Irish Independent \square Institute of Education

exam

The winning numbers

28 pages of Leaving Cert Maths

The complete guide to Leaving Cert Maths this year, by Aidan Roantree, one of the country's top Maths teachers.
Our $\mathbf{2 8}$ page supplement covers every aspect of the Maths courses at Higher and Ordinary Levels with sample Questions and Answers.

It's a no-brainer. If you want to maximise your grade, here's your guide to getting the winning numbers

The A1 Student * Dos and Don'ts * Tips from the top Teacher

exam byef

Welcome to our guide to the Leaving Cert in 2008

WELCOME TO OUR GUIDE TO THE LEAVING CERT IN 2008.We begin the series of supplements today with the ultimate guide to the Maths exams, at both Higher and Ordinary levels.

This is the first of five Leaving Cert 2008 supplements which are being published by the Irish Independent in association with The Institute of Education.

The Institute of Education is Ireland's leading private tuition college, sending more students to university than any other school over the past few years. Part of its success is attributed to the outstanding teacher notes supplied to its students. These notes, together with special additional advice from the teachers, form the basis of this series of supplements. They provide an overview of the entire course in each subject with invaluable practical advice on how to study and how to
maximise exam performance.
Last year the Institute was the No 1 provider of students to UCD, Trinity, the Royal College of Surgeons, DCU and DIT. Now with our ExamBrief series, all students can benefit from the notes and advice that have been so successful at the Institute.
The Leaving Cert ExamBrief supplements begin today and will continue every Wednesday over the next four weeks. The supplements are available only with the Irish Independent and offer the only in-depth exam preparation guides available with an Irish newspaper. Unlike other supplements which have appeared, they cover the complete course in each subject featured.
This year our Leaving Cert ExamBrief series is even more extensive than in previous years. Subjects are being grouped thematically for the first time. Today's 28 -page supplement is entirely devoted to Maths, both Higher and Ordinary,
offering an unmissable guide to the complete course at both levels. It is written by Aidan Roantree, one of the country's top Maths teachers. It includes sample Questions and Answers, tips on tackling the subject over the remaining three months, and advice from an A1 student from last year.
Next week ExamBrief will be a Languages Supplement, covering English, Irish and French

The series will include a Sciences
Supplement, covering Physics, Chemistry and Biology.

There will also be a Money Supplement, covering Economics, Business and Accounting.

Other subjects will be included in a final supplement.

Supplements Editor: John Spain

Raymond Kearns, Director of the Institute of Education

The Institute of Education
79/85 Lower Leeson St., D. 2 (Beside the LUAS)
[

Choose Wisely
Choose Excellence Choose The Institute of Education

Congratulations to the Day Class of 2006-2007*

7 A1's (H) The Institute of Education 6

7A1's (H) Total Nationwide

6A1's (H) The Institute of Education
 15

6A1's (H) Total Nationwide
 113**

(Irish independent 15/08/07**) One out of every six students nationwide who obtained 7A1s in their Leaving Certificate attended The Institute of Education Full Time Day Course 2006-2007

Online Booking now available at www.ioe.ie Tel: 016613511 |Fax: 01661 9050 |www.ioe.ie |info@ioe.ie

exam bief
 Maths

You don't have to be Einstein

Mastering MathsConcept andExecution

By Aidan Roantree, Maths Teacher, Institute of Education

To master Maths, you must master both concept and execution. A weakness in either area will stop you achieving a high grade.
To master concepts, you must try to understand the purpose of the methods and formulae you meet. If you merely learn off a technique, by doing repeated examples of the same type, and yet miss the point of what it is driving at, all it needs is one small, subtle twist in the exam question and you will be lost. And don't be deceived, many (b) parts and most (c) parts contain such subtle twists. This is how they distinguish the A1 students from the C students
So you should try your utmost to understand what you are doing. Maths is not Biology, Business or Home Economics, where you will be rewarded for having learned many relevant facts. To each their own.

Ask questions, ask why, ask why not! Of yourself, your teacher, your friends. Don't settle for platitudes! Your aim should be that by the time the Leaving Cert. comes, there should be few, if any, concepts that you are not comfortable with. Be positive and aggressive.
Some people are blessed with 'mathematical ability, just as others are blessed with abilities in sport, English or music. Being blessed with mathematical ability means they can grasp new mathematical ideas fully in an instant, e.g. Albert Einstein. Don't you hate it when the student who keeps getting As, if not 100%, says that he/she only spends 10 minutes a night doing maths, and you spend two hours? People have different abilities: it is a fact of life

Even though you may not be an Albert Einstein (who is?), you give yourself the best chance of maximising your grade by trying to understand as much as possible. There will always be a few questions for which nobody seems to have an answer, but keep trying.
Unfortunately, mastering concept alone does not guarantee a high grade. How often do we meet students who say: 'I can understand fully what is going on in class, but I just can't do the questions myself??

The diagnosis here is that the execution is weak, i.e. they know what they are supposed to do, they just can't do it. This is almost always because they have basic weaknesses in their Algebra, Trig or Differentiation, but most importantly Algebra.
Weakness with Algebra is the most common reason why a good, intelligent student doesn't perform to their ability in Maths. Should this describe you, the best advice is to go back through Algebra: expressions, equations (with an equal to sign), brackets, fractions, etc., with a fine tooth comb and practise, practise, until you understand all the techniques perfectly, and develop good habits in the way you write Maths. You might consider this demeaning, but, hey, do you want to improve your grade in Maths or not? The choice is yours.

For 2008 - the advice is to leave nothing out

The aim of the current Higher Level syllabus, introduced in 1992, which was intended to be shorter and more straightforward than the one it replaced, was to make Higher maths appeal to more students.
For a while it seemed to be succeeding. In the mid nineties, nearly 11,000 students took the Higher level exam. Also, the percentage of As rose from about 5 pc fifteen years ago to about 15.4 pc last year.This is a little behind Physics, Chemistry and Biology, but ahead of all the other major subjects.
Even more impressive is the fact that 80.1% of students who sat the Higher Level papers obtained aCgrade or higher. Only 3.9pc of students failed Higher Level maths in 2007. These figures have been roughly the same over the last few years.
So even though Higher Level maths seems to have re-acquired its reputation as a difficult, elite subject, which is reflected by the drop in numbers to about 8,400 in 2007, the students who take this level are doing extremely well in

THE TEACHER'S VIEW

the Leaving Cert. exam.
One concern is that as the syllabus and exams grow old, which they are now doing the search for new questions becomes harder. This has resulted in a number of questions on unlikely topics being asked in the last couple of years. Examples are the inverse tan graph in 2006 and concurrent lines in 2007. Because of this, you should leave nothing out when preparing each topic.
At Ordinary Level, the figures in 2007 were 13.9 pc of students getting an A, and 67.9 pc getting a grade C or higher. While not as good as the Higher Level stats, it is still reasonably encouraging for the majority of students.

But the big news, and the big concern, is that 11.6% of students failed the Ordinary Level exam. This means that just over 4,000 students did not get an important qualification in maths. This
figure was roughly in line with previous years. Prior to 2007, a lot of the blame for this situation was laid at the door of very difficult and challenging exam papers (for the level). However the 2007 papers were generally well received, and some expected a reduction in the failure rate. That it didn't happen was perhaps because there is a minority of students for whom this course is simply not suitable, and who find themselves able to write little or nothing in the exams. So a small easing in standard is going to have little effect on the failure rate.
If you feel that you are at risk, you should practise writing down as much as possible for each question you attempt. Writing down something is always better than writing down nothing. Marks are given for any small effort in the right direction, and great flexibility is usually allowed. By making every effort with each question, even if you think you haven't a clue, you can dramatically improve your performance.- AR

Higher level

Paper 1

Paper One

Paper 1 contains eight questions, and students art recpuired to answer any six of these. for 50 marks cach. The time allowed is two and a half hours. This equates to twenty live minutes per suntislion. Fowever, this doesn't take into aceount that you will have to start lyy reading the paper to choose your guestions, and that diflicule parts may hayc to be revisited. In practice, you should aim to bernplene als many aluestions als pussible within a twe try minute time limit.

Many students enter the cxam hall tor Paper 1 widn the six questions that diey intend to do
 not exen revised for the other who guestions. This is a highly risky strategy. (on occasion, some of the more popular gruestions havis contained anusual and very difficult pars. Sicudents with only six questions preprared are then forced to tackle thase, ofien with catastrophic effects to their morale and eveilual grade. The best aslvice is to emter the exam widh at least one standby question.

Algebta and takulus dorninatis Paper 1. Of the eight questions, two full questions are dedicated to algebra and three to calculus. One of the other questions deals with complex aumbers and matrices, which rely heavily on algebra. The remaining two questions, which cover sequences and series. binomial, induction and algebra, are difficult to previjet. Nevertheluss, if you prepare these topics, you may well be rewarded with relatively casy questions, as has happoned many times in the past.

Algebra

The tirst wo questions on [raper 1 aldrays cover the topic of algetrest. These arc extremely popular questions with almest all students, but nevertheless you should carefully examine the questions you are presented with before rushing in to attempt them. If ithere arse trrusual or dillicult parls, you should consider carefully wheiler or not you would be better off attempting other guestions insteral.

Within these two questions there can the as many as six to wn separate parts, which means thar a wide range of question types tan be askusl in any given year.

A number of question lyjes oceul with great Frequency, others less often. Some of the most popular topics are:

* simultancous equations (every yeat),
* abstrace quadratic factors of cubics (most years),
* the Factor Theorem (most years).
* roots of quadratic equations (nrost years),
* incqualitics, both solving and proving (VEl'y oftern).

Orher topics should not be neglected, as there will almost sertainly be trie ber more fatts on the likes of surds, powers, logs, fractions. fiunction notation, etc. In jarticular, it is unwist to atsume lhat logs will met bu cxamined in Qucstions: I and 2. There is ne such guorantee. You only hove to look at Question 2(c) 2006.

Betow iss a list of the topics that you should study in algebrat.

1. Fractions
o.g. show that

$$
\frac{6}{x-2}+\frac{2+2 x}{2-x}
$$

reduces co a constant, for all $x \in \mathbf{R}$,
$x \neq 2$
2. Identities
e.g. find real numbers a and b if $a(5 x-2)+b(3 x+4)=2 \mid x-2$.
for all $x \in \mathbf{R}$
3. Surds
c.g. simplify

$$
(1+\sqrt{a} \sqrt{a+1})(1+\sqrt{a} 1 \sqrt{a+1})
$$

where $a \in \mathbf{R}, a>0$
4. Irrational equations
e.g. sulwe

$$
\sqrt{2 x-1} \div \sqrt{x-1}=5
$$

for $x \in \mathbf{R}$
5. Prouf of the Factor Theorem
6. Ele of the Factor Thenrem to factorise culies and solve entbic equations
c.g. if $(2 x-1)$ is a kutor of

$$
f(x)=2 x^{3}+k x^{2}-11 x-6
$$

find the value of $k \in \mathbf{R}$, and find the other two factors of $f(x)$
7. Quadratic factor of a cuble
e.g. if $x^{2}+2 b$ is a factor of $x^{3}+b x^{2}+a x+c$, show that $a^{2}=2 c$
8. Linear simultanenus equations e.g. whe this simultanters sefuations

$$
\begin{aligned}
& 3 x-5 y-z-3 \\
& 3 x+y-3 z=-9 \\
& x+3 y+2 z=7
\end{aligned}
$$

9. Linear, пuл-linear simultaneous equations
e.g. solve the simultaneous equations

$$
2 x+y=8
$$

$$
x^{2} 1 y^{2}=52
$$

10. Hodulus inequalities
c.g. solve $|5 x-1|<9$

AIDANROANTREE

Aidan Roantree is Senior Mathematics Teacher at the Institute of Education, where he has been teaching maths, at both higher and ordinary level, and applied maths since 1986. He is the author of over a dozen textbooks, including the two volume series 'Leaving Certificate Maths for Higher Level' and 'Maths in Focus' for ordinary level students. Over fifteen years he has given many talks and lectures, concerning aspects of the courses, to both students and teachers. He has written the Leaving Cert. maths articles for the Exam Brief supplement to the Irish Independent for the last fifteen years. He has been editor of 'Science Plus', the monthly science and maths journal for Leaving Cert. students for the last twenty years.

