)

SYSMOD target library target zone
 Chapter 17. Using SMP/E 525

3. What kind of information is stored in the CSI data set?

4. What is the difference between an APAR and a PTF?

5. Fill in the blank: In SMP/E, you use the ______ command to install selected
SYSMODs into their associated distribution libraries.

17.15 Topics for further discussion
What is the importance of an orderly change management process in a large
systems enterprise? How do installation and maintenance provide the basis for
high availability in the z/OS environment?
526 Introduction to the New Mainframe: z/OS Basics

Chapter 18. Security on z/OS

18

Objective: In working with z/OS, you need to understand the importance of
security and the facilities utilized by z/OS to implement it. An installation’s data
and application programs are among its most valuable resources. They must
be protected from unauthorized access both internally (employees) and
externally (customers, business partners, and hackers).

After completing this chapter, you will be able to:

� Explain security and integrity concepts.

� Explain RACF and its interface with the operating system.

� Authorize a program.

� Discuss integrity concepts.

� Explain the importance of change control.

� Explain the concept of risk assessment.
© Copyright IBM Corp. 2006. All rights reserved. 527

18.1 Why security?
Over time, it has become much easier to create and access computerized
information. No longer is system access limited to a handful of highly skilled
programmers. Information can now be created and accessed by almost anyone
who takes a little time to become familiar with the newer, easier-to-use, high-level
inquiry languages.

More and more people are becoming increasingly dependent on computer
systems and the information they store in these systems. As general computer
literacy and the number of people using computers has increased, the need for
data security has taken on a new measure of importance. No longer can the
installation depend on keeping data secure simply because no one knows how to
access the data.

Further, making data secure not only means making confidential information
inaccessible to those who should not see it. It also means preventing the
inadvertent destruction of files by people who may not even know that they are
improperly manipulating data.

An operating system is said to have system integrity when it is designed,
implemented, and maintained to protect itself against unauthorized access, and
does so to the extent that security controls specified for that system cannot be
compromised. Specifically for z/OS, this means that there must be no way for any
unauthorized program, using any system interface, defined or undefined, to do
the following:

� Obtain control in an authorized state
� Bypass store or fetch protection
� Bypass password checking

18.2 Security facilities of z/OS
In the following sections, we cover the facilities of z/OS that provide its high level
of security and integrity.

Data about customers is a valuable resource that could be sold to competitors.
So the aim of any security policy is to provide users with only their required level
of access and to deny non-authorized users access. This is one reason why
auditors prefer that users or groups are granted specific access, rather than
using universal access facilities. The traditional focus of mainframe security was
to focus on stopping unauthorized people from logging on to the system, and
then ensuring that users were only allowed access to data on a need-to-know
basis. As mainframes have become Internet servers, however, additional security
528 Introduction to the New Mainframe: z/OS Basics

has been required. There are outside threats such as hackers, viruses, and
Trojan horses; the security server includes tools to deal with these.

However, the main threat to company data has always been from within. An
employee within a company has a much better chance of obtaining data than
someone outside. A well-thought-out security policy is always the first line of
defense.

Further, z/OS provides a number of integrity features to minimize intentional or
accidental damage from other programs. Many installations run several copies of
z/OS and often do not permit general TSO/ISPF users to access the production
systems. z/OS security controls can protect the production environment if they
are properly configured and prevent a TSO/ISPF user (either maliciously or
accidentally) from impacting important production work.

18.3 Security roles
In the past, it was the system programmer who, working with management,
decided the overall security policy and procedures. Today companies are
seeking higher levels of security, so they appoint a separate security manager.
The system programmer might not have direct responsibility for security, other
than advising the security manager about new products. Separation of duties is
necessary to prevent any one individual from having uncontrolled access to the
system.

A system administrator assigns user IDs and initial passwords and ensures that
the passwords are non-trivial, random, and frequently changed. Because the
user IDs and passwords are so critically important, special care must be taken to
protect the files that contain them.

18.4 The IBM Security Server
Many installations use a package called the IBM Security Server, which is
commonly referred to by the name of its most well-known component, RACF.

z/OS security provisions include:

� Controlling the access of users (user ID and password) to the system

� Restricting the functions that an authorized user can perform on the systems’
data files and programs
 Chapter 18. Security on z/OS 529

For students who would like to learn more about the tools available to a z/OS
security administrator, here is a list of the security components of z/OS that are
collectively known as the Security Server:

� DCE Security Server

This server provides a fully functional OSF DCE 1.1 level security server that
runs on z/OS.

� Lightweight Directory Access Protocol (LDAP) Server

This server is based on a client/server model that provides client access to an
LDAP server. An LDAP directory provides an easy way to maintain directory
information in a central location for storage, update, retrieval, and exchange.

� z/OS Firewall Technologies

This is an IPV4 network security firewall program for z/OS. In essence, the
z/OS firewall consists of traditional firewall functions as well as support for
virtual private networks.

The inclusion of a firewall means that the mainframe can be connected
directly to the Internet if required without any intervening hardware and can
provide the required levels of security to protect vital company data. With the
VPN technology, securely encrypted tunnels can be established through the
Internet from a client to the mainframe.

� Network Authentication Service for z/OS

This provides Kerberos security services without requiring that you purchase
or use a middleware product such as Distributed Computing Environment
(DCE).

� Enterprise Identity Mapping (EIM)

This offers a new approach to enable inexpensive solutions to easily manage
multiple user registries and user identities in an enterprise.

� PKI Services

This allows you to establish a public key infrastructure and serve as a
certificate authority for your internal and external users, issuing and
administering digital certificates in accordance with your own organization’s
policies.

� Resource Access Control Facility (RACF)

This is the primary component of the z/OS Security Server; it works closely
with z/OS to protect vital resources.

The topic of security can be a whole course by itself. In this course, we introduce
you to the RACF component and show how its features are used to implement
z/OS security.
530 Introduction to the New Mainframe: z/OS Basics

18.4.1 RACF
Access, in a computer-based environment, means the ability to do something
with a computer resource (for example, use, change, or view something). Access
control is the method by which this ability is explicitly enabled or restricted.
Computer-based access controls are called logical access controls. These are
protection mechanisms that limit users’ access to information to only what is
appropriate for them.

Logical access controls are often built into the operating system, or may be part
of the logic of application programs or major utilities, such as database
management systems. They may also be implemented in add-on security
packages that are installed into an operating system; such packages are
available for a variety of systems, including PCs and mainframes. Additionally,
logical access controls may be present in specialized components that regulate
communications between computers and networks.

Resource Access Control Facility or RACF is an add-on software product that
provides basic security for a mainframe system. There are other security
software packages, such as ACF2 or Top Secret, both from Computer
Associates.

RACF protects resources by granting access only to authorized users of the
protected resources. RACF retains information about users, resources, and
access authorities in special structures called profiles in its database, and it
refers to these profiles when deciding which users should be permitted access to
protected system resources.

To accomplish its goals, RACF gives you the ability to:

� Identify and authenticate users

� Authorize users to access protected resources

� Log and report various attempts of unauthorized access to protected
resources

� Control the means of access to resources

� Allow applications to use the RACF macros

Figure 18-1 on page 532 offers a simple view of RACF functions.

RACF uses a user ID and a system-encrypted password to perform its user
identification and verification. The user ID identifies the person to the system as
a RACF user. The password verifies the user's identity. Often exits are used to
enforce a password policy such as a minimum length, lack of repeating
characters or adjacent keyboard letters, and also the use of numerics as well as
 Chapter 18. Security on z/OS 531

letters. Popular words such as “password” or the use of the user ID are often
banned.

The other important policy is the frequency of password change. If a user ID has
not been used for a long time, it may be revoked and special action is needed to
use it again. When someone leaves a company, there should be a special
procedure that ensures that the user IDs are deleted from the system.

Figure 18-1 Overview of RACF functions

18.4.2 System authorization facility (SAF)
The system authorization facility (SAF) is part of the z/OS operating system and
provides the interfaces to the callable services provided to perform
authentication, authorization, and logging.

SAF does not require any other product as a prerequisite, but overall system
security functions are greatly enhanced and complemented if it is used
concurrently with RACF. The key element in SAF is the SAF router. This router is
always present, even when RACF is not present.

Security
administration

Resource
authorization
checking
and system
control

User identification
and authorization

Audit and integrity reports
Violation alerts

RACFRACF

RACF
database
532 Introduction to the New Mainframe: z/OS Basics

The SAF router provides a common focal point for all products providing
resource control. This focal point encourages the use of common control
functions shared across products and across systems. The resource managing
components and subsystems call the z/OS router as part of certain
decision-making functions in their processing, such as access-control checking
and authorization-related checking. These functions are called control points.

The system authorization facility (SAF) conditionally directs control to RACF (if
RACF is present), or to a user-supplied processing routine, or both, when
receiving a request from a resource manager.

18.5 Security administration
Data security is the protection of data from accidental or deliberate unauthorized
disclosure, modification, or destruction. Based on this definition, it is apparent
that all data-processing installations have at least potential security or control
problems. Users have found, from past experience, that data security measures
can have a significant impact on operations in terms of both administrative tasks
and demands made on the end user.

RACF gives the user defined with the SPECIAL attribute (the security
administrator) many responsibilities both at the system level and at the group
level. The security administrator is the focal point for planning security in the
installation and needs to:

� Determine which RACF functions to use

� Identify the level of RACF protection

� Identify which data RACF is to protect

� Identify administrative structures and users

18.5.1 RACF Remote Sharing Facility (RRSF)
The RACF Remote Sharing Facility (RRSF) allows you to administer and
maintain RACF databases that are distributed throughout the enterprise. It
provides improvements in system performance, system management, system
availability, and usability. RRSF helps to ensure that data integrity is kept across
system or network failures and delays. It lets you know when key events have
occurred and returns output to view at your convenience.

18.5.2 RACF with middleware
Major subsystems such as CICS and DB2 use the facilities of RACF to protect
transactions and files. Much of the work to configure RACF profiles for these
 Chapter 18. Security on z/OS 533

subsystems is done by the CICS and DB2 system programmers. So there is a
need for people in these roles to have a useful understanding of RACF and how it
relates to the software they manage.

18.6 Operator console security
We can look at one example of how z/OS security affects system functions by
discussing the operator consoles. Console security means controlling which
commands operators can enter on their consoles to monitor and control z/OS.
How you define command authorities for your consoles, or control logon for
operators, enables you to plan the operations security of your z/OS system or
sysplex. In a sysplex, because an operator on one system can enter commands
that affect the processing on another system, your security measures become
more complicated and you need to plan accordingly.

For multiple console support (MCS) consoles, you can use the following to
control whether operators can enter commands from a console:

� The AUTH keyword on the CONSOLE statement of CONSOLxx

� The LOGON keyword of the DEFAULT statement and RACF commands and
profiles.

For extended MCS consoles, you can control what an authorized SDSF or
TSO/E user can do during a console session. Because an extended MCS
console can be associated with a TSO/E user ID and not a physical console, you
might want to use RACF to limit not only the z/OS commands a user can enter,
but from which TSO/E terminals the user can enter the commands.

18.7 Integrity
There are many features and facilities in z/OS specifically designed to protect
one program from affecting another, either intentionally or accidentally. This is
why z/OS is known for program integrity as well as security.

This section discusses:

� The authorized program facility (APF)

� Storage protection

� Cross-memory communication
534 Introduction to the New Mainframe: z/OS Basics

18.7.1 Authorized programs
z/OS contains a feature called the authorized program facility (APF) to allow
selected programs to access sensitive system functions. APF was designed to
avoid integrity exposures. The installation identifies which libraries contain those
special functions or programs. Those libraries are then called APF libraries.

An APF-authorized program can do virtually anything that it wants. It is
essentially an extension of the operating system. It can put itself into supervisor
state or a system key. It can modify system control blocks. It can execute
privileged instructions (while in supervisor state). It can turn off logging to cover
its tracks. Clearly, this authorization must be given out sparingly and monitored
carefully.

You can use APF to identify system or user programs that can use sensitive
system functions. For example, APF:

� Restricts the use of sensitive system supervisor call (SVC) routines (and
sensitive user SVC routines, if you need them) to APF-authorized programs.

� Allows the system to fetch all modules in an authorized job step task only from
authorized libraries, to prevent programs from counterfeiting a module in the
module flow of an authorized job step task.

Many system functions, such as supervisor calls (SVCs) or special paths through
SVCs, are sensitive. Access to these functions must be restricted to only
authorized programs to avoid compromising the security and integrity of the
system.

The system considers a task authorized when the executing program has the
following characteristics:

� It runs in supervisor state (bit 15 of the program status word (PSW) is zero).
We discussed the PSW in Chapter 3, “z/OS overview” on page 73.

� It runs with PSW key 0 to 7 (bits 8 through 11 of the PSW contain a value in
the range 0 to 7).

� All previous programs executed in the same task were APF programs.

Libraries that contain authorized programs are known as authorized libraries.
APF-authorized programs must reside in one of the following authorized libraries:

� SYS1.LINKLIB
� SYS1.SVCLIB
� SYS1.LPALIB
� Authorized libraries specified by your installation
 Chapter 18. Security on z/OS 535

18.7.2 Storage protection
Mainframe hardware has a storage protection function. It is normally used to
prevent unauthorized alteration of storage. It can also be used to prevent
unauthorized reading of storage areas, although z/OS protects only small areas
of storage this way. Storage protection works on 4K pages. It deals only with real
memory, not virtual memory. When a page of virtual memory is copied from disk
to a free page in main storage, z/OS also sets an appropriate storage protection
key in that page of main storage.

Storage protection was much more significant before multiple address spaces
came into use. When multiple users and jobs were in a single address space (or
in real memory in the days before virtual memory), protecting a user’s memory
from corruption (or inappropriate data peeking) was critical. With z/OS, the
primary protection for each user’s memory is the isolation provided by multiple
address spaces.

Storage protection keys cannot be altered by application programs. There is no
way, using the storage protection function, for a normal application program (that
is, not an authorized program) to protect part of its virtual memory from other
parts of the application in the same address space.

An additional storage protection bit (for each 4K page of real memory) is the page
protection bit. This prevents even system routines (running in key 0, which can
normally store anywhere) from storing in the page. This bit is typically used to
protect LPA pages from accidental damage by system routines.

18.7.3 Cross-memory communication
With proper page table management by the operating system, users and
applications in different address spaces are completely isolated from each other.
One exception to this isolation is the common area. Another exception is
cross-memory communication.

With proper setup by the operating system, it is possible for a program in one
standard address space to communicate with programs in other address spaces.
A number of cross-memory capabilities are possible, but two are commonly
used:

� The ability to call a program that resides in a different address space

� The ability to access (fetch, store) virtual memory in another address space

The first case uses the program call (PC) instruction. Once the proper setup has
been completed by z/OS, only a single hardware instruction is needed to call a
program in another address space. A common example of this involves DB2, the
major IBM database product. Various parts of DB2 occupy up to four address
536 Introduction to the New Mainframe: z/OS Basics

spaces. Users of DB2 may be TSO users, batch jobs, and other middleware
(such as a Web server). When these users issue SQL instructions for DB2, the
SQL interface in the application uses a program call to obtain services from the
DB2 address spaces.

Cross-memory programming can be rather complex and must be coordinated
with z/OS security controls. In practice, almost all cross-memory usage is in
major middleware products and is rarely directly used by typical application
programs.

Routine application programming seldom ventures into this area. Both the
mainframe hardware architecture and internal z/OS design protect these
functions from improper use and there have been no significant security or
integrity concerns related to the cross-memory capabilities.

18.7.4 z/OS firewall technologies
The traditional firewall functions act as a blockade between your intranet (a
secure, internal private network) and another (non-secure) network or the
Internet. The purpose of a firewall is to prevent unwanted or unauthorized
communication into or out of the secure network. The firewall has two jobs:

� It lets users in your own network use authorized resources from the outside
network without compromising your network’s data and other resources.

� It keeps users who are outside your network from coming in to compromise or
attack your network.

There are several ways a firewall can protect your network. A firewall can provide
screening services that deny or grant access based on such things as user
name, host name, and TCP/IP protocol. A firewall can also provide a variety of
services that let authorized users through while keeping unauthorized users out,
and at the same time ensure that all communications between your network and
the Internet appear to end at the firewall, denying the outside world to see the
structure of your network.

To control access between your intranet and the Internet, and at the same time
permit authorized transactions, z/OS Firewall Technologies provides three key
technologies: network servers, filters and address translation, and virtual private
network.

18.8 Summary
Making data secure does not mean just making confidential information
inaccessible to those who should not see it; it means preventing the inadvertent
 Chapter 18. Security on z/OS 537

destruction of files by people who may not even know that they are improperly
manipulating data. Without better awareness of good data security practices,
technology evolution could result in a higher likelihood of unauthorized persons
accessing, modifying, or destroying data, either inadvertently or deliberately. The
Security Server is a set of features in z/OS that provides security implementation.

The system authorization facility (SAF) is part of the z/OS operating system and
provides the interfaces to the callable services provided to perform
authentication, authorization, and logging.

The Resource Access Control Facility (RACF) is a component of the Security
Server for z/OS and controls access to all protected z/OS resources. RACF
protects resources by granting access only to authorized users of the protected
resources and retains information about the users, resources, and access
authorities in specific profiles.

RACF provides the tools and databases to allow z/OS licensed programs such
as TSO, CICS, and DB2, to check and verify a user’s access level and thus
permit or deny the use of data sets, transactions, or database views.

RACF enables the organization to define individuals and groups who use the
system RACF protects. For example, for a secretary in the organization, a
security administrator uses RACF to define a user profile that defines the
secretary’s user ID, initial password, and other information.

To accomplish its goals, RACF gives you the ability to:

� Identify and authenticate users
� Authorize users to access the protected resources
� Log and report attempts of unauthorized access to protected resources
� Control the means of access to resources

The operation of a z/OS system involves the following:

� Console operations, or how operators interact with z/OS to monitor or control
the hardware and software

� Message and command processing that forms the basis of operator
interaction with z/OS and the basis of z/OS automation

Operating z/OS involves managing hardware such as processors and peripheral
devices, and software such as the z/OS operating control system, the job entry
subsystem, and all the applications that run on z/OS.

When implementing console security, the installation can control which
commands operators can enter on their consoles to monitor and control z/OS.
Basically, the customization is made in RACF and in the CONSOLxx member in
PARMLIB.
538 Introduction to the New Mainframe: z/OS Basics

18.9 Questions for review
To help test your understanding of the material in this chapter, complete the
following questions:

1. Is the following statement true or false?

Access information in the resource profiles can be set only at the group level.
This means that it is impossible for a single user to have the update attribute
to a specific data set if the RACF group to which the user is connected has
only the read attribute.

2. In the following situation, what will occur with the program if no authorized
SVC or special functions are invoked?

a. One program link-edited with AC=0
b. Running from an APF-authorized library

3. In the following example, what are the possible problems in a program
executing from a library called SYS1.LINKLIB located in the volume
MPRES2?

D PROG,APF,ENTRY=1
CSV450I 05.24.55 PROG,APF DISPLAY 979
FORMAT=DYNAMIC
ENTRY VOLUME DSNAME

1 MPRES1 SYS1.LINKLIB?

18.10 Topics for further discussion
1. On other platforms, how do you protect data sets or files? Is there a way to

prevent the execution of a specific application?

Key terms in this section

authorized libraries authorized program facility
(APF)

encryption

firewall hacker page protection bit

password Resource Access Control
Facility (RACF)

security policy

separation of duties system integrity user ID
 Chapter 18. Security on z/OS 539

2. RACF enables you to assign the group administrator attribute to users. With
this, it is possible to implement a decentralized administration. Discuss the
pros and cons.

18.11 Exercises
1. Try to log on to TSO after changing the initial logon procedure IKJACCNT to

IKJACCN1. The expected message is:

IKJ56483I THE PROCEDURE NAME IKJACCN1 HAS NOT BEEN AUTHORIZED FOR THIS
USERID

2. Using your TSO user ID (now with your default logon procedure IKJACCNT),
try to delete the data set ZPROF.JCL.NOT.DELETE, which is set up by the
standard jobs in the supplied JCL. This is a protected data set and you can
only read its content.

3. Execute the next sample JCL to obtain a DSMON utility report with the current
RACF group tree structure (available in the sample JCL as member DSMON):

//DSMONRPT JOB
(POK,999),'DSMONREPORT',MSGLEVEL=(1,1),MSGCLASS=X,
// CLASS=A,NOTIFY=&SYSUID
/*JOBPARM SYSAFF=*
//*
//* NOTE:
//* REMEMBER THAT ICHDSM00 MUST BE RUN BY A USER WITH
AUDITOR ATTRIBUTE
//*
//STEPNAME EXEC PGM=ICHDSM00
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD SYSOUT=A
//SYSIN DD *
 FUNCTION RACGRP
/*

4. Verify that the SYS1.LINKLIB library is an APF-authorized library.

– Using the DISPLAY APF command to display the entire APF list.
– Using the ENTRY= operand in the DISPLAY APF command.
– Using the DSNAME= operand in the DISPLAY APF command. Verify the

entry number in the command display result in the syslog.

5. The following JCL example can be used to invoke the ADRDSSU utility and
issue a WTOR message in the console. The WTOR command lets you write
an ADR112A message to the system console. The ADR112A message
requests that the operator perform some action, and then issue a reply. You
can use WTOR, for example, to request that the operator mount a required
540 Introduction to the New Mainframe: z/OS Basics

volume or quiesce a database before your DFSMSdss job continues to
process (available in the sample JCL as member ADRDSSU).

//WTORTEST JOB (POK,999),'USER',MSGLEVEL=(1,1),MSGCLASS=X,
// CLASS=A,NOTIFY=&SYSUID
// EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 WTOR 'TEST'
/*

DFSMSdss assigns the following routing code to the WTOR message:

1 Primary operator action

DFSMSdss assigns the following descriptor code to the WTOR message:

2 Immediate action required.

In the SDSF main screen, choose the SR option (system requests) and reply
with any response you want.
 Chapter 18. Security on z/OS 541

542 Introduction to the New Mainframe: z/OS Basics

Chapter 19. Network Communications on z/OS

19

Objective: In working with z/OS network communications, you will need to
interact with TCP/IP and SNA networks.

In this chapter, you will learn:

� How various communication network models compare with each other.

� The software components of the z/OS Communications Server product.

� How the SNA subarea and APPN network topology compare.

� How the IP network can be used to transport data between SNA
applications.

� Commonly used TCP/IP and VTAM commands.
© Copyright IBM Corp. 2006. All rights reserved. 543

19.1 Communications in z/OS
Network communication has both software and hardware aspects, and a
separation of software and hardware communications duties is common in large
enterprises. A skilled network expert, however, needs to understand both
aspects. This chapter provides a brief overview of communications software on
the mainframe.

As a system programmer, the network professional must bring a thorough
understanding of z/OS communications software to any project that involves
working with the company’s network. While network hardware technicians have
specific skills and tools for supporting the physical network, their expertise often
does not extend to the z/OS communications software. When a nationwide retail
chain opens a new store, the z/OS system programmers and network hardware
technicians must coordinate their efforts to open the new store.

Figure 19-1 IBM communications server

z/OS includes a fully featured communications server with multiprotocol
networking. This chapter begins with an overview of the available networking
technologies on z/OS and then discusses the main operational aspects of the
operating system’s communications server in 19.3, “z/OS Communications
Server” on page 548.

Applications
Applications

Applications

z/OS

APPC

Sockets RPC

SNA

RPC

Sockets APPC

TCP/IP
544 Introduction to the New Mainframe: z/OS Basics

19.2 Brief history of data networks
Established in 1969, TCP/IP is actually five years older than System Network
Architecture (SNA). However, SNA was immediately made available to the public,
while TCP/IP was limited at first to military and research institutions, for use in
the interconnected networks that formed the precursors to the Internet.

In addition, SNA was designed to include network management controls not
originally in TCP/IP through Synchronous Data Link Control (SDLC) protocol. In
the 1980s, SNA was widely implemented by large corporations because it
allowed their IT organizations to extend central computing capability worldwide
with reasonable response times and reliability. For example, widespread use of
SNA allowed the retail industry to offer new company credit card accounts to
customers at the point-of-sale.

In 1983, TCP/IP entered the public domain in Berkeley BSD UNIX. TCP/IP
maturity, applications and acceptance advanced through an open standards
committee, the Internet Engineering Task Force (IETF), using the
Request-For-Comment (RFC) mechanism.

The term internet is used as a generic term for a TCP/IP network and should not
be confused with the Internet, which consists of the large international backbone
networks connecting all TCP/IP hosts that have links to the Internet backbone.

TCP/IP was designed for interconnected networks (an internet) and seemed to
be easier to set up, while SNA design was hierarchical with the “centralized”
mainframe being at the top of the hierarchy. The SNA design included network
management, data flow control, and the ability to assign “class of service”
priorities to specific data workloads.

Communication between autonomous SNA networks became available in 1983.
Before that, SNA networks could not talk to each other easily. The ability of
independent SNA networks to share business application and network resources
is called SNA Network Interconnect (SNI).

19.2.1 SNA and TCP/IP on z/OS
System Network Architecture (SNA) was developed by IBM. SNA enabled
corporations to communicate among its locations around the country. To do this,
SNA included products such as Virtual Telecommunication Access Method
(VTAM), Network Control Program (NCP) and terminal controllers as well as the
synchronous data link control (SDLC) protocol. What TCP/IP and the Internet
were to the public in the 1990s, SNA was to large enterprises in the 1980s.
 Chapter 19. Network Communications on z/OS 545

Transmission Control Protocol/Internet Protocol (TCP/IP) is an industry-standard,
nonproprietary set of communications protocols that provides reliable end-to-end
connections between applications over interconnected networks of different
types. TCP/IP was widely embraced when the Internet came of age because it
permitted access to remote data and processing for a relatively small cost.
TCP/IP and the Internet resulted in a proliferation of small computers and
communications equipment for chat, e-mail, conducting business, and
downloading and uploading data.

Large SNA enterprises have recognized the increased business potential of
expanding the reach of SNA-hosted data and applications to this proliferation of
small computers and communications equipment in the customers’ homes, small
offices, and so on.

19.2.2 Layered network models
TCP/IP and SNA are both layered network models. Each can indirectly map to
the international Open Systems Interconnect (OSI) network model (Figure 19-2).

Figure 19-2 Open Systems Interconnect (OSI) network model

The OSI network model depicts the organization of the individual elements of
technology involved with end-to-end data communication. As shown in
Figure 19-2, the OSI network model provides some common ground for both
SNA and TCP/IP. While neither technology maps directly into the OSI network

Physical Physical Physical

Data Link Data Link Data Link Control

IP ARP RARP ICMP Network Path Control

TCP UDP Transport Transmission Control

Session Data Flow Control

telnet, np, SNMP, SMTP Presentation

Applications Transaction Services

NAU Services Mgr
Func. Mgmt Data Srvc

TCP/IP OSI SNA

Layered Network Models
546 Introduction to the New Mainframe: z/OS Basics

model (TCP/IP and SNA existed before the OSI network model was formalized),
common ground still exists due to the defined model layers.

The OSI network model is divided into seven layers. OSI layer 7 (Application)
indirectly maps into the top layers of the SNA and TCP/IP stacks. OSI layer 1
(Physical) and layer 2 (Data Link) map into the bottom layers of SNA and TCP/IP
stacks.

In one typical scenario, two geographically separated end-point software
applications are connected at each end by a layered network model. Data is sent
by one end-point application and received by the other end-point application. The
applications can reside on large mainframes, PCs, point-of-sale (POS) devices,
ATMs, terminals, or printer controllers. End-points in SNA are called logical units
(LUs), while end-points in IP are called application ports (ports for short).

Consider how this model might be used in the network communications for a
large chain of grocery stores. Each time a customer pays for groceries at one of
the many point-of-sale (POS) locations in a grocery store, the layered network
model is used twice:

� The POS application resides at the top of the local layered network stack.

� The application that records details of the sale and authorizes completion
resides at the top of a remote layer network stack.

The local network stack might run on a non-mainframe system with attached
POS devices, while the remote network stack would quite often run on a
mainframe, to handle transactions received from all of the store locations.
Method of payment, purchases, store location, and time are recorded by
mainframe applications, and authorization to print a sales receipt is returned
back through both layered network stacks to complete the sale.

This transactional model is commonly known as a request/server or client/server
relationship.

19.2.3 Network reliability and availability
What if the network or attached mainframe for our example grocery store chain
were to somehow become unavailable? Most POS systems in use today include
the ability to accumulate transactions in an intelligent store POS controller or
small store processor. When the outage is corrected, the accumulated
transactions can then be sent in bulk to the mainframe.

In the previous example, the recovery of transactions would be essential to
preventing bookkeeping and inventory problems at the store and in the chain’s
central office. The cumulative effect of unaddressed, inaccurate records could
easily destroy a business. Therefore, reliability, availability and serviceability
 Chapter 19. Network Communications on z/OS 547

(RAS) are just as important in the design of a network as they are in the
mainframe itself.

19.2.4 Factors contributing to the continued use of SNA
SNA is stable, trusted and relied upon for mission-critical business applications
worldwide. A significant amount of the world’s corporate data is handled by
z/OS-resident SNA applications1. A distinctive strength of SNA is that it is
connection-oriented with many timers and control mechanisms to ensure reliable
delivery of data.

Mainframe IT organizations are often reluctant and sceptical about moving away
from SNA, despite the allure of TCP/IP and Web-based commerce. This
reluctance is often justified. Rewriting stable, well-tuned business applications to
change from SNA program interfaces to TCP/IP sockets can be costly and time
consuming.

Many businesses choose to use Web-enabling technologies to make the vast
amount of centralized data available to the TCP/IP-based Web environment,
while maintaining the SNA APIs. This “best of both worlds” approach ensures
that SNA and VTAM will be around well into the foreseeable future.

19.3 z/OS Communications Server
z/OS includes the Communications Server, which is an integrated set of software
components that enable network communications for applications running on
z/OS. Communications Server provides the data transportation corridor between
the external network and the business applications running on z/OS.

z/OS Communications Server provides a set of communications protocols that
support peer-to-peer connectivity functions for both local and wide-area
networks, including the most popular wide-area network, the Internet. z/OS
Communications Server also provides performance enhancements that can
benefit a variety of TCP/IP applications; it also includes a number of commonly
used applications.

Communications Server includes a number of sophisticated products and
functions. The major services are:

� IP, using Transmission Control Protocol/Internet Protocol (TCP/IP)

� Systems Network Architecture (SNA), using Virtual Telecommunication
Access Method (VTAM)

1 SNA applications running on z/OS are also known as VTAM applications.
548 Introduction to the New Mainframe: z/OS Basics

The Communications Storage Manager (CSM) component provides a shared I/O
buffer for data flow. The CSM function allows authorized host applications to
share data without having to physically move the data.

Communications Server, with its combination of TCP/IP and SNA functions, is
implemented on a number of platforms besides z/OS, such as AIX, Microsoft®
Windows, and Linux. As a result, z/OS application programmers can exploit
technological advancements in communications (information access, electronic
commerce, and collaboration) across distinctly different operating systems.

Figure 19-3 The z/OS Communications Server

19.4 TCP/IP overview
TCP/IP is the general term used to describe the suite of protocols that form the
basis for the Internet. It was first included in the UNIX system offered by the
University of California at Berkeley, and is now delivered with essentially all
network-capable computers in the world.
 Chapter 19. Network Communications on z/OS 549

Figure 19-4 TCP/IP introduction

All systems, regardless of size, appear the same to other systems in the TCP/IP
network. TCP/IP can be used over Local Area Network (LAN) hardware using
most common protocols, and over Wide Area Networks (WANs).

In a TCP/IP network environment, a machine that is running TCP/IP is called a
host. A TCP/IP network consists of one or more hosts linked together through
various communication links. Any host can address all the other hosts directly to
establish communication. The links between networks are invisible to an
application communicating with a host. It doesn't matter whether an application is
a legacy CICS application using MVS services or a newly downloaded
application using the UNIX component. System administrators may have to
choose which components and programming interfaces to use. But to the
application, the components used are transparent.

19.4.1 Using commands to monitor TCP/IP
z/OS supports TCP/IP commands found in other operating systems, such as:

� NETSTAT
� PING
� TRACERTE

Network A Network B

pSeries
Router

xSeries
Router

xSeries
Router

zSeries
Gateway

pSeriesWorkstation Workstation Workstation

zSeries

xSeries
Gateway
550 Introduction to the New Mainframe: z/OS Basics

� NSLOOKUP

You can enter these commands from an authorized TSO session from:

� The TSO Ready prompt
� The ISPF command shell
� Any ISPF command line by prefixing the command with TSO
� Batch programs

Example 19-1 shows the results you might see when entering NETSTAT
commands from the TSO Ready prompt.

Example 19-1 Sample NETSTAT output

**** NETSTAT ROUTE output ****
MVS TCP/IP NETSTAT CS V1R5 TCPIP Name: TCPIP 21:38:18
Destination Gateway Flags Refcnt Interface
----------- ------- ----- ------ ---------
Default 5.12.6.92 UGS 000001 OSA2380LNK
5.12.6.0 0.0.0.0 US 000000 OSA2380LNK
5.12.6.66 0.0.0.0 UH 000000 OSA2380LNK
5.12.6.67 0.0.0.0 UH 000000 STAVIPA1LNK
15.1.100.0 0.0.0.0 US 000000 IQDIOLNK0A016443
15.1.100.4 0.0.0.0 UHS 000000 IQDIOLNK0A016443
15.1.100.42 0.0.0.0 UHS 000000 IQDIOLNK0A016443

**** NETSTAT BYTE output ****
MVS TCP/IP NETSTAT CS V1R5 TCPIP Name: TCPIP 21:41:18
User Id Conn Local Socket Foreign Socket State
------- ---- ------------ -------------- -----
DASU8G25 000048BF 0.0.0.0..523 0.0.0.0..0 Listen
D8G2DIST 00000072 0.0.0.0..38062 0.0.0.0..0 Listen
D8G2DIST 00000031 0.0.0.0..38060 0.0.0.0..0 Listen
FTPMVS1 00000022 5.12.6.66..21 0.0.0.0..0 Listen
FTPOE1 00000024 5.12.6.67..21 0.0.0.0..0 Listen
INETD4 00000083 0.0.0.0..7 0.0.0.0..0 Listen
INETD4 00000081 0.0.0.0..19 0.0.0.0..0 Listen

19.4.2 Using console commands to manage TCP/IP
You can use the DISPLAY TCPIP and VARY TCPIP commands to manage the
network and TCP/IP applications on z/OS.

These commands include additional options, such as the following:

� The DISPLAY TCPIP command can be used to display information about the
following:
 Chapter 19. Network Communications on z/OS 551

– NETSTAT report output for a TCP/IP stack
– Information about OMPROUTE, a dynamic routing daemon
– The TCP/IP stack's storage utilization
– The TCP/IP stack's sysplex status
– The TN3270 server information

� The VARY TCPIP command includes options to:
– Drop specific socket connections
– Start or stop communication devices
– Setup packet and socket tracing
– Purge ARP or neighbor cache entries
– Change the TCP/IP stack's sysplex status
– Control the TN3270 server
– Alter the TCP/IP network configuration

Related reading: For more information about the IP commands, see the IBM
publication, Communications Server IP System Administrators Commands.

19.4.3 Using VIPAs for availability and load balancing
TCP/IP on z/OS allows network administrators to define virtual Internet protocol
addresses or VIPAs. A VIPA address is managed by the low level communications
protocol inherent in z/OS. Such an address can be automatically mapped to
more than one z/OS system at the same time. It can be dynamically transferred
from one z/OS system to another. It can be dynamically transferred from one IP
application to another, even if the application exists on another z/OS host. All of
this is transparent to the network and most applications.

Further, a VIPA address can be associated with all physical adapters on a z/OS
host. There is effectively no limit to the number of physical adapters a z/OS host
can support.