Scribble lax

11. Solving quadratic equations
e.g. solve $x^{2}-9 x+18=0$ and hence solve

$$
\left(x^{2}+x\right)+\frac{18}{x^{2}+x^{2}}=9
$$

12. Nature of quadratic roots e.g. show that for all $a \in \mathbf{Z}$, the joos of the equation

$$
x^{2}-4 a x+\left(3 a^{2}+4 a-4\right)-0
$$

are integers
13. Alpha and heta moots ni quadraties e.g. if α, β are the rools of

$$
x^{2}-p x-q=0
$$

express $\alpha^{2} \div \beta^{1}$ in ternis of p and q. and benee construct a quadratic cquation

14. Function notation
e.g. if $f(x)=2 x+1$ and
$g(x)-6 . x-4$, show that

$$
f(f(x)+g(x))=g(x)-f(x)
$$

15. Abstract inequalities
e.g. if $x, y \in \mathbf{R}$, prove that

$$
x^{2}+y^{2} \geq \frac{1}{2}(x+y)^{2}
$$

16. Rational inequalties e.g. Solve

$$
\frac{x+3}{x-4}>-7, \quad x \in \mathbf{R}, x \div 4
$$

17. Sequence notation
c.g. if $\pi_{\pi}=5\left(\mathcal{Z}^{a}\right)$, show that

$$
u_{1 ; 12}+u_{1 ; 11}-6 u_{y}=0
$$

18. Logs and log expations
e.g. selve the ecpuation $\log _{2}(5 x+1)-2 \log _{2}(x-5)$,
for $x>-1$
19. Equations with the unknown in the index
c.g. solve the ecpution

$$
2^{2}=1-9\left(2^{i}\right)+4-0
$$

for $x \in \mathbf{R}$.

Complex Numbers and Matrices

Question 3, on complex numbers and matrices is another very populare sucsion. In most years, two out of the threc parts of the grestion deat with complex number:', while the remaining part coyers matrices. Matrices tala only the (a) part in 2007, so don't be surprised to see a more substantial part on matrices this ycar.

Complex rumbers can be divided into linee rough areas:

* algebra of complex numbers:

exam bief

Higher level
 The At Student's view

From: Ballyhendricken, Kilkenny
Schools: Repeated the LC in The Institute of Education, Dublin in 2007,7 A1s,
Results:Maths A1, Applied Maths A1,Physics A1, Chemistry A1,Biology A1, Agricultural Science A1, Spanish A1. College: Now inUCD doing Veterinary Medicine.

LEAVING CERT Higher Level Maths is not an easy subject. However, it is a logical subject and with work it can be easy or at least less difficult. One of the advantages of Maths, as with all the sciences, is that it is a case of being right or wrong and what's right is set in stone, unlike some other subjects where the two examiners could give different marks to an answer based on their own opinions.
So now, how can maths become an easy subject for you? PRACTISE!!! That may seem obvious but it can be very hard to get around to as 6th year is very busy for most students. Try to make a routine, not necessarily a study timetable as they don't work for a lot of people, myself included. Get up at the same time every morning and be prepared to either study a lot in the evenings or, if you are a morning person, set the alarm clock a few hours earlier and study before school. This does require effort but if you go to sleep earlier too you'll be surprised how sharp your mind is in the morning.

Just saying practise isn't much help as you need to know what to practise. Leaving Cert past papers are crucial as they provide an invaluable insight into how the examine tends to set the paper. Remember, the syllabus is a finite list so the style of questions has to repeat from time to time! The papers are best done question by question first, as in prepare Algebra for example and then do all the past algebra questions.

CONTEXT

Doing the questions "in context" like this, is a good way to iron out anything you don't know about a topic but remember that you must do them in a realistic time as you
would in the LC exam and try to have them marked by a teacher. Also it might be an idea to leave one or two papers completely untried and you could attempt these in full in the final weeks before the exam itself.

Make sure you are prepared before you start trying Leaving Cert questions as there is no benefit from starting a question and then going to your notes to check something. Leaving Cert questions, especially (c) parts tend to look easy once you see them done out but the problem is that you won't have seen the ones coming up next June. So the key is that once you start a practise question don't go back to your notes. Try your best to get it out in the time limit and then realise that you weren't as prepared as you'd have liked to have been.

A lot of students around the country seem to be trying to cut out parts of the

> So do your best to be capable of doing any of the eight questions on either paper because on the day any of them could be very, very difficult and you may have to try a different question, which could be rather hard if you've only prepared six questions!
maths course in recent years. This is a terrible idea, as seen in 2006 with the Inverse Trig Graph which the majority of people didn't prepare. Also many students don't realise that topics can overlap in questions.

Algebra is a must know as it is involved in so many of the topics and while many students despise it, Sequences \& Series can also pop up unexpectedly destroying otherwise nice questions on the students who left the topic out.

So do your best to be capable of doing any of the eight questions on either paper because on the day any of them could be very, very difficult and you may have to try a different question, which could be rather hard if you've only prepared six questions! The option in maths is a key question for students as it must be included in the marks for paper two, even if you scored 5 marks on it and did six questions perfectly in section A! So whichever options you do - the vast majority of people only prepare one option due to time constraints - it must be prepared perfectly.

THEOREMS

Theorems in Maths are such easy marks for students who are prepared to put in the work to learn them. The best way to learn them is to write them out until you can do it without any help from the notes. This is best done by thinking about the steps involved logically and trying to understand what exactly you are doing because it is always easier to learn something you understand. Once they are learned off, don't forget to practise them from time to time as you don't want to draw a blank in June.

Breaks are very important when study-
ing, especially in maths where you need to stay sharp mentally. Do not use energy drinks. Lots of sleep and drinking water are much better ideas. Take small breaks during study, like 10mins every hour or 30mins every two hours depending on what suits you personally. Most people find they have their own methods anyway and that other methods don't work for them. Try to get some exercise during breaks as this clears your mind.

When you go into the exam in June, don't just rush in blindly and do the first 6 questions, take time at the start, about five or ten minutes, to read through the paper and analyse the questions; this is where the past paper practise pays off.

CONTEXT

Choose your questions carefully and try your best to stick to your guns once the decision is made. The majority of people can't write fast enough to do more than six questions per paper so stopping halfway through and starting a different question could be disastrous. If you do finish early make sure to reread the whole paper, make sure you answered enough questions and check for mistakes. You'd be surprised how many marks are lost on slips and blunders.

If you think you have time to do another question be careful, you might be better off going back and trying to redo a part of a question which you couldn't get out. If you have 6 questions done to a good standard, an extra question would have to be answered better than one of these for it to have been worthwhile, and if you are rushing at the end you have to consider whether this is possible.

Higher level

Paper 1

FROMPAGE 4

,$--x_{,} \div \sqrt{ } .=$, conjugate, Areand diagram and modulus.

* complex equalions, including but by no means conlined to the Conjugate Roots Jheorem.
* pular Fiorm. De Naivre's Theorem and its applications to trig identities, powers and roots.

Last year most of these topies were coyered by the l.eaving Cert. question. The tmly teppic here that has not been examined reeently is rrig identities

In matrices, you must be able to:
*,,$-- x$ matrices and find their inverses,

* solve matrix equations, including simthaneous equalions.
* deal witu the construction $P^{\prime} A P$.

A. Complex Numbers

t. Equality of cornplex numbers c.g. find the coneplex aumber $z=x \div y$ i「

$$
7 \Sigma \cdot(\mathrm{l}, \mathrm{i})==5 \text { । } 3 j
$$

where \bar{z} is the conjugate of z
2. Addition, sulbtraction and multiplication
c.g. if $z=2-3 i$ and $w=5+i$.
express in the form $a+i b$:

$$
j 2\left(2 z-1 I^{\prime}\right)
$$

3. Conjugate and divisign e.g. express $\frac{1+4 i}{1+i}$ in the forml $a+b i$
4. Square roots
c.g. lired liw real nurnbers a and b il

$$
(a-b i)^{1}=21+20 j
$$

5. Argand diagran and modulus e.s. $z=7 \div 4 i$ and $n=-2+i$. Plnt $z+w$ on an Argand diagram and investigate il

$$
|\bar{z}+\cdots \cdot|=|z|+\left|u^{\prime}\right|
$$

6. Complex expartivas c.g. if $3+i$ is a root of ithe equation

$$
z^{2}-k z+(7-j)=0,
$$

linal the value of $k \in \mathbf{R}$. and fincl the other roat of hisis equation
7. Conlugate Roots Theorem
e.g. if 2.3 is a mot of the equation

$$
z^{3}+a z^{2}+b \bar{u}-65=0 . \quad a, b \in \mathbf{R},
$$

find the values of a and b and the other roots of the equation
8. Polar Form
c.g. cxpress $-\sqrt{2}-\sqrt{2} i$ in the form $r(\cos \alpha+i \sin \alpha)$
リ. Proaf of De Moivre's Thebrem
10. De Moivre: Trigonometric identities e.g. use De Moiveres Theorem to express $\sin 30$ as a polynomial in $\sin \theta$
11. De Moivre: Large powers e.g. cxpress $(-1+i)^{\text {ì }}$ in the forme $a+b i$
12. De Moivte: Routs
c.g. express the solutions of the cquation $=6-64$
in the form $a+h j$.

B. Matrices

I. Adding, subtracting
e.f. if $A=\left(\begin{array}{cc}17 & -9 \\ 4 & 2\end{array}\right)$ ard
$B=\left(\begin{array}{cc}1 & -3 \\ -1 & 4\end{array}\right)$, lind the marix X^{\prime} if

$$
3 X+2 B=A
$$

2. Multiplication
c.g. express

$$
\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right)\binom{x}{y}
$$

in the lorm $a x^{2}+b, b x+c y^{2}$
3. Enverse matrix
e.g. if $M=\left(\begin{array}{cc}5 & 3 \\ -4 & -2\end{array}\right)$, ind M^{-1}
4. Solving equations
c.g. fif $A-\left(\begin{array}{ll}3 & -1 \\ 2 & -1\end{array}\right)$ and
$B=\left(\begin{array}{ll}4 & -3 \\ 3 & -2\end{array}\right)$,
(i) fitct the matrix X il $A x^{\circ}=B$
(ii) fincl the malrix foif $\gamma A=B$
5. Simultabenus equations e.f. use matrix methods to solve the simulaneous equations
$2 x: y=7$ $5 x \quad 2 y=5$.

Sequences, Series, Binomial and Induction

Questions 4 and 5 have traditionally been the least popular questions on l’aper 1. Hovever on olcasion me or other of these have lheen among the casiest questions on the Paper. It can sometimes le very difficult to convince studenls that lhese questions shoakl be read before making a decision as to what six questions to choose.

Why the regative attitude? :rainstream questions on sequences and sertes, while not yery exciting. are at least manageable.

However, when students go back through the pasl papers and see the onee-ofif, completcly unforeseen questions, which only appcal to the high-flaying students, they can be turted off these questions. Lest this lums you off, please mote that such questions do not always appear, and so the qutstions are well worth reading.

It is also becominge diticult to podict what topies ate going to be examined in which question. The hinomial theoremz leas been examined in belh questions ofien enough so that it has no home. But proof by induetion, which used to the a banker for Question $\$$, last yewe oceurned in Question A.

Dom'l write off thase questions. In ath idmal world, Qucstion 5 would contain an ensy part on the binomial, then some algebra, tollowed by a pruo l by induction.

A. Sequences and Series

1. Sequence notation
e.n. if $u_{r}=n!(n+2)$, show that

$$
\left.(n+1+1) u_{1 ;}+(-\mathrm{I}+1)!\right)=u_{n+1}
$$

2. The result $\#_{15}=S_{n}-S_{u-1}$
e.g. $S_{r}-u_{1}+u_{2}+u_{3}+\ldots+u_{k}$. I I (This serits

$$
S_{n}=5 n^{2}+3^{\prime \prime}
$$

Find t_{2} and $t_{j}+t_{+}$.
3. Arithmetic sequences and series c.g. in an arithmetic series, the sum of the first eight terms is 1 fi4 and the sum of the nexl six terms is 3.33 . Fird the first term and the common difference
4. Geamberic sequenes and seribs c.g. the first lerm of at ewmernic suries is $\frac{3}{5}$ and the fourth term is $\frac{75}{8}$, Jind the sixth term and the sum of the first six terms.
5. Enfinite geometric series c.g. a geonctric serixs with commen ratio 0-8 has a sum to infmity of 250 . Find the founth term of the surits.
6. Teleserpring series
e.g. $\operatorname{cxpress} \frac{1}{(2 r-1)(2 r-1)}$ in the
form $\frac{A}{2 r}+\frac{B}{2 r 11}$,
and hence cvaluate $\sum_{r=1}^{7:} \frac{1}{(2 r-J)(2 r+1)}$
7. Howers of natural numbers e.f. envaluale $\sum_{m=1}^{13}(1 x+1)(n-1)$.

B. Binomial Theorem

I. Binomial coctiticients
e.g. show chat

$$
\binom{n+1}{2}+\binom{n}{2}=n^{2}
$$

2. Binomial expansions e.g. exporad and simplify

$$
(x+\sqrt{2})^{2}-(x-\sqrt{2})^{4}
$$

3. Given terms in the expansion c.g. if

$$
\left(1+a x^{\prime \prime}\right)^{\prime \prime}-1+24 x+15\left\{x^{2}+\ldots\right.
$$

find the valums or arand on
4. General terms
e.g. lind the conelticient of the term. x in lhe expansion ol

$$
\left(2 x^{2}-\frac{1}{2 x}\right)^{x}
$$

C. Proof by Induction

1. Formula for the sum of a serics c.g. prove by induction that
$(2)(5) \div(3)(6)+\ldots+(n+1)(n+4)$

$$
=\frac{n(n+4)(n+5)}{3}
$$

2. Bivisibility promfs
e.f. prove by induction that $7^{n}+2^{2 n-1}$
is divisible by 3 , for all $13 \leq \mathrm{N}$
3. Inequality proots
e.s. prove by induction that $3^{\prime \prime}>I^{2}$,
for all $n \leq \mathbf{N}_{1} n \geq 2$.

Differentiation

The two questions on differchtiation cowel the mechanses of differentiation and its applications. You can expece to ste parls on the meclanics and on the applications in both Questiont íand Question 7.

These questions are extremely popular, but students ato nol always athineve the marks they expect from these questions. This is usually because seudents do not apply the aules and methows of didierentiation accurately enough, leading to a seepage of tharks. The meral of then story is to pay ential atention to detail and to be very. very careful.
'There are certain topics that occur regularly and shourd be alionded spiecial attention:

* proofs: six first principles and four rales (very (flem)
* chain rule (every ycar)

Higher level
 Paper 1

* parametric differentiation (almost ever year)
* implicit differentiation (very often).

Frame int applications of differentiation, sketching rational curves and real roots of cubic equations are probably worth extra studly his y war.

You should also carefully go thenught the questions from the past five years where algebra or trigonometry are required to rewrite derivatives in some specified Font. This pattern is likely to continue.

1. Differentiation from first principles
(There are only six functions that you can le asked to differentiate firm first
principles: $\left.x^{2}, x^{9}, \frac{1}{x}, \sqrt{x}, \sin x, \cos x\right)$
eng. differentiate \sqrt{x} with reselect to x from first principles
2. Differentiation proofs
egg. prove, from first principles.

$$
\frac{d}{d r}(t w)=u \frac{d u}{d r}+v \frac{d r}{d r} .
$$

where if $-u(x)$ and $v-v(x)$
3. Differentiation by rule
eng. find $\frac{d y}{d r}$ it
(i) $y=\sin ^{\prime}(3 x-1)$
(ii) $y=e^{1 \operatorname{cosex} x} \sin x$
(iii) $y-\ln \frac{x^{2}-4}{\sqrt{x+2}}$
4. Implicit differentiation
eng. lind $\frac{\text { ely }}{6 \mid x}$ ir

$$
6 x^{2}+7 y^{2}-7 x^{2} y^{2}-8 x
$$

5. Parametric differentiation
egg. fill d the value of $\frac{d y}{d x}$
whet $t-0$ if

$$
x-f+f \cos I, \quad y-r-t \sin t,
$$

6. Max, min and points of infection egg. tint the co-ordinates of the local maximum and local minimum points of the curse

$$
y^{y}=x e^{x^{2}} \text {, for } x \in \mathbf{R}
$$

7. Cubic curves and equations eng. determine the values of $k \in \mathbf{R}$ for which the equation

$$
x^{3}-3 x^{2}-24 x+k=0
$$

has three real roots
8. Rational curves
cg. $f(x)=\frac{2 x+1}{x-2}$, $x \neq 2$
(i) Show that this curve has no turning joints ar points of inflection.
(ii) Find the asymptotes of $y^{\prime}=f(x)$

Scribble bax

(iii) Draw a rough sketch of $y-f(x)$
9. Newton-Raphsar
es. taking $x_{1}=0$ ats the first
approximation to a seal root of the equation

$$
x^{2}-10 x+3-0
$$

use the Vewtum-Raphsun method to lind x_{7} and x_{3}, the second and third approximations
10. Rates of change
egg. Y and x are connected by the equation

$$
V^{\prime}=(3 x-5)^{\prime}
$$

If $\frac{d x}{d t}=4$, find $\frac{d V}{d t}$ when $x=2$.

Integration

Integration is the topic covered in the last question, Question 8, on Paper 1. Like the other two calculus questions, this question is extrernely popular withe students.

It helps that this question is one of the more predictable on Paper l. The (a) parl will contain one or two straightforward indefinite integrals (nt lirnits), not repairing any substitutions. The (b) and (c) pants will contain two or three more involved integrals, along with probathly tine part on areas ar volumes.

One of the main problems you will meed in integration is being able to classify integrals riven 10 your. Yous should practise will a wide range of integrals frow different sources, making careful note of the correct approach to tach type.
for questions on areas, it is important on analyse the given region properly, in particular, noting prints of intersection of Curves.

1. (a) part indefinite integrals cig. lind
(i) $\int \frac{1}{x^{2}} d x$
(ii) $\int \sin \sin x \mid x$
(iii) $\int x^{2}(x+1) d x$
2. Silbstitution egg. evaluate
(i) $\int_{0}^{\pi} \cos ^{4} x-\cos x d x$
(ii) $\int_{14}^{2} d x\left(x^{2}-1\right)^{4} d x$
(iii) $\int_{0}^{3} \sqrt{9}-x^{2} \mathrm{~d} x$
3. Trigonometric integrals
egg. evaluate
(i) $\int_{0}^{\frac{\pi}{4}} 2 \cos ^{2} 2 x d x$
(ii) $\int_{0}^{\pi}{ }_{0}^{\pi} 2 \cos 8 x \cos 4 x d x$
(iii) $\int_{0}^{\frac{\pi}{-}} \sin x \cos ^{i} x d x$
4. Rational integrals
egg. evaluate
(i) $\int_{4}^{1} \frac{2 x^{2}-3 x \div 5}{x+2} d x$
(ii) $\int_{-=}^{-1} \frac{d x}{x^{2}+4 x+5}$
(iii) $\int_{0}^{2} \frac{3 x-2}{3 x^{2}-4 x+7}$ ($x x$
5. Area by integration eng. find the area of the region bounded by the curves $y-x^{2}+1$ and the line vo
6. Volumes of rotation c.g. find, by integration methods. the volume of the sphere generated by rotating the circle

$$
x^{2}+y^{2}=9
$$

bout the x - sxis

SAMPLE QUESTIONS

1. Algebra

Question

(a) Express
$\frac{2}{(x-1)(x+1)}+\frac{1}{(x+1)(x+2)}$
in the form $x^{2}+p x+q$, where k, ξ
and q are constants.
(b) (i) Solve the intupustily

$$
\frac{2 x-1}{x+2}<1 \text {, }
$$

for $x=\mathbf{R}, x \neq-2$.
(ii) [f $(x+k)^{2}+4 x+8=(x+t)^{2}$: for all $x \in R$, find the real numbers k and t.
(c) $f(x)=\frac{x}{x+c}$.
for $x \subset \mathbf{R}, a \subset \mathbf{R}, x \neq-\alpha$.
(i) Show that $f\binom{2 a}{x}=2 \cdot f^{\prime}(x)$, for all $x \in \mathbf{R}, x \neq a$.
(ii) [f $-a<p<q$ and $a>0$, simplify $f(q)-f(p)$ and show that $f(q)>f(p)$.

Higher level Paper 1

Solution

(a) $\frac{2}{(x+1)(x+1)}+\frac{1}{(x+1)(x+2)}$

$$
\begin{aligned}
& =\frac{2(x+2)-1(x-1)}{(x-1)(x+1)(x+2)} \\
& =\frac{3 x+3}{(x-1)(x+1)(x+2)} \\
& =\frac{3}{(x-1)(x+2)} \\
& =\frac{3}{x^{2}+x-2} .
\end{aligned}
$$

(b) (i) $\frac{2 x-1}{x+2}<1$

$$
\frac{(2 x-1)(x+2)^{2}}{x+2}<1(x+2)^{2}
$$

$$
\left(2 x-\ln (x+2)<(x+2)^{2}\right.
$$

$$
2 x^{2}+3 x-2<x^{2}+4 x+4
$$

$$
x^{2}-x-6<0
$$

$$
\text { If } x^{2}-x-6,0
$$

$$
(x+2)(x-3)=0
$$

$$
x=-2 \text { or } x=3
$$

Thes $\quad-2<x<3$.
(ii) $(x+k)^{2}+4 x+8=(x-t)^{2}$ for atil x
$x^{2}+2 k x-h^{2}+4 x+8$
$=x^{2}+2 t x^{2}+t^{2}$ for all x
$x^{2}+(2 h+4) x+\left(h^{2}+8\right)$

$$
=x^{2}+2 t x+t^{2} \text { for all } x
$$

Peutioge like to like,
1: $2 k+4=2 s$
$k-t-2$
2. $k^{5}-8=t^{2}$
$(t-2)^{2}+8=t^{2}$
$t^{2}-4 t+4+8=t^{2}$
$12=4 t$
$t=3$ and $k=3-2-1$.
(c) (i) $f(x)=\frac{x}{x+a}$

$$
\begin{aligned}
& f(-2 a-x)= \frac{(-2 a-x)}{(-2 a-x)-a} \\
&=2 a \cdot x \\
&-a-x \\
&=\frac{2 a+x}{a \div x}
\end{aligned}
$$

$2 \cdots f(x)=2 \cdots \frac{x}{x+o}$

$$
\begin{aligned}
& -\frac{2(x+a)-x}{x+a} \\
& =\frac{x-2 a}{x+a}=f(-2 a-x)
\end{aligned}
$$

(ii) $f(\eta)-\frac{\eta}{\psi+q}$ anl $f(p)-\frac{p}{p+a}$.

$$
f(q)-f(p)=\frac{q}{q-q}-\frac{p}{p+a}
$$

$$
=\frac{q(p-a)-p(q-a)}{(q+a)(p+a)}
$$

$$
=\frac{a p+a q-p q-p a}{(q-a)(p+a)}
$$

$$
-\frac{a(q-p)}{(q+a)(p+a)}
$$

As $-a<p<q$ and $a>0$.
$0<p+a<q+a$ and $q-p>0$. Thus
$f(g)-f(p)=\frac{(+)(-)}{(+)(-)}$
$f(c)-f(p) \leq 0$
$f(q)>f(p)$.