At the same time, VIPA addresses can work in conjunction with the workload
management services of z/OS to move inbound IP connections to a z/OS host
that has the largest amount of available system resources.

19.4.4 TN3270, the gateway to z/OS
When z/OS hosts existed in a SNA-only environment, dedicated terminal
controllers and "dumb" (non-programmable) terminals were the cornerstone of
communicating with z/OS. The data protocol used to communicate between the
dumb terminal and z/OS is called the 3270 data stream (more on this later, when
we discuss VTAM more completely). As TCP/IP became a world standard, the
3270 data stream was adapted for use on a TCP/IP network. By blending 3270
with the existing telnet standard, the Telnet 3270 standard emerged. Today,
552 Introduction to the New Mainframe: z/OS Basics

TN3270 has been further refined into TN3270 Enhanced, or TN3270E. This
standard is defined in RFC 2355.

To communicate with z/OS using TN32702, a client such as Personal
Communications is run on the workstation. This client establishes a TN3270
session using TCP. On the z/OS side, a TN3270 server converts the TN3270
protocol to SNA protocol and the connection to an application is completed using
VTAM. The completion of the SNA portion is done by the TN3270 server
acquiring a Logical Unit (LU) on behalf of the TN3270 client. Then, an LU-LU
session is established between the TN3270 server and the target application.
More on LU-LU sessions when we discuss VTAM later in this chapter.

19.5 VTAM overview
In z/OS, VTAM provides the SNA layer network communication stack to transport
data between applications and the end user. VTAM manages the SNA-defined
resources, establishes sessions between these resources, and tracks session
activity.

VTAM performs a number of tasks in a network, for example:

� Monitors and controls the activation and connection of resources.

� Establishes connections and manages the flow and pacing of sessions.

� Provides application programming interfaces (for example, an APPC API for
LU 6.2 programming) that allow access to the network by user-written
application programs and IBM-provided subsystems.

� Provides interactive terminal support for Time Sharing Option (TSO).

� Provides support for both locally and remotely attached resources.

z/OS runs only one VTAM address space. Each application that uses VTAM,
such as CICS/TS, requires a VTAM definition. The application and VTAM use this
definition to establish connections to other applications or end users.

Each end point of an SNA session is known as a logical unit (LU). An LU is a
device or program by which an end user (application program, a terminal
operator, or an input/output mechanism) gains access to the SNA network.
VTAM-established sessions are known as LU-to-LU sessions. In an SNA
network, CICS/TS, for example, is considered an LU and typically has many
sessions with other LUs, such as displays, printers, POS devices, and other
remote CICS/TS regions. Each LU is assigned a unique network addressable
unit (NAU) to facilitate communication.

2 Effectively all clients today run TN3270E, but the term TN3270 is used to describe either protocol.
 Chapter 19. Network Communications on z/OS 553

Figure 19-5 VTAM overview - the SNA environment

A physical unit (PU) controls one or more LUs. A PU is not literally a physical
device in the network. Rather, it is a portion of a device (usually programming or
circuitry, or both) that performs control functions for the device in which it is
located and, in some cases, for other devices that are attached to the
PU-containing device.

A PU exists in each node of an SNA network to manage and monitor the
resources (such as attached links and adjacent link stations) of the node.

The PU exists either within the device or within an attached controlling device.
VTAM must activate the PU before it can activate and own each LU attached to
the PU.

Even the mainframe is a type of PU, with attached LUs of which CICS/TS is an
example. There are three types of PUs:

� PU Type 5 is in the mainframe.
� PU Type 4 is a wide-area network communication controller.

317x

Cluster
controller

Host processor

z/OS
CICS
VTAM

PC
pSeries

AIX

iSeries

OS/400

zSeries
zSeries

z/VM

WindowsWindows

Communication
controller (37xx)

Workstations

NCP
554 Introduction to the New Mainframe: z/OS Basics

� PU Type 2 is a peripheral communication controller. These can be directly
attached to the mainframe or to a PU Type 4.

19.5.1 Network topologies supported by VTAM
Although TCP/IP is by far the most common way to communicate over a network
with a z/OS host, some environments still use native SNA, and many
environments now carry (encapsulate) SNA traffic over UDP/IP. The hierarchical
design of SNA serves the centralized data processing needs of large enterprises.
At the top of this hierarchy is VTAM. VTAM serves the following types of network
topologies:

� Subarea
� Advanced Peer-to-Peer Network (APPN)
� Subarea/APPN mixed

The part of VTAM that manages a subarea topology is called the System
Services Control Point (SSCP). The part of VTAM that manages APPN topology
is called the Control Point (CP).

VTAM subarea networks predate APPN. In many large enterprises, migration of
subarea networks to an APPN topology is a desired technical objective. If
Enterprise Extender (EE) is also added to the network, additional functions are
available, including TCP/IP packet enveloping of SNA application data. This
consolidates older SNA-specific communication equipment by redirecting SNA
data flows through existing TCP/IP communication networks. Also, VTAM
administration and required coordination between communication hardware and
software personnel can be significantly reduced with a pure APPN topology as a
result of its increased flexibility over subarea networks.

All three VTAM configuration types (subarea, APPN, and mixed subarea/APPN)
exist throughout the world’s large enterprises.

19.5.2 What is a subarea network topology?
The distinguishing characteristics of a VTAM subarea network include the
ownership and sharing of SNA resources. A subarea is a collection of SNA
resources controlled by a single PU Type 5 or PU Type 4 node.

A single VTAM and the SNA resources it owns is called a domain. A
cross-domain resource manager (CDRM) allows for communication between
VTAM domains in the SNA network. When an LU requests a session to be
established with an LU in a separate VTAM domain, the VTAMs cooperate to
establish a cross-domain session.
 Chapter 19. Network Communications on z/OS 555

Figure 19-6 on page 556 shows a pure VTAM subarea network. This diagram
might, for example, be representative of a business that is based in New York
City with a large presence in Los Angeles, and a later expansion into Chicago.
Figure 19-6 includes three VTAM domains and six subareas. The Chicago
subarea then becomes part of the domain of its controlling VTAM.

In general, full migration from the older subarea topology to an APPN topology is
a desired technical objective due to opportunities to leverage a newer IP network
infrastructure and the cost reduction associated with elimination of older SNA
network equipment. It also simplifies VTAM network management through more
dynamic capabilities.

Figure 19-6 A pure VTAM subarea network

New York City

VTAM (SSCP) Subarea Configuration

Los Angeles Chicago
LU LU

LU LU LU LU

VTAM subarea (3)
SSCP (PU Type 5)

LU (CICSTS3)
LU (IM S3)

VTAM subarea (1)
SSCP (PU Type 5)

LU (CICSTS1)
LU (IM S1)

VTAM subarea (2)
SSCP (PU Type 5)

LU (CICSTS2)
LU (IM S2)

LU

LU

CC for Linux

CC for LinuxCC for Linux

PU2

PU2

PU2 PU2
556 Introduction to the New Mainframe: z/OS Basics

19.5.3 What an APPN network topology is
Advanced Peer-to-Peer Networking® (APPN) is a type of data communications
support that routes data in a network between two or more systems that do not
need to be directly connected.

APPN topology does not have a subarea number, nor does it have exclusive
ownership of the SNA resources. Each APPN-participating VTAM is included in a
geographically dispersed collection of shared SNA resources, eliminating the
need for a cross-domain resource manager to establish sessions.

APPN includes a high-performance routing (HPR) method of sending SNA
application data through existing TCP/IP network equipment. APPN includes a
function called Enterprise Extender (EE), sometimes referred to as HPR/IP. EE
ensures that SNA applications can be served by state-of-the-art IP networking
technology.

HPR is not limited exclusively to SNA/APPN over TCP/IP networks. Rather, HPR
is the APPN function that provide high-performance delivery of data through an
APPN network, combined with the high-availability feature of dynamic rerouting
of sessions around failures in the network. But HPR is supported over most types
of APPN connections (not just APPN over TCP/IP). Enterprise Extender (EE) is
the APPN/HPR function that allows SNA sessions and other APPN functions
(like HPR) to work over a TCP/IP network (instead of a native SNA network).

Assume that the company shown in Figure 19-6 on page 556 later migrates from
subarea network topology to APPN topology. Figure 19-7 on page 558 shows the
same company after migration.
 Chapter 19. Network Communications on z/OS 557

Figure 19-7 APPN topology

19.5.4 Summary of VTAM topologies
VTAM can be a subarea SSCP, an APPN CP, or both SSCP and CP serving a
mixed network. The newer APPN topology is a desired architecture because of
its ability to directly participate with existing IP infrastructures.

The original subarea SSCP VTAMs will naturally evolve into a mixed subarea
SSCP and APPN CP to take advantage of EE HPR/IP function and reduce costs
of network-attached SNA communication equipment. This will most likely lead to
subsequent decisions to migrate all remaining subareas to APPN topology to
reduce network complexity.

New York City

VTAM (CP) APPN Configuration

Los Angeles Chicago
PC PC

PC PC PC PC

Router

VTAM APPN
CP (PU Type 5)
LU (CICSTS3)

LU (IM S3)

VTAM APPN
CP (PU Type 5)
LU (CICSTS1)

LU (IM S1)

VTAM APPN
CP (PU Type 5)
LU (CICSTS2)

LU (IM S2)

Internet
segment

PC

PC

Internet
segment

Router

Internet
segment

Router

SNA over
intranet or
Internet

OSA
HPR/IP

OSA
HPR/IP

OSA
HPR/IP
558 Introduction to the New Mainframe: z/OS Basics

19.5.5 Using commands to monitor VTAM
The following list is a small sampling of VTAM commands used to gather
information about a VTAM environment.

� List the status of VTAM resources with DISPLAY(D NET,) commands, for
example:

D NET,VTAMOPTS Displays VTAM startup options.

D NET,CSM[,OWNERID=ALL]
Displays communication storage usage.

D NET,APPLS Displays status of defined applications (ACBs).

D NET,MAJNODES Displays status of will display all major nodes that have
been activated by VTAM.

D NET,TOPO,LIST=SUMMARY
Displays APPN topology information.

D NET,CPCP Displays status of APPN CP-CP sessions.

D NET,SESSIONS Displays status of subarea SSCP-SSCP sessions,
LU-LU sessions (including CP-CP sessions),
SSCP-LU sessions and SSCP-PU sessions.

D NET,CDRMS Displays status of subarea cross domain resource
managers.

D NET,EXIT Displays status of VTAM exit routines.

� Activate/Deactivate VTAM resources with VARY (V NET,) commands.

� Alter the VTAM environment with the MODIFY (F VTAM,) commands.

z/OS system programmers use products such as Tivoli NetView to monitor and
report on the status of VTAM resources.

Related reading: For more information about VTAM commands, see the IBM
publication, Communications Server SNA Operations.

19.5.6 Background: 3270 data stream
What HTML is to a Web application and browser, the 3270 data stream is to an
SNA application and device in an LU-LU session. Specialized commands are
embedded in the data of display screen devices and printers. The 3270 data
stream is data with these embedded instructions and data field descriptors. The
3270 data stream commands are created and read by SNA applications,
Physical Unit (PU) controllers managing the displays, and printers as well as
TN3270 emulators available in AIX and PC operating systems.
 Chapter 19. Network Communications on z/OS 559

One of the most notable advantages of the 3270 data stream is that a full screen
of data entries and corrections is sent to the receiving SNA application when the
Enter key or PF key is pressed.

The 3270 data stream includes column and row addresses of data fields, along
with data descriptors such as color, protected screen areas, and unprotected
screen areas.

When an SNA application sends data to a display screen, it includes column/row
location placement of individual data fields, descriptors of the data fields, and the
screen position of the cursor. The 3270 data stream ability to permit completion
of data entry before sending to the SNA applications saves the CPU from
unnecessary interruptions. Conversely, every key stroke of a VT100 vi session
requires CPU attention. When the key stroke CNTRL-G is entered at a VT100
something needs to understand this keystroke so that the status line can be
displayed.

The SNA 3270 data stream is critical to the success of the SNA network ability to
centrally manage many thousands of geographically dispersed display screens
and printers.

19.6 Summary
Enterprise networks can be designed, customized, operated, and supported
using combined features and functions of both SNA and TCP/IP network layers
using Communications Server on z/OS, AIX, Windows, Linux, and Linux on
zSeries.

A significant number of large enterprises use 3270 and SNA applications and
have no need to rewrite the business application APIs. As a result, VTAM
continues to be supported while integrating it with technologies such as APPN,
HPR, and EE. In addition, TCP/IP uses VTAM for memory management, device
communication (all IP devices go through VTAM), and TN3270 sessions.

Enterprises can—for selected SNA workloads—use Communications Server
products to replace some of the old SNA infrastructure components, such as the
IBM 3725/45 (NCP) communication controller hardware or other
channel-attached SNA controllers.
560 Introduction to the New Mainframe: z/OS Basics

19.7 Questions for review
To help test your understanding of the material in this chapter, complete the
following review questions:

1. What components are common between the SNA and TCP/IP network
layers?

2. Is the majority of the world’s corporate data served by z/OS SNA
applications?

3. Does a business need to rewrite SNA business applications to Web-enable
the application?

4. What is the difference between an SNA subarea network and APPN
topology?

5. Why is APPN topology more desirable than a SNA subarea network?

6. What do HTML and a 3270 data stream have in common?

7. What is common about an IP address and an SNA “network addressable unit”
(NAU)?

8. What z/OS Communications Server resources are shared by TCP/IP and
VTAM?

9. What z/OS Communications Server component provides a shared I/O data
buffer area to both TCP/IP and VTAM?

19.8 Exercises
1. From SDSF, enter the TCP/IP command /D TCPIP,,NETSTAT,HOME and from

ISPF enter TSO NETSTAT HOME.

Key terms in this chapter

APPN communications server Internet

LU-to-LU NCP OSI

SDLC SNA TCP/IP

PU VTAM LU

stack Internet segment subarea
 Chapter 19. Network Communications on z/OS 561

Is the output from each command the same? What is the home IP address or
addresses of this z/OS system?

2. From SDSF, enter the VTAM command /D NET,CSM.

– How much space TOTAL ALL SOURCES is INUSE?
– How much space TOTAL ALL SOURCES is FREE?
– How much space TOTAL ALL SOURCES is AVAILABLE?

3. From SDSF, enter the following VTAM commands:

/D NET,APPLS
/D NET,MAJNODES
/D NET,TOPO,LIST=SUMMARY
/D NET,CPCP
/D NET,SESSIONS
/D NET,SESSIONS,LIST=ALL
/D NET,TSOUSER,ID=yourid

Write down your IP address ___.___.___.___

Briefly describe how the output of this command could be useful.

4. From ISPF start the z/OS UNIX shell with TSO OMVS.

– Enter netstat -h.
Same information as in Exercise 1?

– Note that you can use the TCP/IP commands from the z/OS UNIX shell as
well (prefix o).

– Enter ping your.ip.addr.ess.

– Enter traceroute your.ip.addr.ess.

– Exit the z/OS UNIX shell (exit).
562 Introduction to the New Mainframe: z/OS Basics

Appendix A. A brief look at IBM
mainframe history

This appendix discusses the development of the IBM mainframe from 1964 to the
present, as shown in Figure A-1.

Figure A-1 IBM mainframe time line

On April 7, 1964 IBM introduced System/360, a family of five increasingly
powerful computers that ran the same operating system and could use the same
44 peripheral devices. Along with S/360 were also born the I/O subsystem
concept (namely defining processors to transfer data between memory and I/O

A

1964 1970 1980 1990 2000 2004

S/360 S/370 S/370XA – 31 bits ESA/390 z/Architecture – 64 bits

MVT, PCP
MFT MVS - VTAM

VM

MVS/XA MVS/ESA
OS/390

z/OS

DB2
z/VM

Linux
CICS

HW

SW

Unix System Services-

TCP/IP

WebSphere

CMOS –

Parallel Sysplex
© Copyright IBM Corp. 2006. All rights reserved. 563

devices), and parallel channels (channels to transmit data in parallel to I/O
devices).

Figure A-2 S/360 Model 40

For the first time, companies could run mission-critical applications for business
on a highly secure platform.

In 1968, IBM introduced Customer Information Control System (CICS). It allowed
workplace personnel to enter, update, and retrieve data online. To date, CICS
remains one of the industry's most popular transaction monitors.

In 1969, Apollo 11's successful landing on the moon was supported by several
System 360s, Information Management System (IMS) 360 and IBM software.

In the summer of 1970, IBM announced a family of machines with an enhanced
instruction set, called System/370. These machines were capable of using more
than one processor in the same system (initially two), sharing the memory.
Through the 1970s the machines got bigger and faster, and multiprocessor
systems became common. The 370 Model 145 was the first computer with fully
integrated monolithic memory (circuits in which all of the same
elements—resistors, capacitors, and diodes—are fabricated on a single slice of
silicon) and 128-bit bipolar chips. More than 1,400 microscopic circuit elements
were etched onto each one-eighth-inch-square chip.
564 Introduction to the New Mainframe: z/OS Basics

Figure A-3 S/370™ Model 165

Able to run System/360 programs, thus easing the upgrade burden for
customers, System/370 was also one of the first lines of computers to include
“virtual memory” technology. This is a technique developed to expand the
capabilities of the computer by using space on the hard drive to accommodate
the memory requirements of software.

1980 saw the introduction of the 3081 processor. The 3081 offered a two-fold
increase in internal performance from the previous mainframe processor, the
3033. It also featured Thermal Conduction Modules (TCMs) that significantly
reduce space, cooling, and power requirements.
 Appendix A. A brief look at IBM mainframe history 565

Figure A-4 3081 processor complex

Around 1982, addresses were extended from 24 bits to 31 bits (370XA).

In 1984, IBM announced a 1-megabit Silicon and Aluminum Metal Oxide
Semiconductor (SAMOS) chip. Although “mega” means million, the chip actually
holds 1,048,576 bits of information in a space smaller than a child's fingernail.

In 1988 extensions were added to support multiple address spaces. Still in 1988,
using the mainframe, customers could deploy the DB2 database beyond
“decision support systems” and into core transactional processing, driving
reductions in CPU costs and dramatic improvements in concurrency.

In this period, IBM introduced the logical partition (LP) concept, which makes it
possible to logically partition a mainframe into several independent processors
sharing the same hardware.

Some industry pundits, however, didn't think the mainframe would survive the
early 1990s. They predicted that the rapid growth in personal computers and
small servers would render “Big Iron” (industry jargon for mainframe) obsolete.
But IBM believed that serious, security-rich, industrial-strength computing would
always be in demand, hence System/390. IBM stuck with the mainframe, but
reinvented it from the inside, infusing it with an entirely new technology core and
reducing its price.
566 Introduction to the New Mainframe: z/OS Basics

Figure A-5 S/390 G5 and G6

IBM introduced the concept of System Clustering and Data Sharing, and
announced System/390 Parallel Sysplex, which made possible very high levels of
system availability.

Complementary Metal Oxide Semiconductor (CMOS)-based processors were
introduced into the mainframe environment, replacing the bipolar technology and
setting the new direction for modern mainframe technology. CMOS chips
required less power than chips using just one type of transistor.

In the same decade, IBM introduced the parallel channel by Enterprise System
Connectivity (ESCON) and began the integration of the network adapter to the
mainframe, Open System Adapter (OSA).

In 1998 IBM introduced a new module capable of surpassing the 1,000 MIPS
barrier, making it one of the world's most powerful mainframes. Also in this
period, the concept of logical partition was extended to support 15 partitions.

Capacity Upgrade on Demand (CUoD) debuted on System/390 in 1999. CUoD
provides extra processors as spare capacity that can be “turned on” as dictated
by business needs. It provides a critical tool that can help companies better
manage spikes in demand and handle unpredictable changes.

Still in 1999, IBM introduced the first enterprise server to use IBM's innovative
copper chip technology. The synergy helped extend customers' ability to handle
millions of e-business workload transactions and large-scale Enterprise
Resource Planning applications. A new concept arose at that time, the possibility
to increase the machines’ capacity without stopping them.
 Appendix A. A brief look at IBM mainframe history 567

FICON, a new fiber optic channel was introduced with up to eight times the
capacity of ESCON channels. Also in 1999, Linux appeared on System/390 for
the first time.

In October 2000, IBM announced the first generation of the zSeries mainframes.
The z/Architecture is an extension of ESA/390 and supports 64-bit addressing.
Dynamic channel management was also introduced, as well as specialized
cryptographic capability. The mainframe became “open” and capable of
executing Linux; special processors (IFLs) were developed.

z900 was launched in 2000 and was the first IBM server “designed from the
ground up for e-business.”

Figure A-6 z900

The z900 was followed by the z990. The z990 reached 9000 MIPS; the increased
scalability was further supported by the increase in the number of logical
partitions available from 15 to 30 LPARs. There is still a 256-channel limit per
operating system image, but z990 can have 1024 channels distributed in four
Logical Channel SubSystems (LCSSs). The current model also offers IFL, a
special processor for Linux to manage clustering, and zAAP to process Java.
568 Introduction to the New Mainframe: z/OS Basics

Figure A-7 z990

zSeries is based on the 64-bit z/Architecture, which is designed to reduce
memory and storage bottlenecks and which can automatically direct resources to
priority workloads through Intelligent Resource Director (IRD). IRD is a key
feature of the z/Architecture. Together, Parallel Sysplex technology and IRD are
designed to provide the flexibility and responsiveness required by on demand
business workloads.

The z990 provides a multibook system structure that supports the configuration
of one to four books. Each book is comprised of a Multiple Chip Module (MCM)
with 12 processors, of which eight can be configured as standard processors;
memory cards that can support up to 64 GB of memory per book; and high
performance Self-Timed Interconnects. The maximum number of processors
available on a z990 is 32.

To support the highly scalable multibook system design, the Channel SubSystem
(CSS) has been enhanced with Logical Channel SubSystems (LCSSs), which
offers the capability to install up to 1024 ESCON channels across three I/O
cages. With Spanned Channel support, HiperSockets™, ICB, ISC-3,
OSA-Express and FICON Express can be shared across LCSSs for additional
flexibility. High-speed interconnects for TCP/IP communication, known as
HiperSockets, allow TCP/IP traffic to travel among partitions and virtual servers
at memory speed, rather than network speed.

The latest generation of mainframes, the IBM System z9 109 (also known as the
z9-109) is the next step in the evolution of the IBM mainframe family. It uses the
z/Architecture and instruction set (with some extensions) of the z900 and z990
servers. (This architecture, formerly known as ESAME Architecture, is commonly
 Appendix A. A brief look at IBM mainframe history 569

known as 64-bit architecture, although it provides much more than 64-bit
capability.) The physical appearance of the z9-109 server and z990 servers is
very similar. However, in addition to extending zSeries technology, the z9-109
server delivers enhancements in the areas of performance, scalability,
availability, security and virtualization.

Figure A-8 z9-109

Examples of further mainframe evolution in the z9-109 include:

� A modular multi-book design that supports one to four books and up to 54
processor units (customer-usable PUs) per server

� Full 64-bit real and virtual storage support, and any logical partition can be
defined for 31-bit or 64-bit addressability

� Up to 512GB of system memory
� Up to 60 logical partitions

In previous generations of mainframes, the number of I/O devices in a system
was limited by the number of channels, the number of control units on each
channel, and the number of devices on each channel. The addressing structure
also provided a limitation. The fixed three-byte addresses (one byte each for
channel, control unit, and device) of early systems evolved into four-byte device
numbers allowing up to almost 64K device addresses. The z9-109 server
continues this growth by providing Multiple Subchannel Sets (MSS), allowing up
to almost 128K device addresses.
570 Introduction to the New Mainframe: z/OS Basics

Channel performance has grown from parallel channels to ESCON channels to
FICON channels. The z9-109 server continues such growth by providing a
significantly higher-performance option for channel programming.

Server workloads have been partly offloaded into segregated processors such as
SAPs, ICFs, IFLs, and zAAPs. The z9-109 server enhances the management by
providing separate pools for PR/SM handling of shared ICFs, IFPs, and zAAPs.

Basic "real" systems evolved into virtual systems and this evolution has extended
to systems, processors, memory, I/O devices, LAN interfaces, and so forth. The
z9-109 server continues this direction with new instructions that improve the
performance of virtual machine QDIO operations. This is done by creating a
passthrough architecture designed to reduce host programming overhead,
avoiding the stopping of guest processing when adapter interruptions are
present.

Recent mainframe generations have extended the instruction set provided to
include instructions more compatible with other platforms (such as binary floating
point), instructions to better implement popular languages (such as the
string-handling instructions for C/C++), instructions to improve register usage
(such as the relative and immediate instructions, and the long-displacement
instructions), and so forth. The z9-109 server continues this expansion with new
and changed instructions.

Cryptographic hardware assistance has been available in many forms on earlier
systems, and with much more emphasis in more recent servers. The z9-109
server continues the evolution of cryptographic hardware processing by
extended the functions of the basic cryptographic instructions and by
consolidating the options (secure coprocessor and accelerator) in a single
feature. The two options can be individually defined to the feature.

Transparent hardware recovery has been a keystone in mainframe design and
has evolved in many directions. The z9-109 server continues this evolution by
extending such transparent recovery functions to include the paths from I/O
cages to system memory.

Concurrent maintenance is a major design goal for modern mainframes and
often involves balancing a design between replicated components and more
integration onto chips and MCMs. The z9-109 server allows for a single book, in
a multi-book configuration, to be concurrently removed and reinstalled during an
upgrade or repair.
 Appendix A. A brief look at IBM mainframe history 571

572 Introduction to the New Mainframe: z/OS Basics

Appendix B. DB2 sample tables

Most of the examples in Chapter 12, “Database management systems on z/OS”
on page 379refer to the tables in this appendix. As a group, the tables include
information that describes employees and departments and make up a sample
application that illustrates most of the features of DB2.

Department table (DEPT)
The department table describes each department in the enterprise, identifies its
manager, and shows the department to which it reports. The table resides in
table space DSN8D81A.DSN8S81D and is created with the following code:

Because the table is self-referencing, and also is part of a cycle of dependencies,
its foreign keys must be added later with these statements:

B

© Copyright IBM Corp. 2006. All rights reserved. 573

The content of the department table

Indexes on the department table
574 Introduction to the New Mainframe: z/OS Basics

Content of the department table

Relationship to other tables
The table is self-referencing: the value of the administering department must be a depart-
ment ID. The table is a parent table of:
� The employee table, through a foreign key on column WORKDEPT.

� The project table, through a foreign key on column DEPTNO. It is a
dependent of the employee table, through its foreign key on column MGRNO.

Employee table (EMP)
The employee table identifies all employees by an employee number and lists
basic personnel information. The table resides in the partitioned table space
DSN8D81A.DSN8S81E. Because it has a foreign key referencing DEPT, that
table and the index on its primary key must be created first. Then EMP is created
with the following:
 Appendix B. DB2 sample tables 575

576 Introduction to the New Mainframe: z/OS Basics

Columns of the employee table

Indexes of the employee table

Relationship to other tables
The table is a parent table of:

� The department table, through a foreign key on column MGRNO.

� The project table, through a foreign key on column RESPEMP. It is a
dependent of the department table, through its foreign key on column
WORKDEPT.
 Appendix B. DB2 sample tables 577

578 Introduction to the New Mainframe: z/OS Basics

Appendix C. Utility programs

There is no specific definition of what constitutes a z/OS utility program today, but
common usage includes only a few z/OS-provided programs as utilities. The
UNIX community, by contrast, considers many of the standard commands as
utilities. This includes compilers, backup programs, filters, and many other types
of programs. To the z/OS community these are applications or programs, not
utilities.1 The difference is simply one of terminology, but it can be confusing to
new z/OS users.

z/OS utilities are batch programs (although they can be used in the TSO
foreground with appropriate ALLOC commands) and they tend to have similar
JCL requirements. These include DD statements for SYSPRINT, SYSIN,
SYSUT1, and SYSUT2. Most z/OS users are familiar with IEFBR14, IEBGENER,
and IEBCOPY. VSAM users must be familiar with IDCAMS.

Considering the wide-ranging functions and abilities of z/OS, there are only a
small number of system-provided utilities. This has resulted in a large number of
customer-written utility programs (although most users refrain from naming them
utilities), and many of these are widely shared by the user community.
Independent software vendors also provide many similar products (for a fee).
Some of these can be categorized as utilities; of these, some compete with IBM
utilities, while many others provide functions not included with the IBM-provided
utilities.

C

1 z/OS UNIX uses the common UNIX terminology for utilities.
© Copyright IBM Corp. 2006. All rights reserved. 579

Most of the basic and system utilities described here are described in the IBM
publication, z/OS DFSMSdfp Utilities. This appendix is intended to provide a
summary of what is available and to provide simple examples of the most basic
utility functions.

Basic utilities
A few utility programs (using the traditional terminology) are widely used in batch
jobs. These are described in some detail here.

IEFBR14
The only function of this program is to provide a zero (0) completion code. It is
used as a safe vehicle to “execute JCL.” The notion of executing JCL is
considered incorrect terminology, but it conveys the idea very well. For example,
consider the following job:

//OGDEN1 JOB 1,BILL,MSGCLASS=X
// EXEC PGM=IEFBR14
//A DD DSN=OGDEN.LIB.CNTL,DISP=(NEW,CATLG),VOL=SER=WORK02,
// UNIT=3390,SPACE=(CYL,(3,1,25)
//B DD DSN=OGDEN.OLD.DATA,DISP=(OLD,DELETE)

This is a useful job although the program that is executed (IEFBR14) does
nothing. While preparing to run the job, the initiator allocates OGDEN.LIB.CNTL
and keeps the data set when the job ends. It also deletes OGDEN.OLD.DATA at
the end of the job. The DD names A and B have no meaning and are used
because the syntax of a DD statement requires a DD name.

The same functions to create one data set and delete another could be done
through ISPF, for example, but these actions might be needed as part of a larger
sequence of batch jobs.

IEFBR14 is not a utility, in the sense that it is not included in the Utilities manual.
However, there is no other practical category for this useful program, so we have
arbitrarily placed it in the utility category.

Note: The name IEFBR14 is interesting. One IBM group writing early OS/360
code used the prefix IEF for all their modules. In assembly language BR
means Branch to the address in a Register. Branching to the address in
general register 14 is the standard way to end a program. While not an
especially clever name, practically all dedicated z/OS users remember
IEFBR14 easily.
580 Introduction to the New Mainframe: z/OS Basics

IEBGENER
The IEBGENER utility copies one sequential data set to another. (Remember
that a member of a partitioned data set can be used as a sequential data set.) It
can also do some filtering of the data, change LRECL and BLKSIZE, generate
records, and several other functions. However, the most common use is to simply
copy data sets. A typical job could be the following:

//OGDEN2 JOB 1,BILL,MSGCLASS=X
// PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=X
//SYSUT1 DD DISP=SHR,DSN=BILL.SEQ.DATA
//SYSUT2 DD DISP=(NEW,CATLG),DSN=BILL.COPY.DATA,UNIT=3390,
// VOL=SER=WORK02,SPACE=(TRK,3,3))

IEBGENER requires four DD statements with the DD names indicated in the
example. The SYSIN DD statement is used to read control parameters; for
simple uses no control parameters are needed and a DD DUMMY can be used.
The SYSPRINT statement is for messages from IEBGENER. The SYSUT1
statement is for input and the SYSUT2 statement is for output. This example
reads an existing data set and copies it to a new data set.

If the output data set is new and if no DCB parameters are specified, IEBGENER
copies the DCB parameters from the input data set. (The DCB parameters
include LRECL, RECFM, and BLKSIZE, as described in 5.8, “Data set record
formats” on page 171.)

Another common example is something like the following:

//OGDEN2 JOB 1,BILL,MSGCLASS=X
// PGM=IEBGENER
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=X
//SYSUT2 DD DISP=OLD,DSN=BILL.TEST.DATA
//SYSUT1 DD *
 This is in-stream data. It can be as long
 as you like. It appears to an application as
 LRECL=80, RECFM=F, BLKSIZE=80. You would
 want to have the SYSUT2 data set allocated with
 a better blocksize.
/*

This example assumes BILL.TEST.DATA has already been created. This job will
overwrite it with the data in the SYSUT1 input stream. Since the output data set
already exists, IEBGENER will use its existing DCB attributes.

IEBGENER is the most basic copy or list program supplied with z/OS. It has been
present since the first release of OS/360.
 Appendix C. Utility programs 581

IEBCOPY
This utility is commonly used for several purposes:

� To copy selected (or all) members from one partitioned data set to another.

� To copy a partitioned data set into a unique sequential format known as an
unloaded partitioned data set. As a sequential data set it can be written on
tape, sent by FTP,2 or manipulated as a simple sequential data set.

� To read an unloaded partitioned data set (which is a sequential file) and
recreate the original partitioned data set. Optionally, only selected members
might be used.

� To compress partitioned data sets (in place) to recover lost space.

Most z/OS software products are distributed as unloaded partitioned data sets.
The ISPF copy options (option 3.3, among others) uses IEBCOPY “under the
covers.” Moving a PDS or PDSE from one volume to another is easily done with
IEBCOPY. If there is a need to manipulate partitioned data sets in batch jobs,
IEBCOPY is probably used. Equivalent manipulation under TSO (using ISPF)
uses IEBCOPY indirectly.

A simple IEBCOPY job might be the following:

//OGDEN5 JOB 1,BILL,MSGCLASS=X
// EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DISP=SHR,DSN=OGDEN.LIB.SOURCE
//SYSUT2 DD DISP=(NEW,KEEP),UNIT=TAPE,DSN=OGDENS.SOURCE,
// VOL=SER=123456

This job will unload OGDEN.LIB.SOURCE (which we assume is a partitioned
data set) and write it on tape. (The name TAPE is assumed to be an esoteric
name that the local installation associates with tape drives.) By default IEBCOPY
copies from SYSUT1 to SYSUT2. Notice that the data set name on tape is not
the same as the data set name used as input (the same name could be used, but
there is no requirement to do so). The following job could be used to restore the
PDS on another volume:

//JOE6 JOB 1,JOE,MSGCLASS=X
// EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DISP=OLD,UNIT=TAPE,DSN=OGDENS.SOURCE,
 VOL=SER=123456
//SYSUT2 DD DISP=(NEW,CATLG),DSN=P390Z.LIB.PGMS,UNIT=3390,

2 The output data set is normally V or VB, and there are additional considerations about sending V or
VB data sets through FTP.
582 Introduction to the New Mainframe: z/OS Basics

// SPACE=(TRK,(10,10,20)),VOL=SER=333333
In this example IEBCOPY will detect that the input data set is an unloaded
partitioned data set. We required external knowledge to determine that the
data set would fit in about 10 tracks and should have 20 directory blocks.
Instead of using DD DUMMY for SYSIN we could this:
//SYSIN DD *
 COPY OUTDD=SYSUT2,INDD=SYSUT1
 SELECT MEMBER=(PGM1,PGM2)
/*

The OUTDD and INDD parameters specify the DD names to be used. In this
case we simply used the default names, but this is not required. The SELECT
statement specifies the member names to be processed.

Restoring a partitioned data set from an unloaded copy automatically
compresses (recovers lost space) the data set.

IEBDG
The IEBDG utility is used to create records in which fields can be generated with
various types of data. IEBDG is typically used to create test data. A variety of
fields and data can be generated and the fields can be changed for each record
with ripple, wave, shift, roll, and other field permutations. IEBDG can accept input
data records and overlay specified fields in the input with generated data.