2. Complex Numbers and Matrices

Questitrn

(a) If $A=\left(\begin{array}{rr}2 & -1 \\ 3 & 4\end{array}\right)$ and $B=\left(\begin{array}{ll}5 & 7 \\ 3 & 4\end{array}\right)$, find the matrix X such that

$$
X A=A
$$

(b) (i) Show that 3-i is a toot of the cepration

$$
z^{2}-(4-i)=+5-5 i=0
$$

and fincl the arther' root ofl wis equation.
(ii) $\bar{\Sigma}=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}$ हैा
$=3=\cos \frac{\pi}{3} \cdot i \sin \frac{\pi}{3}$.
Eyalkiate $\bar{L}_{1} \bar{z}_{2}$, giving your answer in the form $x+i$).
 $r(\cos \theta+i \sin \theta)$, and bence caluate

$$
\left(\frac{1+\sqrt{3} i}{1 \sqrt{3} i}\right)^{3 .}
$$

Solution

(a) $\left.A=\begin{array}{cc}i^{\prime 2} & -1 \\ \sqrt{3} & 4\end{array}\right)$ and $\left.B=\begin{array}{ll}1^{3} & 7 \\ 3 & 4\end{array}\right)$. $\operatorname{det}(B)=|B|=20-21=-1$.

$$
B:=\frac{1}{-1}\left(\begin{array}{cc}
4 & -7 \\
-3 & 5
\end{array}\right)=\left(\begin{array}{cc}
-4 & 7 \\
3 & -5
\end{array}\right)
$$

$x B=A$
$X B B^{-1}=A B^{-1}$
$\left.X=A B^{-1}=\left(\begin{array}{cc}2 & -1 \\ 7 & 4\end{array}\right)^{\prime} \begin{array}{cc}-4 & 7 \\ 3 & -5\end{array}\right)$

$$
=\left(\begin{array}{cc}
-11 & 19 \\
0 & 1
\end{array}\right)
$$

(b) (i) $z^{2}-(4-i) z \div(5-5 i)=0$ $z=3+i$:
$(3+i)^{2}-(4-i)(3+i)$

$$
+(5-5 i)-0
$$

$$
9+6 \sin i^{2} \quad 124 i
$$

$$
+3 i-i^{2}+5-5 i=0
$$

$$
9+6 i-1-12-i
$$

$$
-1+5-5 i=0
$$

$$
(9-1-(2-1 \div 5)-(6 i-i-5 i)=0
$$

$$
0=0
$$

Thus $3+i$ is a row.
If the mots are $==x=3+i$ and $z=\beta$, then

$$
\begin{aligned}
& a+\beta=\cdots=4-\cdots i \\
& \beta=(4-i)-\alpha \\
& \quad=(4-i)-(3+i) \\
& \quad=(-2 i .
\end{aligned}
$$

(ii) $z_{1}=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}$

$$
\bar{\pi}=-\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}
$$

$$
=\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)
$$

$$
=-1-\left[\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right.
$$

$$
\times\left[\cos \left(-\frac{\pi}{3}\right)-j \sin \left(-\frac{\pi}{3}\right)\right]
$$

$$
=\cos \left(\frac{2 \pi}{3}-\frac{\pi}{3}\right)
$$

$$
+i \sin \left(\frac{2 \pi}{7}-\frac{\pi}{3}\right)
$$

$$
=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}
$$

$$
=\frac{1}{2}+i \frac{\sqrt{3}}{2} .
$$

(c) (i) $\frac{1+\sqrt{3} i}{1-\sqrt{3} i}-\frac{1+\sqrt{3} i}{1-\sqrt{3} i} \times \frac{1+\sqrt{3} i}{1+\sqrt{3} i}$

$$
=\frac{1+2 \sqrt{3} j-3}{1+3}
$$

SAMPLE
 QUESTIONS

$$
\begin{aligned}
& -\begin{array}{c}
212 \sqrt{3} i \\
4
\end{array} \\
& =-\frac{1}{2}+\frac{\sqrt{3}}{2} i
\end{aligned}
$$

$$
r-\sqrt{\left(\frac{1}{2}\right)^{2} \div\left(\frac{\sqrt{3}}{2}\right)^{2}}
$$

$$
-\sqrt{1}+\frac{3}{4}-\sqrt{1}-1
$$

$$
\sqrt{3}
$$

$$
\tan x=\frac{2}{1}=\sqrt{3}
$$

2
$u=\frac{\pi}{3}\left(\right.$ or $\left.60^{\circ}\right)$
$0=\frac{2 \pi}{3}\left(0 x^{\prime} 125^{c}\right)$
Thus
$\frac{1 \div \sqrt{3} i}{1-\sqrt{3} i}-1\left(\cos \frac{2 \pi}{3}-i \sin \frac{2 \pi}{3}\right)$

$$
\text { or } 1\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)
$$

(ii) $\left[\frac{1+\sqrt{3} i}{1 \sqrt{3} i}\right]^{15}=\left[\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right]^{15}$
[or 120° insteat of $\frac{2 \pi}{3}$]

$$
=\left[\cos \frac{30 \pi}{3}+i \sin \frac{30 \pi}{3}\right]
$$

$=\cos 10 \pi \cdot i \sin 6 \pi$
$=\cos 0+i \sin 0$
$=1+0 i$
$=1$.

3. Differentiation

Question

(a) Find the slope of the kangent to the curye

$$
x^{2}-x=y \div 13
$$

at the point (3,2).
(b) (i) The parametric equations of a curve are:

$$
x-e^{=x}+1 . \quad y-1-e^{\prime}
$$

Find the value of $\frac{\mathrm{d} v}{\mathrm{~d} v}$ when $t=0$.

Higher level
 Paper 1

SAMPLE QUESTIONS

(ii) Jaking $x_{1}=1$ as the first approxirmation to a roo ot the equation

$$
x^{3}+x^{2}+k=0
$$

where k is a constant, the NewlonRaplison method gives $x_{2}-\frac{6}{5}$. where x_{2} is the second approximation. Determine the value of k.
(c) If $y=\sqrt{\frac{\cos x}{1-\sin x}}$, for $0<x<\frac{\pi}{2}$, show that
$\frac{d y}{d y}=\frac{1}{2 \sqrt{\cos x} \sqrt{1-\sin x}}$.

Solution

(a) $\quad x^{2}+x+y+13$
$2 x+\left[x-\frac{d y}{d r}+r(1)\right]=\frac{d t}{d r}$
$x \frac{d y}{d r} \cdot \frac{d y}{d r}=\cdot 2 x \cdot \cdot y$
$\frac{d y}{d x}(1-x)=2 x+y$
$\frac{d y}{d x}=\frac{2 x+y}{1-x}$
At $(3,2)$, the slope of the tangent is $\frac{6+2}{13}--4$.
(b) (i) $x-e^{2 t}+1$
$j-1-e$
$\frac{d r}{d t}=2 e^{2 r} \quad \frac{d y}{d f}=-e^{r}$
$\frac{d y}{d x}=\frac{\frac{d y^{\prime}}{d t}}{d x}=\frac{-e^{\prime}}{2 e^{2,}}=\frac{-1}{2 e^{\prime}}$
dt
Whan $t=0, \frac{d y}{d x}=\frac{-1}{2 e^{1 t}}=\frac{-1}{2}$.
(ii) $f(x)=x^{3}+x^{2} \div k$
$f^{\prime}(x)=3 x^{2}+2 x$
Newton-Raphsisn:
$x_{i+1}=x_{i r}-\frac{f\left(x_{r}\right)}{f^{\prime \prime}\left(x_{i}\right)}$
$x_{1}=1, x_{2}=\frac{6}{5}$:
$x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}$
$\frac{6}{5}-1-\frac{1+1+k}{3+2}$
$\frac{6}{5}=1-\frac{2+k}{5}$
$6-5-(2+k)$
$\mathfrak{6}=3 \cdot \cdots$
$k=-3$.
(c) $y=\sqrt{\frac{\cos x}{1-\sin x}}=\left(\frac{\cos x}{1-\sin x}\right)^{\frac{1}{2}}$

$\frac{d y}{d r}=\frac{1(\cos x)^{-\frac{1}{2}}}{\frac{1}{2}(1-\sin x)^{-\frac{1}{2}}}$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1-\sin x}{\frac{1}{2(\cos x)^{2}(1-\sin x)^{2}}}
$$

$$
\frac{d y^{\prime}}{d x}=\frac{1}{2(\cos x)^{\frac{1}{2}}(1-\sin x)^{\frac{1}{2}}}
$$

$$
\frac{d y}{d r}-\frac{1}{2 \sqrt{\cos x} \sqrt{1-\sin x}} .
$$

4. Integration

Question

(a) Find
(i) $\int(\sqrt{x} \div x) \mathrm{d} x$
(ii) $\int \cos 4 x d x$.
(b) (i) Evaluate $\int_{1}^{3} \sqrt{2 x-1} d x$.
(ii) The shaded region shown is bounded by the curve $x=1+y^{2}$ and the linti $x=10$. Finel the area of this region.

(c) Evaluate $\int_{2}^{1} \sqrt{6-x^{\hat{2}}} d x$

Solution

(a) (i) $\quad\left[(\sqrt{x}+x) d x=\int\left(x^{\frac{1}{2}}+x\right) d x\right.$

$$
-\frac{7}{3} x^{\frac{3}{2}}+\frac{1}{2} x^{2}+c
$$

(ii) $\int \cos 4 x d x=\frac{1}{4} \sin 4 x+c$
(b) (i) $I=\int_{1}^{\bar{j}} \sqrt{2 x-1} d x$
$0-\sin ^{-1} \frac{x}{4}$
whert $x-2,0-\frac{\pi}{6}$

$S=\prod_{\pi}^{\pi} 4 \cos \theta \cdot 4 \cos \theta d \theta$
$\stackrel{x}{6}$
$-\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 16 \cos ^{2} \theta d \theta$
\because
$=\frac{16}{2} \prod_{i}^{\pi}(1+\cos 20) d 0$
$=S\left[0, \frac{1}{2} \sin 264-\frac{\pi}{2}\right.$
$=6\left[\left(\frac{\pi}{2}+0\right)-\left(\frac{\pi}{6} \div \frac{\sqrt{3}}{4}\right)_{-}^{-}\right.$
$-4 \pi-\frac{4 \pi}{3}-2 \sqrt{3}$
$=\frac{8 \pi}{3}-2 \sqrt{3}$.

Scriblle bax

Higher level Paper 2

The one thing that Paper I and [raper 2 bave in common is that stuclents are reguited wo answer six questions in two and a hati hours. Howevet, on ['aper 1, there is a straightForward theice ol six questions out ol eight. But, on Paper 2, there are two separate sections. Section A, on the core course, wentains sewen duestions, of whieh stutents must answer five. Section B contains four guestions from which studerits have to cloose pist one.

While Papter I is huavily basul on algebra and calculus, Paper 2 leans more towards geonetry, trigonmmetry and probalility. As stech, the algebre conlent is mach reduced. being mostly confined to solving linear; guadratic ank simultarecturs equations. Evein though many students sec paper 2 as a welcome relief atter papser 1 , there is neverthekess an increase in the number of formulae and inethods to be leauned. Also, a Lompletely difleternt minelset is reiguirest to tackle probabilety guestions from that required for Paper 1 .