The following is a simple example of IEGDB use:

//OGDEN7 JOB 1,BILL,MSGCLASS=X
// EXEC PGM=IEBDG
//SYSPRINT DD SYSOUT=*
//OUT DD DISP=(NEW,CATLG),DSN=OGDEN.TEST.DATA,UNIT=3390,
// VOL=SER=WORK01,SPACE=(CYL,(10,1)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000)
//SYSIN DD *
 DSD OUTPUT=(OUT)
 FD NAME=FIELD1,LENGTH=30,FORMAT=AL,ACTION=RP
 FD NAME=FIELD2,LENGTH=10,PICTURE=10,'TEST DATA '
 FD NAME=FIELD3,LENGTH=10,FORMAT=RA
 CREATE QUANTITY=90000,NAME=(FIELD1,FIELD2,FIELD3)
 END
/*

This job creates a new data set, OGDEN.TEST.DATA, with 90,000 records. Each
record is 80 bytes, as specified in the DCB parameters in the DD statement. The
control statements specify three fields that occupy the first 50 bytes of each
record. By default, IEBDG fills the remaining bytes with binary zeros. The three
fields are:
 Appendix C. Utility programs 583

� An alphabetic field ('ABCDEF...'), 30 bytes long. It is rippled (rotated left one
byte) after each record is generated.

� The second field contains 10 bytes with the fixed constant 'TEST DATA '.

� The third field contains 10 bytes with random binary data.

The utility can generate more complex patterns, but this example is typical of
simple usage. It also illustrates an estimate of the amount of disk space needed
for data:

� We know that a 3390 track holds about 57 K, less whatever space is lost to
inter-record gaps.

� We know the DCB parameters (as specified in the JCL) are LRECL=80,
BLKSIZE=8000, and RECFM=FB. We do not know why these DCB
parameters were selected, but we assume they relate to the program that will
use the test data.

� We can estimate that six blocks of 8000 each will probably fit on one track.
This is not an efficient block size because some track space is probably lost,
but it is useful enough.

� Each block contains 100 records of 80 bytes each. Each track contains 600
records. (There is no space lost within a block of FB records.)

� A cylinder contains 15 tracks, therefore a cylinder will hold 9000 of these
records.

� Based on this, we need 10 cylinders to hold 90,000 records. We specified 10
cylinders as the primary allocation space in the JCL, with one cylinder as the
secondary allocation increment. We should not require any secondary
allocation, but it provides a safety factor. We could have asked for 150 tracks
instead of 10 cylinders; the result would be the same.

IDCAMS
The IDCAMS program is not part of the basic set of z/OS utilities documented in
the z/OS Utilities manual. The IDCAMS program is primarily used to create and
manipulate VSAM data sets. It has other functions (such as catalog updates), but
it is most closely associated with VSAM. It provides many complex functions and
whole manuals are needed to describe all of them. The basic IBM manual, at the
time of writing, is DFSMS Access Method Services for Catalogs.

A typical example of a simple use of IDCAMS is as follows:

//OGDEN12 JOB 1,BILL,MSGCLASS=X
//DEL EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
584 Introduction to the New Mainframe: z/OS Basics

 DELETE OGDEN.DATA.VSAM CLUSTER
/*
//LOAD EXEC PGM=IDCAMS
//SYSPRINT DD *
//DATAIN DD DISP=OLD,DSN=OGDEN.SORTOUT
//SYSIN DD *
 DEFINE CLUSTER (NAME (OGDEN.DATA.VSAM) -
 VOLUMES(WORK02) CYLINDERS(1 1) -
 RECORDSIZE (72 100) KEYS(9 8) INDEXED)
 REPRO INFILE(DATAIN) OUTDATASET(OGDEN.DATA.VSAM) ELIMIT(200)
/*

This example illustrates a number of points:

� There are two job steps. The first step deletes the data set that will be created
by the second step. This is a clean-up function. The data set might not exist at
this point and the first step will have a completion code indicating the action
failed. This is ignored.

� Note that there are no DD statements for the VSAM data set. IDCAMS
performs dynamic allocation to create the necessary JCL.

� The second step performs two functions. It first creates a VSAM data set (with
the DEFINE CLUSTER command), and then loads it from a sequential data
set (with the REPRO command). The sequential data set does require a DD
statement.

� The DEFINE CLUSTER command is continued over three records. The
continuation indicators are the same as used for TSO commands.

� The VSAM data set is on volume WORK02, and uses one cylinder for primary
space and one cylinder for secondary allocation. The average record size is
72 bytes and the maximum record size is 100 bytes. (VSAM data sets always
use variable length records.) The primary key (for accessing records in the
data set) is 8 bytes long and begins at an offset of 9 bytes into each record.

� Records for loading a VSAM data set this way should already be sorted into
key order.

� The ELIMIT parameter specifies the number of error records that REPRO will
ignore before terminating operation. An error record is usually due to a
duplicate key value.

Many of IDCAMS functions can be entered as TSO commands. For example,
DEFINE CLUSTER can be used as a TSO command. However, this is generally
not recommended because these commands can be complex and the errors
encountered can be complex. Entering the IDCAMS commands through a batch
job allows the commands and resulting messages to be reviewed as often as
necessary by using SDSF to view the output.
 Appendix C. Utility programs 585

IEBUPDTE
The IEBUPDTE utility is used to create multiple members in a partitioned data
set, or to update records within a member. While it can be used for other types of
records, its main use is to create or maintain JCL procedure libraries or
assembler macro libraries. Today, this utility is used mostly for z/OS licensed
program distributions and maintenance. It is seldom used by TSO users.

A basic example involves adding two JCL procedures to MY.PROCLIB. This
could easily be accomplished through ISPF, but if we assume the following job
was sent on tape, then the usefulness is more apparent:

//OGDEN10 JOB 1,BILL,MSGCLASS=X
// EXEC PGM=IEBUPDTE
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=OLD,DSN=MY.PROCLIB
//SYSUT2 DD DISP=OLD,DSN=MY.PROCLIB
//SYSIN DD DATA
./ ADD LIST=ALL,NAME=MYJOB1
//STEP1 EXEC=BILLX1
//PRINT DD SYSOUT=A
// (more JCL for MYJOB1)
//SYSUDUMP DD SYSOUT=* (last JCL for MYJOB1)
./ REPL LIST=ALL,NAME=LASTJOB
//LIST EXEC PGM=BILLLIST
// (more JCL for this procedure)
//* LAST JCL STATEMENT FOR LASTJOB
./ ENDUP
/*

This example requires a few comments:

� When a library is to be updated, then SYSUT1 and SYSUT2 both point to that
library. (If they point to different libraries, the SYSUT1 library is copied to the
SYSUT2 library and then updated.)

� The SYSIN DD DATA format indicates that the data in the input stream
contains // in columns one and two. It should not be interpreted as JCL. The
end of the input stream is indicated by /*.

� The IEBUPDTE utility uses control statements with ./ in the first two columns.

� A member named MYJOB1 is added to MY.PROCLIB; this member should
not already exist in the library.

Note: Some users pronounce the name of this program as “id cams” (two
syllables) while others say “I D cams” (three syllables).
586 Introduction to the New Mainframe: z/OS Basics

� A member named LASTJOB is replaced with new contents.

The IEBUPDTE utility can also add or replace statements in a member based on
the sequence numbers in the statements. This is one of the few remaining uses
for sequence numbers in JCL or source statements.

Again, we stress that IEBUPDTE is typically used for program distribution and
maintenance. For example, if a software vendor’s product adds 25 JCL
procedures to a customer’s procedure library, the vendor might package the
procedures as an IEBUPDTE job. One advantage is that all the material is in
source format and the customer can easily review the contents before running
the job.

System-oriented utilities
The programs discussed in this section provide several basic utility functions for
system administrators and are only briefly described.

IEHLIST
The IEHLIST utility is used to list a partitioned data set directory or a disk volume
VTOC. It is normally used for VTOC listings and provides bit-level information.
IEHLIST is not used often in most installations, but is needed in the rare cases
where a VTOC is corrupted. It is sometimes used with the SUPERZAP program
to patch or fix a broken VTOC.

IEHINITT
The IEHINITT utility is used to write standard labels on tapes. It can be used, as
needed, to label a single tape or it can be used to label large batches of tapes.
Many larger z/OS installations do not allow unlabeled tapes to be brought into the
installation.

IEHPROGM
The IEHPROGM utility is almost obsolete. It is used primarily to manage
catalogs, rename data sets, and delete data sets by a program instead of by JCL
actions. It was primarily used during system installation or the installation of a
major program product. These functions may involve dozens (or hundreds) of
such catalog and data set actions. Having commands prepared beforehand (in a
batch job with IEHPROGM) is much less error-prone than more dynamic
approaches. Most of the IEHPROGM functions are available in IDCAMS and that
is now the preferred utility for catalog and data set functions.
 Appendix C. Utility programs 587

ICKDSF
The ICKDSF utility is used primarily to initialize disk volumes. At a minimum, this
involves creating the disk label record and the VTOC. ICKDSF can also scan a
volume to ensure that it is usable, reformat all the tracks, write home addresses
and R0 records, and so forth.

SUPERZAP
The SUPERZAP program (the actual name has changed a number of times) can
be used to patch disk records. It understands the format of executable modules
in PDS libraries, and this is needed for its most common use in applying patches
to such executable modules. SUPERZAP is not often used for system
maintenance now; its use was more common in earlier versions of the operting
system.

SUPERZAP is used to patch VTOCs, executable programs, or almost any other
disk record. In practice it is mostly used to patch executable programs. It was
extensively used in earlier days to install minor fixes in programs.

Consider, for example, a new release of product XXX. The new release may have
been sent on tape to hundreds or thousands of customers. After shipping all
these tapes the developers may have discovered a minor bug that could be fixed
by changing a few instructions. Instead of creating new distribution tapes and
shipping them to all the customers (a massive and expensive undertaking for a
major software product), the developers could create a SUPERZAP solution and
mail/fax/ftp it to their customers.

SUPERZAP is a bit-level tool. Its use is practical where relatively few bits or bytes
need to be changed. An example of SUPERZAP is:

//OGDEN15 JOB 1,BILL,MSGCLASS=X
// EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DISP=OLD,DSN=OGDEN.LIB.LOAD
//SYSIN DD *
 NAME QSAM1
 VERIFY 004E 4780
 REP 004E 4700
/*

A SYSLIB DD statement must point to the data set containing the load module to
be modified. The NAME control statement identifies the executable module
(which is the PDS member name) to be altered. The VERIFY statement says to
look at offset x'004E' in the module and verify that it contains x'4780'. If the verify
is correct then change the module to contain x'4700' at this same offset. This
588 Introduction to the New Mainframe: z/OS Basics

changes a Branch Equal instruction to a No Operation and, we assume, changes
the logic of the program.

We can make a SUPERZAP patch like this because we had an assembly listing
of the program and could see the exact offset within the module containing the
instruction we wanted to change. This would be much more difficult without a
listing although it has been done by reading hexadecimal storage dumps and
reconstructing machine language operation from the dumps. Note that the format
of executable programs on disk is complex and is not a simple image of the
program when it is loaded into memory. (Relocation data, external symbols, and
an optimized disk loading format form part of the complexity.) SUPERZAP
understands this disk format and allows users to zap an executable program as if
it were a memory image.

We have discussed SUPERZAP, but the program in the example is AMASPZAP.
This is the current name of the program although it is still widely known as
SUPERZAP.

Application-level utilities
There are many application programs that could be considered utilities. We
briefly describe a few of the very common ones here. These are more complex to
use than the basic programs above and we do not include usage examples.

ADRDSSU
This program is the primary disk dump and disk restore program provided with
z/OS. It is capable of filtering and selecting which data sets to dump or restore,
but it is used primarily as a full disk dump program. The purpose of dumping a
disk is usually to provide a backup of the contents that can be restored, if
needed. A common use is to dump complete volumes but restore only a specific
data set that was accidentally destroyed.

A backup is usually written to tape, but can be written to a disk data set. A disk
can be dumped track-by-track (known as a physical dump) or data set-by-data
set (known as a logical dump). When a logical dump is performed, multiple data
set extents may be combined into a single extent, partitioned data sets are
compressed, and free space is all in a single extent.

RMF
Resource Measurement Facility (RMF) is an optional IBM licensed program used
to measure various aspects of system performance. Different RMF modules
 Appendix C. Utility programs 589

provide long-term statistical gathering, instantaneous data, long-term reporting,
batch-type reports, TSO-oriented reports, and so forth. The hardware I/O system
maintains statistical counters about queueing time for each I/O device, amount of
activity per device, and other low-level information. RMF accesses these
hardware counters and includes them in its reports.
590 Introduction to the New Mainframe: z/OS Basics

Appendix D. EBCDIC - ASCII table

Hx Dec E A Hx Dec E A Hx Dec E A Hz Dec E A
00 00 NUL 20 32 SP 40 64 SP @ 60 96 - '
01 01 21 33 ! 41 65 A 61 97 / a
02 02 22 34 “ 42 66 B 62 98 b
03 03 23 35 # 43 67 C 63 99 c
04 04 24 36 $ 44 68 D 64 100 d
05 05 25 37 % 45 69 E 65 101 e
06 06 26 38 & 46 70 F 66 102 f
07 07 27 39 ' 47 71 G 67 103 g
08 08 28 40 (48 72 H 68 104 h
09 09 29 41) 49 73 I 69 105 i
0A 10 2A 42 * 4A 74 ^ J 6A 106 | j
0B 11 2B 43 + 4B 75 . K 6B 107 , k
0C 12 2C 44 , 4C 76 < L 6C 108 % l
0D 13 2D 45 - 4D 77 (M 6D 109 _ m
0E 14 2E 46 . 4E 78 + N 6E 110 > n
0F 15 2F 47 / 4F 79 | O 6F 111 ? o
10 16 30 48 0 50 80 & P 70 112 p
11 17 31 49 1 51 81 Q 71 113 q
12 18 32 50 2 52 82 R 72 114 r
13 19 33 51 3 53 83 S 73 115 s
14 20 34 52 4 54 84 T 74 116 t
15 21 35 53 5 55 85 U 75 117 u
16 22 36 54 6 56 86 V 76 118 v

D

© Copyright IBM Corp. 2006. All rights reserved. 591

Hx Dec E A Hx Dec E A Hx Dec E A Hz Dec E A
17 23 37 55 7 57 87 W 77 119 w
18 24 38 56 8 58 88 X 78 120 x
19 25 39 57 9 59 89 Y 79 121 y
1A 26 3A 58 : 5A 90 ! Z 7A 122 : z
1B 27 3B 59 ; 5B 91 $ [7B 123 # {
1C 28 3C 60 < 5C 92 * \ 7C 124 @ |
1D 29 3D 61 = 5D 93)] 7D 125 ' }
1E 30 3E 62 > 5E 94 ; ^ 7E 126 = ~
1F 31 3F 63 ? 5F 95 not _ 7F 127 “

80 128 A0 160 C0 192 { E0 224 \
81 129 a A1 161 C1 193 A E1 225
82 130 b A2 162 s C2 194 B E2 226 S
83 131 c A3 163 t C3 195 C E3 227 T
84 132 d A4 164 u C4 196 D E4 228 U
85 133 e A5 165 v C5 197 E E5 229 V
86 134 f A6 166 w C6 198 F E6 230 W
87 135 g A7 167 x C7 199 G E7 231 X
88 136 h A8 168 y C8 200 H E8 232 Y
89 137 i A9 169 z C9 201 I E9 233 Z
8A 138 AA 170 CA 202 EA 234
8B 139 AB 171 CB 203 EB 235
8C 140 AC 172 CC 204 EC 236
8D 141 AD 173 [CD 205 ED 237
8E 142 AE 174 CE 206 EE 238
8F 143 AF 175 CF 207 EF 239
90 144 B0 176 D0 208 } F0 240 0
91 145 j B1 177 D1 209 J F1 241 1
92 146 k B2 178 D2 210 K F2 242 2
93 147 l B3 179 D3 211 L F3 243 3
94 148 m B4 180 D4 212 M F4 244 4
95 149 n B5 181 D5 213 N F5 245 5
96 150 o B6 182 D6 214 O F6 246 6
97 151 p B7 183 D7 215 P F7 247 7
98 152 q B8 184 D8 216 Q F8 248 8
99 153 r B9 185 D9 217 R F9 249 9
9A 154 BA 186 DA 218 FA 250
9B 155 BB 187 DB 219 FB 251
9C 156 BC 188 DC 220 FC 252
9D 157 BD 189] DD 221 FD 253
9E 158 BE 190 DE 222 FE 254
9F 159 BF 191 DF 223 FF 255
592 Introduction to the New Mainframe: z/OS Basics

Appendix E. Class Program

All the exercises here work with an employee file (or database); this file identifies
all employees by an employee number and lists basic personnel information.

The exercise has the department number as input, selects all records from that
department, and then does the sum of the salary fields of those records. Finally,
the average salary is displayed.

The exercises that follow are written in different languages, executed in different
environments and with different data sources, but all cover the functionality just
described. The code, preparation jobs, and instructions are provided.

We assume students have installed an appropriate 3270 emulator and have the
appropriate TSO, CICS, DB2, and WebSphere for z/OS authorizations. Pay
attention to the system definitions (like HLQs, DB2 database name, and so on)
that each exercise might require.

COBOL-CICS-DB2 program

Source code

Map definition

E

© Copyright IBM Corp. 2006. All rights reserved. 593

This definition is in member TMAP01 in LUISM.TEST.SAMPLIB library.

 PRINT NOGEN
TMAPSET DFHMSD TYPE=&SYSPARM, x
 LANG=COBOL, x
 MODE=INOUT, x
 TERM=3270-2, x
 CTRL=FREEKB, x
 STORAGE=AUTO, x
 TIOAPFX=YES
TMAP01 DFHMDI SIZE=(24,80), x
 LINE=1, x
 COLUMN=1, x
 MAPATTS=COLOR
 DFHMDF POS=(1,1), x
 LENGTH=9, x
 ATTRB=(NORM,PROT), x
 COLOR=BLUE, x
 INITIAL='ABCD txid'
 DFHMDF POS=(1,26), x
 LENGTH=28, x
 ATTRB=(NORM,PROT), x
 COLOR=GREEN, x
 INITIAL='Average salary by department'
 DFHMDF POS=(9,1), x
 LENGTH=41, x

ATTRB=(NORM,PROT), x
 INITIAL='Type a department number and press enter.'
 DFHMDF POS=(11,1), x
 LENGTH=18, x
 ATTRB=(NORM,PROT), x
 COLOR=GREEN, x
 INITIAL='Department number:'
DPTONO DFHMDF POS=(11,20), x
 LENGTH=3, x
 ATTRB=(NORM,UNPROT,IC), x
 COLOR=TURQUOISE, x
 INITIAL='___'
 DFHMDF POS=(11,24), x
 LENGTH=1, x
 ATTRB=ASKIP
 DFHMDF POS=(13,1), x
 LENGTH=18, x
 ATTRB=(NORM,PROT), x
 COLOR=GREEN, x
 INITIAL='Average salary($):'
AVGSAL DFHMDF POS=(13,20), x
594 Introduction to the New Mainframe: z/OS Basics

 LENGTH=11, x
 ATTRB=(NORM,PROT), X
 COLOR=TURQUOISE
MSGLINE DFHMDF POS=(23,1), x

 LENGTH=78, x
 ATTRB=(BRT,PROT), x
 COLOR=BLUE
 DFHMDF POS=(23,79), x
 LENGTH=1, x
 ATTRB=(DRK,PROT,FSET), x
 INITIAL=' '
 DFHMDF POS=(24,1), x
 LENGTH=7, x
 ATTRB=(NORM,PROT), x
 COLOR=RED, x
 INITIAL='F3=Exit'
 DFHMSD TYPE=FINAL
 END

Program code

This program resides in member XYZ2 in LUISM.TEST.SAMPLIB library.

IDENTIFICATION DIVISION.
 *---
 * COBOL-CICS-DB2 PROGRAM ZSCHOLAR RESIDENCY
 * OBTAINS THE AVERAGE SALARY OF EMPLOYEES OF A GIVEN DEPART.
 *--
 *-----------------------
 PROGRAM-ID. XYZ2.
 /
 ENVIRONMENT DIVISION.
 *--------------------
 CONFIGURATION SECTION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 DATA DIVISION.
 *-------------
 FILE SECTION.
 /
 *-------------
 WORKING-STORAGE SECTION.

 * WORKAREAS *

 01 SWITCH.
 Appendix E. Class Program 595

 05 DATA-IS PIC X VALUE 'Y'.
 88 DATA-IS-O VALUE 'Y'.

 05 SEND-IND PIC X.
 88 SEND-IND-ERASE VALUE '1'.
 88 SEND-IND-DATAO VALUE '2'.
 88 SEND-IND-ALARM VALUE '3'.
 01 COMMUNICATION-AREA PIC X.
 01 MSGLINET.
 02 MSGSQLC PIC X(8).
 02 FILLER PIC X.
 02 MSGREST PIC X(69).

 * DB2 HOST VARIABLES DECLARATION *

 01 WORKDEPT-HV PIC X(3).
 01 SALARY-HV PIC X(11).
 01 SALARY-IN PIC S9(4) COMP-5.

 * SQLCA DECLARATION *

 EXEC SQL INCLUDE SQLCA END-EXEC.

 * DFHAID *

 COPY DFHAID.

 * MAP COPY *

 COPY MAPONL.

 * DECLARE OF DB2 TABLE *

 EXEC SQL
 DECLARE DSN8810.EMP TABLE
 (EMPNO CHAR(6) NOT NULL,
 FIRSTNAME VARCHAR(12) NOT NULL,
 MIDINIT CHAR(1) NOT NULL,
 LASTNAME VARCHAR(15) NOT NULL,
 WORKDEPT CHAR(3) ,
 PHONENO CHAR(4) ,
 HIREDATE DATE ,
 JOB CHAR(8) ,
 EDLEVEL SMALLINT ,
 SEX CHAR(1) ,
 BIRTHDATE DATE ,
 SALARY DECIMAL(9,2) ,
 BONUS DECIMAL(9,2) ,
 COMM DECIMAL(9,2))
 END-EXEC.
596 Introduction to the New Mainframe: z/OS Basics

 **
LINKAGE SECTION.

 **
 01 DFHCOMMAREA PIC X.
 /
 PROCEDURE DIVISION USING DFHCOMMAREA.
 **
 * MAIN ROGRAM ROUTINE
 **
 MAINLINE.
 **
 * 2000-PROCESS
 **
 2000-PROCESS.
 EVALUATE TRUE
 WHEN EIBCALEN = ZERO
 MOVE LOW-VALUE TO TMAP01O
 SET SEND-IND-ERASE TO TRUE
 PERFORM 2000-10-SEND
 WHEN EIBAID = DFHCLEAR
 MOVE LOW-VALUE TO TMAP01O
 SET SEND-IND-ERASE TO TRUE
 PERFORM 2000-10-SEND
 WHEN EIBAID = DFHPA1 OR DFHPA2 OR DFHPA3
 CONTINUE
 WHEN EIBAID = DFHPF3

 EXEC CICS RETURN
 END-EXEC
 GOBACK
 WHEN EIBAID = DFHENTER
 PERFORM 2000-00-PROCESS
 WHEN OTHER
 MOVE LOW-VALUE TO TMAP01O
 MOVE 'WRONG KEY' TO MSGLINEO
 SET SEND-IND-ALARM TO TRUE
 PERFORM 2000-10-SEND
 END-EVALUATE.
 *
 EXEC CICS RETURN TRANSID('ABCD')
 COMMAREA(COMMUNICATION-AREA)
 END-EXEC.
 GOBACK.
 2000-00-PROCESS.
 EXEC CICS RECEIVE MAP('TMAP01')
 MAPSET('TMAPSET')
 INTO(TMAP01I)
 END-EXEC.
 IF DPTONOL = ZERO OR DPTONOI = SPACE
 MOVE 'N' TO DATA-IS
 Appendix E. Class Program 597

 MOVE 'ENTER A VALID DEPARTMENT NUMBER' TO MSGLINEO
 END-IF.

 IF DATA-IS-O
 MOVE DPTONOI TO WORKDEPT-HV
 PERFORM 2000-01-DB2
 END-IF.
 IF DATA-IS-O
 SET SEND-IND-DATAO TO TRUE
 PERFORM 2000-10-SEND
 ELSE
 SET SEND-IND-ALARM TO TRUE
 PERFORM 2000-10-SEND
 END-IF.
 *
 2000-01-DB2.
 EXEC SQL SELECT CHAR(DECIMAL(SUM(SALARY),9,2))
 INTO :SALARY-HV :SALARY-IN
 FROM DSN8810.EMP
 WHERE WORKDEPT=:WORKDEPT-HV END-EXEC.
 IF SQLCODE = 0
 THEN
 IF SALARY-IN = -1
 THEN
 MOVE 'N' TO DATA-IS
 MOVE 'NO EMPLOYEES EXIST IN THIS DEPARTMENT' TO MSGLINEO
 MOVE SPACES TO AVGSALO

 ELSE
 MOVE SALARY-HV TO AVGSALO
 MOVE SPACES TO MSGLINEO
 END-IF
 ELSE
 MOVE '0' TO DATA-IS
 MOVE SPACES TO AVGSALO
 MOVE 'SQLSTATE' TO MSGSQLC
 MOVE SQLSTATE TO MSGREST
 MOVE MSGLINET TO MSGLINEO
 END-IF.
 *
 2000-10-SEND.
 EVALUATE TRUE
 WHEN SEND-IND-ERASE
 EXEC CICS SEND MAP('TMAP01')
 MAPSET('TMAPSET')
 FROM (TMAP01O)
 ERASE
 END-EXEC
 WHEN SEND-IND-DATAO
 EXEC CICS SEND MAP('TMAP01')
 MAPSET('TMAPSET')
598 Introduction to the New Mainframe: z/OS Basics

 FROM (TMAP01O)
 DATAONLY

END-EXEC
 WHEN SEND-IND-ALARM
 EXEC CICS SEND MAP('TMAP01')
 MAPSET('TMAPSET')
 FROM (TMAP01O)
 DATAONLY
 ALARM
 END-EXEC
 END-EVALUATE.

Preparation Jobs

Assembling and link-editing the map

This job is in member MAPASSEM, LUISM.TEST.SAMPLIB library. Both invoked
procedures are in SYS1.PROCLIB.

//LUISM01 JOB (999,POK),'BMS Compilation',
// CLASS=A,MSGCLASS=T,MSGLEVEL=(1,1)
//**
//* ASSEMBLE MAP SET *
//**
//STEP01 EXEC PROC=DFHASMV1,PARM.ASSEM='SYSPARM(MAP)'
//SYSLIN DD DSN=LUISM.OBJETO,DCB=(LRECL=80),
// SPACE=(2960,(10,10)),UNIT=SYSDA,DISP=(NEW,PASS)
//SYSIN DD DSN=LUISM.TEST.SAMPLIB(TMAP01),DISP=SHR
/*
//**
//* LINK EDIT *
//**
//STEP02 EXEC PROC=DFHLNKV1,PARM='LIST,LET,XREF'
//SYSLIN DD DSN=LUISM.OBJETO,DISP=(OLD,DELETE)
// DD *
 MODE RMODE(ANY)
 NAME TMAPSET(R)
/*

Generating the map copy file

This job is in member MAPCOPYGM, LUISM.TEST.SAMPLIB library.
 Appendix E. Class Program 599

//LUISM02 JOB (999,POK),'BMS COPY',
// CLASS=A,MSGCLASS=T,MSGLEVEL=(1,1)
//**
//* MAP COPY GENERATION *
//**
//STEP01 EXEC PROC=DFHASMV1,PARM.ASSEM='SYSPARM(DSECT)'
//SYSLIN DD DSN=LUISM.TEST.SAMPLIB(MAPCOPY),DISP=OLD
//SYSIN DD DSN=LUISM.TEST.SAMPLIB(TMAP01),DISP=SHR
/*

Preparing the program

This job is in member CICSDB2P, in library LUISM.TEST.SAMPLIB.

//LUISM03 JOB (999,POK),'Cobol-CICS-DB2',
// CLASS=A,MSGCLASS=T,MSGLEVEL=(1,1)
//**
//* DB2 precompile, CICS translation, COBOL compile, pre-link, *
//* and link edit. Also DB2 Bind. *
//**
//**
//* DB2 Precompile *
//**
//PC EXEC PGM=DSNHPC,PARM='HOST(IBMCOB)'
//SYSIN DD DSN=LUISM.TEST.SAMPLIB(XYZ2),DISP=SHR
//DBRMLIB DD DISP=SHR,
// DSN=DB8HU.DBRMLIB.DATA(XYZ2)
//STEPLIB DD DISP=SHR,DSN=DB8H8.SDSNEXIT
// DD DISP=SHR,DSN=DB8H8.SDSNLOAD
//SYSCIN DD DSN=&&DSNHOUT,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(500,500))
//SYSLIB DD DISP=SHR,DSN=DB8HU.SRCLIB.DATA
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSUT1 DD SPACE=(800,(500,500),,,ROUND),UNIT=VIO
//SYSUT2 DD SPACE=(800,(500,500),,,ROUND),UNIT=VIO
/*
//**
//* CICS Translator *
//**
//TRN EXEC PGM=DFHECP1$,
// COND=(4,LT,PC)
//STEPLIB DD DSN=CICSTS23.CICS.SDFHLOAD,DISP=SHR
600 Introduction to the New Mainframe: z/OS Basics

//SYSPRINT DD SYSOUT=*
//SYSPUNCH DD DSN=&&SYSCIN,
// DISP=(MOD,PASS),UNIT=SYSDA,
// DCB=BLKSIZE=400,
// SPACE=(400,(400,100))
//SYSUDUMP DD SYSOUT=*
//SYSIN DD DSN=&&DSNHOUT,DISP=(OLD,DELETE)
//*
//**
//* Compile *
//**
//COB EXEC PGM=IGYCRCTL,
// PARM=(NOSEQUENCE,QUOTE,RENT,'PGMNAME(LONGUPPER)'),
// COND=(4,LT,TRN)
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=CICSTS23.CICS.SDFHCOB,DISP=SHR
// DD DSN=CICSTS23.CICS.SDFHMAC,DISP=SHR
// DD DSN=CICSTS23.CICS.SDFHSAMP,DISP=SHR
// DD DSN=LUISM.TEST.SAMPLIB,DISP=SHR
//SYSTERM DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=VIO,
// SPACE=(800,(500,500))
//SYSIN DD DSN=&&SYSCIN,DISP=(OLD,DELETE)
//SYSUT1 DD SPACE=(800,(500,500),,,ROUND),UNIT=VIO
//SYSUT2 DD SPACE=(800,(500,500),,,ROUND),UNIT=VIO
//SYSUT3 DD SPACE=(800,(500,500),,,ROUND),UNIT=VIO
//SYSUT4 DD SPACE=(800,(500,500),,,ROUND),UNIT=VIO
//SYSUT5 DD SPACE=(800,(500,500),,,ROUND),UNIT=VIO
//SYSUT6 DD SPACE=(800,(500,500),,,ROUND),UNIT=VIO
//SYSUT7 DD SPACE=(800,(500,500),,,ROUND),UNIT=VIO
//**
//* Prelink *
//**
//PLKED EXEC PGM=EDCPRLK,COND=(4,LT,COB)
//STEPLIB DD DISP=SHR,DSN=CEE.SCEERUN
//SYSMSGS DD DISP=SHR,
// DSN=CEE.SCEEMSGP(EDCPMSGE)
//SYSIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
//SYSMOD DD DSN=&&PLKSET,UNIT=SYSDA,DISP=(MOD,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSDEFSD DD DUMMY
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//**
//* Linkedit *
//**
//LKED EXEC PGM=IEWL,PARM='LIST,XREF',
 Appendix E. Class Program 601

// COND=(4,LT,PLKED)
//SYSLIB DD DISP=SHR,DSN=CEE.SCEELKED
// DD DISP=SHR,DSN=DB8H8.SDSNLOAD
// DD DISP=SHR,DSN=CICSTS23.CICS.SDFHLOAD
// DD DISP=SHR,DSN=ISP.SISPLOAD
// DD DISP=SHR,DSN=GDDM.SADMMOD
//SYSLMOD DD DSN=CICSTS23.CICS.SDFHLOAD(XYZ2),
// DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD SPACE=(1024,(50,50)),UNIT=VIO
//SYSLIN DD DSN=&&PLKSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//CICSLOAD DD DSN=CICSTS23.CICS.SDFHLOAD,
// DISP=SHR
//SYSIN DD *
 INCLUDE CICSLOAD(DSNCLI)
 MODE RMODE(ANY)
 NAME XYZ2(R)
/*
//**
//* Bind *
//**
//BIND EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT,LKED)
//STEPLIB DD DSN=DB8H8.SDSNLOAD,DISP=SHR
//DBRMLIB DD DSN=DB8HU.DBRMLIB.DATA,DISP=SHR
//SYSUDUMP DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 GRANT BIND, EXECUTE ON PLAN XYZP TO PUBLIC;
//SYSTSIN DD *
DSN SYSTEM(DB8H)
BIND PACKAGE (DSN8CC81) MEMBER(XYZ2) -
 ACT(REP) ISO(CS) ENCODING(EBCDIC)
BIND PLAN(XYZP) PKLIST(DSN8CC81.*) -
 ACT(REP) ISO(CS) ENCODING(EBCDIC)
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA81) -
 LIB('DB8HU.RUNLIB.LOAD')
END
/*

CICS definitions
All the CICS resources are defined online through a CEDA transaction. The
group is PAZSGROU.

Resource Tipo
ABCD Transaction
602 Introduction to the New Mainframe: z/OS Basics

XYZ2 Program
TMAPSET Program (map)
TMAPSET Mapset
XYZE DB2 entry (correlates ABCD transaction and XYZP

planname)

Program execution
Type ABCD in a CICS screen and press Enter. Then, type a department number
and press Enter. When finished, press PF3.

ABCD txid Average salary by department

 Type a department number and press Enter.

 Department number: ___

 Average salary($):

 F3=Exit

COBOL-Batch-VSAM program

Program code
This program is in member XYZ3, in library LUISM.TEST.SAMPLIB

IDENTIFICATION DIVISION.
 *---
 * COBOL VSAM PROGRAM ZSCHOLAR RESIDENCY
 *--
 *-----------------------
 PROGRAM-ID. XYZ3.
 /
 ENVIRONMENT DIVISION.
 *--------------------
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT I-FILE
 ASSIGN TO KSDATA
 ORGANIZATION IS INDEXED
 ACCESS IS DYNAMIC
 RECORD KEY IS I-FILE-RECORD-KEY
 Appendix E. Class Program 603

 ALTERNATE RECORD KEY IS I-FILE-ALTREC-KEY
 FILE STATUS IS FSTAT-CODE VSAM-CODE.
 SELECT DPTONO
 ASSIGN TO SYSIN
 ORGANIZATION IS SEQUENTIAL
 ACCESS IS SEQUENTIAL

 FILE STATUS IS DPTONO-CODE.
 DATA DIVISION.
 *-------------
 FILE SECTION.
 FD I-FILE
 RECORD CONTAINS 101 CHARACTERS.
 01 I-FILE-RECORD.
 05 I-FILE-RECORD-KEY PIC X(6).
 05 FILLER PIC X(32).
 05 I-FILE-ALTREC-KEY PIC X(3).
 05 FILLER PIC X(42).
 05 SALARY PIC S9(7)V9(2) COMP-3.
 05 FILLER PIC X(13).
 FD DPTONO
 RECORDING MODE F
 BLOCK 0 RECORDS
 RECORD 80 CHARACTERS
 LABEL RECORD STANDARD.
 01 DPTONO-RECORD PIC X(80).
 /
 WORKING-STORAGE SECTION.
 01 STATUS-AREA.
 05 FSTAT-CODE PIC X(2).
 88 I-O-OKAY VALUE ZEROES.
 05 VSAM-CODE.