One word of warning is not to approach Seccion A wich only tive questions prepared. This can be highly dangerous. If one (or more?) of the questions you intend doing turns tupt to be unusually dilficull ar strange. then you bave no fall-back guestion. A classic example of this was Question 5 , on trigonomelry in 2006. IJ, lor extmple, you are not a big fan of probability, you should work at enough so that at least you have an option if the wrorst comes to the worst.

In Section B. by far the mosh pepular question is Question 8, on Further Calculus and Series. This question is chosen by wetl over 90% of students annualiy. lt goes without saying that your differentiation and inlegration will have to the up to stratich to tackle this topic.

The Circle

The first question on Paper' 1 examines cor torelimate geonetry of the circle. This is really the sccond co-ordinate geonetty topic, after the line. It will be necessary to use many of the formula from the line, e.g. fine distance. slope, equation of a line and perpendicular dislatice lormular.

The key topies to prepare for the later jorts of the guestion atre:

* fanding the copuation of an awk ward circle. either by geometry (as in 2007)
or by using the g, f. c methed (as in 2004)
* liending the cquations of tangents and cherds, particularly by using the perpendicular distance finnulae.

If the information given ahout a circle, on a line. can be represented yeverctrically, then it is a good idea to drate a rough diagram. This cann serve a dual purpose. li cañ serve to show the approach that should be taken, and it can provide one way of checking the unswer. If the inlormation given ahout a circle is not easily drawn, this probably means that the better way of finding its unuation is to use the g.f.ce method.

Urobraniately, meny students starl Paper 2 by trying Qucstion 1, often without reading the other questions. This is not wise, as there is no gratranter lhat this gumstion is the easiest on the paper. Indeed it has sometimes been anong the langer and more involved. You should alwnys read all the questions. and start with the question which you censider to be the casiest for you.

1. Equation: $x^{2}+y^{2}=r^{2}$

e.e. find the equation of the circle, with ecente (0,0) and which hats the line $2 x+3 y=26$ as atangent
2. Equation: $(x-h)^{2}+(y-k\}^{2}-f^{2}$ c.g. find the equation of the cirele that has centue (6,3) and has the line $x=1$ as a tangent
3. Equation: $x^{2}+y^{2}+2 g x+2 f y+c=0$ eg. find ale co-ordinates of the centre of the circle

$$
x^{2}+y^{2}+6, r-2 y+k=0
$$

ance the value of k if the lengith of its radius is 5
4. g. fic method
e. E. litud the equation ol itne circlis which contains the points $(0,2)$ and (1,5) and which has its centre on the line $x+5 y-15-0$
5. Parametric equations
e-g. tiont the Carlesian equation, the centre and the radius of the circle given by

$$
x=7-4 \cos \theta . \quad y=-1+4 \sin \theta
$$

6. Touching circles
e.f. investinate if the circles

$$
x^{2}+y^{2}-2 x-4 y-4=0 \text { and }
$$

$$
x^{2}+y^{2}-8 x-17 y+48=0
$$

intersect at a single point
7. Intersection of a line and a circle e.e. find the points of jintersection of the line $x+2 y=12$ and the cirek

$$
x^{2}+y^{2}-2 x-6 y=0
$$

8. Proof of tangent formula
9. T'angent at a ponfit
e.g. find the equation of the tangent to
the circle $x^{2}-y^{2}-2 x+4 y=0$ at
the point (3,-3)
10. Tangents and chords e.g. find the equations of the tangents that can the dratwrs from the proint $(-3,-4)$ to the circle

$$
x^{2}+y^{2}-4 x-2 y-5=0
$$

Vectors

Veeturs is the topic covered by Question 2 each year. Although some studenes do not sturly vectors and son camot attempt this question. it is nevertheless usually one of the more accessible questions on Paper 2. Again: there have been exeeplions, most notably the (c) part in 1999 and the (c) part in $2(003$. So again, is is inipertant to the able to switch questions, if лceessary.

Students fend to preier gucstions involving ; and j Yectors and the scalar product, and are likely to the tewarled in must parts bre the gucstion. However, gencral plane vectors usually appear at some stape, and so should nol be ignoned. Indeed a number of ciucstions mix ideas from both sources.

1. General vecters e.e. Let oud be a triangle. Let p be the midpoint of $[o b]$ and $\& \in[a b]$ such that ' $a y|: q b|-3: 2$. Let $a p$ and $o y$ intersect at the point r :
(i) Express \bar{q} in terms of \bar{a} and \ddot{b}.
(ii) Express $\rho^{\text {: }}$ in tems of a and \dot{b}.

2. ind vectors
e-g. $\bar{j}-5 \bar{i}-2 \bar{j}, \bar{i}--3 \bar{i}+4 \bar{j}$ anta $\bar{r}=2 \vec{i}: \vec{j}$.
(i) Write $\overline{q F}$ in tenns oll \bar{i} and \bar{j}.
(ii) Write \bar{t} in temons of \bar{i} and \bar{j} if $\overline{p t}=\overline{y_{q}}-\dot{p}$.
3. Medulus
c.g. if $\bar{p}=-3 \bar{i}+k \cdot \bar{j}$, for $k \in \mathbf{R}$, find
the value of h if $|\bar{p}|=\sqrt{58}$
4. Scalar product
c.g. if $\dot{a}=3 \bar{i}-4 \bar{j} \cdot \bar{b}=-5 \bar{i}+\bar{j}$ and
$\bar{c}=3 \bar{i}-7 \bar{j}$. Hatculate
(i) $\overline{\mathrm{c}} \bar{b}$.
(ii) $\overline{a b}, \overline{\beta c}$
5. Geometric properties of scalar product
e.g. $\bar{u}=4 \bar{i}-3 \bar{j}, b \bar{b}=\bar{i}+2 \bar{j}$ and
$\bar{c}=10 \bar{i}-k \bar{i}$.
(i) Find the measure of the angle between \vec{a} and \dot{d}. comeet to the пexlest degree.
(ii) Determine the value of $k \in \mathbf{R}$ if $\bar{a}, \bar{t} \cdot \bar{c}$
6. Related (perpendicular) vector e.g. if $\bar{a}=2 \bar{i}-3 \bar{j}$ and $\bar{b}=-5 \bar{i}+2 \bar{j}$.
(i) Find $(\bar{a}+\bar{b})-$.
(ii) Investigate if $\bar{a} \cdot \bar{b}^{-}=\bar{a}^{\perp} \cdot \bar{b}$.

The Line and Transformations

Co-ordinate geometry of the line and linear namstomations will be examined in Question 3. Possibly because di familiarity with co-ordinate geomelry since second year or third year. most students ate well disposed towards this question. However, that does not theart thet it willhout its difficulties.

Many question parts from previous ycars required no more than Junior Cert material os bully answer the question. Yet some of these were diflicult (b) anel (c) perts!

The new formulae for Leaving Cent, are those for the angles between wo lines, the perpendicular distante and fior cuncurrent lines. The last of these was asked as a major part last year. and so may or may not re. ajpear this year.

In iransformations. the main typls of questions ate finding the images of points. lines and line segments. You sloould also watch questions wheres an imarte line is given and we hate to work back to the uriginal line.

A. The Line

1. Basic concepts

e.g. if $b=(k, 4), c-(1,1)$ and

$$
|b x|-3 \sqrt{2}
$$

find the two pessible values of $k \in \mathbf{R}$

Maths

Higher level Paper 2

2. Divisors of a line segment e.b. $a=(-5,1)$ and $b=(4, \cdot 6)$; lird the co-ordinates of the point s which divides [ab] internally in the ratio 5:2
3. Proof of angle between two tines formula
4. Angle between two lines e.s. tind, correct to the nearest degrese, the larger angle betwen the Eilles $3 x+5 y=0$ and $2 x \quad 7 y+1=1$
5. Concurrent lines
e.g. lind the equation of the line which contains the poist of iutersection of the lines $x+y-5-6$ and $x-2 y-4-0$ and which has slope $\frac{4}{3}$
6. Proof of perpendicular distance formula
(This is иehl worth parying speciad atternion to as it has non been examisted since 1998. .)
7. Perpendicular distance formula e.t. find the perpendicular distance from the point (-3.7) to the fince containing the points $(2,-4)$ and (-6.2).

B. Transformations

1. inages of points
e.g. f is the inansiformation
$(x, y) \rightarrow\left(x^{\prime}, l^{\prime}\right)$
Where $x^{r}=-x+3, y, y^{\prime}=2 x+y$.
If $p=(-3.1), q=(0,7)$ and $r=(2,4)$.
find $f(f), f(q)$ and $f(r)$.
Investigalis il
arca $\Delta p q^{r}=\operatorname{arca} \Delta f(p) f(q) f(r)$.
2. Iimage of a line e.g. f is the transifurmation
$(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)$
where $x^{r}=-3 x+y, y^{\prime}=2 x+3 y$
(i) L is the line $3 x-4 y=8$. Find the equation of $f(L)$.
(ii) 1 is is the fine $3 x-c h y=k$. Find the equation of $f(M)$. and verify that $f\left(A^{\prime}\right) \| f(L)$.
3. Image of a line segment e.s. f is the transformations $\left(x . y^{\prime}\right) \cdot>\left(x^{\prime}, y^{\prime}\right)$
where $x^{r}=x+2 y, y^{r}=-x+3 y$.
(i) [f $a=(4,1)$ and $h=(1,2)$, show that
$x=4-5 t, y=-1+3 t$.
for $0 \leq r \leq 1$. are parmerric eqgations of $[a b]$.
(ii) l'rove that $f\left(\left[\begin{array}{l} \\ d\end{array}\right)\right.$) is a line segment.

Scribble lax

Trigonometry

Alike the huge setare in 2006. the rwo trigonometry questions. Qucstions 4 and 5 . relurned to normal in 2007. Although many students say that they ton'1 like trig, most end up doing at least one of these questions in the l.eaviniz Cerl. Most sluclents also recoglise that they need to be quile proficient with trie fir many other areas, cspeciatly diférentistivn, imlegration and complex numbers.

Cetain patterns have macrged over the years (20) Alhough there is to gutanite ol a coutinuation. it is still worth looking closely at the patterns.

For starters. for the East six ycars, Question 4(1)) has dealc with trig equations, along with an ansucialed trig identity. Alsu Question $4(c)$ has been a practical problem connected with circless. You coulk do lar worse thatr go throngla these guestions in great detail.

For al simitar time-Fitace, Question 5(b) and S(c) have deale with prowing and using tig isleatities, ancl 3-dimensional practical probiems. with the bater usuatly wecupying the (c) jart. Again this is worth noting.

Besides practical trig. i.e. the sine and cosine rules, arc and sectors, the mext mose imporenn area to study is trig identities. The first thing to do is to learn the twelve set promels on the course: you are more than likely to tind one of them on the paper in June. Proving other trig identities bas not betem Ilat difficula lar a nurnber ol years now.

Finally, inverse trig graphs and trig limits might appear. but are less likely.

1. Basic defiations

e.e. it $\sin A-\frac{t}{t+1}$, for $0^{\circ} \leq A \leq 90^{*}$,
expruss tand in terms ol $t \in \mathbf{N}$
2. Right-angled triangles
e.g. In the triangle shown below,

ancl $|\angle \mathrm{cdb}|=58^{\circ}$. finel $|\mathrm{ch}|$. correct lo two decinal jlaces.