 10 VSAM-R15-RETURN-CODE PIC 9(2) COMP.
 10 VSAM-FUNCTION-CODE PIC 9(1) COMP.
 10 VSAM-FEEDBACK-CODE PIC 9(3) COMP.
 77 DPTONO-CODE PIC XX.
 01 WS-DPTONO-RECORD.
 05 DPTONO-KEYED PIC X(3).
 05 FILLER PIC X(77).
 01 WS-SALARY PIC S9(7)V9(2) COMP-3 VALUE 0.
 01 WS-SALARY-EDITED PIC $ZZ,ZZZ,ZZ9.99.
 /
 PROCEDURE DIVISION.
 OPEN INPUT DPTONO.
 READ DPTONO INTO WS-DPTONO-RECORD.
 DISPLAY DPTONO-KEYED.
 OPEN INPUT I-FILE.
 IF FSTAT-CODE NOT = "00"
 DISPLAY "OPEN INPUT VSAMFILE FS-CODE: " FSTAT-CODE
 PERFORM VSAM-CODE-DISPLAY
604 Introduction to the New Mainframe: z/OS Basics

 STOP RUN
 END-IF.
 MOVE DPTONO-KEYED TO I-FILE-ALTREC-KEY.
 PERFORM READ-FIRST.
 IF FSTAT-CODE = "02"
 PERFORM READ-NEXT UNTIL FSTAT-CODE = "00"
 END-IF.

 IF FSTAT-CODE = "23"
 DISPLAY "NO RECORDS EXISTS FOR THIS DEPARTMENT"
 END-IF.
 MOVE WS-SALARY TO WS-SALARY-EDITED.
 DISPLAY WS-SALARY-EDITED.
 CLOSE DPTONO.
 CLOSE I-FILE.
 STOP RUN.

 READ-NEXT.
 READ I-FILE NEXT.
 IF FSTAT-CODE NOT = "00" AND FSTAT-CODE NOT = "02"
 DISPLAY "READ NEXT I-FILE FS-CODE: " FSTAT-CODE
 PERFORM VSAM-CODE-DISPLAY
 ELSE
 ADD SALARY TO WS-SALARY
 END-IF.

 READ-FIRST.
 READ I-FILE RECORD KEY IS I-FILE-ALTREC-KEY.
 IF FSTAT-CODE NOT = "00" AND FSTAT-CODE NOT = "02"
 DISPLAY "READ I-FILE FS-CODE: " FSTAT-CODE
 PERFORM VSAM-CODE-DISPLAY
 ELSE
 ADD SALARY TO WS-SALARY

 END-IF.

 VSAM-CODE-DISPLAY.
 DISPLAY "VSAM CODE -->"
 " RETURN: " VSAM-R15-RETURN-CODE,
 " COMPONENT: " VSAM-FUNCTION-CODE,
 " REASON: " VSAM-FEEDBACK-CODE.

Preparation jobs

Creating the VSAM environment
This job is in the VSAMDEF member in the LUISM.TEST.SAMPLIB library.

The job performs the following steps:

� Unloads the employee DB2 table into a sequential file.
 Appendix E. Class Program 605

� Deletes/Defines the VSAM KSDS file.
� Defines the alternate index (by department number).
� Defines the path.
� Does the repro of the VSAM file from the sequential file (step1).
� Does the BLDINDEX.

//LUISM06 JOB (999,POK),'UNLTAB/DEFVSAM/REPRO',
// CLASS=A,MSGCLASS=T,MSGLEVEL=(1,1)
//**
//* UNLOAD DB2 TABLE *
//**
//STEP00 EXEC PGM=IKJEFT01,DYNAMNBR=20
//STEPLIB DD DSN=DB8H8.SDSNLOAD,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSREC00 DD DSN=LUISM.EMP.TABLE.UNLOAD,
// SPACE=(TRK,(1,1)),DISP=(,CATLG)
//SYSPUNCH DD DSN=LUISM.EMP.TABLE.SYSPUNCH,
// SPACE=(TRK,(1,1)),DISP=(,CATLG),
// RECFM=FB,LRECL=120
//SYSIN DD *
DSN8810.EMP
/*
//SYSTSIN DD *
DSN SYSTEM(DB8H)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB81) -
 LIB('DB8HU.RUNLIB.LOAD')
END
/*
//**
//* DELETE THE KSDS FILE *
//**
//STEP01 EXEC PGM=IDCAMS,COND=(4,LT,STEP00)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE LUISM.KSDATA
/*
//**
//* DEFINE A KSDS FILE *
//**
//STEP02 EXEC PGM=IEFBR14,COND=(4,LT,STEP01)
//DEFINE DD DSN=LUISM.KSDATA,DISP=(NEW,KEEP),
// SPACE=(TRK,(1,1)),AVGREC=U,RECORG=KS,
// KEYLEN=6,KEYOFF=0,LRECL=101
/*
//**
606 Introduction to the New Mainframe: z/OS Basics

//* DEFINE ALTERNATE INDEX *
//**
//STEP03 EXEC PGM=IDCAMS,COND=(4,LT,STEP02)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE ALTERNATEINDEX -
 (NAME(LUISM.ALTINDEX) -
 RELATE(LUISM.KSDATA) -

 NONUNIQUEKEY -
 KEYS(3 38) -
 RECORDSIZE(23 150) -
 VOLUMES(TOTSSI) -
 KILOBYTES(100 100) -
 UPGRADE)
/*
//**
//* DEFINE PATH *
//**
//STEP04 EXEC PGM=IDCAMS,COND=(4,LT,STEP03)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE PATH -
 (NAME(LUISM.PATH) -
 PATHENTRY(LUISM.ALTINDEX))
/*
//**
//* REPRO INTO THE KSDS FROM DB2 UNLOAD SEQ FILE *
//**
//STEP05 EXEC PGM=IDCAMS,COND=(4,LT,STEP04)
//SEQFILE DD DSN=LUISM.EMP.TABLE.UNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 REPRO INFILE(SEQFILE) -

 OUTDATASET(LUISM.KSDATA) -
 REPLACE
/*
//**
//* BLDINDEX *
//**
//STEP06 EXEC PGM=IDCAMS,COND=(4,LT,STEP05)
//BASEDD DD DSN=LUISM.KSDATA,DISP=SHR
//AIXDD DD DSN=LUISM.ALTINDEX,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 BLDINDEX INFILE(BASEDD) -
 OUTFILE(AIXDD) -
 SORTCALL
/*
 Appendix E. Class Program 607

Preparing the program
This job is in the BATVSAMP member in the LUISM.TEST.SAMPLIB library.

//LUISM07 JOB (999,POK),'Cobol-VSAM',
// CLASS=A,MSGCLASS=T,MSGLEVEL=(1,1)
//**
//* Compile the IBM COBOL program *
//**
//COB EXEC PGM=IGYCRCTL,
// PARM=(NOSEQUENCE,QUOTE,RENT,'PGMNAME(LONGUPPER)')
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=VIO,
// SPACE=(800,(500,500))
//SYSIN DD DSN=LUISM.TEST.SAMPLIB(XYZ3),DISP=SHR
//SYSUT1 DD SPACE=(800,(500,500),,,ROUND),UNIT=VIO
//SYSUT2 DD SPACE=(800,(500,500),,,ROUND),UNIT=VIO
//SYSUT3 DD SPACE=(800,(500,500),,,ROUND),UNIT=VIO
//SYSUT4 DD SPACE=(800,(500,500),,,ROUND),UNIT=VIO
//SYSUT5 DD SPACE=(800,(500,500),,,ROUND),UNIT=VIO
//SYSUT6 DD SPACE=(800,(500,500),,,ROUND),UNIT=VIO
//SYSUT7 DD SPACE=(800,(500,500),,,ROUND),UNIT=VIO
//**
//* PRELINK STEP. *
//**
//PLKED EXEC PGM=EDCPRLK,COND=(4,LT,COB)
//STEPLIB DD DISP=SHR,DSN=CEE.SCEERUN
//SYSMSGS DD DISP=SHR,
// DSN=CEE.SCEEMSGP(EDCPMSGE)
//SYSIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
//SYSMOD DD DSN=&&PLKSET,UNIT=SYSDA,DISP=(MOD,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSDEFSD DD DUMMY
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//**
//* Linkedit *
//**
//LKED EXEC PGM=IEWL,PARM='LIST,XREF',
// COND=(4,LT,PLKED)
//SYSLIB DD DISP=SHR,DSN=CEE.SCEELKED
// DD DISP=SHR,DSN=ISP.SISPLOAD
// DD DISP=SHR,DSN=GDDM.SADMMOD
//SYSLMOD DD DSN=LUISM.TEST.LOADLIB(XYZ3),
// DISP=SHR
608 Introduction to the New Mainframe: z/OS Basics

//SYSPRINT DD SYSOUT=*
//SYSUT1 DD SPACE=(1024,(50,50)),UNIT=VIO
//SYSLIN DD DSN=&&PLKSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSIN DD *

 MODE RMODE(ANY)
 NAME XYZ3(R)
/*

Program execution
The job execution is in the RUNXYZ3 member in the LUISM.TEST.SAMPLIB
library.

//LUISM08 JOB (999,POK),'EJEC. COB-VSAM',
// CLASS=A,MSGCLASS=T,MSGLEVEL=(1,1)
//**
//STEP01 EXEC PGM=XYZ3
//STEPLIB DD DSN=LUISM.TEST.LOADLIB,DISP=SHR
//KSDATA DD DSN=LUISM.KSDATA,DISP=SHR
//KSDATA1 DD DSN=LUISM.PATH,DISP=SHR
//OUTPUTFI DD SYSOUT=*
//SYSIN DD *
E01
/*

Following is the output for department E01:

******************************** TOP OF DATA **********************************
E01
$ 40,175.00
******************************* BOTTOM OF DATA ********************************

The output for a department that have no employees is like the following:

******************************** TOP OF DATA **********************************
A01
READ I-FILE FS-CODE: 23
VSAM CODE --> RETURN: 08 COMPONENT: 2 REASON: 016
NO RECORDS EXISTS FOR THIS DEPARTMENT
$ 0.00
******************************* BOTTOM OF DATA ********************************
 Appendix E. Class Program 609

DSNTEP2 utility
This PL/I program dynamically executes SQL statements read in from SYSIN.
This application can also execute non-SELECT statements.

Execution job
This execution job can be found in the DSNTEP2 member in the
LUISM.TEST.SAMPLIB library.

//LUISM04 JOB (999,POK),'Dsntep2',
// CLASS=A,MSGCLASS=T,MSGLEVEL=(1,1)
//**
//* DSNTEP2 *
//**
//DSNTEP2 EXEC PGM=IKJEFT01,DYNAMNBR=20
//STEPLIB DD DSN=DB8H8.SDSNLOAD,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DB8H)
RUN PROGRAM(DSNTEP2) PLAN(DSNTEP81) -
 LIB('DB8HU.RUNLIB.LOAD')
END
/*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
 SELECT CHAR(DECIMAL(SUM(SALARY),9,2))
 FROM DSN8810.EMP
 WHERE WORKDEPT='A00'
/*

Following is the output:

PAGE 1
***INPUT STATEMENT:
 SELECT CHAR(DECIMAL(SUM(SALARY),9,2))
 FROM DSN8810.EMP
 WHERE WORKDEPT='A00'
 +-------------+
 | |
 +-------------+
 1_| 0204250.00 |
 +-------------+
SUCCESSFUL RETRIEVAL OF 1 ROW(S)
610 Introduction to the New Mainframe: z/OS Basics

QMF batch execution
This exercise shows QMF procedure/query/form executed in batch. The
EMPQRY query contains the SQL statement of our class program. The
EMPPRO procedure invokes the query execution and the report printing. The job
invokes the QMF procedure and passes the department number to it; also the
execution mode (batch, M=B) and the DB2 subsystem are specified.

The job is in the QMFBATCH member in the LUISM.TEST.SAMPLIB library.

QMF is invoked with ISPF option Q7 in the SC47TS system with ISPQMF71 in
the COMMAND field.

Execution job

//LUISM10 JOB (999,POK),'QMF in batch',
// CLASS=A,MSGCLASS=T,MSGLEVEL=(1,1)
/*JOBPARM SYSAFF=SC47
//**
//QMFBAT EXEC PGM=DSQQMFE,
// PARM='M=B,I=LUISM.EMPPRO(&&DEP=''A00''),S=DB7D'
//STEPLIB DD DISP=SHR,DSN=DB7DU.SDSQLOAD
// DD DISP=SHR,DSN=DB7D7.SDSNLOAD
// DD DISP=SHR,DSN=DB7D7.SDSNEXIT
//ADMGGMAP DD DSN=DB7DU.DSQMAPE,DISP=SHR
//DSQPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=1330)
//DSQDEBUG DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)
//DSQUDUMP DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=1632)
//DSQSPILL DD DSN=&&SPILL,DISP=(NEW,DELETE),
// UNIT=VIO,SPACE=(TRK,(100),RLSE),
// DCB=(RECFM=F,LRECL=4096,BLKSIZE=4096)
//*

QMF procedure

RUN QUERY EMPQRY (&&D=&DEP FORM=EMPFORM
PRINT REPORT

QMF query

SELECT CHAR(DECIMAL(SUM(SALARY),9,2))
FROM DSN8710.EMP
WHERE WORKDEPT=&D
 Appendix E. Class Program 611

Batch C program to access DB2

Source code
This program is in member CDB2 in the GMULLER.TEST.C library.

Example: E-1 C source code for accessing DB2

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

EXEC SQL INCLUDE SQLCA;
EXEC SQL INCLUDE SQLDA;

EXEC SQL
 DECLARE DSN8810.EMP TABLE
 (EMPNO CHAR(6) NOT NULL,
 FIRSTNAME VARCHAR(12) NOT NULL,
 MIDINIT CHAR(1) NOT NULL,
 LASTNAME VARCHAR(15) NOT NULL,
 WORKDEPT CHAR(3) ,
 PHONENO CHAR(4) ,
 HIREDATE DATE ,
 JOB CHAR(8) ,
 EDLEVEL SMALLINT ,
 SEX CHAR(1) ,
 BIRTHDATE DATE ,
 SALARY DECIMAL(9,2) ,
 BONUS DECIMAL(9,2) ,
 COMM DECIMAL(9,2));

EXEC SQL BEGIN DECLARE SECTION;
 long sum;
 long count;
 char deptno[4];
EXEC SQL END DECLARE SECTION;

int avg_sal(char*);
int record_read(FILE*,char*);

void main()
{
 FILE* cardin; /* for DD card CARDIN */
 int avgsal;
 char dept[4];

 cardin = fopen("DD:CARDIN","rb,recfm=FB,lrecl=80,type=record");
 if(cardin == NULL)
612 Introduction to the New Mainframe: z/OS Basics

 {
 printf("Error opening DD CARDIN\n");
 exit(-2);
 }

 while(record_read(cardin, dept) != 0)
 {
 avgsal = avg_sal(dept);
 if(avgsal > 0)
 printf("Average salary of %s is %d\n",dept, avgsal);

 }
 fclose(cardin);
}

int avg_sal(char* dept)
{
 int avgsal;
 count = 0;
 strncpy(deptno, dept, 3);
 deptno[3] = 0;

 EXEC SQL SELECT SUM(SALARY), COUNT(*) INTO :sum, :count
 FROM DSN8810.EMP
 WHERE WORKDEPT = :deptno;

 if(count != 0)
 {
 avgsal = sum/count;
 return avgsal;
 } else
 {
 printf("DEPT %s does not exist\n", deptno);
 return -1;
 }
}

int record_read(FILE* file, char* dept)
{
 int readbytes;
 char linebuf[81], linebuf2[80];
 readbytes = fread(linebuf, 1, 81, file);
 strncpy(dept, linebuf, 3); /* first 3 bytes are dept. number */
 dept[3]=0; /* terminate string */
 return readbytes;
}
 Appendix E. Class Program 613

Preparing the program
This JCL is in member CDB2 in the GMULLER.TEST.CNTL library.

Example: E-2 GMULLER.TEST.CNTL(CDB2)

//GMULLERC JOB 1,GEORG,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//* PRECOMPILE AND COMPILE THE SAMPLE C FILE
//PROCLIB JCLLIB ORDER=DB8HU.PROCLIB
/*JOBPARM SYSAFF=SC04
//STEP1 EXEC PROC=DSNHC,MEM=CDB2,
// PARM.PC=('HOST(C),CCSID(1047)')
//PC.DBRMLIB DD DSN=DB8HU.DBRMLIB.DATA(CDB2),DISP=SHR
//PC.SYSLIB DD DSN=GMULLER.TEST.C,DISP=SHR
//PC.SYSIN DD DSN=GMULLER.TEST.C(&MEM),DISP=SHR
//LKED.SYSLMOD DD DSN=GMULLER.TEST.LOAD(&MEM),DISP=SHR
//LKED.SYSIN DD *
 INCLUDE SYSLIB(DSNELI)
/*
//**
//* BIND AND RUN THE PROGRAM *
//**
//BIND EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//STEPLIB DD DSN=DB8H8.SDSNLOAD,DISP=SHR
//DBRMLIB DD DSN=DB8HU.DBRMLIB.DATA,DISP=SHR
//SYSUDUMP DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//CARDIN DD *
D11
XYZ
A00
/*
//SYSIN DD *
 GRANT BIND,EXECUTE ON PLAN CDB2 TO PUBLIC;
//SYSTSIN DD *
 DSN SYSTEM(DB8H)
 BIND PACKAGE (CDB2PAK) MEMBER(CDB2) -
 ACT(REP) ISO(CS) ENCODING(EBCDIC)
 BIND PLAN(CDB2) PKLIST(CDB2PAK.*) -
 ACT(REP) ISO(CS) ENCODING(EBCDIC)
 RUN PROGRAM(CDB2) PLAN(CDB2) LIB('GMULLER.TEST.LOAD')
 END
/*

� This Job requires the PDS GMULLER.TEST.LOAD with RECFM=U.

� Statement “/*JOBPARM SYSAFF=SC04” points to the system where DB2 is
running and has to be modified (or deleted, if not in a sysplex).
614 Introduction to the New Mainframe: z/OS Basics

� DB8H has to be replaced with the name of the local DB2.

� HLQs for DB2 libs may differ.

Output
Example: E-3 Output of CDB2

Average salary of D11 is 25147
DEPT XYZ does not exist
Average salary of A00 is 40850

Running the program
This JCL is in member RUNJCL in the GMULLER.TEST.CNTL library.

Example: E-4 GMULLER.TEST.CNTL(RUNJCL)

//GMULLERR JOB 1,GEORG,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//* PRECOMPILE AND COMPILE THE SAMPLE C FILE
/*JOBPARM SYSAFF=SC04
//**
//* RUN THE PROGRAM *
//**
//BIND EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//STEPLIB DD DSN=DB8H8.SDSNLOAD,DISP=SHR
//DBRMLIB DD DSN=DB8HU.DBRMLIB.DATA,DISP=SHR
//SYSUDUMP DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//CARDIN DD DISP=SHR,DSN=GMULLER.TEST.CNTL(CARDIN)
//SYSTSIN DD *
 DSN SYSTEM(DB8H)
 RUN PROGRAM(CDB2) PLAN(CDB2) LIB('GMULLER.TEST.LOAD')
 END
/*

� This requires the Member CARDIN in the GMULLER.TEST.CNTL library

� HLQ for DB2 libs may differ.

Input
Example: E-5 GMULLER.TEST.CNTL(CARDIN)

D11
A00
 Appendix E. Class Program 615

XYZ
C01
ABC
E21

Output
Example: E-6 Output of RUNJCL

Average salary of D11 is 25147
Average salary of A00 is 40850
DEPT XYZ does not exist
Average salary of C01 is 29722
DEPT ABC does not exist
Average salary of E21 is 24086

Java Servlet access to DB2

Servlet source code
Example: E-7 SalaryServlet.java

import java.io.IOException;
import java.io.PrintWriter;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.sql.DataSource;

public class SalaryServlet extends HttpServlet {

 private DataSource ds;
 private boolean dbProblem = false;

 public void init() throws ServletException {
 super.init();
 try { // get DataSource from Container
616 Introduction to the New Mainframe: z/OS Basics

 Context context = new InitialContext();
 ds = (DataSource) context.lookup("jdbc/DB8H");
 } catch (NamingException e) {
 e.printStackTrace();
 this.dbProblem = true;
 }
 }

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/html");
 String deptno = req.getParameter("deptno"); // get from request string

 PrintWriter out = resp.getWriter();
 out.println("<html>\n<head>\n <title>Average
Salary</title>\n</head>\n<body>");
 out.println("<h1>Average Salary</h1>");
 out.println("<form action=\"salary\" method=\"get\">");
 out.println("Dept. No.: <input type=\"text\" name=\"deptno\" />");
 out.println(" <input type=\"submit\" />\n</form>");

 if (deptno != null) {
 try {
 int avgSal = getAvgSal(deptno);
 out.println("The average salary of " + deptno + " is
$ " + avgSal
 + "
");
 } catch (Exception e) {
 out.println("Error: " + e.getMessage() + "
");
 }
 }
 out.println("</html>");
 }

 private int getAvgSal(String deptno) throws Exception {
 String sqlStatement = "SELECT SUM(salary), COUNT(*) "
 + "FROM DSN8810.EMP WHERE WORKDEPT = '" + deptno + "'";
 // Connect to database
 Connection con = null;
 try {
 con = ds.getConnection();
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery(sqlStatement); // Execute SQL
 // statement

 rs.next(); // get Values from result set
 int sum = rs.getInt(1);
 int count = rs.getInt(2);
 Appendix E. Class Program 617

 if (count == 0)
 throw new Exception("Department " + deptno
 + " does not exist");
 return sum / count;

 } catch (SQLException e) {
 throw new Exception(e.getMessage());
 } finally {
 try {
 con.close();
 } catch (SQLException e) {}
 }
 }
}

� This servlet requires a data source (here jndi name “jdbc/DB8H”) defined in
the web container, which points to the DB2 database

Deployment descriptor
Example: E-8 web.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app id="WebApp_ID">
 <display-name>Salary</display-name>
 <servlet>
 <servlet-name>Salary</servlet-name>
 <servlet-class>SalaryServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Salary</servlet-name>
 <url-pattern>/salary</url-pattern>
 </servlet-mapping>
</web-app>

C program to access MQ
MQPUT writes a message onto a queue (entered in TSO).

The program is started with TSO CALL
‘ZSCHOLAR.PROGRAM.LOAD(MQPUT)’, then you have to enter a message.
618 Introduction to the New Mainframe: z/OS Basics

MQGET gets the message back and displays it on the screen.

The program is started with TSO CALL
‘ZSCHOLAR.PROGRAM.LOAD(MQGET)’, then you have to enter a message.

It is also possible to receive the message with the java application in “Java
program to access MQ” on page 628.

MQPUT
Example: E-9 ZSCHOLAR.PROGRAM.SRC(MQPUT)

#pragma csect(code,"CSQ4BCK1")
/* */
/* Define static CSECT name */
/* */
#pragma csect(static,"BCK1WS")

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <cmqc.h>

/* */
/* Function prototypes */
/* */
void usageError(char* programName);
void errorMessage(char* msgStr, MQLONG CC, MQLONG RC);

int main(int argc, char** argv)
{
 /* */
 /* API variables */
 /* */
 MQHCONN HConn = MQHC_DEF_HCONN;
 MQHOBJ HObj;
 MQLONG OpenOptions;
 MQMD MsgDesc = { MQMD_DEFAULT };
 MQOD ObjDesc = { MQOD_DEFAULT };
 MQPMO PutMsgOpts = { MQPMO_DEFAULT };
 MQLONG CompCode;
 MQLONG Reason;

 /* */
 /* Parameter variables */
 /* */
 MQCHAR48 qMgr;
 MQCHAR48 qName;
 Appendix E. Class Program 619

 char msgBuffer[255];
 int msgLength;
 char persistent = 'N';
 long rc = 0;

 printf("Please enter message text:\n");
 fgets(msgBuffer, 255, stdin);
 msgLength = strlen(msgBuffer);

 strcpy(qMgr, "MQ8H\0");
 strcpy(qName, "GMULLER\0");
 /*
 memset(qMgr, '\0', MQ_Q_MGR_NAME_LENGTH);
 memset(qName, '\0', MQ_Q_NAME_LENGTH);
 */

 /* */
 /* Connect to Queue Manager (MQCONN) */
 /* */
 MQCONN(qMgr,
 &HConn,
 &CompCode,
 &Reason);
 /* */
 /* If connect failed then display error message and exit */
 /* */
 if(MQCC_OK != CompCode)
 {
 errorMessage("MQCONN", CompCode, Reason);
 return Reason;
 }

 printf("MQCONN SUCCESSFUL\n");

 /* */
 /* Open Queue for output (MQOPEN). Fail the call if the queue */
 /* manager is quiescing. */
 /* */
 OpenOptions = MQOO_OUTPUT +
 MQOO_FAIL_IF_QUIESCING;

 strncpy(ObjDesc.ObjectName, qName, MQ_Q_NAME_LENGTH);
 MQOPEN(HConn,
 &ObjDesc,
 OpenOptions,
 &HObj,
 &CompCode,
 &Reason);
 /* */
620 Introduction to the New Mainframe: z/OS Basics

 /* If open failed then display error message, */
 /* disconnect from the queue manager and exit */
 /* */
 if(MQCC_OK != CompCode)
 {
 errorMessage("MQOPEN", CompCode, Reason);
 rc = Reason;
 MQDISC(&HConn,
 &CompCode,
 &Reason);
 return rc;
 }

 printf("MQOPEN SUCCESSFUL\n");

 /* */
 /* Set persistence depending on parameter passed */
 /* */
 if('P' == persistent)
 MsgDesc.Persistence = MQPER_PERSISTENT;
 else
 MsgDesc.Persistence = MQPER_NOT_PERSISTENT;

 /* */
 /* Put String format messages */
 /* */
 strncpy(MsgDesc.Format, MQFMT_STRING, MQ_FORMAT_LENGTH);

 /* */
 /* Set the put message options to fail the call if the queue */
 /* manager is quiescing. */
 /* */
 PutMsgOpts.Options = MQPMO_FAIL_IF_QUIESCING;

 strncpy(MsgDesc.MsgId, MQMI_NONE, MQ_MSG_ID_LENGTH);
 strncpy(MsgDesc.CorrelId, MQCI_NONE, MQ_CORREL_ID_LENGTH);

 MQPUT(HConn,
 HObj,
 &MsgDesc,
 &PutMsgOpts,
 msgLength,
 msgBuffer,
 &CompCode,
 &Reason);
 /*
 /* If put failed then display error message */
 /* and break out of loop */
 Appendix E. Class Program 621

 /* */
 if(MQCC_OK != CompCode)
 {
 errorMessage("MQPUT", CompCode, Reason);
 rc = Reason;
 }

 printf("MESSAGE PUT TO QUEUE\n");

 free(msgBuffer);

 /* */
 /* Close the queue and then disconnect from the queue manager */
 /* */
 MQCLOSE(HConn,
 &HObj,
 MQCO_NONE,
 &CompCode,
 &Reason);
 if(MQCC_OK != CompCode)
 {
 errorMessage("MQCLOSE", CompCode, Reason);
 rc = Reason;
 }
 else printf("MQCLOSE SUCCESSFUL\n");

 MQDISC(&HConn,
 &CompCode,
 &Reason);
 if(MQCC_OK != CompCode)
 {
 errorMessage("MQDISC", CompCode, Reason);
 return Reason;
 }
 else
 {
 printf("MQDISC SUCCESSFUL\n");
 return rc;
 }

 return(rc);
} /*end main*/

/***/
/* Functions to display error messages */
/***/
void errorMessage(char* msgStr, MQLONG CC, MQLONG RC)
{
622 Introduction to the New Mainframe: z/OS Basics

 printf("**\n");
 printf("* %s\n", msgStr);
 printf("* COMPLETION CODE : %09ld\n", CC);
 printf("* REASON CODE : %09ld\n", RC);
 printf("**\n");
}

JCL to compile:

Example: E-10 ZSCHOLAR.PROGRAM.CNTL(MQPUT)

//GMULLERT JOB 1,GEORG,MSGCLASS=H,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//* COMPILE MQ PROGRAM
//STEP1 EXEC PROC=EDCCB,
// INFILE='ZSCHOLAR.PROGRAM.SRC(MQPUT)',
// OUTFILE='ZSCHOLAR.PROGRAM.LOAD(MQPUT),DISP=SHR'
//SYSLIB DD DSN=MQ531.SCSQC370,DISP=SHR
//BIND.CSQBSTUB DD DSN=MQ531.SCSQLOAD(CSQBSTUB),DISP=SHR
//BIND.SYSIN DD *
 INCLUDE CSQBSTUB
/*

MQGET
Source code.

Example: E-11 ZSCHOLAR.PROGRAM.SRC(MQGET)

#pragma csect(code,"CSQ4BCK1")
/* */
/* Define static CSECT name */
/* */
#pragma csect(static,"BCK1WS")

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <cmqc.h>

#define maxMessageLength 65536

/* */
/* Function prototypes */
/* */
void usageError(char* programName);
void errorMessage(char* msgStr, MQLONG CC, MQLONG RC);

int main(int argc, char** argv)
 Appendix E. Class Program 623

{
 /* */
 /* API variables */
 /* */
 MQHCONN HConn = MQHC_DEF_HCONN;
 MQHOBJ HObj;
 MQLONG OpenOptions;
 MQMD MsgDesc = { MQMD_DEFAULT };
 MQOD ObjDesc = { MQOD_DEFAULT };
 MQGMO GetMsgOpts = { MQGMO_DEFAULT };
 MQLONG CompCode;
 MQLONG Reason;

 /* */
 /* Parameter variables */
 /* */
 MQCHAR48 qMgr;
 MQCHAR48 qName;
 char msgBuffer[maxMessageLength];
 int msgLength = maxMessageLength;
 char persistent = 'N';
 long rc = 0;
 long dataLength;
 char browseGet = 'D'; /* destructive get */
 char syncpoint = 'N'; /* no Syncpoint */

 memset(msgBuffer, '\0', msgLength);

 strcpy(qMgr, "MQ8H\0");
 strcpy(qName, "GMULLER\0");

 /* */
 /* Connect to Queue Manager (MQCONN) */
 /* */
 MQCONN(qMgr,
 &HConn,
 &CompCode,
 &Reason);
 /* */
 /* If connect failed then display error message and exit */
 /* */
 if(MQCC_OK != CompCode)
 {
 errorMessage("MQCONN", CompCode, Reason);
 return Reason;
 }

 printf("MQCONN SUCCESSFUL\n");

624 Introduction to the New Mainframe: z/OS Basics

 /* */
 /* Open Queue for input shared and browse. Fail the call if the */
 /* queue manager is quiescing. */
 /* */
 OpenOptions = MQOO_INPUT_SHARED +
 MQOO_BROWSE +
 MQOO_FAIL_IF_QUIESCING;

 strncpy(ObjDesc.ObjectName, qName, MQ_Q_NAME_LENGTH);
 MQOPEN(HConn,
 &ObjDesc,
 OpenOptions,
 &HObj,
 &CompCode,
 &Reason);
 /* */
 /* If open failed then display error message, */
 /* disconnect from the queue manager and exit */
 /* */
 if(MQCC_OK != CompCode)
 {
 errorMessage("MQOPEN", CompCode, Reason);
 rc = Reason;
 MQDISC(&HConn,
 &CompCode,
 &Reason);
 return rc;
 }

 printf("MQOPEN SUCCESSFUL\n");

 /* */
 /* Set persistence depending on parameter passed */
 /* */
 if('P' == persistent)
 MsgDesc.Persistence = MQPER_PERSISTENT;
 else
 MsgDesc.Persistence = MQPER_NOT_PERSISTENT;

 /* */
 /* Set GetMsgOpts .. don't wait if there are no messages on the */
 /* queue, truncate the message if it does not fit into our */
 /* buffer, perform data conversion on the message if required */
 /* and if possible, and fail the call if the queue manager is */
 /* quiescing. */
 /* */
 GetMsgOpts.Options = MQGMO_NO_WAIT +
 MQGMO_ACCEPT_TRUNCATED_MSG +
 MQGMO_CONVERT +
 Appendix E. Class Program 625

 MQGMO_FAIL_IF_QUIESCING;

 strncpy(MsgDesc.MsgId, MQMI_NONE, MQ_MSG_ID_LENGTH);
 strncpy(MsgDesc.CorrelId, MQCI_NONE, MQ_CORREL_ID_LENGTH);

 /* */
 /* Set additional GetMsgOpts depending on parameters passed */
 /* into program. */
 /* */
 if(('S' == syncpoint) && ('B' != browseGet))
 GetMsgOpts.Options += MQGMO_SYNCPOINT;
 else
 GetMsgOpts.Options += MQGMO_NO_SYNCPOINT;

 if(('B' == browseGet))
 GetMsgOpts.Options += MQGMO_BROWSE_FIRST;

 MsgDesc.Encoding = MQENC_NATIVE;
 MsgDesc.CodedCharSetId = MQCCSI_Q_MGR;

 /* GET */
 MQGET(HConn,
 HObj,
 &MsgDesc,
 &GetMsgOpts,
 msgLength,
 msgBuffer,
 &dataLength,
 &CompCode,
 &Reason);

 if((MQCC_FAILED == CompCode))
 {
 errorMessage("MQGET", CompCode, Reason);
 rc = Reason;
 }
 else
 {
 /* */
 /* Only character data messages are correctly displayed */
 /* by this code */
 /* */
 if (MQRC_TRUNCATED_MSG_ACCEPTED == Reason)
 {
 msgBuffer??(msgLength - 1 ??) = 0;
 printf("Message received (truncated):\n%s\n",
 msgBuffer);
 }
 else
626 Introduction to the New Mainframe: z/OS Basics

 {
 msgBuffer??(dataLength ??) = 0;
 printf("Message received:\n%s\n",
 msgBuffer);
 }
 }

 free(msgBuffer);

 /* */
 /* Close the queue and then disconnect from the queue manager */
 /* */
 MQCLOSE(HConn,
 &HObj,
 MQCO_NONE,
 &CompCode,
 &Reason);

 if(MQCC_OK != CompCode)
 {
 errorMessage("MQCLOSE", CompCode, Reason);
 rc = Reason;
 }
 else printf("MQCLOSE SUCCESSFUL\n");

 MQDISC(&HConn,
 &CompCode,
 &Reason);
 if(MQCC_OK != CompCode)
 {
 errorMessage("MQDISC", CompCode, Reason);
 return Reason;
 }
 else
 {
 printf("MQDISC SUCCESSFUL\n");
 return rc;
 }

 return(rc);
} /*end main*/

/***/
/* Functions to display error messages */
/***/
void errorMessage(char* msgStr, MQLONG CC, MQLONG RC)
{
 printf("**\n");
 Appendix E. Class Program 627

 printf("* %s\n", msgStr);
 printf("* COMPLETION CODE : %09ld\n", CC);
 printf("* REASON CODE : %09ld\n", RC);
 printf("**\n");
}

JCL to compile

Example: E-12 ZSCHOLAR.PROGRAM.CNTL(MQGET)

//GMULLERT JOB 1,GEORG,MSGCLASS=H,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//* COMPILE MQ PROGRAM
//STEP1 EXEC PROC=EDCCB,
// INFILE='ZSCHOLAR.PROGRAM.SRC(MQGET)',
// OUTFILE='ZSCHOLAR.PROGRAM.LOAD(MQGET),DISP=SHR'
//SYSLIB DD DSN=MQ531.SCSQC370,DISP=SHR
//BIND.CSQBSTUB DD DSN=MQ531.SCSQLOAD(CSQBSTUB),DISP=SHR
//BIND.SYSIN DD *
 INCLUDE CSQBSTUB
/*

Java program to access MQ
The Java program receives a message from a queue. The MessageHandler
class also contains a class to send messages.

You have to add com.ibm.mq.jar and connector.jar to your CLASSPATH.

All files are in “program sample\mq”.

Run the program with java -jar mqconnect.jar.