3. General Iriangles

c.g. a, thand c are three points on lorizontal ground, with $|c b|-180 \mathrm{ml}$ and $|\angle u c b|=60^{\circ}$
A vertical mast, [cal], of height $h \mathrm{~m}$. is placed at c. The angle of clevation of d lion a is 37°, whiles the arbigle of elevation of d fiom b is $47^{\prime \prime}$.
(i) Express $|a c|$ and $|h c|$ in terms of h.
(ii) tlence, or otherwise, find $/ t$, correct to the axaかっt multe
4. Ares and sectors

e.e. a, b and r are three points on a cirele with eenire o and radius r.
$|a c:=10,|/ c s|=12 \operatorname{ancl}| \angle c o b \left\lvert\,=\frac{2 \pi}{.7}\right.$.
(i) Calculate |ab|, correct to two decimal places
(ii) t ind the value of r, correce to two decimal places.
(iii) Calculate the area of the shaded reytion showri.
5. Twelve standard proofs e.g. prove that

$$
\sin 2.4=\frac{2 \tan A}{1+\tan ^{2} A},
$$

ancl use this jelentity to experess tan 75 in surd form
6. Basie trigonomactric identities c.g. prove lhal
$(\sin A-\cos A)^{2}+(\sin A-\cos A)^{2}$ $=2$

Higher level
 Paper 2

7. Other identities
eng. prove that

$$
\frac{\sin (A-B)}{\sin (A-B)}=\frac{\tan A+\tan B}{\tan A-\tan B}
$$

8. Simple trigonometric equations egg. solve the equation

$$
\sin \theta=-\frac{\sqrt{\sqrt{3}}}{2}
$$

for $0^{\circ} \leq \theta \leq 360^{\circ}$
9. Harder trigonometric equations eng. solve the equation

$$
\sin ^{2} \theta-\cos \theta+1=0 \text {. }
$$

for $0^{n} \leq \theta \leq 360^{\circ}$
10. Irigoummetric limits ere evaluate

$$
\lim _{x \rightarrow 0} \frac{\sin 3 x}{x \cos x}
$$

Probability

Section A Jinishus with two questions which are commonly known as the probability questions. However. a better name would be 'eliserece maths' as the questions cover probability, statistics and difference equations.

Certain patents are well established with respect to the format of Questions 6 and 7 . Question (b) h) has for many years dealt with difference trpuations. On one or two occasions, if it is particularly difficult, it has moved to the (c) part. Question 7 (c) has always dealt with abstract statistics questions.

The remaining foul parts of the two questions then deal with arrangements, combinations and probability. An old linus: one of these four parts has dealt with numerical statistics, ese. The weighted nan.

Because of this, students who are not at all well disposed towards probability ate office surprised to find that some leaving Cert. questions contain only one part on probability itself:

For safety reasons, you should have at leash one of these questions ready to go if one of your more popular questions is unusually dilticull. This is of course, assutititig that you are not a probability buff, in which case you will have these questions near the top of your to- (to lis.

1. Fundamental principle of counting egg. bow many different four digit numbers greater than 5000 can be forruted from the digits 2, 4,5,8,9 if each digit can be used only once in any given number?

How many of these numbers are odd!
2. Arrangements (permutations) egg how many arrangements are possible of all of the letters of the word COURTED?
In how many of these arrangements are the three vowels side by side'?
In how many of these areingernents do the thee vourels occupy the last thee positions'?
3. Combinations (choices)
egg. a woman has eleven close friends.
(i) [in how many ways can she invite five of them to dinner?
(ii) [n bow many ways can she invite five of therm il iwo are matrices and will only attend if both are invited?
(iii) th how many ways call she invite live of them il 1 wo of her friends are not on speaking cenis and will nor actions together'?
4. Probability
egg. three discs are chosen at random, without neplawemenl, from a bay containing 3 red, 8 blu ant 7 white discs. Find the probability that the chosen discs will be
(i) all blue.
(ii) one of each colour.
(iii) two of one colour and one of a different colour.
5. The mean and weighted mean egg. if the mean of $8, x+1,2.2 x+1$
is $x+2$, find the value of x
6. Standard deviation
egg. if σ is the standard deviation of a, b, b
show that the standard deviation of ${ }^{-}$

$$
4 a-1,4 b-1,4 c-1
$$

is 40
7. Proof of difference equations formula
8. Difference equations
eeg. solve the difference equation $2 u_{k, t,}-7 r_{i, i, 1}+u_{\mu}=0$.
if $u_{11}=5$ and $u_{1}=\frac{7}{2}$.

Further Calculus and Series

Question \& , the first question in Section B, is by far the most populate option chosen by students each year. In the vast majority of cases, this is because it is the only option topic they studied in school. Studying one option topic is more or less unavoidable, due to the length of the course and the time constraints.

Further calculus and series is composed of four major topics: integration by parts, the

Scribble bax

Ratio Test. Maclaum series and maximum and minimum problems. These are quite distinct topics, with the exception of the use of the Ratio Test with Maclaurin series.

Or the four topics, the only one which has occurred every year is maximum and minimum problems. Last year this was jus l the (a) part of the question. It is likely to be a more substantial part this year.

One other key idea to watch is wititug down an expression lon the general term in a series obtained from the Maclaurin series formula. This is traditionally a hugely problematic area lion stu tents. Failure to oisin a enteral tern expression can mean that we nay not be able to complete the question, if we are subsequently asked to use the Ratio Fest to test the series for convergence.

1. Integration by parts
ext. use integration by parts to find

$$
\int_{:}^{\mathrm{x}} x \ln x \mathrm{~d} x
$$

2. Ratio Test
eng. show that the series $\sum_{v=4}^{m} \frac{(-1)^{\prime \prime} x^{1 i-1}}{(2 \mu+1)!}$ is
convergent for all $x=R$
3. Maclaurin series

$$
\text { egg. the Maclaurin series for } f(x) \text { is }
$$

$$
f(x)=f(0)-\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\ldots
$$

(i) Derive the Maclaurin series for $f(x)=\cos x$, up to and including the term containing x^{3}.
(ii) Write down the general term. and use the Ratio Test to show that the series converges for ald $x \in \mathbf{R}$.
4. Maximum and minimum problems es.

A rectangle of dimensions $2 x$ and y is drawn inside a semicircle of radius r as shown.
Express the area of the rectangle in Germs of x and r.
Find the value of x for which the area of the rectangle is a maximum, and lind this maximum area.

Higher level
 Paper 2

SAMPLE QUESTIONS

1. The Circle

Question

(a) The circle C las the lines
$x=1, x=7, y=-2$ and $y=4$ as
tanyents. Filtu the cquation of C.
(b) The cirele $\$_{1}$ has equation

$$
x^{2} \div y^{2}-2 x-4 y-15=0
$$

and the circle S_{2} has equation

$$
x^{2} \div y^{2}-10 x-10 y+k=0
$$

where k is a constant.
(i) Find tlee value of k if S_{1} and $S_{\text {s }}$ touch externally.
(ii) With this value of K, S_{1} and S_{2} touch al elle point ar. Fired the cquation of the common tangent to S_{1} and f, ate o.
(c) The line $L: x+5 y^{3}-2 \overline{7}=0$ interseets the circle \mathcal{S} at lie poines a and h where \mid ati $i=\sqrt{26}$. The centre of S is (-1.3).
(i) Find the perpendicular distance from the ceatere of S to L.
(ii) Find the equation of the cisele S.
(iii) Find thet equations of the (wis)
tangents to S which have slope $\frac{2}{3}$
Solution
a) (i)

Frow the diastant, centre $=(4.1)$
and radius lenglh $=3$.
Thus the equation of the circle C is

$$
(x-c h)^{2}+(y-l)^{2}=9
$$

(b) (i) $S_{1}: x^{2}+y^{2} \div 2 . x-4 y-15=0$

$$
\text { centre: }-(-1,2)
$$

radius $-\mathrm{F}_{\mathrm{i}}$

$$
=\sqrt{114115}-\sqrt{20}
$$

$\delta_{2}: x^{2}+y^{2}-10 x-10 y-h=0$
centre $=(5,5)$
radius $=r_{2}$

$$
\begin{aligned}
& =\sqrt{25+25-k} \\
& -\sqrt{50-k}
\end{aligned}
$$

Also, distance between the centres
$d-\sqrt{(5+1)^{2}+(5-2)^{2}-\sqrt{45}}$
If the circles touch externally, then

$$
\begin{aligned}
& r_{1}+r_{2}=d \\
& \sqrt{20}-\sqrt{50-k}=\sqrt{45} \\
& 2 \sqrt{5}+\sqrt{50-k}=3 \sqrt{5} \\
& \sqrt{50-k}=\sqrt{5} \\
& 50-k=5 \\
& k=45 .
\end{aligned}
$$

(ii) The wazation ur the cemmen tangent to both ciscles at their point of interscetion is
$S_{1} \cdots 5_{2}-0$
$\left(x^{2}+x^{2} \div 2 x-4 y^{2}-15\right)$
$-\left(x^{2}+y^{2}-10 x-10 y+45\right)=0$
$12 x+6 y-64 \mid=11$
$2 x-3-10=0$.
(c) (i)

 from the eenlere to the line
L.:x:5y $\quad 27=0$. Then

$$
p=\frac{|(-1)+5(3)-27|}{\sqrt{1^{2}+5^{-2}}}
$$

$$
=\frac{|-13|}{\sqrt{26}} \cdots \frac{13}{\sqrt{13} \sqrt{2}}=\frac{\sqrt{13}}{\sqrt{2}}
$$

(ii) Let the lengeth of ibe chord,
he $2 z$. Twinn

$$
\begin{aligned}
& 2 z=\sqrt{26} \\
& z=\frac{\sqrt{26}}{2}=\sqrt{26} \frac{\sqrt{13}}{4}=\sqrt[1]{\frac{1}{2}}
\end{aligned}
$$

If r is the lengeth of the radius. then

$$
\begin{aligned}
& r^{2}-p^{2}+z^{2} \\
& s^{2}=\frac{13}{2} \div \frac{13}{2}=13
\end{aligned}
$$

The equation of the circle S is

$$
\begin{array}{ll}
& (x-1\}^{2}-\{y-3\}^{2}-13 \\
\text { or } \quad & x^{2}+y^{2}+2 x-6 y^{2}-3=0 .
\end{array}
$$

$$
\begin{aligned}
& x^{2}+y^{2}+2 x-6 y-3=0 \text {. } \\
& \text { puation of a tangent to the }
\end{aligned}
$$

Let the equation of a ranyent to the circle C with slepe $\frac{2}{3}$ be
$2 x-3 y+k=0$

Then the perpendicular distance from the cerntre $(-1,3)$ to this tangent is $r-\sqrt{13}$.

$$
\begin{aligned}
& \frac{\mid 2(-1)-3(3)+k}{\sqrt{2^{2}} 1 \cdot(3)^{2}}=\sqrt{13} \\
& |k-11|=13 \\
& k-1 \mid-13 \text { or } k-\mid 1--13 \\
& k-24 \text { or } k=-2
\end{aligned}
$$

The requires tangents are $2 x-3 y+24=0$ and $2 x \quad 3 y=2=0$.

2. The Line and Transformations

Question

(a) $\quad P(2 t \cdot 3,5 t \div 1)$ is on a line f., for all values al $t \div \mathbf{R}$. Write the Bequation of I, in the form $a x+b y+c-0$.
(b) (i) $w: y-m_{1} x+c$; and

N: $y-m_{2} x+c_{2}$ are $1 w h$
inkersecting lines.
If 0 is am angle berween M and N. prove that

$$
\tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}} .
$$

(ii) If the angle belwen the line $y^{\prime}-\ldots x+c$ and the line $x+y=7$ is $\tan ^{-1} \frac{2}{3}$, forth the Iwo possiblle values of m.
(c) f is the 1ransformation $\left(x, y^{\prime}\right) \rightarrow\left(x^{\prime}, y^{\prime}\right)$ whures $x^{\prime}-r+2 y$ and $y^{\prime}-3, r-j$:
(i) Express x and y in terms oll x^{t} anel y^{\prime}.
(iif) f. is the line $4 x \cdot+7 y+3=0$. Find the equation of $/(L)$.
(ili) K^{\prime} is a line such that $f^{\prime}\left(K^{\prime}\right)$ comains the proint ($(, 7$) antr is perpendicular $10 f(\mathrm{l})$.
Find the equation of $f(K)$ and the equation ol K.

Solution

(a) $F(2 f \quad 3,5 t \cdot 1)$ is onl d. Thus

$$
\begin{array}{ll}
x=2 t \quad 3 & y=5+1 \\
x+3-2 t & y-1-5 t \\
\frac{x+3}{2}=t & \frac{y-1}{5}=t
\end{array}
$$

Tien $\frac{x+3}{2}-\frac{y-1}{5}$
$5 x+15=2 y-2$
$5 x-2 y+17=0$
is the equation of L.
(b) (i) Let a be the angle between t and the posilivit x-axis. lee β he the angle between K and the positive x-axis. and let 0 be an angle between L and K.
$\tan \alpha=m_{1}$ and $\tan \beta=m$.

$\tan \theta=\tan (\alpha-\beta)$
$\tan \theta=\frac{\tan -\tan]}{1+\tan \alpha} \tan \beta$
$\tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$
(ii) I.et $m_{1}=m$ the the slope of
$y=m \cdot c-s$ and $m_{2}=-i$ be che
slope of the line $x+y=7$.
$\theta=\tan ^{-1} \frac{2}{3}$ is the angie between
these lines. chus can $0=\frac{2}{3}$.
Then

$$
\begin{aligned}
& 1 \operatorname{an} 0=+\frac{m m_{1}-m_{2}}{1+m_{i} m_{2}} \\
& \frac{2}{3}= \pm \frac{m+1}{1-m}
\end{aligned}
$$

Case 1:
$\frac{2}{3}=\frac{m+1}{1-m}$
$2-2 m=3 m+3$
$-\mathbf{i}=5 \mathrm{~m}$
$m=\frac{1}{5}$
Case 2:

$$
\begin{aligned}
& \frac{2}{3}=-\frac{m-1}{1-m} \\
& 2 \cdots 2 m=3 m \\
& m=5
\end{aligned}
$$

(c) (i) $f:\left(x, y^{\prime}\right) \rightarrow\left(x^{\prime}, y^{\prime}\right)$ whare
$x^{\prime}-x+2 y^{\prime}$ and $y^{\prime}-3 x-y^{\prime}$
Then
$x+2 y^{\prime}=x^{\prime}$
$6 x-2 y=2 y^{\prime}$
$7 x=x^{\prime}+2 y^{\prime}$
$x=\frac{x^{\prime}+2 y^{\prime}}{7}$
Also

Higher level
 Paper 2

$$
\begin{aligned}
& 3 x \div 6 y=3 x^{\prime} \\
& \frac{-3 x+y=-y^{\prime}}{7 y=3 x^{\prime}-y^{r}} \\
& y=\frac{3 r^{r}-y^{\prime}}{7}
\end{aligned}
$$

(ii) $L: 4 x+7 y+3=0$
f(f):

$$
\begin{aligned}
& \left.4^{\prime} \frac{x^{\prime}+7 \cdot y^{\prime}}{7}\right)+7\left(\frac{7 . x^{\prime} y^{r}}{7}\right) \\
& +3=0 \\
& 4 x^{\prime}+8 y^{\prime}+21 x^{\prime}-7 y^{\prime}+21=0 \\
& 75 x^{\prime}+y^{\prime}+21-0
\end{aligned}
$$

(iii) Slope of $f(L)=-25$

As $f(K) \perp f(L)$. slope of $f(K)=\frac{1}{75}$.
$f(K)$ contains the point $(1,2)$. Thus the equation of $f(K)$ is

$$
\begin{aligned}
& y^{\prime}-2=\frac{1}{25}\left(x^{\prime}-1\right) \\
& 25 y^{\prime}-50-x^{\prime}-1 \\
& x^{\prime}-25 y^{\prime}+49=0
\end{aligned}
$$

Then the cquation of K :

$$
(x+2 y)-25(3 x-y)+49=0
$$

$$
x+2 y-75 x-25 y+49=0
$$

$-74 x+27 y+49=0$
(il) $74 x-27 y-49-0$.

3. Trigonometry

Question

(a) If tant $A=\frac{3}{4}$, for $1 p^{\circ}: A<9 \%$, exjreass (i) $\cos A$, (ii) $\cos 2 A$,
in the forin $\frac{f}{\theta}$, where $r, q \in \mathbf{N}$.
(b) (i) Express $\cos 3 x-\cos x$ as a product of sines.
(ii) Ilence, or otherwise, firt all solutions of the equation $\sin x+\cos 3 x-\cos x=0$, Jor $0^{\circ} \leq x \leq 360^{\circ}$.
(c) S_{1} is a circle with bentre 0 and matius length r containing the peints a. b and c suct that cusc: is an equilateral trianembe. S_{2} is a circle with cencrep p and [are] as a diameter. S_{2} intersects [ac] and [bc] at s and a respectively.

(i) Express $|\omega i|$ and the area of the triangle stor: in terms of s.
(ii) Expross the area of the triangle cpar in terms of r.
(iii) Express the area of the shaded

Solution

(a) (i) From the trixugle,
$r^{2}=4^{2}+3^{2}$
$r^{2}=25$
$r^{2}=5$

Tlus $\quad \operatorname{tos} A=\frac{4}{5}$
(ii) $\cos 2 A=\cos ^{2} A \cdots \sin ^{-2} A$

$$
\begin{aligned}
& =\left(\begin{array}{c}
4 \\
3 \\
5
\end{array}\right)^{2}-\binom{3}{5}^{2} \\
& =\frac{16}{25}-\frac{9}{25} \\
& =\frac{7}{25} .
\end{aligned}
$$

(b) (i) $\cos 3 x-\cos x$

$$
\begin{aligned}
& =-2 \sin \left(\frac{3 x+x}{2}\right) \sin \left(\frac{3 x-x}{2}\right) \\
& =-2 \sin 2 x \sin x
\end{aligned}
$$

(ii) $\sin x-[\cos 3 x-\cos x]=0$
$\sin x-2 \sin 3 x \sin x=0$
$\sin x(1-2 \sin 2 x)=0$
$\sin x=0$ or $1-2 \sin 2 x=0$
$\sin x-0$ or $\sin 2 x=\frac{1}{2}$
$\sin x-0$:
$x-0^{\circ}, 180^{\circ}, 360^{\circ}$
$\sin 2 x=\frac{1}{2}$:
$2 x=30^{\circ}, 150^{\circ} \cdot 390^{\circ}, 510^{\circ}$
$x=15^{\circ}, 75^{\circ}, 195^{\circ}, 255^{\circ}$
(c) (i) Using the Cosine Rule on the triangle oub.

$$
\begin{aligned}
& |a b|^{2}=r^{2}+r^{2}-2 r r \cos 120^{\circ} \\
& |\alpha b|^{2}=2 r^{2}-2 r^{2}\left(-\frac{1}{2}\right) \\
& |\alpha b|^{2}=3 r^{2} \\
& |a b|=\sqrt{3} r
\end{aligned}
$$

Also
area $\Delta a b c=\frac{1}{2} \cdot a d^{\prime} \|\left. b c\right|_{\sin 1} 60^{\circ}$

$$
\begin{aligned}
& =\frac{1}{2}(\sqrt{3})(r \sqrt{3}) \frac{\sqrt{3}}{2} \\
& =\frac{3 \sqrt{3} r^{2}}{4}
\end{aligned}
$$

(ii)

$$
\text { Area } \begin{aligned}
\Delta c p s & =\frac{1}{2}\left(\frac{r}{2}\right)\left(\frac{r}{2}\right) \sin 120^{\circ} \\
& =\frac{r^{2}}{8}\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{\sqrt{3} r^{2}}{16}
\end{aligned}
$$

(iii) Sladed artia
$=$ area Aubc - 2 area Aupc

- area sector spper
$=\frac{3 \sqrt{3} r^{2}}{4}-\frac{\sqrt{3}, r^{2}}{8}-\frac{1}{2}\left(\frac{r}{2}\right)\left(\frac{2 \pi}{3}\right)$
$=\frac{\sqrt{3} r^{2}}{8}(6-1)-\frac{\pi r^{2}}{12}$
$-\frac{5 \sqrt{3}}{8} r^{2}-\frac{\pi^{2}}{12}$.

SAMPLE QUESTIONS

4. Probability

Question

(a) A student sits five exams to obtain a qualification. The weights for these exams are 5, 2,3, 1, 4 nespectively. The student sceres $73 \%, 60 \%$. 45% and 48% its the lirst fout exams. What percentage score is regured in the dinal exam to obsain a weighted mean percentaye of 60\%\%?
(b) $u_{r i}=k\left(\frac{1}{2}\right)^{\prime \prime}+m\left(\frac{2}{3}\right)^{\prime \prime}$ is the gencral solution ot the diflerence equation

$$
6 m_{\pi-2}+p m_{n+1}+m m_{n}=0,
$$

where p and q are collstants.
Determinte the value of μ and the value olg.
If $u_{0}-5$ and $t_{1}-3$, determine the values ol the constanss k and m, ancl
find u_{4} in the form $\frac{a}{b}$, where
a. b FN.
(c) A slulf contains six different books in English, five different books in French and four dialierem hooks in German.
(i) If two books are picked at rundom, what is the probaliditity that they ate in the same longuage?
(ii) If two books are picked at random, what is the problalvility that they ate in different kaguages?
(iii) If three books are jicked at random. what is thes probability that they are not all in the sanc Canguage?
(iv) [f six books are picked at tandom, what is the probability that there are cxactly two in cach language?

Splution

(a) Let $x \%$ be the required mark in the last test to get a weighted mean of 60%. Then

$$
\begin{aligned}
& 60=\{(73 \times 5)-(60 \times 2)+(46 \times 3) \\
&-(48 \times 1)+(x \times 4) ; \\
&(5+2-3+1+4\} \\
& 60= \frac{668+4 x}{15} \\
& 900= 668+4 x \\
& 232=4 x \\
& x= 58
\end{aligned}
$$

(b) Fom $u_{n}=k\left(\frac{1}{2}\right)^{n}+\cdots\left(\frac{2}{3}\right)^{n}, \frac{1}{2}$ and $\frac{\frac{2}{3}}{3}$ are the roots of the characteristic equatinn.
sum of toots $=\frac{1}{2}-\frac{3}{3}=\frac{7}{6}$
product of roots $=\frac{1}{2} \times \frac{2}{3}=\frac{1}{3}$

Maths

Higher 18 Paper 2

Chanacteristic equation:

$$
\begin{gathered}
x^{2}-\frac{7}{6} x \div \frac{1}{3}=0 \\
\text { or } \quad 6 x^{2}-7 x-2=0
\end{gathered}
$$