Example: E-13 MQReceiver.java

import com.ibm.mq.MQException;

public class MQReceiver {

 public static void main(String[] args) {

 // Connection settings
 String hostname = "wtsc04.itso.ibm.com";
 String queueName = "GMULLER";
 int port = 1598; // mq port
 String channel = "GMULLER.SERV";
628 Introduction to the New Mainframe: z/OS Basics

 MessageHandler handler = new MessageHandler(hostname, port, queueName,
 channel);

 String message;
 try {
 System.out.println("Sending message...");
 handler.sendMessage("Hello");
 //System.out.println("Receiving message...");
 //message = handler.receiveMessage();
 //System.out.println("Message: " + message);
 System.out.println("Finished");
 } catch (MQException e) {
 if (e.reasonCode == MQException.MQRC_NO_MSG_AVAILABLE)
 System.out.println("No message in queue");
 else {
 System.out.println("Error getting message");
 e.printStackTrace();
 }
 }
 }
}

Example: E-14 MessageHandler.java

import java.io.IOException;

import com.ibm.mq.*;

public class MessageHandler {

 private String hostname;
 private String queueName;

 public MessageHandler(String hostname, int port, String queueName, String
channel) {
 MQEnvironment.hostname = hostname;
 MQEnvironment.port = port;
 MQEnvironment.channel = channel;
 this.queueName = queueName;
 }

 public String receiveMessage() throws MQException {
 try {
 MQQueueManager mqm = new MQQueueManager(hostname);

 int openOptions = MQC.MQOO_INPUT_AS_Q_DEF + MQC.MQOO_OUTPUT;
 Appendix E. Class Program 629

 MQQueue queue = mqm.accessQueue(queueName, openOptions);
 // create new Message for receiving
 MQMessage message = new MQMessage();

 // get message from queue
 queue.get(message);
 // get the whole message string
 String messageString =
message.readString(message.getMessageLength());
 // close queue;
 queue.close();
 // disconnect from queue manager
 mqm.disconnect();

 return messageString;

 } catch (IOException e) {
 e.printStackTrace();
 return null;
 }
 }

 public void sendMessage(String messageString) throws MQException {
 try {
 MQQueueManager mqm = new MQQueueManager(hostname);

 int openOptions = MQC.MQOO_INPUT_AS_Q_DEF + MQC.MQOO_OUTPUT;

 MQQueue queue = mqm.accessQueue(queueName, openOptions);
 // create new Message for receiving
 MQMessage message = new MQMessage();

 // write message
 message.writeString(messageString);

 message.encoding = MQC.MQENC_NATIVE;
 message.characterSet = MQC.MQCCSI_INHERIT;

 // put message onto the queue
 queue.put(message);

 // close queue;
 queue.close();
 // disconnect from queue manager
 mqm.disconnect();
630 Introduction to the New Mainframe: z/OS Basics

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

 Appendix E. Class Program 631

632 Introduction to the New Mainframe: z/OS Basics

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2006. All rights reserved. 633

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Advanced Peer-to-Peer
Networking®

AD/Cycle®
AIX®
C/370™
CICS®
CICSPlex®
Domino®
DB2®
DFS™
DFSMSdfp™
DFSMSdss™
DFSMShsm™
DFSORT™
DRDA®
Encina®
Enterprise Storage Server®
Enterprise Systems

Architecture/390®
ECKD™
ESCON®
FlashCopy®
FICON®

Geographically Dispersed
Parallel Sysplex™

GDDM®
GDPS®
HiperSockets™
IBM®
IMS™
Language Environment®
Lotus®
Multiprise®
MVS™
MVS/ESA™
MVS/XA™
NetRexx™
NetView®
Open Class®
OS/390®
Parallel Sysplex®
Processor Resource/Systems

Manager™
PR/SM™
QMF™
Redbooks™

RACF®
RMF™
S/360™
S/370™
S/390®
Sysplex Timer®
System z9™
System/360™
System/370™
System/390®
SAA®
Tivoli®
VisualAge®
VSE/ESA™
VTAM®
WebSphere®
z/Architecture™
z/OS®
z/VM®
z/VSE™
zSeries®
z9™

The following terms are trademarks of other companies:

EJB, Java, JDBC, JMX, JSP, JVM, J2EE, RSM, Sun, Sun Java, Sun Microsystems, VSM, and all Java-based
trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Visual Basic, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
634 Introduction to the New Mainframe: z/OS Basics

Appendix F. Back matter

This appendix contains the following:

� “Related publications” on page 636

� “Glossary” on page GZ-641

F

© Copyright IBM Corp. 2006. All rights reserved. 635

Related publications
The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this course.

IBM provides access to z/OS manuals on the Internet. To view, search, and print
z/OS manuals, visit the z/OS Internet Library:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv

Mainframe architecture references
� z/Architecture Principles of Operation, SA22-7832

z/OS data management references
� z/OS DFSMS: Using Data Sets, SC26-7410

z/OS JCL and Utilities references
� z/OS MVS JCL Reference, SA22-7597
� z/OS MVS JCL User's Guide, SA22-7598
� z/OS DFSMSdfp Utilities, SC26-7414

z/OS system programming
� z/OS MVS System Data Set Definition, SA22-7629
� z/OS MVS Initialization and Tuning Reference, SA22-7592
� z/OS MVS Initialization and Tuning Guide, SA22-7591
� JES2 Initialization and Tuning Guide, SA22-7532

z/OS UNIX references
� z/OS UNIX System Services Command Reference, SA22-7802
� z/OS UNIX System Services User's Guide, SA22-7801
� z/OS UNIX System Services Planning, GA22-7800

z/OS Communications Server references
� z/OS Communications Server IP Configuration Guide, SC31-8775
� z/OS Communications Server IP Configuration Reference, SC31-8776
636 Introduction to the New Mainframe: z/OS Basics

Language references
� HLASM General Information, GC26-4943
� HLASM Installation and Customization Guide, SC26-3494
� HLASM Language Reference, SC26-4940
� Enterprise COBOL for z/OS and OS/390 V3R2 Language Reference,

SC27-1408
� Enterprise COBOL for z/OS and OS/390 V3R2 Programming Guide,

SC27-1412
� Enterprise PL/I Language Reference, SC27-1460
� Enterprise PL/I for z/OS V3R3 Programming Guide, SC27-1457
� C/C++ Language Reference, SC09-4764
� C/C++ Programming Guide, SC09-4765
� IBM SDK for z/OS V1.4 Program Directory, GI11-2822
� z/OS V1R5.0 Language Environment Concepts Guide, SA22-7567
� z/OS V1R5.0 Language Environment Programming Guide, SA22-7561
� The REXX Language, 2nd Ed., Cowlishaw, ZB35-5100
� Procedures Language Reference (Level 1), C26-4358 SAA CPI
� REXX on zSeries V1R4.0 User’s Guide and Reference, SH19-8160
� Creating Java Applications Using NetRexx , SG24-2216

For online information, visit:

http://www.ibm.com/software/awdtools/REXX/language/REXXlinks.html

CICS references
� CICS Application Programming Primer, SC33-0674

� CICS Transaction Server for z/OS - CICS Application Programming Guide,
SC34-6231

� CICS Transaction Server for z/OS - CICS System Programming Reference,
SC34-6233

IMS references
� An Introduction to IMS, ISBN 0-13-185671-5
� IMS Application Programming: Design Guide, SC18-7810
� IMS Application Programming: Database Manager, SC18-7809
� IMS Application Programming: Transaction Manager, SC18-7812
� IMS Java Guide and Reference, SC18-7821

For online information, visit:

http://www.ibm.com/ims
 Appendix F. Back matter 637

DB2 references
� DB2 UDB for z/OS: Administration Guide, SC18-7413
� DB2 UDB for z/OS: Application Programming and SQL Guide, SC18-7415
� DB2 UDB for z/OS: SQL Reference, SC18-7426

WebSphere MQ references
� WebSphere MQ Application Programming Guide, SC34-6064
� WebSphere MQ Bibliography and Glossary, SC34-6113
� WebSphere MQ System Administration Guide, SC34-6068

For online information, visit:

http://www.ibm.com/software/integration/mqfamily/library/manualsa/

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page FY-639. Note that some of the documents referenced here might be
available in softcopy only.

� ABCs of z/OS System Programming, Volume 1: Introduction to z/OS and
storage concepts, TSO/E, ISPF, JCL, SDSF, MVS delivery and installation

� ABCs of z/OS System Programming, Volume 2: z/OS implementation and
daily maintenance, defining subsystems, JES2 and JES3, LPA, linklist,
authorized libraries, catalogs

� ABCs of z/OS System Programming, Volume 3: Introduction to DFSMS,
storage management

� ABCs of z/OS System Programming, Volume 4: Communication Server,
TCP/IP, and VTAM

� ABCs of z/OS System Programming, Volume 5: Base and Parallel Sysplex,
system logger, global resource serialization, z/OS system operations,
automatic restart management, hardware management console, performance
management

� ABCs of z/OS System Programming, Volume 6: RACF, PKI, LDAP,
cryptography, Kerberos, and firewall technologies

� ABCs of z/OS System Programming, Volume 7: Infoprint Server, Language
Environment, and SMP/E

� ABCs of z/OS System Programming, Volume 8: z/OS problem diagnosis

� ABCs of z/OS System Programming, Volume 9: z/OS UNIX System Services
638 Introduction to the New Mainframe: z/OS Basics

� ABCs of z/OS System Programming, Volume 10: Introduction to
z/Architecture, zSeries processor design, zSeries connectivity, LPAR
concepts, and HCD

� IBM WebSphere Application Server V5.1 System Management and
Configuration WebSphere Handbook Series, SG24-6195 (IBM Redbook)

� z/OS WebSphere Application Server V5 and J2EE 1.3 Security Handbook,
SG24-6086 (IBM Redbook)

Online resources
These IBM Web sites are relevant as information sources:

� z/OS Basic Skills Information Center:

http://publib.boulder.ibm.com/infocenter/zoslnctr/v1r7/index.jsp

� z/OS Web site:

http://www.ibm.com/servers/eserver/zseries

� z/OS Internet Library:

http://www.ibm.com/servers/eserver/zseries/bkserv

� z/OS Communications Server Web site:

http://www.software.ibm.com/network/commserver/support/

� IBM Terminology

http://www.ibm.com/ibm/terminology/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support
 Appendix F. Back matter 639

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/

640 Introduction to the New Mainframe: z/OS Basics

Appendix G. Glossary

A

abend. abnormal end.

abnormal end. End of a task, a job, or a subsystem
because of an error condition that cannot be
resolved by recovery facilities while the task is
performed. See also abnormal termination.

abnormal termination. (1) The end of processing
prior to scheduled termination. (2) A system failure
or operator action that causes a job to end
unsuccessfully. Synonymous with abend, abnormal
end.

ACB. access control block.

ACCEPT. The SMP/E command used to install
SYSMODs in the distribution libraries.

accept. In SMP/E, to install SYSMODs in the
distribution libraries. This is done with the ACCEPT
command.

accepted SYSMOD. A SYSMOD that has been
successfully installed by the SMP/E ACCEPT
command. Accepted SYSMODs do not have the
ERROR flag set and are found as SYSMOD entries
in the distribution zone.

access authority. An authority that relates to a
request for a type of access to protected resources.
In RACF, the access authorities are NONE, READ,
UPDATE, ALTER, and EXECUTE.

access list. A list within a profile of all authorized
users and their access authorities.

access method. A technique for moving data
between main storage and I/O devices.
© Copyright IBM Corp. 2006. All rights reserved.
ACID properties. The properties of a transaction:
atomicity, consistency, isolation, and durability. In
CICS, the ACID properties apply to a unit of work
(UoW).

address. The unique code assigned to each device,
workstation or system connected to a network.

address space. The complete range of addresses
available to a program. In z/OS, an address space
can range up to 16 exabytes of contiguous virtual
storage addresses that the system creates for the
user. An address space contains user data and
programs, as well as system data and programs,
some of which are common to all address spaces.
See also virtual address space.

addressing mode (AMODE). A program attribute
that refers to the address length that is expected to
be in effect when the program is entered. In z/OS,
addresses can be 24, 31, or 64 bits in length.

administrator. A person responsible for
administrative tasks such as access authorization
and content management. Administrators can also
grant levels of authority to users.

allocate. To assign a resource for use in performing
a specific task.

ALLOCATE command. In z/OS, the TSO/E
command that serves as the connection between a
file's logical name (the ddname) and the file's
physical name (the data set name).

alphanumeric character. A letter or a number.

ASCII. American Standard Code for Information
Interchange.

AMODE. addressing mode.

ANSI. American National Standards Institute.
 641

AOR. application-owning region.

APAR. authorized program analysis report.

APAR fix. A temporary correction of a defect in an
IBM system control program or licensed program
that affects a specific user. An APAR fix is usually
replaced later by a permanent correction called a
PTF. APAR fixes are identified to SMP/E by the
++APAR statement.

APF. authorized program facility.

API. application programming interface.

APPC. Advanced Program-to-Program
Communications.

application. A program or set of programs that
performs a task; some examples are payroll,
inventory management, and word processing
applications.

application-owning region (AOR). In a CICSPlex®
configuration, a CICS region devoted to running
applications.

application program. A collection of software
components used to perform specific types of work
on a computer, such as a program that does
inventory control or payroll.

APPLY. The SMP/E command used to install
SYSMODs in the target libraries.

apply. In SMP/E, to install SYSMODs in the target
libraries. This is done with the APPLY command.

APPN. Advanced Peer-to-Peer Network.

ARM. automatic restart manager.

ASCII. American Standard Code for Information
Interchange.

ASID. address space identifier.

ASSEM entry. An SMP/E entry containing
assembler statements that can be assembled to
create an object module.

assembler. A computer program that converts
assembler language instructions into binary
machine language (object code).

assembler language. A symbolic programming
language that comprises instructions for basic
computer operations which are structured according
to the data formats, storage structures, and registers
of the computer.

asynchronous processing. A series of operations
that are done separately from the job in which they
were requested; for example, submitting a batch job
from an interactive job at a work station. See also
synchronous processing.

ATM. automated teller machine.

audit. To review and examine the activities of a data
processing system mainly to test the adequacy and
effectiveness of procedures for data security and
data accuracy.

authority. The right to access objects, resources, or
functions.

authorization checking. The action of determining
whether a user is permitted access to a
RACF-protected resource.

authorized program analysis report (APAR). A
request for correction of a problem caused by a
defect in a current unaltered release of a program.
The correction is called an APAR fix.

authorized program facility (APF). A facility that
permits identification of programs authorized to use
restricted functions.

automated operations. Automated procedures to
replace or simplify actions of operators in both
systems and network operations.
642 Introduction to the New Mainframe: z/OS Basics

automatic call. The process used by the linkage
editor to resolve external symbols left undefined
after all the primary input has been processed. See
also automatic call library.

automatic call library. Contains load modules or
object decks that are to be used as secondary input
to the linkage editor to resolve external symbols left
undefined after all the primary input has been
processed.
The automatic call library may be:
� Libraries containing object decks, with or

without linkage editor control statements
� Libraries containing load modules
� The library containing Language

Environment run-time routines.

automatic library call. Automatic call. See also
automatic call library.

automatic restart. A restart that takes place during
the current run, that is, without resubmitting the job.
An automatic restart can occur within a job step or at
the beginning of a job step. Contrast with deferred
restart. See also checkpoint restart.

automatic restart management. A z/OS recovery
function that improves the availability of batch jobs
and started tasks. When a job fails, or the system on
which it is running unexpectedly fails, z/OS can
restart the job without operator intervention.

auxiliary storage. All addressable storage other
than processor storage.

B

background. (1) In multiprogramming, the
environment in which low-priority programs are
executed. (2) Under TSO/E the environment in
which jobs submitted through the SUBMIT
command or SYSIN are executed. One job step at a
time is assigned to a region of central storage, and it
remains in central storage to completion. Contrast
with foreground.

background job. (1) A low-priority job, usually a
batched or non-interactive job. (2) Under TSO, a job
entered through the SUBMIT command or through
SYSIN. Contrast with foreground job.

backout. A request to remove all changes to
resources since the last commit or backout or, for the
first unit of recovery, since the beginning of the
application. Backout is also called rollback or abort.

backup. The process of creating a copy of a data set
to ensure against accidental loss.

BAL. Basic Assembler Language.

base function. In SMP/E, a SYSMOD defining
elements of the base z/OS system or other products
that were not previously present in the target
libraries. Base functions are identified to SMP/E by
the ++FUNCTION statement. SMP/E itself is an
example of a base function of z/OS.

base level system. In SMP/E, the level of the target
system modules, macros, source, and DLIBs
created by system generation, to which function and
service modifications are applicable.

batch. A group of records or data processing jobs
brought together for processing or transmission.
Pertaining to activity involving little or no user action.
Contrast with interactive.

batch job. A predefined group of processing actions
submitted to the system to be performed with little or
no interaction between the user and the system.
Contrast with interactive job.

batch message processing (BMP) program. An
IMS batch processing program that has access to
online databases and message queues. BMPs run
online, but like programs in a batch environment,
they are started with job control language (JCL).

batch processing. A method of running a program
or a series of programs in which one or more records
(a batch) are processed with little or no action from
the user or operator. Contrast with interactive
processing.
Appendix G. Glossary 643

BCP. base control program.

big endian. A format for the storage of binary data
in which the most significant byte is placed first. Big
endian is used by most hardware architectures
including the z/Architecture. Contrast with little
endian.

binary data. (1) Any data not intended for direct
human reading. Binary data may contain unprintable
characters, outside the range of text characters. (2)
A type of data consisting of numeric values stored in
bit patterns of 0s and 1s. Binary data can cause a
large number to be placed in a smaller space of
storage.

bind. (1) To combine one or more control sections or
program modules into a single program module,
resolving references between them. (2) In SNA, a
request to activate a session between two logical
units (LUs).

binder. The z/OS program that processes the output
of the language translators and compilers into an
executable program (load module or program
object). It replaces the linkage editor and batch
loader used in earlier forms of the z/OS operating
system, such as MVS and OS/390.

BLK. A subparameter of the SPACE parameter in a
DD statement. It specifies that space is allocated by
blocks.

BLKSIZE. block size.

BLOB. binary large object.

block size. (1) The number of data elements in a
block. (2) A measure of the size of a block, usually
specified in units such as records, words, computer
words, or characters. (3) Synonymous with block
length. (4) Synonymous with physical record size.

BPAM. basic partitioned access method.

BSAM. basic sequential access method.

buffer. A portion of storage used to hold input or
output data temporarily.

bypass. In SMP/E, to circumvent errors that would
otherwise cause SYSMOD processing to fail. This is
done by using the BYPASS operand on an SMP/E
command.

byte. The basic unit of storage addressability. It has
a length of 8 bits.

byte stream. A simple sequence of bytes stored in
a stream file. See also record data.

C

C language. A high-level language used to develop
software applications in compact, efficient code that
can be run on different types of computers with
minimal change.

cabinet. Housing for panels organized into port
groups of patchports, which are pairs of fibre
adapters or couplers. Cabinets are used to organize
long, complex cables between processors and
controllers, which may be as far away as another
physical site. Also known as fiber management
cabinets.

cable "in inventory." Unused cables.

cache. A random access electronic storage in
selected storage controls used to retain frequently
used data for faster access by the channel.

cache structure. A coupling facility structure that
enables high-performance sharing of cached data
by multisystem applications in a sysplex.
Applications can use a cache structure to implement
several different types of caching systems, including
a store-through or a store-in cache.

called routine. A routine or program that is invoked
by another.

carriage control character. An optional character
in an input data record that specifies a write, space,
or skip operation.
644 Introduction to the New Mainframe: z/OS Basics

carriage return (CR). (1) A keystroke generally
indicating the end of a command line. (2) In text data,
the action that indicates to continue printing at the
left margin of the next line. (3) A character that will
cause printing to start at the beginning of the same
physical line in which the carriage return occurred.

CART. command and response token.

case-sensitive. Pertaining to the ability to
distinguish between uppercase and lowercase
letters.

catalog. (1) A directory of files and libraries, with
reference to their locations. (2) To enter information
about a file or a library into a catalog. (3) The
collection of all data set indexes that are used by the
control program to locate a volume containing a
specific data set.

cataloged data set. A data set that is represented
in an index or hierarchy of indexes that provide the
means for locating it.

cataloged procedure. A set of job control language
(JCL) statements placed in a library and retrievable
by name.

CCW. channel command word.

CEMT. The CICS-supplied transaction that allows
checking of the status of terminals, connections, and
other CICS entities from a console or from CICS
terminal sessions.

central processor (CP). The part of the computer
that contains the sequencing and processing
facilities for instruction execution, initial program
load, and other machine operations.

central processor complex (CPC). A physical
collection of hardware that includes main storage,
one or more central processors, timers, and
channels.

central processing unit (CPU). Synonymous with
processor.

central storage. (1) In z/OS, the storage of a
computing system from which the central processing
unit can directly obtain instructions and data, and to
which it can directly return results. (Formerly
referred to as “real storage”.) (2) Synonymous with
processor storage.

CF. Coupling Facility

CFRM. Coupling Facility resource management.

CGI. Common Gateway Interface.

channel adapter. A device that groups two or more
controller channel interfaces electronically.

channel connection address (CCA). The
input/output (I/O) address that uniquely identifies an
I/O device to the channel during an I/O operation.

channel interface. The circuitry in a storage control
that attaches storage paths to a host channel.

channel path identifier. The logical equivalent of
channels in the physical processor.

channel subsystem (CSS). A collection of
subchannels that directs the flow of information
between I/O devices and main storage. Logical
partitions use subchannels to communicate with I/O
devices. The maximum number of CSSs supported
by a processor also depends on the processor type.
If more than one CSS is supported by a processor,
each CSS has a processor unique single
hexadecimal digit CSS identifier (CSS ID).

channel-to-channel (CTC). The communication
(transfer of data) between programs on opposite
sides of a channel-to-channel adapter (CTCA).

channel-to-channel adapter (CTCA). An
input/output device that is used a program in one
system to communicate with a program in another
system.
Appendix G. Glossary 645

channel-to-channel (CTC) connection. A
connection between two CHPIDs on the same or
different processors, either directly or through a
switch. When connecting through a switch, both
CHPIDs must be connected through the same or a
chained switch.

character. A letter, digit, or other symbol. A letter,
digit, or other symbol that is used as part of the
organization, control, or representation of data. A
character is often in the form of a spatial
arrangement of adjacent or connected strokes.

checkpoint. (1) A place in a routine where a check,
or a recording of data for restart purposes, is
performed. (2) A point at which information about the
status of a job and the system can be recorded so
that the job step can be restarted later.

checkpoint data set. A data set in which
information about the status of a job and the system
can be recorded so that the job step can be restarted
later.

checkpoint write. Any write to the checkpoint data
set. A general term for the primary, intermediate,
and final writes that update any checkpoint data set.

CHPID. channel path identifier.

CI. control interval.

CICS. Customer Information Control System.

CICSplex. A configuration of interconnected CICS
systems in which each system is dedicated to one of
the main elements of the overall workload. See also
application owning region and terminal owning
region.

CKD. count-key data.

client. A functional unit that receives shared
services from a server. See also client-server.

client-server. In TCP/IP, the model of interaction in
distributed data processing in which a program at
one site sends a request to a program at another site
and awaits a response. The requesting program is
called a client; the answering program is called a
server.

CLIST. command list.

CLOB. character large object.

CLPA. create link pack area.

CMOS. Complementary Metal Oxide
Semiconductor.

CMS. Conversational Monitor System.

COBOL. Common Business-Oriented Language.

code page. (1) An assignment of graphic characters
and control function meanings to all code points; for
example, assignment of characters and meanings to
256 code points for an 8-bit code, assignment of
characters and meanings to 128 code points for a
7-bit code. (2) A particular assignment of
hexadecimal identifiers to graphic characters.

code point. A 1-byte code representing one of 256
potential characters.

coexistence. Two or more systems at different
levels (for example, software, service or operational
levels) that share resources. Coexistence includes
the ability of a system to respond in the following
ways to a new function that was introduced on
another system with which it shares resources:
ignore a new function; terminate gracefully; support
a new function.

command. A request to perform an operation or run
a program. When parameters, arguments, flags, or
other operands are associated with a command, the
resulting character string is a single command.
646 Introduction to the New Mainframe: z/OS Basics

command and response token (CART). A
parameter on WTO, WTOR, MGCRE, and certain
TSO/E commands and REXX execs that allows you
to link commands and their associated message
responses.

command prefix. A one- to eight-character
command identifier. The command prefix
distinguishes the command as belonging to an
application or subsystem rather than to z/OS.

COMMAREA. A communication area made
available to applications running under CICS.

commit. A request to make all changes to resources
since the last commit or backout or, for the first unit
of recovery, since the beginning of the application.

Common Business-Oriented Language
(COBOL). A high-level language, based on English,
that is primarily used for business applications.

common service area (CSA). In z/OS, a part of the
common area that contains data areas that are
addressable by all address spaces.

compatibility. Ability to work in the system or ability
to work with other devices or programs.

compilation unit. A portion of a computer program
sufficiently complete to be compiled correctly.

compiler. A program that translates a source
program into an executable program (an object
deck).

compiler options. Keywords that can be specified
to control certain aspects of compilation. Compiler
options can control the nature of the load module
generated by the compiler, the types of printed
output to be produced, the efficient use of the
compiler, and the destination of error messages.
Also called compiler-time options.

complementary metal oxide semiconductor
(CMOS). A technology that combines the electrical
properties of positive and negative voltage
requirements to use considerably less power than
other types of semiconductors.

component. A functional part of an operating
system; for example, the scheduler or supervisor.

condition code. A code that reflects the result of a
previous input/output, arithmetic, or logical
operation.

configuration. The arrangement of a computer
system or network as defined by the nature, number,
and chief characteristics of its functional units.

connection. In TCP/IP, the path between two
protocol applications that provides reliable data
stream delivery service. In Internet communications,
a connection extends from a TCP application on one
system to a TCP application on another system.

consistent copy. A copy of data entity (for example,
a logical volume) that contains the contents of the
entire data entity from a single instant in time.

console. Any device from which operators can enter
commands or receive messages.

console group. In z/OS, a group of consoles
defined in CNGRPxx, each of whose members can
serve as an alternate console in console or
hardcopy recovery or as a console to display
synchronous messages.

control block. A storage area used by a computer
program to hold control information.

control interval (CI). A fixed-length area or disk in
which VSAM stores records and creates distributed
free space. Also, in a key-sequenced data set or file,
the set of records that an entry in the sequence-set
index record points to. The control interval is the unit
of information that VSAM transmits to or from disk. A
control interval always includes an integral number
of physical records.

control region. The main storage region that
contains the subsystem work manager or
subsystem resource manager control program.
Appendix G. Glossary 647

control section (CSECT). The part of a program
specified by the programmer to be a relocatable unit,
all elements of which are to be loaded into adjoining
main storage locations.

control statement. In programming languages, a
statement that is used to alter the continuous
sequential execution of statements; a control
statement can be a conditional statement, such as
IF, or an imperative statement, such as STOP. In
JCL, a statement in a job that is used in identifying
the job or describing its requirements to the
operating system.

control unit (CU). Each physical controller contains
one or more control units, which translate high level
requests to low level requests between processors
and devices. Synonymous with device control unit.

control unit address. The high order bits of the
storage control address, used to identify the storage
control to the host system.

controller. A device that translates high level
requests from processors to low level requests for
I/O devices, and vice versa. Each physical controller
contains one or more logical control units, channel
and device interfaces, and a power source.
Controllers can be divided into segments, or
grouped into subsystems.

conversation. A logical connection between two
programs over an LU type 6.2 session that allows
them to communicate with each other while
processing a transaction.

conversational. Pertaining to a program or a
system that carries on a dialog with a terminal user,
alternately accepting input and then responding to
the input quickly enough for the user to maintain a
train of thought.

conversational monitor system (CMS). A virtual
machine operating system that provides general
interactive time sharing, problem solving, and
program development capabilities, and operates
only under the control of the VM/370 control
program.

CORBA. Common Object Request Broker
Architecture.

corequisite SYSMODs. SYSMODs each of which
can be installed properly only if the other is present.
Corequisites are defined by the REQ operand on the
++VER statement.

corrective service. Any SYSMOD used to
selectively fix a system problem. Generally,
corrective service refers to APAR fixes.

count-key data. A disk storage device for storing
data in the format: count field normally followed by a
key field followed by the actual data of a record. The
count field contains, in addition to other information,
the address of the record in the format: CCHHR
(where CC is the two-digit cylinder number, HH is the
two-digit head number, and R is the record number)
and the length of the data. The key field contains the
record's key.

couple data set. A data set that is created through
the XCF couple data set format utility and,
depending on its designated type, is shared by some
or all of the z/OS systems in a sysplex. See also
sysplex couple data set.

Coupling Facility. A special logical partition that
provides high-speed caching, list processing, and
locking functions in a sysplex.

Coupling Facility channel. A high bandwidth fiber
optic channel that provides the high-speed
connectivity required for data sharing between a
coupling facility and the central processor
complexes directly attached to it.

coupling services. In a sysplex, the functions of
XCF that transfer data and status between members
of a group residing on one or more z/OS systems in
the sysplex.

CP. central processor.

CPC. central processor complex.

CPU. central processing unit.
648 Introduction to the New Mainframe: z/OS Basics

create link pack area (CLPA). An option that is
used during IPL to initialize the link pack pageable
area.

crossbar switch. A static switch that can connect
controllers to processors with parallel (bus and tag)
interfaces. The crossbar contains a number of
channel interfaces on its top, which can connect to
objects above it such as processors or other
crossbars. The crossbar switch also contains a
number of control unit interfaces on its side, which
can connect to objects below it such as controllers or
other crossbars.

cross-memory linkage. A method for invoking a
program in a different address space. The invocation
is synchronous with respect to the caller.

cross-system coupling facility (XCF). A
component of z/OS that provides functions to
support cooperation between authorized programs
running within a sysplex.

cross-system extended services (XES). A set of
z/OS services that allow multiple instances of an
application or subsystem, running on different
systems in a sysplex environment, to implement
high-performance, | high-availability data sharing by
using a coupling facility.

cross-system restart. If a system fails, automatic
restart management restarts elements on another
eligible system in the sysplex.

cryptographic key. A parameter that determines
cryptographic transformations between plaintext
and ciphertext.

cryptography. The transformation of data to
conceal its meaning.

CSA. common service area.

CSI. consolidated software inventory data set. See
SMPCSI.

CSS. channel subsystem.

CSECT. control section.

CTC. channel-to-channel.

CTC connection. channel-to-channel connection.

cumulative service tape. A tape sent with a new
function order, containing all current PTFs for that
function.

Customer Information Control System (CICS).
An online transaction processing (OLTP) system
that provides specialized interfaces to databases,
files and terminals in support of business and
commercial applications. CICS enables transactions
entered at remote terminals to be processed
concurrently by user-written application programs.

D

daemon. In UNIX systems, a long-lived process
that runs unattended to perform continuous or
periodic system-wide functions, such as network
control. Some daemons are triggered automatically
to perform their task; others operate periodically. An
example is the cron daemon, which periodically
performs the tasks listed in the crontab file. The
z/OS equivalent is a started task.

DASD. direct access storage device.

DASD volume. A DASD space identified by a
common label and accessed by a set of related
addresses. See also volume.

data class. A collection of allocation and space
attributes, defined by the storage administrator, that
are used that are used when allocating a new
SMS-managed data set.

data control block (DCB). A control block used by
access method routines in storing and retrieving
data.

data definition name (ddname). (1) The name of a
data definition (DD) statement that corresponds to a
data control block that contains the same name. (2)
The symbolic representation for a name placed in
the name field of a data definition (DD) statement.
Appendix G. Glossary 649

data definition (DD) statement. A job control
statement that describes a data set associated with
a particular job step.

data definition name. See ddname.

data definition statement. A JCL control statement
that serves as the connection between a file's logical
name (the ddname) and the file's physical name (the
data set name).

data division. In COBOL, the part of a program that
describes the files to be used in the program and the
records contained within the files. It also describes
any WORKING-STORAGE data items, LINKAGE
SECTION data items, and LOCAL-STORAGE data
items that are needed.

Data Facility Sort (DFSORT). An IBM licensed
program that is a high-speed data-processing utility.
DFSORT provides a method for sorting, merging,
and copying operations, as well as providing
versatile data manipulation at the record, field, and
bit level.

data in transit. The update data on application
system DASD volumes that is being sent to the
recovery system for writing to DASD volumes on the
recovery system.

data integrity. The condition that exists when
accidental or intentional destruction, alteration, or
loss of data does not occur.

data set. In z/OS, a named collection of related data
records that is stored and retrieved by an assigned
name. Equivalent to a file.

data set backup. Backup to protect against the loss
of individual data sets.

data set label. (1) A collection of information that
describes the attributes of a data set and is normally
stored on the same volume as the data set. (2) A
general term for data set control blocks and tape
data set labels.

data sharing. The ability of concurrent subsystems
(such as DB2 or IMS DB) or application programs to
directly access and change the same data, while
maintaining data integrity.

data stream. (1) All information (data and control
commands) sent over a data link usually in a single
read or write operation. (2) A continuous stream of
data elements being transmitted, or intended for
transmission, in character or binary-digit form, using
a defined format.

data type. The properties and internal
representation that characterize data.

data warehouse. A system that provides critical
business information to an organization. The data
warehouse system cleanses the data for accuracy
and currency, and then presents the data to decision
makers so that they can interpret and use it
effectively and efficiently.

database. A collection of tables, or a collection of
table spaces and index spaces.

database administrator (DBA). An individual who
is responsible for designing, developing, operating,
safeguarding, maintaining, and using a database.

database management system (DBMS). A
software system that controls the creation,
organization, and modification of a database and the
access to the data that is stored within it.

DBCS. double-byte character set.

DBMS. database management system.

DB2. DATABASE 2; generally, one of a family of IBM
relational database management systems and,
specifically, the system that runs under z/OS.

DB2 data sharing group. A collection of one or
more concurrent DB2 subsystems that directly
access and change the same data while maintaining
data integrity.

DCB. data control block.
650 Introduction to the New Mainframe: z/OS Basics

DCLGEN. declarations generator.

ddname. data definition name.

DD statement. data definition statement.

deadlock. (1) An error condition in which processing
cannot continue because each of two elements of
the process is waiting for an action by or a response
from the other. (2) Unresolvable contention for the
use of a resource. (3) An impasse that occurs when
multiple processes are waiting for the availability of a
resource that does not become available because it
is being held by another process that is in a similar
wait state.

deallocate. To release a resource that is assigned
to a specific task.

declarations generator (DCLGEN). A
subcomponent of DB2 that generates SQL table
declarations and COBOL, C, or PL/I data structure
declarations that conform to the table. The
declarations are generated from DB2 system
catalog information.

dedicated. Pertaining to the assignment of a system
resource—a device, a program, or a whole
system—to an application or purpose.

default. A value that is used or an action that is
taken when no alternative is specified by the user.

deferred restart. A restart performed by the system
when a user resubmits a job. The operator submits
the restart deck to the system through a system
input reader. See also checkpoint restart. Contrast
with automatic restart.

deleted function. In SMP/E, a function that was
removed from the system when another function
was installed. This is indicated by the DELBY
subentry in the SYSMOD entry for the deleted
function.

destination. A combination of a node name and one
of the following: a user ID, a remote printer or punch,
a special local printer, or LOCAL (the default if only
a node name is specified).

destination node. The node that provides
application services to an authorized external user.

device. A computer peripheral or an object that
appears to the application as such.

device address. The field of an ESCON
device-level frame that selects a specific device on a
control unit image. The one or two left-most digits
are the address of the channel to which the device is
attached. The two rightmost digits represent the unit
address.

device control unit. A hardware device that
controls the reading, writing, or displaying of data at
one or more I/O devices or terminals.

device number. A four-hexadecimal-character
identifier, for example 13A0, that you associate with
a device to facilitate communication between the
program and the host operator. The device number
that you associate with a subchannel.

Device Support Facilities program (ICKDSF). A
program used to initialize DASD volumes at
installation and perform media maintenance.

DFSMS. Data Facility Storage Management
Subsystem.

DFSMShsm. An IBM product used for backing up
and recovering data, and managing space on
volumes in the storage hierarchy.

device type. The general name for a kind of device;
for example, 3390.

DFS. Distributed File Service.

DFSORT. Data Facility Sort.

dialog. An interactive pop-up window containing
options that allow you to browse or modify
information, take specific action relating to selected
objects, or access other dialogs. For example, HCM
provides a series of dialogs to help you create, edit,
delete, and connect objects, as well as manipulate
the configuration diagram.
Appendix G. Glossary 651

direct access storage device (DASD). A device in
which the access time is effectively independent of
the location of the data.

directory. (1) A type of file containing the names
and controlling information for other files or other
directories. Directories can also contain
subdirectories, which can contain subdirectories of
their own. (2) A file that contains directory entries.
No two directory entries in the same directory can
have the same name. (POSIX.1). (3) A file that
points to files and to other directories. (4) An index
used by a control program to locate blocks of data
that are stored in separate areas of a data set in
direct access storage.

disaster recovery. Recovery after a disaster, such
as a fire, that destroys or otherwise disables a
system. Disaster recovery techniques typically
involve restoring data to a second (recovery)
system, then using the recovery system in place of
the destroyed or disabled application system. See
also recovery, backup, and recovery system.

DISP. Disposition (JCL DD parameter).

display console. In z/OS, an MCS console whose
input/output function you can control.

distributed computing. Computing that involves
the cooperation of two or more machines
communicating over a network. Data and resources
are shared among the individual computers.

Distributed Computing Environment (DCE). A
comprehensive, integrated set of services that
supports the development, use, and maintenance of
distributed applications. DCE is independent of the
operating system and network; it provides
interoperability and portability across
heterogeneous platforms.

distributed data. Data that resides on a DBMS
other than the local system.

Distributed File Service (DFS). A DCE component.
DFS joins the local file systems of several file server
machines making the files equally available to all
DFS client machines. DFS allows users to access
and share files stored on a file server anywhere in
the network, without having to consider the physical
location of the file. Files are part of a single, global
namespace, so that a user can be found anywhere
in the network by means of the same name.

distribution library (DLIB). A library that contains
the master copy of all the elements in a system. A
distribution library can be used to create or back up
a target library.

distribution zone. In SMP/E, a group of records in
a CSI data set that describes the SYSMODs and
elements in a distribution library.

DLIB. distribution library.

DLL. dynamic link library.

double-byte character set (DBCS). A set of
characters in which each character is represented
by a two-bytes code. Languages such as Japanese,
Chinese, and Korean, which contain more symbols
than can be represented by 256 code points, require
double-byte character sets. Because each character
requires two bytes, the typing, display, and printing
of DBCS characters requires hardware and
programs that support DBCS. Contrast with
single-byte character set.

doubleword. A sequence of bits or characters that
comprises eight bytes (two 4-byte words) and is
referenced as a unit.

downwardly compatible. The ability of applications
to run on previous releases of z/OS.

drain. Allowing a printer to complete its current work
before stopping the device.

driving system. The system used to install the
program. Contrast with target system.

dsname. data set name.
652 Introduction to the New Mainframe: z/OS Basics

DSORG. Data set organization (parameter of DCB
and DD and in a data class definition).

dump. A report showing the contents of storage.
Dumps are typically produced following program
failures, for use as diagnostic aids.

dynamic allocation. Assignment of system
resources to a program at the time the program is
executed rather than at the time it is loaded into
central storage.

dynamic link library (DLL). A file containing
executable code and data bound to a program at
load time or run time. The code and data in a
dynamic link library can be shared by several
applications simultaneously.

dynamic reconfiguration. The ability to make
changes to the channel subsystem and to the
operating system while the system is running.

E

e-business. (1) The transaction of business over an
electronic medium such as the Internet. (2) The
transformation of key business processes through
the use of Internet technologies.

EB. See exabyte.

EBCDIC. Extended Binary Coded Decimal
Interchange Code.

EC. engineering change.

ECSA. extended common service area.

EDT. eligible device table.

element. In SMP/E, part of a product, such as a
macro, module, dialog panel, or sample code.

eligible device table (EDT). An installation defined
representation of the devices that are eligible for
allocation. The EDT defines the esoteric and generic
relationship of these devices. During IPL, the
installation identifies the EDT that z/OS uses. After
IPL, jobs can request device allocation from any of
the esoteric device groups assigned to the selected
EDT. An EDT is identified by a unique ID (two digits),
and contains one or more esoterics and generics.

enclave. A transaction that can span multiple
dispatchable units (SRBs and tasks) in one or more
address spaces and is reported on and managed as
a unit.

encrypt. To systematically encode data so that it
cannot be read without knowing the coding key.

endian. An attribute of data representation that
reflects how certain multi-octet data is stored in
memory. See big endian and little endian.

enterprise. The composite of all operational
entities, functions, and resources that form the total
business concern.

Enterprise Systems Connection (ESCON). A set
of products and services that provides a dynamically
connected environment using optical cables as a
transmission medium.

entry area. In z/OS, the part of a console screen
where operators can enter commands or command
responses.

entry name. In assembler language, a
programmer-specified name within a control section
that identifies an entry point and can be referred to
by any control section. See also entry point.

entry point. The address or label of the first
instruction that is executed when a routine is entered
for execution. Within a load module, the location to
which control is passed when the load module is
invoked.

entry point name. The symbol (or name) that
represents an entry point. See also entry point.
Appendix G. Glossary 653

esoteric. Esoteric (or esoteric device group) is an
installation-defined and named grouping of I/O
devices of usually the same device group. Eligible
device tables (EDTs) define the esoteric and generic
relationship of these devices. The name you assign
to an esoteric is used in the JCL DD statement. The
job then allocates a device from that group instead
of a specific device number or generic device group.

EOF. End of file.

ESCON. Enterprise Systems Connection.

ETR. External Time Reference. See also Sysplex
Timer®.

exabyte. For processor, real and virtual storage
capacities and channel volume: 1 152 921 504 606
846 976 bytes or 2(60).

exception SYSMOD. A SYSMOD that is in error or
that requires special processing before it can be
installed. ++HOLD and ++RELEASE statements
identify exception SYSMODs.

EXCP. execute channel programs.

executable. A load module or program object which
has yet to be loaded into memory for execution.

executable program. (1) A program in a form
suitable for execution by a computer. The program
can be an application or a shell script. (2) A program
that has been link-edited and can therefore be run in
a processor. (3) A program that can be executed as
a self-contained procedure. It consists of a main
program and, optionally, one or more subprograms.
(4) See also executable file, load module.

Extended Binary-Coded Decimal Interchange
Code (EBCDIC). An encoding scheme that is used
to represent character data in the z/OS environment.
Contrast with ASCII and Unicode.

extended MCS console. In z/OS, a console other
than an MCS console from which operators or
programs can issue system commands and receive
messages. An extended MCS console is defined
through an OPERPARM segment.

extended remote copy (XRC). A hardware- and
software-based remote copy service option that
provides an asynchronous volume copy across
storage subsystems for disaster recovery, device
migration, and workload migration.

external reference. In an object deck, a reference
to a symbol, such as an entry point name, defined in
another program or module.

F

feature. A part of an IBM product that may be
ordered separately by a customer.

feature code. A four-digit code used by IBM to
process hardware and software orders.

fetch. The dynamic loading of a procedure.

Fiber Connection Environment (FICON). An
optical fiber communication method offering
channels with high data rate, high bandwidth,
increased distance and a large number of devices
per control unit for mainframe systems. It can work
with, or replace, ESCON links.

fiber link. The physical fiber optic connections and
transmission media between optical fiber
transmitters and receivers. A fiber link can comprise
one or more fiber cables and patchports in fiber
management cabinets. Each connection in the fiber
link is either permanent or mutable.

FICON. Fiber Connection Environment.

FIFO. first in, first out.

file. A named collection of related data records that
is stored and retrieved by an assigned name.
Equivalent to a z/OS data set.

FILEDEF. file definition statement.

first in, first out. A queuing technique in which the
next item to be retrieved is the oldest item in the
queue.
654 Introduction to the New Mainframe: z/OS Basics

firewall. An intermediate server that functions to
isolate a secure network from an insecure network.

fix. A correction of an error in a program, usually a
temporary correction or bypass of defective code.

fixed-length record. A record having the same
length as all other records with which it is logically or
physically associated. Contrast with variable-length
record.

FlashCopy. A point-in-time copy services function
that can quickly copy data from a source location to
a target location.

FMID. function modification identifier.

foreground. (1) in multiprogramming, the
environment in which high-priority programs are
executed. (2) Under TSO, the environment in which
programs are swapped in and out of central storage
to allow CPU time to be shared among terminal
users. All command processor programs execute in
the foreground. Contrast with background.

foreground job. (1) A high-priority job, usually a
real-time job. (2) Under TSO, any job executing in a
swapped region of central storage, such as a
command processor or a terminal user's program.
Contrast with background job.

foreign key. A column or set of columns in a
dependent table of a constraint relationship. The key
must have the same number of columns, with the
same descriptions, as the primary key of the parent
table. Each foreign key value must either match a
parent key value in the related parent table or be
null.

fork. To create and start a child process. Forking is
similar to creating an address space and attaching.
It creates a copy of the parent process, including
open file descriptors.

Fortran. A high-level language used primarily for
applications involving numeric computations. In
previous usage, the name of the language was
written in all capital letters, that is, FORTRAN.

frame. For a mainframe microprocessor cluster, a
frame contains one or two central processor
complexes (CPCs), support elements, and AC
power distribution.

FTP. File Transfer Protocol.

fullword. A sequence of bits or characters that
comprises four bytes (one word) and is referenced
as a unit.

fullword boundary. A storage location whose
address is evenly divisible by 4.

function. In SMP/E, a product (such as a system
component or licensed program) that can be
installed in a user's system if desired. Functions are
identified to SMP/E by the ++FUNCTION statement.
Each function must have a unique FMID.

function modification identifier (FMID). A code
that identifies the release levels of a z/OS licensed
program.

G

gateway node. A node that is an interface between
networks.

GB. gigabyte (1 073 741 824 bytes).

GDG. generation data group.

generalized trace facility (GTF). Like system trace,
gathers information used to determine and diagnose
problems that occur during system operation. Unlike
system trace, however, GTF can be tailored to
record very specific system and user program
events.

generation data group (GDG). A collection of
historically related non-VSAM data sets that are
arranged in chronological order; each data set is
called a generation data set.
Appendix G. Glossary 655

generic. A z/OS-defined grouping of devices with
similar characteristics. For example: the device
types 3270-X, 3277-2, 3278-2, -2A, -3, -4, and
3279-2a, -2b, -2c, -3a, -3b belong to the same
generic. Every generic has a generic name that is
used for device allocation in the JCL DD statement.
z/OS interprets this name as "take any device in that
group." In a given z/OS configuration, each eligible
device table (EDT) has the same list of generics.

Geographically Dispersed Parallel Sysplex
(GDPS). An application that integrates Parallel
Sysplex technology and remote copy technology to
enhance application availability and improve
disaster recovery. GDPS topology is a Parallel
Sysplex cluster spread across two sites, with all
critical data mirrored between the sites. GDPS
manages the remote copy configuration and storage
subsystems; automates Parallel Sysplex operational
tasks; and automates failure recovery from a single
point of control.

gigabyte. 230 bytes, 1 073 741 824 bytes. This is
approximately a billion bytes in American English.

global access checking. The ability to allow an
installation to establish an in-storage table of default
values for authorization levels for selected
resources.

global resource serialization. A function that
provides a z/OS serialization mechanism for
resources (typically data sets) across multiple z/OS
images.

global resource serialization complex. One or
more z/OS systems that use global resource
serialization to serialize access to shared resources
(such as data sets on shared DASD volumes).

global zone. A group of records in a CSI data set
used to record information about SYSMODs
received for a particular system. The global zone
also contains information that (1) enables SMP/E to
access target and distribution zones in that system,
and (2) enables you to tailor aspects of SMP/E
processing.

Gregorian calendar. The calendar in use since
Friday, 15 October 1582 throughout most of the
world.

group. A collection of RACF users who can share
access authorities for protected resources.

H

hardcopy log. In systems with multiple console
support or a graphic console, a permanent record of
system activity.

hardware. Physical equipment, as opposed to the
computer program or method of use; for example,
mechanical, magnetic, electrical, or electronic
devices. Contrast with software.

hardware configuration dialog (HCD). In z/OS, a
panel program that is part of the hardware
configuration definition. The program allows an
installation to define devices for z/OS system
configurations.

Hardware Management Console (HMC). A
console used to monitor and control hardware such
as the mainframe microprocessors.

hardware unit. A central processor, storage
element, channel path, device, and so on.

HASP. Houston Automatic Spooling Priority.

HCD. Hardware Configuration Definition.

head of string. The first unit of devices in a string. It
contains the string interfaces which connect to
controller device interfaces.

hexadecimal. A base 16 numbering system.
Hexadecimal digits range from 0 through 9 (decimal
0 to 9) and uppercase or lowercase A through F
(decimal 10 to 15) and A through F, giving values of
0 through 15.

HFS. hierarchical file system.
656 Introduction to the New Mainframe: z/OS Basics

hierarchical file system (HFS). A data set that
contains a POSIX-compliant file system, which is a
collection of files and directories organized in a
hierarchical structure, that can be accessed using
z/OS UNIX System Services.

hierarchical file system (HFS) data set. A data set
that contains a POSIX-compliant hierarchical file
system, which is a collection of files and directories
organized in a hierarchical structure, that can be
accessed using z/OS UNIX System Services
facilities.

high-level language (HLL). A programming
language above the level of assembler language
and below that of program generators and query
languages. Examples are C, C++, COBOL, Fortran,
and PL/I.

HLL. high-level language.

highly parallel. Refers to multiple systems
operating in parallel, each of which can have multiple
processors. See also n-way.

HMC. Hardware Management Console.

HOLDDATA. In SMP/E, one or more MCSs used to
indicate that certain SYSMODs contain errors or
require special processing before they can be
installed. ++HOLD and ++RELEASE statements are
used to define HOLDDATA. SYSMODs affected by
HOLDDATA are called exception SYSMODs.

Houston Automatic Spooling Priority (HASP). A
computer program that provides supplementary job
management, data management, and task
management functions, such as: control of job flow,
ordering of tasks, and spooling. See also JES2.

I

I/O. Input/output.

I/O cluster. A sysplex that owns a managed channel
path for a logically partitioned processor
configuration.

I/O device. A printer, tape drive, hard disk drive, and
so on. Devices are logically grouped inside units,
which are in turn grouped into strings. The first unit,
known as the head of string, contains string
interfaces which connect to controller device
interfaces and eventually to processor CHPIDs.
Devices are represented as lines of text within the
appropriate unit object in the configuration diagram.

IBM Support Center. The IBM organization
responsible for software service.

IBM systems engineer (SE). An IBM service
representative who performs maintenance services
for IBM software in the field.

ICSF. Integrated Cryptographic Service Facility.

IDCAMS. An IBM program used to process access
method services commands. It can be invoked as a
job or jobstep, from a TSO terminal, or from within a
user's application program.

image. A single instance of the z/OS operating
system.

IMS. Information Management System.

IMS DB. Information Management System
Database Manager.

IMS DB data sharing group. A collection of one or
more concurrent IMS DB subsystems that directly
access and change the same data while maintaining
data integrity.

Information Management System (IMS). IBM
product that supports hierarchical databases, data
communication, translation processing, and
database backout and recovery.

initial program load (IPL). The initialization
procedure that causes the z/OS operating system to
begin operation. During IPL, system programs are
loaded into storage and z/OS is made ready to
perform work. Synonymous with boot, load.
Appendix G. Glossary 657

initial storage allocation. The amount of central
and expanded storage to be assigned to a logical
partition.

initiator. That part of an operating system that reads
and processes operation control language
statements from the system input device.

initiator/terminator. The job scheduler function that
selects jobs and job steps to be executed, allocates
input/output devices for them, places them under
task control, and at completion of the job, supplies
control information for writing job output on a system
output unit.

input/output configuration data set (IOCDS). A
file that contains different configuration definitions
for the selected processor. Only one IOCDS is used
at a time. The IOCDS contains I/O configuration data
for the files associated with the processor controller
on the host processor, as it is used by the channel
subsystem. The channel subsystem (CSS) uses the
configuration data to control I/O requests. The
IOCDS is built from the production IODF.

input/output definition file (IODF). A VSAM linear
data set that contains I/O definition information,
including processor I/O definitions and operating
system I/O definitions, including all logical objects
and their connectivity in the hardware configuration.

install. In SMP/E, to apply a SYSMOD to the target
libraries or to accept a SYSMOD into the distribution
libraries.

installation exit. The means by which an IBM
software product may be modified by a customer's
system programmers to change or extend the
functions of the product.

instruction line. In z/OS, the part of the console
screen that contains messages about console
control and input errors.

interactive. Pertaining to a program or system that
alternately accepts input and responds. In an
interactive system, a constant dialog exists between
user and system. Contrast with batch.

interactive problem control system (IPCS). A
component of z/OS that permits online problem
management, interactive problem diagnosis, online
debugging for dumps, problem tracking, and
problem reporting.

Interactive System Productivity Facility (ISPF). A
dialog manager for interactive applications. It
provides control and services to permit execution of
dialogs.

internal reader. A facility that transfers jobs to JES.

interrupt. A suspension of a process, such as the
execution of a computer program, caused by an
event external to that process, and performed in
such a way that the process can be resumed.

IOCDS. input/output configuration data set.

IODF. input/output definition file.

IPCS. Interactive Problem Control System.

IPL. initial program load.

IPv6. Internet Protocol Version 6.

ISMF. interactive storage management facility.

ISPF. Interactive System Productivity Facility.

ISPF/PDF. Interactive System Productivity
Facility/Program Development Facility.

IVP. installation verification procedure.

J

JCL. job control language.

JES. job entry subsystem.
658 Introduction to the New Mainframe: z/OS Basics

JES2. A z/OS subsystem that receives jobs into the
system, converts them to internal format, selects
them for execution, processes their output, and
purges them from the system. In an installation with
more than one processor, each JES2 processor
independently controls its job input, scheduling, and
output processing. Contrast with JES3.

JES3. A z/OS subsystem that receives jobs into the
system, converts them to internal format, selects
them for execution, processes their output, and
purges them from the system. In complexes that
have several loosely-coupled processing units, the
JES3 program manages processors so that the
global processor exercises centralized control over
the local processors and distributes jobs to them via
a common job queue. Contrast with JES2.

job. A unit of work for an operating system. Jobs are
defined by JCL statements.

job class. Any one of a number of job categories
that can be defined. With the classification of jobs
and direction of initiator/terminators to initiate
specific classes of jobs, it is possible to control the
mixture of jobs that are performed concurrently.

job control language (JCL). A sequence of
commands used to identify a job to an operating
system and to describe a job's requirements.

job control language (JCL) statements.
Statements placed into an input stream to define
work to be done, methods to be used, and the
resources needed.

job entry subsystem (JES). A system facility for
spooling, job queueing, and managing I/O.

job entry subsystem 2. See JES2.

job entry subsystem 3. See JES3.

job priority. A value assigned to a job that is used
as a measure of the job's relative importance while
the job contends with other jobs for system
resources.

job separator pages. Those pages of printed
output that delimit jobs.

job step. The job control (JCL) statements that
request and control execution of a program and that
specify the resources needed to run the program.
The JCL statements for a job step include one EXEC
statement, which specifies the program or
procedure to be invoked, followed by one or more
DD statements, which specify the data sets or I/O
devices that might be needed by the program.

Julian date. A date format that contains the year in
positions 1 and 2, and the day in positions 3 through
5. The day is represented as 1 through 366,
right-adjusted, with zeros in the unused high-order
position.

jumper cable. Fiber used to make mutable
connections between patchports.

K

kernel. The part of an operating system that
performs basic functions such as allocating
hardware resources.

key-sequenced data set (KSDS). A VSAM file or
data set whose records are loaded in ascending key
sequence and controlled by an index. Records are
retrieved and stored by keyed access or by
addressed access, and new records are inserted in
key sequence by means of distributed free space.
Relative byte addresses can change because of
control interval or control area splits.

keyword. A part of a command operand that
consists of a specific character string (such as
DSNAME=).

KSDS. key-sequenced data set.

L

LAN. local area network.
Appendix G. Glossary 659

Language Environment. Short form of z/OS
Language Environment. A set of architectural
constructs and interfaces that provides a common
run-time environment and run-time services for C,
C++, COBOL, Fortran, PL/I, VisualAge PL/I, and
Java applications compiled by Language
Environment-conforming compilers.

last in, first out (LIFO). A queuing technique in
which the next item to be retrieved is the item most
recently placed in the queue.

LCSS. logical channel subsystem.

LCU. logical control unit.

LDAP. Lightweight Directory Access Protocol.

library. A partitioned data set (PDS) that contains a
related collection of named members. See
partitioned data set.

LIC. Licensed Internal Code.

licensed internal code (LIC). Microcode that IBM
does not sell as part of a machine, but licenses to the
customer. LIC is implemented in a part of storage
that is not addressable by user programs. Some IBM
products use it to implement functions as an
alternative to hard-wired circuitry.

licensed program. A software package that can be
ordered from the program libraries, such as IBM
Software Distribution (ISMD). IMS and CICS are
examples of licensed programs.

Lightweight Directory Access Protocol (LDAP).
An Internet protocol standard, based on the TCP/IP
protocol, which allows the access and manipulation
of data organized in a Directory Information Tree
(DIT).

LIFO. last in, first out.

link library. A data set containing link-edited object
modules.

link pack area (LPA). An area of virtual storage that
contains reenterable routines that are loaded at IPL
(initial program load) time and can be used
concurrently by all tasks in the system.

linkage editor. An operating system component
that resolves cross-references between separately
compiled or assembled modules and then assigns
final addresses to create a single relocatable load
module. The linkage editor then stores the load
module in a load library on disk.

linked list. A list in which the data elements may be
dispersed but in which each data element contains
information for locating the next. Synonymous with
chained list.

link-edit. To create a loadable computer program by
means of a linkage editor or binder.

list structure. A Coupling Facility structure that
enables multisystem applications in a sysplex to
share information organized as a set of lists or
queues. A list structure consists of a set of lists and
an optional lock table, which can be used for
serializing resources in the list structure. Each list
consists of a queue of list entries.

little endian. A format for storage of binary data in
which the least significant byte is placed first. Little
endian is used by the Intel hardware architectures.
Contrast with big endian.

LMOD. In SMP/E, an abbreviation for load module.

load module. An executable program stored in a
partitioned data set program library. See also
program object.

local area network (LAN). A network in which
communication is limited to a moderate-sized
geographical area (1 to 10 km) such as a single
office building, warehouse, or campus, and which
does not generally extend across public
rights-of-way. A local network depends on a
communication medium capable of moderate to high
data rate (greater than 1Mbps), and normally
operates with a consistently low error rate.
660 Introduction to the New Mainframe: z/OS Basics

local system queue area (LSQA). In z/OS, one or
more segments associated with each virtual storage
region that contain job-related system control
blocks.

lock structure. A Coupling Facility structure that
enables applications in a sysplex to implement
customized locking protocols for serialization of
application-defined resources. The lock structure
supports shared, exclusive, and application-defined
lock states, as well as generalized contention
management and recovery protocols.

logical control unit (LCU). A single control unit
(CU) with or without attached devices, or a group of
one or more CUs that share devices. In a channel
subsystem (CSS), an LCU represents a set of CUs
that physically or logically attach I/O devices in
common.

logical partition (LP). A subset of the processor
hardware that is defined to support an operating
system. See also logically partitioned (LPAR) mode.

logical partitioning. A function of an operating
system that enables the creation of logical partitions.

logical subsystem. The logical functions of a
storage controller that allow one or more host I/O
interfaces to access a set of devices. The controller
aggregates the devices according to the addressing
mechanisms of the associated I/O interfaces. One or
more logical subsystems exist on a storage
controller. In general, the controller associates a
given set of devices with only one logical subsystem.

logical unit (LU). In SNA, a port through which an
end user accesses the SNA network in order to
communicate with another end user, and through
which the end user accesses the functions provided
by system services control points (SSCPs).

logical unit type 6.2. The SNA logical unit type that
supports general communication between programs
in a cooperative processing environment.

logically partitioned (LPAR) mode. A central
processor complex (CPC) power-on reset mode that
enables use of the PR/SM feature and allows an
operator to allocate CPC hardware resources
(including central processors, central storage,
expanded storage, and channel paths) among
logical partitions.

logoff. (1) The procedure by which a user ends a
terminal session. (2) In VTAM, a request that a
terminal be disconnected from a VTAM application
program.

logon. (1) The procedure by which a user begins a
terminal session. (2) In VTAM, a request that a
terminal be connected to a VTAM application
program.

loop. A situation in which an instruction or a group
of instructions execute repeatedly.

loosely coupled. A multisystem structure that
requires a low degree of interaction and cooperation
between multiple z/OS images to process a
workload. See also tightly coupled.

LP. logical partition.

LPA. link pack area.

LPAR. logically partitioned (mode).

LRECL. logical record length.

LSQA. local system queue area

LU. logical unit.

M

machine check interruption. An interruption that
occurs as a result of an equipment malfunction or
error.

machine readable. Pertaining to data a machine
can acquire or interpret (read) from a storage device,
a data medium, or other source.
Appendix G. Glossary 661

macro. An instruction in a source language that is to
be replaced by a defined sequence of instructions in
the same source language.

main task. In the context of z/OS multitasking, the
main program in a multitasking environment.

MAS. multi-access spool configuration.

master catalog. A catalog that contains extensive
data set and volume information that VSAM requires
to locate data sets, to allocate and deallocate
storage space, to verify the authorization of a
program or operator to gain access to a data set,
and to accumulate usage statistics for data sets.

master IODF. A centrally kept IODF containing I/O
definitions for several systems or even for a
complete enterprise structure. Master IODFs help to
maintain consistent I/O data and can provide
comprehensive reports.

master trace. A centralized data tracing facility of
the master scheduler, used in servicing the
message processing portions of z/OS.

MB. megabyte.

MCS. (1) Multiple console support. (2) Modification
control statement (in SMP/E).

MCS console. A non-SNA device defined to z/OS
that is locally attached to a z/OS system and is used
to enter commands and receive messages.

megabyte (MB). 220 bytes, 1 048 576
bytes.,048,576 bytes.

member. A partition of a partitioned data set (PDS)
or partitioned data set extended (PDSE).

message processing facility (MPF). A facility used
to control message retention, suppression, and
presentation.

message queue. A queue of messages that are
waiting to be processed or waiting to be sent to a
terminal.

message text. The part of a message consisting of
the actual information that is routed to a user at a
terminal or to a program.

microcode. Stored microinstructions, not available
to users, that perform certain functions.

microprocessor. A processor implemented on one
or a small number of chips.

migration. Refers to activities, often performed by
the system programmer, that relate to the installation
of a new version or release of a program to replace
an earlier level. Completion of these activities
ensures that the applications and resources on a
system will function correctly at the new level.

mixed complex. A global resource serialization
complex in which one or more of the systems in the
global resource serialization complex are not part of
a multisystem sysplex.

modification control statement (MCS). An SMP/E
control statement used to package a SYSMOD.
MCSs describe the elements of a program and the
relationships that program has with other programs
that may be installed on the same system.

modification level. A distribution of all temporary
fixes that have been issued since the previous
modification level. A change in modification level
does not add new functions or change the
programming support category of the release to
which it applies. Contrast with release and version.
Whenever a new release of a program is shipped,
the modification level is set to 0. When the release is
reshipped with the accumulated services changes
incorporated, the modification level is incremented
by 1.

module. The object that results from compiling
source code. A module cannot be run. To be run, a
module must be bound into a program.

monoplex. A sysplex consisting of one system that
uses a sysplex couple data set.
662 Introduction to the New Mainframe: z/OS Basics

multi-access spool configuration. Multiple
systems sharing the JES2 input, job and output
queues (through a checkpoint data set or coupling
facility).

multiple console support (MCS). The operator
interface in a z/OS system.

Multiple Virtual Storage (MVS). An earlier form of
the z/OS operating system.

multiprocessing. The simultaneous execution of
two or more computer programs or sequences of
instructions. See also parallel processing.

multiprocessor (MP). A CPC that can be physically
partitioned to form two operating processor
complexes.

multisystem application. An application program
that has various functions distributed across z/OS
images in a multisystem environment.

multisystem console support. Multiple console
support for more than one system in a sysplex.
Multisystem console support allows consoles on
different systems in the sysplex to communicate with
each other (send messages and receive
commands)

multisystem environment. An environment in
which two or more z/OS images reside in one or
more processors, and programs on one image can
communicate with programs on the other images.

multisystem sysplex. A sysplex in which two or
more z/OS images are allowed to be initialized as
part of the sysplex.

multitasking. Mode of operation that provides for
the concurrent, or interleaved, execution of two or
more tasks, or threads. Synonymous with
multithreading.

mutable connection. Connections made with fiber
jumper cables between patchports in a cabinet or
between cabinets and active objects such as
CHPIDs, switches, converters and controllers with
ESCON or FICON interfaces. Mutable connections
are broken when the patchports they connect are
not in use.

MVS. Multiple Virtual Storage.

MVS/ESA™. Multiple Virtual Storage/Enterprise
Systems Architecture.

N

n-way. The number (n) of CPs in a CPC. For
example, a 6-way CPC contains six CPs.

NCP. Network Control Program.

network. A collection of data processing products
connected by communications lines for exchanging
information between stations.

Network File System. A component of z/OS that
allows remote access to z/OS host processor data
from workstations, personal computers, or any other
system on a TCP/IP network that is using client
software for the Network File System protocol.

network job entry (NJE). A JES2 facility that
provides for the passing of selected jobs, system
output data, operator commands, and messages
between communicating job entry subsystems
connected by binary-synchronous communication
lines, channel-to-channel adapters, and shared
queues.

network operator. (1) The person responsible for
controlling the operation of a telecommunication
network. (2) A VTAM application program authorized
to issue network operator commands.

next sequential instruction. The next instruction to
be executed in the absence of any branch or transfer
of control.
Appendix G. Glossary 663

NIP. nucleus initialization program

nonpageable region. In MVS, a subdivision of the
nonpageable dynamic area that is allocated to a job
step or system task that is not to be paged during
execution. In a nonpageable region, each virtual
address is identical to its real address. Synonymous
with V=R region.

nonreentrant. A type of program that cannot be
shared by multiple users.

nonstandard labels. Labels that do not conform to
American National Standard or IBM System/370
standard label conventions.

nucleus. That portion of a control program that
always remains in central storage.

nucleus initialization program (NIP). The stage of
z/OS that initializes the control program; it allows the
operator to request last minute changes to certain
options specified during initialization.

null. Empty; having no meaning.

O

object deck. A collection of one or more control
sections produced by an assembler or compiler and
used as input to the linkage editor or binder. Also
called object code or simply OBJ.

object module. A module that is the output from a
language translator (such as a compiler or an
assembler). An object module is in relocatable
format with machine code that is not executable.
Before an object module can be executed, it must be
processed by the link-edit utility.

offline. Pertaining to equipment or devices not
under control of the processor.

offset. The number of measuring units from an
arbitrary starting point in a record, area, or control
block, to some other point.

online. Pertaining to a user's ability to interact with
a computer.

operating system. Software that controls the
running of programs; in addition, an operating
system may provide services such as resource
allocation, scheduling, I/O control, and data
management. Although operating systems are
predominantly software, partial hardware
implementations are possible.

operations log. In z/OS, the operations log is a
central record of communications and system
problems for each system in a sysplex.

operator commands. Statements that system
operators may use to get information, alter
operations, initiate new operations, or end
operations.

operator message. A message from an operating
system directing the operator to perform a specific
function, such as mounting a tape reel; or informing
the operator of specific conditions within the system,
such as an error condition.

OS/390. An earlier form of the z/OS operating
system.

output group. A set of a job's output data sets that
share output characteristics, such as class,
destination, and external writer.

output writer. A part of the job scheduler that
transcribes specified output data sets onto a system
output device independently of the program that
produced the data sets.

overlay. To write over existing data in storage.

P

664 Introduction to the New Mainframe: z/OS Basics

page. (1) In virtual storage systems, a fixed-length
block of instructions, data, or both, that can be
transferred between central storage and external
page storage. (2) To transfer instructions, data, or
both, between central storage and external page
storage.

page fault. In z/OS or System/390 virtual storage
systems, a program interruption that occurs when a
page that is marked “not in central storage” is
referred to by an active page.

pageable region. In MVS, a subdivision of the
pageable dynamic area that is allocated to a job step
or a system task that can be paged during execution.
Synonymous with V=V region.

paging. In z/OS, the process of transferring pages
between central storage and external page storage.

paging device. In z/OS, a direct access storage
device on which pages (and possibly other data) are
stored.

parallel processing. The simultaneous processing
of units of work by many servers. The units of work
can be either transactions or subdivisions of large
units of work (batch). See also highly parallel.

Parallel Sysplex. A sysplex that uses one or more
coupling facilities.

parameter. Data item that is received by a routine.

parmlib. All the members in the SYS1.PARMLIB
PDS that contain parameters setting the limits and
controlling the behavior of z/OS.

parmlib member. One of the members in the
SYS1.PARMLIB PDS that contain parameters
setting the limits and controlling the behavior of
z/OS.

partially qualified data set name. A data set name
in which the qualifiers are not spelled out. Asterisks
and percent signs are used in place of the undefined
qualifiers.

partitionable CPC. A CPC that can be divided into
two independent CPCs. See also physical partition,
single-image mode, side.

partitioned data set (PDS). A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part
of a program, or data. Synonymous with program
library. Contrast with sequential data set.

partitioned data set extended (PDSE). A
system-managed data set that contains an indexed
directory and members that are similar to the
directory and members of partitioned data sets. A
PDSE can be used instead of a partitioned data set.

partitioning. The process of forming multiple
configurations from one configuration.

password. A unique string of characters known to a
computer system and to a user, who must specify
the character string to gain access to a system and
to the information stored within it.

patchport. A pair of fibre adapters or couplers. Any
number of patchports can participate in a fiber link.
To determine the total number of patchports in a
cabinet, you must add the number of patchports of
each defined panel of the cabinet.

PC. personal computer.

PCHID. physical channel identifier.

PE. See program error PTF.

peer-to-peer remote copy (PPRC). Direct
connection between DASD controller subsystems
that is used primarily to provide a hot standby
capability. These connections can be point-to-point
from one DASD controller to another, or they can
pass through switches, just as connections from
CHPIDs to control units can.

percolate. The action taken by the condition
manager when the returned value from a condition
handler indicates that the handler could not handle
the condition, and the condition will be transferred to
the next handler.
Appendix G. Glossary 665

performance administration. The process of
defining and adjusting workload management goals
and resource groups based on installation business
objectives.

permanent connection. Permanent connections
are usually made between cabinets with fiber trunk
cables. Patchports that are permanently connected
remain so even when they are not in use.

permanent data set. A user-named data set that is
normally retained for longer than the duration of a
job or interactive session. Contrast with temporary
data set.

PFK capability. On a display console, indicates that
program function keys are supported and were
specified at system generation.

physical channel identifier (PCHID). The physical
address of a channel path in the hardware. Logical
CHPIDs have corresponding physical channels.
Real I/O hardware is attached to a processor
through physical channels. Channels have a
physical channel identifier (PCHID) which
determines the physical location of a channel in the
processor. The PCHID is a three hexadecimal digit
number and is assigned by the processor.

physical partition. Part of a CPC that operates as
a CPC in its own right, with its own copy of the
operating system.

physical unit (PU). (1) The control unit or cluster
controller of an SNA terminal. (2) The part of the
control unit or cluster controller that fulfills the role of
a physical unit as defined by systems network
architecture (SNA).

physically partitioned (PP) mode. The state of a
processor complex when its hardware units are
divided into two separate operating configurations or
sides. The A-side of the processor controller
controls side 0; the B-side of the processor controller
controls side 1. Contrast with single-image (SI)
configuration.

PL/I. A general purpose scientific/business
high-level language. PL/I is a powerful
procedure-oriented language especially well suited
for solving complex scientific problems or running
lengthy and complicated business transactions and
record-keeping applications.

platform. The operating system environment in
which a program runs

PLPA. pageable link pack area.

pointer. An address or other indication of location.

portability. The ability to transfer an application
from one platform to another with relatively few
changes to the source code.

Portable Operating System Interface (POSIX).
Portable Operating System Interface for computing
environments, an interface standard governed by
the IEEE and based on UNIX. POSIX is not a
product. Rather, it is an evolving family of standards
describing a wide spectrum of operating system
components ranging from C language and shell
interfaces to system administration.

POSIX. Portable Operating System Interface.

PPRC. peer-to-peer remote copy.

PPT. In z/OS, the program properties table.

preprocessor. A routine that examines application
source code for preprocessor statements that are
then executed, resulting in the alteration of the
source.

preventive service. (1) The mass installation of
PTFs to avoid rediscoveries of the APARs fixed by
those PTFs. (2) The SYSMODs delivered on the
program update tape.

preventive service planning (PSP). Installation
recommendations and HOLDDATA for a product or a
service level. PSP information can be obtained from
the IBM Support Center.
666 Introduction to the New Mainframe: z/OS Basics

primary key. One or more characters within a data
record used to identify the data record or control its
use. A primary key must be unique.

printer. A device that writes output data from a
system on paper or other media.

procedure. A set of self-contained high-level
language (HLL) statements that performs a
particular task and returns to the caller. Individual
languages have different names for this concept of a
procedure. In C, a procedure is called a function. In
COBOL, a procedure is a paragraph or section that
can only be performed from within the program. In
PL/I, a procedure is a named block of code that can
be invoked externally, usually through a a call.

processor. The physical processor, or machine, has
a serial number, a set of channels, and a logical
processor associated with it. The logical processor
has a number of channel path IDs, or CHPIDs, which
are the logical equivalent of channels. The logical
processor may be divided into a number of logical
partitions.

processor storage. See central storage.

program error PTF (PE-PTF). A PTF that has been
found to contain an error. A PE-PTF is identified on
a ++HOLD ERROR statement, along with the APAR
that first reported the error.

program fetch. A program that prepares programs
for execution by loading them at specific storage
locations and readjusting each relocatable address
constant.

program library. A partitioned data set or PDSE
that always contains named members.

program management. The task of preparing
programs for execution, storing the programs, load
modules, or program objects in program libraries,
and executing them on the operating system.

program module. The output of the binder. A
collective term for program object and load module.

program object. All or part of a computer program
in a form suitable for loading into virtual storage for
execution. Program objects are stored in PDSE
program libraries and have fewer restrictions than
load modules. Program objects are produced by the
binder.

processor controller. Hardware that provides
support and diagnostic functions for the central
processors.

Processor Resource/Systems Manager™
(PR/SM). The feature that allows the processor to
use several z/OS images simultaneously and
provides logical partitioning capability. See also
LPAR.

profile. Data that describes the significant
characteristics of a user, a group of users, or one or
more computer resources.

program function key (PFK). A key on the
keyboard of a display device that passes a signal to
a program to call for a particular program operation.

program interruption. The interruption of the
execution of a program due to some event such as
an operation exception, an exponent-overflow
exception, or an addressing exception.

program level. The modification level, release,
version, and fix level.

program management. The functions within the
system that provide for establishing the necessary
activation and invocation for a program to run in the
applicable run-time environment when it is called.

program mask. In bits 20 through 23 of the program
status word (PSW), a 4-bit structure that controls
whether each of the fixed-point overflow, decimal
overflow, exponent-overflow, and significance
exceptions should cause a program interruption.
The bits of the program mask can be manipulated to
enable or disable the occurrence of a program
interruption.
Appendix G. Glossary 667

program number. The seven-digit code (in the
format xxxx-xxx) used by IBM to identify each
licensed program.

program object. All or part of a computer program
in a form suitable for loading into virtual storage for
execution. Program objects are stored in PDSE
program libraries and have fewer restrictions than
load modules. Program objects are produced by the
binder.

program status word (PSW). A 64-bit structure in
central storage used to control the order in which
instructions are executed, and to hold and indicate
the status of the computing system in relation to a
particular program. See also program mask.

program temporary fix (PTF). A temporary solution
or bypass of a problem diagnosed by IBM as
resulting from a defect in a current unaltered release
of the program.

PSP. preventive service planning.

PSW. program status word.

PTF. program temporary fix.

Q

QSAM. queued sequential access method.

qualified name. A data set name consisting of a
string of names separated by periods; for example,
"TREE.FRUIT.APPLE" is a qualified name.

qualifier. A modifier in a qualified name other than
the rightmost name. For example, "TREE" and
“FRUIT” are qualifiers in “TREE.FRUIT.APPLE.”

queue. A line or list formed by items in a system
waiting for processing.

queued sequential access method (QSAM). An
extended version of the basic sequential access
method (BSAM). Input data blocks awaiting
processing or output data blocks awaiting transfer to
auxiliary storage are queued on the system to
minimize delays in I/O operations.

R

RACF. Resource Access Control Facility.

RDW. record descriptor word.

read access. Permission to read information.

reader. A program that reads jobs from an input
device or data base file and places them on the job
queue.

real address. In virtual storage systems, the
address of a location in central storage.

real storage. See central storage.

reason code. A return code that describes the
reason for the failure or partial success of an
attempted operation.

receive. In SMP/E, to read SYSMODs and other
data from SMPPTFIN and SMPHOLD and store
them on the global zone for subsequent SMP/E
processing. This is done with the RECEIVE
command.

RECEIVE. The SMP/E command used to read in
SYSMODs and other data from SMPPTFIN and
SMPHOLD.

RECEIVE processing. An SMP/E process
necessary to install new product libraries. During
this process, the code, organized as unloaded
partition data sets, is loaded into temporary
SMPTLIB data sets. SMP/E RECEIVE processing
automatically allocates the temporary partitioned
data sets that correspond to the files on the tape,
and loads them from the tape.
668 Introduction to the New Mainframe: z/OS Basics

RECFM. record format.

record. (1) A group of related data, words, or fields
treated as a unit, such as one name, address, and
telephone number. record. (2) A self-contained
collection of information about a single object. A
record is made up of a number of distinct items,
called fields. A number of shell programs (for
example, awk, join, and sort) are designed to
process data consisting of records separated by
newlines, where each record contains a number of
fields separated by spaces or some other character.
awk can also handle records separated by
characters other than newlines. See fixed-length
record, variable-length record.

record data. Data sets with a record-oriented
structure that are accessed record by record. This
data set structure is typical of data sets on z/OS and
other mainframe operating systems. See also byte
stream.

recording format. For a tape volume, the format of
the data on the tape, for example, 18, 36, 128, or 256
tracks.

recovery. The process of rebuilding data after it has
been damaged or destroyed, often by restoring a
backup version of the data or by reapplying
transactions recorded in a log.

recovery system. A system that is used in place of
a primary application system that is no longer
available for use. Data from the application system
must be available for use on the recovery system.
This is usually accomplished through backup and
recovery techniques, or through various DASD
copying techniques, such as remote copy.

recursive routine. A routine that can call itself or be
called by another routine that it has called.

redundant array of independent disk (RAID). A
disk subsystem architecture that combines two or
more physical disk storage devices into a single
logical device to achieve data redundancy.

reenterable. The reusability attribute that allows a
program to be used concurrently by more than one
task. A reenterable module can modify its own data
or other shared resources, if appropriate
serialization is in place to prevent interference
between using tasks. See reusability. reentrant.

reentrant. The attribute of a routine or application
that allows more than one user to share a single
copy of a load module.

refreshable. The reusability attribute that allows a
program to be replaced (refreshed) with a new copy
without affecting its operation. A refreshable module
cannot be modified by itself or any other module
during execution. See reusability.

register. An internal computer component capable
of storing a specified amount of data and accepting
or transferring this data rapidly.

register save area (RSA). Area of main storage in
which contents of registers are saved.

related installation materials (RIMs). In IBM
custom-built offerings, task-oriented documentation,
jobs, sample exit routines, procedures, parameters,
and examples developed by IBM.

release. A distribution of a new product or new
function and APAR fixes for an existing product.
Contrast with modification level and version.

remote copy. A storage-based disaster recovery
and workload migration function that can copy data
in real time to a remote location. Two options of
remote copy are available. See peer-to-peer remote
copy and extended remote copy.

remote job entry (RJE). Submission of job control
statements and data from a remote terminal,
causing the jobs described to be scheduled and
executed as though encountered in the input stream.

remote operations. Operation of remote sites from
a host system.
Appendix G. Glossary 669

reserved storage allocation. The amount of
central and expanded storage that you can
dynamically configure online or offline to a logical
partition.

residency mode (RMODE). The attribute of a
program module that specifies whether the module,
when loaded, must reside below the 16MB virtual
storage line or may reside anywhere in virtual
storage.

Resource Access Control Facility (RACF). An
IBM security manager product that provides for
access control by identifying and verifying the users
to the system, authorizing access to protected
resources, logging the detected unauthorized
attempts to enter the system and logging the
detected accesses to protected resources.

resource recovery services (RRS). The z/OS
system component that provides the services that a
resource manager calls to protect resources. RRS is
the z/OS system level syncpoint manager.

RESTORE. The SMP/E command used to remove
applied SYSMODs from the target libraries.

restore. In SMP/E, to remove applied SYSMODs
from the target libraries by use of the RESTORE
command.

restructured extended executor (REXX). A
general-purpose, procedural language for end-user
personal programming, designed for ease by both
casual general users and computer professionals. It
is also useful for application macros. REXX includes
the capability of issuing commands to the underlying
operating system from these macros and
procedures.

resynchronization. A track image copy from the
primary volume to the secondary volume of only the
tracks which have changed since the volume was
last in duplex mode.

return code. A code produced by a routine to
indicate its success or failure. It may be used to
influence the execution of succeeding instructions or
programs.

reusability. The attribute of a module or section that
indicates the extent to which it can be reused or
shared by multiple tasks within the address space.
See refreshable, reenterable, and serially reusable.

RIM. related installation material.

RJE. remote job entry.

RMF. Resource Measurement Facility.

RMODE. residency mode.

rollback. The process of restoring data changed by
an application to the state at its last commit point.

routine. (1) A program or sequence of instructions
called by a program. Typically, a routine has a
general purpose and is frequently used. CICS and
programming languages use routines. (2) A
database object that encapsulates procedural logic
and SQL statements, is stored on the database
server, and can be invoked from an SQL statement
or by using the CALL statement. The three main
classes of routines are procedures, functions, and
methods. (3) In REXX, a series of instructions called
with the CALL instruction or as a function. A routine
can be either internal or external to a user's
program. (4) A set of statements in a program that
causes the system to perform an operation or a
series of related operations.

routing. The assignment of the communications
path by which a message will reach its destination.

routing code. A code assigned to an operator
message and used to route the message to the
proper console.

RSA. register save area.

run. To cause a program, utility, or other machine
function to be performed.
670 Introduction to the New Mainframe: z/OS Basics

run time. Any instant at which a program is being
executed. Synonymous with execution time.

run-time environment. A set of resources that are
used to support the execution of a program.
Synonymous with execution environment.

S

SAF. system authorization facility.

SAP. System Assistance Processor.

save area. Area of main storage in which contents
of registers are saved.

SDSF. System Display and Search Facility.

security administrator. A programmer who
manages, protects, and controls access to sensitive
information.

sequential data set. (1) A data set whose records
are organized on the basis of their successive
physical positions, such as on magnetic tape.
Contrast with direct data set. (2) A data set in which
the contents are arranged in successive physical
order and are stored as an entity. The data set can
contain data, text, a program, or part of a program.
Contrast with partitioned data set (PDS).

serially reusable. The reusability attribute that
allows a program to be executed by more than one
task in sequence. A serially reusable module cannot
be entered by a new task until the previous task has
exited. See reusability.

server. (1) On a network, the computer that contains
programs, data, or provides the facilities that other
computers on the network can access. (2) The party
that receives remote procedure calls. Contrast with
client.

server address space. Any address space that
does work on behalf of a transaction manager or a
resource manager. For example, a server address
space could be a CICS AOR, or an IMS control
region.

service. PTFs and APAR fixes.

service level. The FMID, RMID, and UMID values
for an element. The service level identifies the owner
of the element, the last SYSMOD to replace the
element, and all the SYSMODs that have updated
the element since it was last replaced.

service level agreement (SLA). A written
agreement of the information systems (IS) service to
be provided to the users of a computing installation.

service processor. The part of a processor
complex that provides for the maintenance of the
complex.

service unit. The amount of service consumed by a
work request as calculated by service definition
coefficients and CPU, SRB, I/O, and storage service
units.

session. (1) The period of time during which a user
of a terminal can communicate with an interactive
system; usually, the elapsed time from when a
terminal is logged on to the system until it is logged
off the system. (2) The period of time during which
programs or devices can communicate with each
other. (3) In VTAM, the period of time during which a
node is connected to an application program.

severity code. A part of operator messages that
indicates the severity of the error condition (I, E, or
S).

shared DASD option. An option that enables
independently operating computing systems to
jointly use common data residing on shared direct
access storage devices.
Appendix G. Glossary 671

shared storage. An area of storage that is the same
for each virtual address space. Because it is the
same space for all users, information stored there
can be shared and does not have to be loaded in the
user region.

side. One of the configurations formed by physical
partitioning.

SIGP. signal processor.

simultaneous peripheral operations online
(spool). The reading and writing of input and output
streams on auxiliary storage devices, concurrently
while a job is running, in a format convenient for later
processing or output operations.

single point of control. The characteristic a
sysplex displays when you can accomplish a given
set of tasks from a single workstation, even if you
need multiple IBM and vendor products to
accomplish that particular set of tasks.

single-image (SI) mode. A mode of operation for a
multiprocessor (MP) system that allows it to function
as one CPC. By definition, a uniprocessor (UP)
operates in single-image mode. Contrast with
physically partitioned (PP) configuration.

single-processor complex. A processing
environment in which only one processor (computer)
accesses the spool and comprises the entire node.

single system image. The characteristic a product
displays when multiple images of the product can be
viewed and managed as one image.

single-system sysplex. A sysplex in which only
one z/OS system is allowed to be initialized as part
of the sysplex. In a single-system sysplex, XCF
provides XCF services on the system but does not
provide signalling services between z/OS systems.
See also multisystem sysplex.

SLA. service level agreement.

small computer system interface (SCSI). A
standard hardware interface that enables a variety of
peripheral devices to communicate with one
another.

SMF. system management facilities.

SMP/E. System Modification Program/Extended.

SMPCSI. The SMP/E data set that contains
information about the structure of a user's system as
well as information needed to install the operating
system on a user's system. The SMPCSI DD
statement refers specifically to the CSI that contains
the global zone. This is also called the master CSI.

SMS. Storage Management Subsystem.

SNA. Systems Network Architecture.

software. (1) All or part of the programs,
procedures, rules, and associated documentation of
a data processing system. (2) A set of programs,
procedures, and, possibly, associated
documentation concerned with the operation of a
data processing system. For example, compilers,
library routines, manuals, circuit diagrams. Contrast
with hardware.

sort/merge program. A processing program that
can be used to sort or merge records in a prescribed
sequence.

source code. The input to a compiler or assembler,
written in a source language.

source program. A set of instructions written in a
programming language that must be translated to
machine language before the program can be run.

spin data set. A data set that is deallocated
(available for printing) when it is closed. Spin off data
set support is provided for output data sets just prior
to the termination of the job that created the data set.

spool. simultaneous peripheral operations online.

spooled data set. A data set written on an auxiliary
storage device and managed by JES.
672 Introduction to the New Mainframe: z/OS Basics

spooling. The reading and writing of input and
output streams on auxiliary storage devices,
concurrently with job execution, in a format
convenient for later processing or output operations.

SPUFI. SQL Processing Using File Input.

SQA. system queue area.

SQL. Structured Query Language.

SREL. system release identifier.

SRM. system resources manager.

SSID. subsystem identifier.

started task. In z/OS, an address space that runs
unattended as the result of a START command.
Started tasks are generally used for critical
applications. The UNIX equivalent is a daemon.

status-display console. An MCS console that can
receive displays of system status but from which an
operator cannot enter commands.

step restart. A restart that begins at the beginning
of a job step. The restart may be automatic or
deferred, where deferral involves resubmitting the
job. Contrast with checkpoint restart.

storage administrator. A person in the data
processing center who is responsible for defining,
implementing, and maintaining storage
management policies.

storage class. A collection of storage attributes that
identify performance goals and availability
requirements, defined by the storage administrator,
used to select a device that can meet those goals
and requirements.

storage group. A collection of storage volumes and
attributes, defined the storage administrator. The
collections can be a group of DASD volume or tape
volumes, or a group of DASD, optical, or tape
volumes treated as single object storage hierarchy.

storage management. The activities of data set
allocation, placement, monitoring, migration,
backup, recall, recovery, and deletion. These can be
done either manually or by using automated
processes. The Storage Management Subsystem
automates these processes for you, while optimizing
storage resources. See also Storage Management
Subsystem.

Storage Management Subsystem (SMS). A facility
used to automate and centralize the management of
storage. Using SMS, a storage administrator
describes data allocation characteristics,
performance and availability goals, backup and
retention requirements, and storage requirements to
the system through data class, storage class,
management class, storage group, and ACS routine
definitions.

string. A collection of one or more I/O devices. The
term usually refers to a physical string of units, but
may mean a collection of I/O devices which are
integrated into a control unit.

structure. A construct used by z/OS to map and
manage storage on a Coupling Facility. See cache
structure, list structure, and lock structure.

subchannel set. Installation-specified structure that
defines the placement of devices either relative to a
channel subsystem or to an operating system.

subpool storage. All of the storage blocks allocated
under a subpool number for a particular task.

subsystem. A secondary or subordinate system, or
programming support, usually capable of operating
independently of or asynchronously with a
controlling system. Examples are CICS and IMS.

subsystem interface (SSI). A component that
provides communication between z/OS and its job
entry subsystem.
Appendix G. Glossary 673

subtask. In the context of z/OS multitasking, a task
that is initiated and terminated by a higher order task
(the main task). Subtasks run the parallel functions,
those portions of the program that can run
independently of the main task program and each
other.

superuser. (1) A system user who operates without
restrictions. A superuser has the special rights and
privileges needed to perform administrative tasks.
The z/OS equivalent is a user in privileged, or
supervisor, mode. (2) A system user who can pass
all z/OS UNIX security checks. A superuser has the
special rights and privileges needed to manage
processes and files.

superuser authority. The unrestricted ability to
access and modify any part of the operating system,
usually associated with the user who manages the
system.

supervisor. The part of z/OS that coordinates the
use of resources and maintains the flow of
processing unit operations.

supervisor call (SVC). An instruction that interrupts
a program being executed and passes control to the
supervisor so that it can perform a specific service
indicated by the instruction.

support element. A hardware unit that provides
communications, monitoring, and diagnostic
functions to a central processor complex (CPC).

suspended state. When only one of the devices in
a dual copy or remote copy volume pair is being
updated because of either a permanent error
condition or an authorized user command. All writes
to the remaining functional device are logged. This
allows for automatic resynchronization of both
volumes when the volume pair is reset to the active
duplex state.

SVC. supervisor call instruction.

SVC interruption. An interruption caused by the
execution of a supervisor call instruction, causing
control to be passed to the supervisor.

SVC routine. A control program routine that
performs or begins a control program service
specified by a supervisor call instruction.

SWA. scheduler work area.

swap data set. A data set dedicated to the swapping
operation.

swapping. A z/OS paging operation that writes the
active pages of a job to auxiliary storage and reads
pages of another job from auxiliary storage into
central storage.

switch. A device that provides connectivity
capability and control for attaching any two ESCON
or FICON links together.

synchronous messages. WTO or WTOR
messages issued by a z/OS system during certain
recovery situations.

syncpoint manager. A function that coordinates the
two-phase commit process for protected resources,
so that all changes to data are either committed or
backed out. In z/OS, RRS can act as the system
level syncpoint manager. A syncpoint manager is
also known as a transaction manager, syncpoint
coordinator, or a commit coordinator.

syntax. The rules governing the structure of a
programming language and the construction of a
statement in a programming language.

SYSIN. A system input stream; also, the name used
as the data definition name of a data set in the input
stream.

SYSLIB. (1) A subentry used to identify the target
library in which an element is installed. (2) A
concatenation of macro libraries to be used by the
assembler. (3) A set of routines used by the link-edit
utility to resolve unresolved external references.

SYSLOG. system log.

SYSMOD. system modification.
674 Introduction to the New Mainframe: z/OS Basics

SYSOUT. A system output stream; also, an indicator
used in data definition statements to signify that a
data set is to be written on a system output unit.

SYSOUT class. A category of output with specific
characteristics and written on a specific output
device. Each system has its own set of SYSOUT
classes, designated by a character from A to Z, a
number from 0 to 9, or a *.

sysplex. A set of z/OS systems communicating
and cooperating with each other through certain
multisystem hardware components and software
services to process customer workloads. See also
Parallel Sysplex.

sysplex couple data set. A couple data set that
contains sysplex-wide data about systems, groups,
and members that use XCF services. All z/OS
systems in a sysplex must have connectivity to the
sysplex couple data set. See also couple data set.

Sysplex Timer. An IBM unit that synchronizes the
time-of-day (TOD) clocks in multiple processors or
processor sides.

SYSRES. system residence disk.

system. The combination of a configuration
(hardware) and the operating system (software).
Often referred to simply as the z/OS system.

system abend. An abend caused by the operating
system's inability to process a routine; may be
caused by errors in the logic of the source routine.

system console. In z/OS, a console attached to
the processor controller used to initialize a z/OS
system.

system control element (SCE). Hardware that
handles the transfer of data and control information
associated with storage requests between the
elements of the processor.

system data. The data sets required by z/OS or its
subsystems for initialization.

system library. A collection of data sets or files in
which the parts of an operating system are stored.

system-managed data set. A data set that has
been assigned a storage class.

system-managed storage. Storage managed by
the Storage Management Subsystem (SMS) of
z/OS.

system management facilities (SMF). A z/OS
component that provides the means for gathering
and recording information for evaluating system
usage.

system modification (SYSMOD). The input data to
SMP/E that defines the introduction, replacement, or
updating of elements in the operating system and
associated distribution libraries to be installed. A
system modification is defined by a set of MCS.

System Modification Program Extended
(SMP/E). An IBM program product, or an element of
OS/390 or z/OS, used to install software and
software changes on z/OS systems. SMP/E
consolidates installation data, allows more flexibility
in selecting changes to be installed, provides a
dialog interface, and supports dynamic allocation of
data sets. SMP/E is the primary means of controlling
changes to the z/OS operating system.

Systems Network Architecture (SNA). A
description of the logical structure, formats,
protocols, and operational sequences for
transmitting information units through, and
controlling the configuration and operation of
networks.

system queue area (SQA). In z/OS, an area of
virtual storage reserved for system-related control
blocks.

T

Appendix G. Glossary 675

tape volume. Storage space on tape, identified by a
volume label, which contains data sets or objects
and available free space. A tape volume is the
recording space on a single tape cartridge or reel.
See also volume.

target library. In SMP/E, a collection of data sets in
which the various parts of an operating system are
stored. These data sets are sometimes called
system libraries.

target zone. In SMP/E, a collection of VSAM
records describing the target system macros,
modules, assemblies, load modules, source
modules, and libraries copied from DLIBs during
system generation, and the SYSMODs applied to
the target system.

task. In a multiprogramming or multiprocessing
environment, one or more sequences of instructions
treated by a control program as an element of work
to be accomplished by a computer.

task control block (TCB). A data structure that
contains information and pointers associated with
the task in process.

TCB. task control block.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

temporary data set. A data set that is created and
deleted in the same job.

terminal. A device, usually equipped with a
keyboard and some kind of display, capable of
sending and receiving information over a link.

terminal owning region (TOR). A CICS region
devoted to managing the terminal network.

TGTLIB. target library.

tightly coupled. Multiple CPs that share storage
and are controlled by a single copy of z/OS. See also
loosely coupled, tightly coupled multiprocessor.

tightly coupled multiprocessing. Two computing
systems operating simultaneously under one control
program while sharing resources.

tightly coupled multiprocessor. Any CPU with
multiple CPs.

Time Sharing Option/Extensions (TSO/E). The
facility in z/OS that allows users to interactively
share computer time and resources.

timeout. The time in seconds that the storage
control remains in a “long busy” condition before
physical sessions are ended.

TLIB. target library.

transaction. A unit of work performed by one or
more transaction programs, involving a specific set
of input data and initiating a specific process or job.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A hardware independent communication
protocol used between physically separated
computers. It was designed to facilitate
communication between computers located on
different physical networks.

Transport Layer Security (TLS). A protocol that
provides communications privacy over the Internet.

TRK. A subparameter of the SPACE parameter in a
DD statement. It specifies that space is to be
allocated by tracks.

trunk cable. Cables used to make permanent
connections between cabinets and which remain in
place even when not in use.

TSO. Time-sharing option. See Time Sharing
Option/ Extensions (TSO/E).

TSO/E. Time Sharing Option/Extensions.

U

UCB. unit control block.
676 Introduction to the New Mainframe: z/OS Basics

UCLIN. In SMP/E, the command used to initiate
changes to SMP/E data sets. Actual changes are
made by subsequent UCL statements.

UIM. unit information module.

Unicode Standard. A universal character encoding
standard that supports the interchange, processing,
and display of text that is written in any of the
languages of the modern world. It can also support
many classical and historical texts and is continually
being expanded.

uniprocessor (UP). A processor complex that has
one central processor.

unit of recovery (UR). A set of changes on one
node that is committed or backed out as part of an
ACID transaction. A UR is implicitly started the first
time a resource manager touches a protected
resource on a node. A UR ends when the two-phase
commit process for the ACID transaction changing it
completes.

UNIX. See z/OS UNIX System Services.

UNIX file system. A section of the UNIX file tree that
is physically contained on a single device or disk
partition and that can be separately mounted,
dismounted, and administered. See also
hierarchical file system.

UNLOAD. The SMP/E command used to copy data
out of SMP/E data set entries in the form of UCL
statements.

unload. In SMP/E, to copy data out of SMP/E data
set entries in the form of UCL statements, by use of
the UNLOAD command.

unused cable. Physical cables that have been
recently disconnected, but not yet placed in
inventory.

upwardly compatible. The ability for applications to
continue to run on later releases of z/OS, without the
need to recompile or relink.

user abend. A request made by user code to the
operating system to abnormally terminate a routine.
Contrast with system abend.

user catalog. An optional catalog used in the same
way as the master catalog and pointed to by the
master catalog. It also lessens the contention for the
master catalog and facilitates volume portability.

user exit. A routine that takes control at a specific
point in an application. User exits are often used to
provide additional initialization and termination
functions.

user ID. user identification.

user identification (user ID). A 1-8 character
symbol identifying a system user.

user modification (USERMOD). A change
constructed by a user to modify an existing function,
add to an existing function, or add a user-defined
function. USERMODs are identified to SMP/E by the
++USERMOD statement.

USERMOD. user modification.

V

V=R region. Synonymous with nonpageable region.

V=V region. Synonymous with pageable region.

variable-length record. A record having a length
independent of the length of other records with
which it is logically or physically associated. Contrast
with fixed-length record.

VB. Variable blocked.

vendor. A person or company that provides a
service or product to another person or company.

version. A separate licensed program that is based
on an existing licensed program and that usually has
significant new code or new functions. Contrast with
release and modification level.
Appendix G. Glossary 677

VIO. virtual input/output.

virtual address space. In virtual storage systems,
the virtual storage assigned to a job, terminal user,
or system task. See also address space.

virtual input/output (VIO). The allocation of data
sets that exist in paging storage only.

Virtual Storage Access Method (VSAM). An
access method for direct or sequential processing of
fixed-length and varying-length records on direct
access devices. The records in a VSAM data set or
file can be organized in logical sequence by a key
field (key sequence), in the physical sequence in
which they are written on the data set or file
(entry-sequence), or by relative-record number.

virtual storage. (1) The storage space that can be
regarded as addressable main storage by the user
of a computer system in which virtual addresses are
mapped into real addresses. The size of virtual
storage is limited by the addressing scheme of the
computer system and by the amount of auxiliary
storage available, not by the actual number of main
storage locations. (2) An addressing scheme that
allows external disk storage to appear as main
storage.

virtual telecommunications access method
(VTAM). A set of programs that maintain control of
the communication between terminals and
application programs running under z/OS.

VM. Virtual Machine.

VOLSER. volume serial number.

volume. (1) The storage space on DASD, tape or
optical devices, which is identified by a volume label.
(2) That portion of a single unit of storage which is
accessible to a single read/write mechanism, for
example, a drum, a disk pack, or part of a disk
storage module. (3) A recording medium that is
mounted and demounted as a unit, for example, a
reel of magnetic tape or a disk pack.

volume backup. Backup of an entire volume to
protect against the loss of the volume.

volume serial number. A number in a volume label
that is assigned when a volume is prepared for use
in the system.

volume table of contents (VTOC). A table on a
direct access storage device (DASD) volume that
describes the location, size, and other
characteristics of each data set on the volume.

VPN. virtual private network.

VSAM. virtual storage access method.

VTAM. Virtual Telecommunications Access Method.

VTOC. volume table of contents.

W

WAP. wireless access point.

wait state. Synonymous with waiting time.

waiting time. (1) The condition of a task that
depends on one or more events in order to enter the
ready condition. (2) The condition of a processing
unit when all operations are suspended.

wild carding. The use of an asterisk (*) as a multiple
character replacement in classification rules.

WLM. workload manager.

workload. A group of work to be tracked, managed
and reported as a unit.

work request. A piece of work, such as a request for
service, a batch job, an APPC, CICS, or IMS
transaction, a TSO LOGON, or a TSO command.

wrap mode. The console display mode that allows
a separator line between old and new messages to
move down a full screen as new messages are
added. When the screen is filled and a new message
is added, the separator line overlays the oldest
message and the newest message appears
immediately before the line.
678 Introduction to the New Mainframe: z/OS Basics

write-to-operator (WTO) message. A message
sent to an operator console informing the operator of
errors and system conditions that may need
correcting.

write-to-operator-with-reply (WTOR) message.
A message sent to an operator console informing
the operator of errors and system conditions that
may need correcting. The operator must enter a
response.

WTO. write-to-operator.

WTOR. write-to-operator-with-reply.

X

XA. Extended Architecture.

XCF. cross-system coupling facility.

Z

zAAP. zSeries Application Assist Processor.

z/Architecture. An IBM architecture for mainframe
computers and peripherals. The zSeries family of
servers uses the z/Architecture.

zFS. zSeries file system.

z/OS. A widely used operating system for IBM
mainframe computers that uses 64-bit central
storage.

z/OS Language Environment. An IBM software
product that provides a common run-time
environment and common run-time services for
conforming high-level language compilers.

z/OS UNIX System Services (z/OS UNIX). z/OS
services that support a UNIX-like environment.
Users can switch between the traditional TSO/E
interface and the shell interface. UNIX-skilled users
can interact with the system, using a familiar set of
standard commands and utilities. z/OS-skilled users
can interact with the system, using familiar TSO/E
commands and interactive menus to create and
manage hierarchical file system files and to copy
data back and forth between z/OS data sets and
files. Application programmers and users have both
sets of interfaces to choose from and, by making
appropriate trade-offs, can choose to mix these
interfaces.

zSeries Application Assist Processor (zAAP). A
specialized processing assist unit configured for
running Java programming on selected zSeries
machines.

zSeries File System (zFS). A z/OS UNIX file
system that stores files in VSAM linear data sets.

Numerics

3270 pass-through mode. A mode that lets a
program running from the z/OS shell send and
receive a 3270 data stream or issue TSO/E
commands.
Appendix G. Glossary 679

680 Introduction to the New Mainframe: z/OS Basics

Index

Numerics
24-bit addressing mode 95
31-bit addressing mode 85
64-bit addressing mode 81

A
access control 531
access path 405
address space control block (ASCB) 78, 101
address space, defined 82
address, format 85
address, I/O 38
addressability, defined 94
addressing mode 98
ADRDSSU program 589
allocating space (on disk volume) 182
AMASPZAP program 589
AMODE(31) 98
AOR (application-owning region) 357
APF (authorized program facility) 535
APF libraries 535
application

design 256, 259
development life cycle 259
high-level design 259
maintaining 259
requirements 260
system testing 259

application programming interface (API) 365
application-owning region (AOR) 357
ARM, automatic restart manager 66, 436
ASCII 265, 272
Assembler instructions 278
Assembler language 278
asynchronous 449–450
authorized libraries 535
authorized program analysis report (APAR) 499
authorized program facility (APF) 83, 535
automatic restart manager (ARM) 66, 436
auxiliary storage manager (ASM) 93
© Copyright IBM Corp. 2006. All rights reserved.
B
batch

address space 102
initiator 235, 241, 489
job 16, 230
processing 16, 200, 212, 230, 232

BEGIN block 289
Big Iron 5, 566
binder 279, 327
BLKSIZE, block size 172
BLOB (Binary Large Object) 392
block size, BLKSIZE 172
blocks, disk 167
bus and tag channels 38
byte stream file 171

C
C/C++ 292
Capacity Upgrade on Demand (CUoD) 567
catalog 182, 393, 406
cataloged procedures 210
central processing unit, definition 36
central processor (CP) 46
central processor complex (CPC) 37, 39–40, 64
CF (Coupling Facility) 56, 63
change control process 271, 477
Channel Path Identifier (CHPID) 39
Channel Subsystem (CSS) 569
channel-to-channel (CTC) 53
channel-to-channel (CTC) adapter 113
channel-to-channel (CTC) ring 53
checking out 268
CHPID (Channel Path Identifier) 39
CICS 355

command 361–362, 365
preprocessor 290–291
programming roadmap 369
region 357
terminal owning region (TOR) 65
transaction flow 362

CKD (Count Key Data) format 167
client representative 28
CLIST 294, 296
 681

CLOB 392
cloning 67
clusters 51
CMOS (Complementary Metal Oxide Semiconduc-
tor) 567
COBOL 280

compiler 117, 235
language program 25, 169, 236

cold start IPL 467, 490–491
collating sequence, EBCDIC vs. ASCII 265
command

RESERVE and RELEASE 52
XCTL 368

command list 294
COMMAREA 369
commit 354
common area 489
compatibility 10, 15
compilation unit 289
compiled language 297, 299
compiling a REXX source program 298
compiling and linking language programs 338
Complementary Metal Oxide Semiconductor
(CMOS) 567
compress partition data sets 582
computer language 276–277
consolidated software inventory (CSI) 496, 510
constraints of the project 257, 263
Control Area (CA) (VSAM) 180
control block 78
Control Interval (CI) 180
control unit, definition 37
conversational model of CICS programming 359
copybook 312
Coupling Facilities (CFs) 55
coupling technology 57, 71
CP 44, 46–47, 70
CPU 36–37, 72
cross-memory

communication 536
services 83

CSS (Channel Subsystem) 569
CTC 51, 53–54
CUoD (Capacity Upgrade on Demand) 567
customer engineer (CE) 27
Customer Information Control System (CICS) 355

D
DASD (direct access storage device) 167, 287
data control block (DCB) 172
data security 533
data types 391
database

request module 404
table 390
view 390

Database Manager 372
DB2 optimizer 405
DBCLOB 392
DBCS 291
DBCS (double byte character set) 266
DBRM 404
DCB (data control block) 172
DCE Security Server 530
DDNAME, definition 208
Debug Tool 280
declaratives for COBOL 282
default logon procedure 540
design documents 260
design phase 259
designing applications for z/OS 255
device number 39–40
device number, definition 39
device type, DD 205
devices, I/O 37
DFS (Distributed File Service) 190
DFSMS component 105
DFSORT 130
DFSORT product 130
direct access storage device (DASD) 167, 287
directory 393, 406
disk

controller 491
drive 167
dump 589
pack 167
restore 589
volume 167

disposition parameters, DD 204
Distributed File Service (DFS) 190
Distributed File Service Server Message Block
(SMB) 190
DLL 286
double byte character set (DBCS) 266
DSNAME, definition 208
dump
682 Introduction to the New Mainframe: z/OS Basics

logical 589
physical 589

Dump and Trace Control 367
dynamic workload management 58

E
EBCDIC character set 265, 421, 424
ECKD (Extended Count Key Data) 167
EIM (Enterprise Identity Mapping) 530
emerging requirements 263
enclave 304
enqueue 106
Enterprise Identity Mapping (EIM) 530
Entry Sequence Data Set (ESDS) 179
ESCON

channels 40
director 40

ESDS (Entry Sequence Data Set) 179
esoteric name 205
EXEC CICS 361–362
EXEC SQL interface 366
EXECUTE CICS 361
Extended Count Key Data (ECKD) 167
extended MCS console 534
extents, disk data sets 171

F
FastCGI 421
Fault Analyzer 269
FICON channels 40
field technical sales support (FTSS) 28
file-owning region (FOR) 357
firewall 537
fixed link pack area (FLPA) 467
FLPA (fixed link pack area) 467
FOR (file-owning region) 357
FREEMAIN macro 93
FTSS (field technical sales support) 28
functional requirements for an application 263

G
gathering requirements 259, 263
generation data set (GDS) 185
Generic Resource Management 65
Geographically Dispersed Parallel Sysplex (GDPS)
69–70
GETMAIN macro 93

global resource serialization (GRS) 54, 113
go production 259
GRS ring 54

H
hacker 529
Hardware Configuration Definition (HCD) 481
Hardware Configuration Manager (HCM) 481
Hardware Management Console (HMC) 44, 484
HDA (Head Disk Assembly) 167
Head Disk Assembly (HDA) 167

I
I/O connectivity, overview 40
IBM Enterprise COBOL for z/OS and OS/390 280
IBM SDK for z/OS 293
IBM Security Server 529
ICF (Integrated Coupling Facility) 47
ICKDSF utility 167, 181, 588
IDCAMS utility 169, 584
IDE (Interactive Development Environment) 269
IEAFIXxx PARMLIB member 469
IEASYMxx PARMLIB member 475
IEBCOPY utility 582
IEBDG utility 583
IEBGENER utility 581
IEBUPDTE utility 586
IEFBR14 utility 580
IEHINITT utility 587
IEHLIST utility 587
IEHPROGM utility 587
IEXEC 299
IFL (Integrated Facility for Linux) 46
image 53
IMS 372

APPC feature 374
Java dependent region 280
messages 373
transaction 374

In-backout 354
Include preprocessor 290
In-commit 354
independent software vendor (ISV) 27
index space 390
In-flight 354
initialization process 486
initializing real storage management 486
initializing the system control program 490
 Index 683

initiator 232
In-prepare 354
input-output coding 283
In-reset 354
Integrated Coupling Facility (ICF) 37, 47
Integrated Facility for Linux (IFL) 37, 46
integration testing 259, 270
Intelligent Resource Director (IRD) 569
Interactive Development Environment (IDE) 269
Interactive System Productivity Facility (ISPF) 126
Interfacing with Java 291
interpreted language 277, 297, 299–300
interrupt 105
Interval Control 366
IOCDS (I/O Control Data Set) 40
IPLable disk 485
IRD (Intelligent Resource Director) 569
ISPF (Interactive System Productivity Facility) 126
ISV (independent software vendor) 27

J
Java 292
Java Certification Kit 293
Java class definition 286
Java Development Kits 294, 323
Java Native Interface (JNI) 286, 294
Java Software Development Kit 293
Java Virtual Machine (JVM) 294
JCK 293
JES2 231, 241, 244, 246, 470
JES2 cataloged procedure 471
JES3 231, 244, 246, 470
JNI (Java Native Interface) 286, 294
JNI services 286
job entry subsystem (JES) 231
journaled VIO data set 490
JVM (Java Virtual Machine) 294

K
Kerberos security services 530
Key Sequence Data Set (KSDS) 179
kneecapping, terminology 47
KSDS (Key Sequence Data Set) 179

L
Language Environment 300
large objects 392

latch 106
LCSS (Logical Channel SubSystem) 568–569
libraries, system 218, 466
licensed program 117, 292, 538, 586, 589
Lightweight Directory Access Protocol Server
(LDAP) 427
LINK command 368
link pack area (LPA) 467
linkage editor 279
linker 278
linklist concatenation 468
load modules 279
LOB 392
locking 106
Logical Channel SubSystem (LCSS) 568–569
logical dump 589
logical partitions (LPARs) 43
LPA (link pack area) 467
LPA pages, storage protection 536
LPALST concatenation 468
LPALSTxx member 467
LPAR (logical partition) 43–44, 48, 63
LPAR characteristics 44
LRECL, logical record length 172

M
machine instructions 278
machine language 276
machine-dependent 277
macro 278
macro preprocessor 290
mainframe consolidation 45
mainframe security 528
mainframe, defined 8
maintenance phase 271
master JCL 470
master scheduler 470

address space 101, 470
subsystem 101

MCM (Multiple Chip Module) 569
message queue 451
Message Queue Interface (MQI) 448
metadata 393
microcode 5
MLPA (modified link pack area) 467
modified link pack area (MLPA) 467
MQI (Message Queue Interface) 448
MRO 357
684 Introduction to the New Mainframe: z/OS Basics

MSTJCLxx member 470
MSTJCLxx PARMLIB member 470
multibook system structure 569
Multiple Chip Module (MCM) 569
Multiprise 3000 system 59
multiprocessor, terminology 48
multi-region operation 357
multitasking 350, 363
multithreading 350

N
national language support 306
NetRexx 297
Network Authentication Service for z/OS 530
non-functional requirements 263
non-machine-dependent 277
non-preemptable work 111
non-procedural language 277

O
object deck 234, 288, 298, 306
object-oriented 286, 292
OO applications 286
Open System Adapter (OSA) 567
original equipment manufacturer (OEM) 27
OSA (Open System Adapter) 567
override page protection 487

P
page data set 93
page fault 107
page protection bit 536
page protection, override 487
pageable link pack area (PLPA) 467, 486
parallel channels 38
Parallel Sysplex 64–65

applications in 69
benefits 69

integration 69
technology 69

failure 66
infrastructure 69
overview 54

parallel testing 271
PARMLIB data set 102
partitioning, introduction 42
path name 166

PC (program call) 536
PDS (partitioned data set) 268
PERFORM statement 282
performance test 259
physical dump 589
PKI Services 530
PL/I 288
PLPA (pageable link pack area) 467
POR (Power-on Reset) 44
Power-on Reset (POR) 44
PR/SM (Processor Resource/System Manager) 43
preemptable work 111
prelinker 328
Preprocessors 290
primary job entry subsystem 101, 470
private area 489
procedural language 277, 297
PROCEDURE 289
Procedure 321
procedure library 210, 471
process requirements 263
Processor Unit (PU) 46
production, going into 271
program call (PC) instruction 536
Program Control 366
program integrity 534
program management model 303
program search order 120, 472
program temporary fix (PTF) 499
programming requirements 260
prototyping 300
pseudo-conversational 347, 359
PU (Processor Unit) 46
punched card 230

Q
queue manager 451
quick start IPL 486, 490

R
RACF 531

databases 533
with middleware 533

RACF (Resource Access Control Facility) 529–530
RACF Remote Sharing Facility (RRSF) 533
real storage manager (RSM) 93
RECFM, record format 172
record 128, 164
 Index 685

record descriptor word (RDW) 171
Record File System (RFS) 190
record formats 171
record-oriented file system 128
recovery 353
Redbooks

Web site 639
reentrant 350
region 373
requirements for an application 263
RESERVE and RELEASE commands 52
residency mode 98
Resource Access Control Facility (RACF) 530
Resource Measurement Facility (RMF) 589
Restructured Extended Executor 297
REXX 297
RMF (Resource Measurement Facility) 589
RMODE(31) 98
roll back 354
RRSF (RACF Remote Sharing Facility) 533
run-time library 301

S
SAF (system authorization facility) 532
SAP (System Assistance Processor) 46
SAX parser 291
SCLM (Software Configuration Library Manager)
268
SDK 293
SDSF (system display and search facility) 213, 269
search order for programs 120, 472
secondary subsystems 102, 470
security controls 528
security policy 529
Security Server 529, 538
security, mainframe 528
separation of duties 463, 529
sequence numbers 587
sequence set (VSAM) 180
server farm 263
server message block (SMB) 190
service level agreement (SLA) 65, 104
service request block (SRB) 78, 83, 106, 109
shared DASD environment 51
shared data 57, 71
shared nothing 57
shutting down the system 491
single point of control 68

single system image 68
single unit of recovery 353
SMB (Distributed File Service Server Message
Block) 190
SMPCSI (CSI) data set 523
Software Configuration Library Manager (SCLM)
268
space allocation, DD 205
Spanned Channel support 569
split screen 223
SQL 291

package 406
plan 406
preprocessor 291

stakeholders 263
steady state 261, 271, 273
storage control 367
Storage group 390
storage protection 536
stored procedure 392
stress testing 271
subpool 93
subroutine 313
subsystem 63, 68
subsystem initialization 488
supervisor call (SVC) 535
supervisor controls 105
supervisor state 110
SUPERZAP program 588
Support Center 28
Support Element (SE) 44
SVC (supervisor call) 535
swapping 91
symbolic file name 287
symbolic programming language 278
symbolics 67
syncpoint 353
syncpoint manager 353
SYS1.LINKLIB 218, 466
SYS1.LPALIB 218, 466
SYS1.LPALIB data set 467
SYS1.NUCLEUS 218, 466
SYS1.PARMLIB 218, 466–467
SYS1.PROCLIB 218, 466, 469
sysplex 54–55, 57, 63, 65–66, 71
Sysplex Distributor 63
system

integrity 528
libraries 218, 466
686 Introduction to the New Mainframe: z/OS Basics

requirements 263
symbols 474
tests 270

System Assistance Processor (SAP) 46
system authorization facility (SAF) 532
System Clustering and Data Sharing 567
system display and search facility (SDSF) 213
system management facility (SMF) 424
System Resource Manager (SRM) 91
System z9 Integrated Information Processor (zIIP)
47
System/360 (S/360) 4
System/360 diagram 37
system-encrypted password 531
systems engineer (SE) 28

T
table space 390
tape data set 174
task 358
task control 363, 366
task control block (TCB) 78, 106, 109
TCM(Thermal Conduction Module) 565
temporary storage 366
Thermal Conduction Module (TCM) 565
THREAD 286
thread 350, 358
Threads 304
time independence 450
Time Sharing Option/Extensions (TSO/E) 126
tracks, disk drive 167
transaction 356, 362, 372
TRANSID 358, 362
transient data 366
translating the COBOL source language 281
trigger 392
TSO/E (Time Sharing Option/Extensions) 126

U
UDF (User-Defined Function) 391
UDT (User-defined Data Type) 391
unauthorized access 528
unicode 266
unicode character set 266
unit of recovery 358
unit of work 358
UNIX terms mapped to z/OS 118
unloaded partitioned data set 582

unreferenced interval count 90
user identification and verification 531
user tests 270
User-Defined Data Type (UDT) 391
User-Defined Function (UDF) 391
utility

ICKDSF 167, 181, 588
IDCAMS 584
IEBCOPY 582
IEBDG 583
IEBGENER 581
IEBUPDTE 586
IEFBR14 580
IEHINITT 587
IEHLIST 587
IEHPROGM 587

V
VIPA (virtual Internet protocal address) 552
virtual address, format 85
virtual Internet protocal address (VIPA) 552
Virtual Storage Access Method (VSAM) 165, 179,
366
virtual storage manager (VSM) 93
virtual storage, defined 81
volume table of contents (VTOC) 181
VSAM (Virtual Storage Access Method) 165, 179,
366
VSM (virtual storage manager) 93

W
warm start IPL 469, 486, 490
Web-oriented business processes 280
WebSphere Studio Enterprise Developer 269
WLM (workload management) 66, 243
working set 91
workload balancing 65
workload distribution 65
workload management (WLM) 66, 102, 243, 476

X
XCTL command 368
XML parser 291

Z
z/Architecture 76, 278
z/OS firewall technologies 530, 537
 Index 687

z/OS image, defined 51
z/OS overview 79
z/OS, names of predecessors 28
z/TPF (z/Transaction Processing Facility) 31
z/Transaction Processing Facility (z/TPF) 31
zAAP processor 47
zIIP processor 47
zSeries Application Assist Processor (zAAP) 293
zSeries File System (zFS) 190
zSeries Resource Sharing 67
688 Introduction to the New Mainframe: z/OS Basics

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

IBM
 zSeries and the z/OS Operating System

 Introduction to the New

M
ainfram

e: z/OS Basics

IBM
 zSeries and the z/OS

Operating System

IBM
 zSeries and the z/OS Operating System

IBM
 zSeries and the

z/OS Operating System

IBM
 zSeries and the

z/OS Operating System

®

SG24-6366-00 ISBN 0738495972

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Introduction to the
New Mainframe:
z/OS Basics
Basic mainframe
concepts, including
usage and
architecture

z/OS fundamentals
for students and
beginners

Mainframe hardware
and peripheral
devices

This IBM Redbook provides students of information systems
technology with the background knowledge and skills
necessary to begin using the basic facilities of a mainframe
computer. It is the first in a planned series of textbooks
designed to introduce students to mainframe concepts and
help prepare them for a career in large systems computing.
For optimal learning, students are assumed to have
successfully completed an introductory course in computer
system concepts, such as computer organization and
architecture, operating systems, data management, or data
communications. They should also have successfully
completed courses in one or more programming languages,
and be PC literate.
This textbook can also be used as a prerequisite for courses in
advanced topics or for internships and special studies. It is not
intended to be a complete text covering all aspects of
mainframe operation, nor is it a reference book that discusses
every feature and option of the mainframe facilities.
Others who will benefit from this course include experienced
data processing professionals who have worked with
non-mainframe platforms, or who are familiar with some
aspects of the mainframe but want to become knowledgeable
with other facilities and benefits of the mainframe
environment.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Preface
	How this text is organized
	How each chapter is organized
	About the authors
	Acknowledgements
	Comments welcome

	Part 1 Introduction to z/OS and the mainframe environment
	Chapter 1. Introduction to the new mainframe
	1.1 The new mainframe
	1.2 The S/360: A turning point in mainframe history
	1.3 An evolving architecture
	1.4 Mainframes in our midst
	1.5 What is a mainframe?
	1.6 Who uses mainframe computers?
	1.7 Factors contributing to mainframe use
	1.7.1 Reliability, availability, and serviceability
	1.7.2 Security
	1.7.3 Scalability
	1.7.4 Continuing compatibility

	1.8 Typical mainframe workloads
	1.8.1 Batch processing
	1.8.2 Online transaction processing

	1.9 Roles in the mainframe world
	1.9.1 Who is the system programmer?
	1.9.2 Who is the system administrator?
	1.9.3 Who are the application designers and programmers?
	1.9.4 Who is the system operator?
	1.9.5 Who is the production control analyst?
	1.9.6 What role do vendors play?

	1.10 z/OS and other mainframe operating systems
	1.10.1 z/VM
	1.10.2 z/VSE
	1.10.3 Linux for zSeries
	1.10.4 z/TPF

	1.11 Summary
	1.12 Questions for review
	1.13 Topics for further discussion

	Chapter 2. Mainframe hardware systems and high availability
	2.1 Introduction to mainframe hardware systems
	2.2 Early system design
	2.3 Current design
	2.3.1 I/O connectivity
	2.3.2 System control and partitioning
	2.3.3 Characteristics of LPARs
	2.3.4 Consolidation of mainframes

	2.4 Processing units
	2.5 Multiprocessors
	2.6 Disk devices
	2.7 Clustering
	2.7.1 Basic shared DASD
	2.7.2 CTC rings

	2.8 What is a Parallel Sysplex?
	2.8.1 What is a coupling facility?
	2.8.2 Clustering technologies for the mainframe

	2.9 Typical mainframe systems
	2.9.1 Very small systems
	2.9.2 Medium single systems
	2.9.3 Larger systems

	2.10 Continuous availability of mainframes
	2.10.1 No single points of failure
	2.10.2 Capacity and scaling
	2.10.3 Dynamic workload balancing
	2.10.4 Ease of use
	2.10.5 Single system image
	2.10.6 Compatible change and non-disruptive growth
	2.10.7 Application compatibility
	2.10.8 Disaster recovery

	2.11 Summary
	2.12 Questions for review
	2.13 Topics for further discussion
	2.14 Exercises

	Chapter 3. z/OS overview
	3.1 What is an operating system?
	3.2 What is z/OS?
	3.2.1 Hardware resources used by z/OS
	3.2.2 Multiprogramming and multiprocessing
	3.2.3 Modules and macros
	3.2.4 Control blocks
	3.2.5 Physical storage used by z/OS

	3.3 Overview of z/OS facilities
	3.4 Virtual storage and other mainframe concepts
	3.4.1 What is virtual storage?
	3.4.2 What is an address space?
	3.4.3 What is dynamic address translation?
	3.4.4 Virtual storage overview
	3.4.5 What is paging?
	3.4.6 Swapping and the working set
	3.4.7 What is storage protection?
	3.4.8 Role of storage managers
	3.4.9 A brief history of virtual storage and 64-bit addressability
	3.4.10 What is meant by “below-the-line storage”?
	3.4.11 What’s in an address space?
	3.4.12 System address spaces and the master scheduler

	3.5 What is workload management?
	3.5.1 What does WLM do?
	3.5.2 How is WLM used?

	3.6 I/O and data management
	3.7 Supervising the execution of work in the system
	3.7.1 What is interrupt processing?
	3.7.2 Creating dispatchable units of work
	3.7.3 Preemptable versus non-preemptable
	3.7.4 What does the dispatcher do?
	3.7.5 Serializing the use of resources

	3.8 Defining characteristics of z/OS
	3.9 Additional software products for z/OS
	3.10 Middleware for z/OS
	3.11 A brief comparison of z/OS and UNIX
	3.12 Summary
	3.13 Questions for review
	3.14 Topics for further discussion

	Chapter 4. TSO/E, ISPF, and UNIX: Interactive facilities of z/OS
	4.1 How do we interact with z/OS?
	4.2 TSO overview
	4.2.1 Data file terms
	4.2.2 Using TSO commands in native mode
	4.2.3 Using CLISTs and REXX under TSO

	4.3 ISPF overview
	4.3.1 Keyboard mapping used in this course
	4.3.2 Using PF1-HELP and the ISPF tutorial
	4.3.3 Using the PA1 key
	4.3.4 Navigating through ISPF menus
	4.3.5 Using the ISPF editor
	4.3.6 Using the online help
	4.3.7 Customizing your ISPF settings
	4.3.8 Adding a GUI to ISPF

	4.4 z/OS UNIX interactive interfaces
	4.4.1 ISHELL command (ish)
	4.4.2 ISHELL - user files and directories
	4.4.3 OMVS command shell session
	4.4.4 Direct login to the shell

	4.5 Summary
	4.6 Questions for review
	4.7 Exercises
	4.7.1 Logging on to z/OS and entering TSO commands
	4.7.2 Navigating through the ISPF menu options
	4.7.3 Using the ISPF editor
	4.7.4 Using SDSF
	4.7.5 Opening the z/OS UNIX shell and entering commands
	4.7.6 Using the OEDIT and OBROWSE commands

	Chapter 5. Working with data sets
	5.1 What is a data set?
	5.2 Where are data sets stored?
	5.3 What are access methods?
	5.4 How are DASD volumes used?
	5.4.1 DASD terminology for UNIX and PC users
	5.4.2 What are DASD labels?

	5.5 Allocating a data set
	5.6 How data sets are named
	5.7 Allocating space on DASD volumes through JCL
	5.7.1 Logical records and blocks
	5.7.2 Data set extents

	5.8 Data set record formats
	5.9 Types of data sets
	5.9.1 What is a sequential data set?
	5.9.2 What is a PDS?
	5.9.3 What is a PDSE?
	5.9.4 When a data set runs out of space

	5.10 What is VSAM?
	5.11 Catalogs and VTOCs
	5.11.1 What is a VTOC?
	5.11.2 What is a catalog?
	5.11.3 What is a generation data group?

	5.12 Role of DFSMS in managing space
	5.13 z/OS UNIX file systems
	5.13.1 z/OS data sets versus file system files

	5.14 Working with a zFS file system
	5.15 Summary
	5.16 Questions for review
	5.17 Exercises
	5.17.1 Exploring ISPF Option 3.4
	5.17.2 Allocating a data set with ISPF 3.2
	5.17.3 Copying a source library
	5.17.4 Working with data set members
	5.17.5 Listing a data set and other ISPF 3.4 options

	Chapter 6. Using JCL and SDSF
	6.1 What is JCL?
	6.2 JOB, EXEC, and DD parameters
	6.2.1 JOB parameters
	6.2.2 EXEC parameters
	6.2.3 DD parameters

	6.3 Data set disposition, DISP parameter
	6.3.1 Creating new data sets

	6.4 Continuation and concatenation
	6.5 Why z/OS uses symbolic file names
	6.6 Reserved DDNAMES
	6.7 JCL procedures (PROCs)
	6.7.1 JCL PROC statement override
	6.7.2 How is a job submitted for batch processing?

	6.8 Understanding SDSF
	6.9 Utilities
	6.10 System libraries
	6.11 Summary
	6.12 Questions for review
	6.13 Topics for further discussion
	6.14 Exercises
	6.14.1 Creating a simple job
	6.14.2 Using ISPF in split screen mode
	6.14.3 Manipulating text in ISPF
	6.14.4 Submitting a job and checking the results
	6.14.5 Creating a PDS member
	6.14.6 Copying a PDS member

	Chapter 7. Batch processing and JES
	7.1 What is batch processing?
	7.2 What is JES?
	7.3 What does an initiator do?
	7.4 Job and output management with JES and initiators
	7.4.1 Batch job Scenario 1
	7.4.2 Batch job Scenario 2

	7.5 Job flow through the system
	7.6 JES2 compared to JES3
	7.7 Summary
	7.8 Questions for review
	7.9 Exercises
	7.9.1 Learning about system volumes
	7.9.2 Using a utility program in a job
	7.9.3 Examining the TSO logon JCL
	7.9.4 Exploring the master catalog
	7.9.5 Using SDSF
	7.9.6 Using TSO REXX and ISPF

	Part 2 Application programming on z/OS
	Chapter 8. Designing and developing applications for z/OS
	8.1 Application designers and programmers
	8.2 Designing an application for z/OS
	8.2.1 Designing for z/OS: Batch or online?
	8.2.2 Designing for z/OS: Data sources and access methods
	8.2.3 Designing for z/OS: Availability and workload requirements
	8.2.4 Designing for z/OS: Exception handling

	8.3 Application development life cycle: An overview
	8.3.1 Gathering requirements for the design

	8.4 Developing an application on the mainframe
	8.4.1 Using the EBCDIC character set
	8.4.2 Unicode on the mainframe
	8.4.3 Interfaces for z/OS application programmers
	8.4.4 Using application development tools
	8.4.5 Conducting a debugging session
	8.4.6 Performing a system test

	8.5 Going into production on the mainframe
	8.6 Summary
	8.7 Questions for review

	Chapter 9. Using programming languages on z/OS
	9.1 Overview of programming languages
	9.2 Choosing a programming language for z/OS
	9.3 Using Assembler language on z/OS
	9.4 Using COBOL on z/OS
	9.4.1 COBOL program format
	9.4.2 COBOL relationship between JCL and program files
	9.4.3 Running COBOL programs under UNIX
	9.4.4 Communicating with Java methods
	9.4.5 Creating a DLL or a DLL application
	9.4.6 Structuring OO applications

	9.5 HLL relationship between JCL and program files
	9.6 Using PL/I on z/OS
	9.6.1 PL/I program structure
	9.6.2 Preprocessors
	9.6.3 Using the SAX parser

	9.7 Using C/C++ on z/OS
	9.8 Using Java on z/OS
	9.8.1 IBM SDK products for z/OS
	9.8.2 Using the Java Native Interface (JNI)

	9.9 Using CLIST language on z/OS
	9.9.1 Types of CLISTs
	9.9.2 Executing CLISTs
	9.9.3 Other uses for the CLIST language

	9.10 Using REXX on z/OS
	9.10.1 Compiling and executing REXX command lists

	9.11 Compiled versus interpreted languages
	9.11.1 Advantages of compiled languages
	9.11.2 Advantages of interpreted languages

	9.12 What is z/OS Language Environment?
	9.12.1 How Language Environment is used
	9.12.2 A closer look at Language Environment
	9.12.3 Running your program with Language Environment

	9.13 Summary
	9.14 Questions for review
	9.15 Topics for further discussion

	Chapter 10. Preparing a program to run on z/OS
	10.1 Source, object, and load modules
	10.2 What are source libraries?
	10.3 Compiling programs on z/OS
	10.3.1 What is a precompiler?
	10.3.2 Compiling with cataloged procedures
	10.3.3 Compiling object-oriented (OO) applications
	10.3.4 What is an object deck?
	10.3.5 What is an object library?
	10.3.6 How does program management work?
	10.3.7 How is a linkage editor used?
	10.3.8 How a load module is created

	10.4 Creating load modules for executable programs
	10.4.1 Batch loader
	10.4.2 Program management loader
	10.4.3 What is a load library?

	10.5 Overview of compilation to execution
	10.6 Using procedures
	10.7 Summary
	10.8 Questions for review
	10.9 Exercises
	10.9.1 Exercise: compiling and linking a program
	10.9.2 Exercise: executing a program

	Part 3 Online workloads for z/OS
	Chapter 11. Transaction management systems on z/OS
	11.1 Online processing on the mainframe
	11.2 Example of global online processing - the new big picture
	11.3 Transaction systems for the mainframe
	11.3.1 What are transaction programs?
	11.3.2 What is a transaction system?
	11.3.3 What are the typical requirements of a transaction system?
	11.3.4 What is commit and roll back?

	11.4 What is CICS?
	11.4.1 CICS in a z/OS system
	11.4.2 CICS programs, transactions and tasks
	11.4.3 Using programming languages
	11.4.4 Conversational and pseudo-conversational programming
	11.4.5 CICS programming commands
	11.4.6 How a CICS transaction flows
	11.4.7 CICS services for application programs
	11.4.8 Program control
	11.4.9 CICS programming roadmap
	11.4.10 Our online example

	11.5 What is IMS?
	11.5.1 IMS in a z/OS system
	11.5.2 IMS Transaction Manager messages

	11.6 Summary
	11.7 Questions for review
	11.8 Exercises

	Chapter 12. Database management systems on z/OS
	12.1 Database management systems for the mainframe
	12.2 What is a database?
	12.3 Why use a database?
	12.4 Who is the database administrator?
	12.5 How is a database designed?
	12.5.1 Entities
	12.5.2 Data attributes
	12.5.3 Entity relationships
	12.5.4 Application functions
	12.5.5 Access paths

	12.6 What is a database management system?
	12.6.1 What structures exist in a relational database?

	12.7 What is DB2?
	12.7.1 Data structures in DB2
	12.7.2 Schema structures
	12.7.3 DB2 address spaces
	12.7.4 Using DB2 utilities
	12.7.5 Using DB2 commands

	12.8 What is SQL?
	12.9 Application programming for DB2
	12.9.1 DB2 program preparation: the flow

	12.10 Functions of the IMS Database Manager
	12.11 Structure of the IMS Database subsystem
	12.11.1 The IMS hierarchical database model
	12.11.2 IMS use of z/OS services
	12.11.3 Evolution of IMS
	12.11.4 Our online example

	12.12 Summary
	12.13 Questions for review
	12.14 Exercises
	12.14.1 Step 1: Create files
	12.14.2 Step 2: DCLGEN
	12.14.3 Step 3: Test your SQL
	12.14.4 Step 4: Create the program
	12.14.5 Step 5: Complete the program
	12.14.6 Step 6: Run the program from TSO

	Chapter 13. z/OS HTTP Server
	13.1 Introduction to Web-based workloads on z/OS
	13.2 What is z/OS HTTP Server?
	13.2.1 Serving static Web pages on z/OS
	13.2.2 Serving dynamic Web pages on z/OS

	13.3 HTTP Server capabilities
	13.3.1 Basic functions
	13.3.2 Security functions
	13.3.3 File caching
	13.3.4 Plug-in code

	13.4 Summary
	13.5 Questions for review
	13.6 Exercises

	Chapter 14. WebSphere Application Server on z/OS
	14.1 What is WebSphere Application Server for z/OS?
	14.2 Servers
	14.3 Nodes (and node agents)
	14.4 Cells
	14.5 J2EE application model on z/OS
	14.6 Running WebSphere Application Server on z/OS
	14.6.1 Consolidation of workloads
	14.6.2 WebSphere for z/OS security
	14.6.3 Continuous availability
	14.6.4 Performance

	14.7 Application server configuration on z/OS
	14.7.1 Base server node
	14.7.2 Network Deployment Manager

	14.8 Connectors for Enterprise Information Systems
	14.8.1 z/OS connectors

	14.9 Questions for review

	Chapter 15. Messaging and queuing
	15.1 What WebSphere MQ is
	15.2 Synchronous communication
	15.3 Asynchronous communication
	15.4 Message types
	15.5 Message queues and the queue manager
	15.5.1 Queue manager
	15.5.2 Types of message queues

	15.6 What is a channel?
	15.7 How transactional integrity is ensured
	15.8 Example of messaging and queuing
	15.9 Interfacing with CICS, IMS, batch, or TSO/E
	15.10 Summary
	15.11 Questions for review

	Part 4 System programming on z/OS
	Chapter 16. Overview of system programming
	16.1 The role of the system programmer
	16.2 What is meant by separation of duties
	16.3 Customizing the system
	16.3.1 z/OS system libraries
	16.3.2 SYS1.PARMLIB
	16.3.3 Link pack area (LPA)
	16.3.4 Pageable link pack area (PLPA)
	16.3.5 Fixed link pack area (FLPA)
	16.3.6 Modified link pack area (MLPA)
	16.3.7 SYS1.PROCLIB
	16.3.8 The master scheduler subsystem
	16.3.9 A job procedure library
	16.3.10 Search order for programs
	16.3.11 What system symbols are

	16.4 Managing system performance
	16.5 Configuring I/O devices
	16.6 Following a process of change control
	16.6.1 Risk assessment
	16.6.2 Change control record system
	16.6.3 Production control

	16.7 Configuring consoles
	16.8 Initializing the system
	16.8.1 Initialization process
	16.8.2 IPL types
	16.8.3 Shutting down the system

	16.9 Summary
	16.10 Questions for review
	16.11 Topics for further discussion
	16.12 Exercises

	Chapter 17. Using SMP/E
	17.1 What is SMP/E?
	17.2 The SMP/E view of the system
	17.3 Changing the elements of the system
	17.3.1 What is a SYSMOD?
	17.3.2 Types of SYSMODS

	17.4 Introducing an element into the system
	17.5 Preventing or fixing problems with an element
	17.6 Fixing problems with an element
	17.7 Customizing an element - USERMOD SYSMOD
	17.7.1 SYSMOD prerequisites and corequisites

	17.8 Keeping track of the elements of the system
	17.9 Tracking and controlling requisites
	17.10 How does SMP/E work?
	17.10.1 The distribution and target libraries
	17.10.2 The consolidated software inventory (CSI)

	17.11 Working with SMP/E
	17.11.1 Using the RECEIVE command
	17.11.2 Using the APPLY command
	17.11.3 Using the ACCEPT command
	17.11.4 Other SMP/E facilities

	17.12 Data sets used by SMP/E
	17.13 Summary
	17.14 Questions for review
	17.15 Topics for further discussion

	Chapter 18. Security on z/OS
	18.1 Why security?
	18.2 Security facilities of z/OS
	18.3 Security roles
	18.4 The IBM Security Server
	18.4.1 RACF
	18.4.2 System authorization facility (SAF)

	18.5 Security administration
	18.5.1 RACF Remote Sharing Facility (RRSF)
	18.5.2 RACF with middleware

	18.6 Operator console security
	18.7 Integrity
	18.7.1 Authorized programs
	18.7.2 Storage protection
	18.7.3 Cross-memory communication
	18.7.4 z/OS firewall technologies

	18.8 Summary
	18.9 Questions for review
	18.10 Topics for further discussion
	18.11 Exercises

	Chapter 19. Network Communications on z/OS
	19.1 Communications in z/OS
	19.2 Brief history of data networks
	19.2.1 SNA and TCP/IP on z/OS
	19.2.2 Layered network models
	19.2.3 Network reliability and availability
	19.2.4 Factors contributing to the continued use of SNA

	19.3 z/OS Communications Server
	19.4 TCP/IP overview
	19.4.1 Using commands to monitor TCP/IP
	19.4.2 Using console commands to manage TCP/IP
	19.4.3 Using VIPAs for availability and load balancing
	19.4.4 TN3270, the gateway to z/OS

	19.5 VTAM overview
	19.5.1 Network topologies supported by VTAM
	19.5.2 What is a subarea network topology?
	19.5.3 What an APPN network topology is
	19.5.4 Summary of VTAM topologies
	19.5.5 Using commands to monitor VTAM
	19.5.6 Background: 3270 data stream

	19.6 Summary
	19.7 Questions for review
	19.8 Exercises

	Appendix A. A brief look at IBM mainframe history
	Appendix B. DB2 sample tables
	Department table (DEPT)
	The content of the department table
	Indexes on the department table
	Content of the department table
	Relationship to other tables

	Employee table (EMP)
	Columns of the employee table
	Indexes of the employee table
	Relationship to other tables

	Appendix C. Utility programs
	Basic utilities
	IEFBR14
	IEBGENER
	IEBCOPY
	IEBDG
	IDCAMS
	IEBUPDTE

	System-oriented utilities
	IEHLIST
	IEHINITT
	IEHPROGM
	ICKDSF
	SUPERZAP

	Application-level utilities
	ADRDSSU
	RMF

	Appendix D. EBCDIC - ASCII table
	Appendix E. Class Program
	COBOL-CICS-DB2 program
	Source code
	Preparation Jobs
	CICS definitions
	Program execution

	COBOL-Batch-VSAM program
	Program code
	Preparation jobs
	Program execution

	DSNTEP2 utility
	Execution job

	QMF batch execution
	Execution job
	QMF procedure
	QMF query

	Batch C program to access DB2
	Source code
	Preparing the program
	Running the program

	Java Servlet access to DB2
	Servlet source code
	Deployment descriptor

	C program to access MQ
	MQPUT
	MQGET

	Java program to access MQ

	Notices
	Trademarks

	Appendix F. Back matter
	Related publications
	Mainframe architecture references
	z/OS data management references
	z/OS JCL and Utilities references
	z/OS system programming
	z/OS UNIX references
	z/OS Communications Server references
	Language references
	CICS references
	IMS references
	DB2 references
	WebSphere MQ references

	IBM Redbooks
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Appendix G. Glossary
	Index
	Back cover