Comparing this with

$$
6 t_{n_{1} 1}-p t_{n_{1-1}}-q t_{n_{n}}=0
$$

we gex $p=-7$ and $q=2$.
Ir $n_{n}=k\left(\frac{1}{2}\right)^{1 ;}-m\left(\frac{2}{3}\right)^{n}$.
$u_{n}=5: \quad k\left(\frac{1}{2}\right)^{3}+m\left(\frac{2}{3}\right)^{n}=5$
$u_{1}-3: \quad+\left(\frac{1}{2}\right)^{1} \div m\left(\frac{2}{3}\right)^{2}-3$

$$
\begin{equation*}
3 k+4 m-18 \tag{2}
\end{equation*}
$$

Thus
$1 \times-3: \quad-3 k-3 m=-15$
2: $\quad \underline{3 k+4 m \div 18}$

$$
m=3
$$

$$
\text { and } k=2
$$

Then
$u_{4}=2\left(\frac{1}{2}\right)^{4}+3\left(\frac{2}{3}\right)^{4}=\frac{1}{8}+\frac{16}{27}=\frac{155}{216}$.
(c) 6 English, 5 Firench and 4 German books.
(i) Jixperimenc:

$$
\text { choose } 2 \text { books from } 15
$$

$$
n=4 S=\binom{15}{2}=105
$$

E: chnose 2 books in same language
$=(2$ from 6 Eng $)$ or (2 fromin 5 配) or (2 from 4 Gec)

$$
r=H E=\binom{6}{2}-\binom{5}{2}+\binom{4}{2}=31
$$

$P(E)=P($ same langatage $)=\frac{3[}{10.5}$
(ii) Success - 2 books in different language s
Failute - 2 books in the same language
By (i),
$t^{\prime}($ failure $)-I^{r}$ (same lang.) $-\frac{31}{105}$
$P($ suceess $)=1-P($ (ailure $)$
$P($ difllang. $)=1 \quad \frac{31}{105}=\frac{74}{105}$
(iii) Experiment:
choose 3 lbooks from 15

$$
n-15-\binom{15}{3}=455
$$

Surcess: not ald in the same karguage
Failure: all in the same language

$$
r-4 E-\left(\begin{array}{l}
6) \\
(3)
\end{array}+\binom{5}{3}+\binom{4}{3}-34\right.
$$

$P($ failure $)=\frac{34}{455}$
$P($ sucecss $)=1-\frac{34}{455}=\frac{421}{455}$
(iv) Experiment: choose 6 books from 15

$$
n=\hbar S=\binom{15}{6}=5005
$$

E: choose (2 from 6 Eirg) and (2 from 5 Fre) and (2 from 4 Gir)

$$
1-\$ 5-\binom{6}{2} \times\binom{ 5}{2} \times\binom{ 4}{2}
$$

$$
r=900
$$

$P(E)=P($ two in each language $)$

$$
\begin{aligned}
& =\frac{900}{506+5} \\
& =\frac{180}{1001} .
\end{aligned}
$$

5. Further Calculus

(a) Use integration by parts to cualuate

$$
\int_{0}^{1}(2 x+1) e^{x} d x .
$$

(b) A rectangulat block has a square base and a total surface area of $54 \mathrm{~cm}^{2}$. Find lice maximiter porsible valume of the block.
(c) (i) Find the value of $k \in \mathbf{R}$ if

$$
\tan ^{-1} \frac{1}{2} \cdot \tan ^{-1} k=\frac{\pi}{4} .
$$

(ii) The Maclaurin selies for $\tan ^{-1} x$ is

$$
\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{i}+\ldots
$$

lise the first four terms of this
series to approximate $\tan ^{-1} \frac{1}{2}$ and
hence tind an approximation for π, c्णreet to three deevinal plates.

Solution

(i) $\quad t=\int_{11}^{-1}(2 x+1) e^{x} d x$

$$
\text { [.el } \begin{array}{lll}
u=2 x & u+1 & d u=t^{\top} d x \\
& \frac{d u}{d x}=2 & v-1 e^{\top} d x \\
& d r=2 d x & v=e^{x}
\end{array}
$$

$S=\int_{11}^{1} \quad u \mathrm{~d} v=m v_{0}^{1}-\int_{18}^{1} v \mathrm{~d} z t$

$$
=\left[(2 x+1) e^{x^{-1}}-\int_{0}^{1} e^{x} \cdot 2 d x\right.
$$

$$
\begin{aligned}
& -(3 e-1)-2\left[\left.e^{4}\right|_{6} ^{1}\right. \\
& -(3 e-1)-2(e-1) \\
& =e-1 .
\end{aligned}
$$

(b) Let x be che length of a side of the stpuate base, and let h the the height of the bleck.

To be a maximum:

$$
V=x^{2} h
$$

Given:
Total surfaec artat $=54$
$2\left(x^{2}\right)+4(. x h)=54$
2. x = $=27 \cdot x^{2}$

$$
h=\frac{2 \overline{7}-x^{2}}{2 x}
$$

Thes

$$
\begin{aligned}
& V=x^{2}\left(\frac{27-x^{2}}{2 x}\right) \\
& V=\frac{1}{2}\left(27 x-x^{2}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \frac{d V}{\langle x}=\frac{1}{2}\left(77-3 x^{2}\right) \\
& \text { Put } \frac{d V}{d x}=0: \\
& 27-3 x^{2}=0 \\
& r^{2}=9 \\
& x=7
\end{aligned}
$$

The volume of the block is a maximum when $x=3$.
When $x=3$. the maximuna wolunge ol ${ }^{-1}$ the block is

$$
\frac{1}{2}\left[27(3)-(3)^{3}\right]=\frac{54}{2}=27 \mathrm{~cm}^{3}
$$

(c) (0) $\tan ^{-1}\left(\frac{1}{2}\right)+\operatorname{an}^{-1} k-\frac{\pi}{4}$

$$
\operatorname{tant}^{-1}\left(\frac{\frac{1}{2}+k}{1}{ }_{2} k\right)-\frac{\pi}{4}
$$

SAMPLE QUESTIONS

$\frac{1-2 k}{2-k}=\tan \frac{\pi}{4}$
$1 \div \frac{2}{7}-1$
$\mathbf{I}-2 k=2-k$
$3 k=1$
$k=\frac{1}{3}$
(ii) $\operatorname{tanl}^{1} x=x-x_{3}^{3}+\frac{x^{2}}{5}-x_{7}^{2}$

$$
\begin{aligned}
\tan ^{-1}\left(\frac{1}{2}\right)= & \left(\frac{1}{2}\right)-\frac{1}{3}\left(\frac{1}{2}\right)^{3} \\
& +\frac{1}{5}\left(\frac{1}{2}\right)^{3}-\frac{1}{7}\left(\frac{1}{2}\right)^{2} \\
= & 0.463467261 \\
\operatorname{lan}^{-1}\left(\frac{1}{3},\right. & =\left(\frac{1}{3}\right)-\frac{1}{3}\left(\frac{1}{3}\right)^{3} \\
& +\frac{1}{5}\left(\frac{1}{3}\right)^{5}-\frac{1}{7}\left(\frac{1}{3}\right)^{7} \\
= & 0.321745378
\end{aligned}
$$

Then

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right) \\
& =0 \cdot 463467261 \\
& \\
& \quad-0.321745378 \\
& \begin{aligned}
\pi & =
\end{aligned} \\
& \begin{aligned}
\pi= & 785212639 \\
\pi= & 3 \cdot 140850658
\end{aligned} \\
& \pi
\end{aligned}
$$

correct to three decimal places.

Scrible bax

Maths

 exam bref
The 2007 A1 club at the Institute of Education

Dos and Don'ts: How to avoid the common mistakes in Maths exams

Dos.

- Arrive with plenty of time to spare. If you are rushing into the exam, you will not be in the right frame of mind to do yourself justice, at least for the first while. - Start immediately, by reading the entire paper, or at least any question that you may possibly do. - Answer the questions on the basis of 'easiest first'. Start with the question you consider the easiest, then do the next easiest, and so on.
- Read each question you are attempting extremely carefully, making note of all that is required of you.
- Show your calculations. You sometimes (not always) get full marks for a correct answer without work, but if you get the wrong answer, you get nothing. - Plan your timing carefully. In theory you have 25 minutes per question. In practice, you should aim to complete each question in 20 minutes. This will leave a little time for reading the paper at the beginning and checking answers at the end.
- Watch the key words, or even underline them. Some examples are prove, verify, show, find, solve, evaluate, graph, plot. If a question
says 'hence', as distinct from 'hence, or otherwise', you must use what went before to complete what follows. Using any other method will not get you the marks.
- Before leaving a ques tion, check that you have answered everything required. If there is some part you cannot do, leave space to return later.
Make some attempt at every part of the questions you are doing. Any right step will get you at least the attempt mark for that part. -Realise the importance of algebra, and the need for care and accuracy when us ing algebra.

Don'ts

■ Don't, if at all possible, rely on exactly six questions on each paper. Try to have a standby question, should one of your preferred questions not be as easy as you hoped. - Don't write out the question, or any part of it in the exam. This wastes valuable time and is com pletely unnecessary. - Don't forget to bring your calculator, pens, maths instruments, and perhaps some sugary sweets or chocolate into the exam. By the end, you could probably do with the energy boost.

- Don't do any rough work on your exam paper. Everything should be done in your answer-book. Rough work often merits marks. - Don't perform any difficult calculations in your head. Use your calculator. ■ Don't forget that you must attempt one question from Section B on Paper 2.
- Don't bring in a new calculator bought on the morning of the exam. You need to be fully familiar with all the common operations on your calculator. \square Don't spend time trying to guess answers. Even if you get lucky every now and then, the risk is too

By Aidan Roantree
great that you are just wasting time. ■ Don't daydream, or be come worried about how you are doing. There will be time for both after the exam. Stay focussed. ■ Don't spend too much time on a difficult final part: there are probably only going to be a few marks allocated to it.

Ordinary level

Paper 1

Your Lonking Cert. nkaths cxams will begir on Itune blis 12 with Papeer 1. This is a lipiday and the exam is in the morning. By this stage, Jinglist, llome Ifcomomics and Chenistry will be ower. Even if you do neither of the latter two sultjects, you should be well into the mindset for doing exams.

Bul preparing for a maths exam requires you to focus diferently from other subjects. Maths is it very precise subject, and we don' bax eloquent alout quadratic equations in the same waly that we can about a Yeat phem.

J'aper 1 is very beavily biased towards algebra. or the cight questions on this paper. only Question [, on aritlunetic and money, racely has any aldgebra. Questions 2 and 3 art encirely dedicated to algelya itself. Question 4, ол cemplex numbers, involves imueh algebraic manipulation. Question 5 , or securences and series, has a litule less algebra.

Questions 6 and 8 . on linctions, graphis and differentiation, and Question 7, on difiteratialion alune, invulve their fair share of solving equations and rewriting expressions.

All in all, il you are weak al angebra, you will find Paper 1 troublesome. With lhis in mind you shoula rocts now on makien sure that your grasp of the main algebraic techniques is aclequale.

Tiven thenugh it might appear to be very basic and almost a waste of time, you should thomughly revise the following algelyaic techniques:

* sulistitutang values into expressions.
* simplifying cxpressions,
* removing brackets by multiplication,
* insertines brackets by taking oat in commonl lactor:
* rearranging formulat.
* simplifying equations,
* solving lineztr cquations.
* solving quadratic equations
* using $f(x)$ notation.

These technigutes will be frequently required chroughout both papers, hut esjuecially on Papur l. [f one piece of adviec were to be singled out, it would be to treat the equal to sign, ' $=$ '. wisth respect. Don't leave it out: it is the verb in a mathematical sentence. Try to avoid mathematical islands, i.e. expressions written on their own. not linked to anything.

Although wite ate aware of what topics will be examined ial which questions, it is stil nor a good idea to enter the cxam with just six
questions prejuared. The cortent and question styic can change guite a bit in any given year This is notably true of Question 1 , Question 6 and Question 8. You shoudal tenter the exam with an open mind, read the entire paper and then chonse the questions which suit you best this ycar.

Arithmetic and Money

The topic covered by Question 1 is arithmetic and money. There are a few formula you need to leam licre:

* compound interest rule: tor each year

$$
A=P\left(1+\frac{R}{100}\right)
$$

compound inceresi lormula: alier π years

$$
A=P^{\prime}\left(1+\frac{R}{100}\right)^{\prime \prime}
$$

percentage error

There are also a number of methods which must be knowit:

* dealing with fractions, pereentages,
ratios and preportions.
* calculating jncone tax
* using scientilic notation,
* haudling time and speed calcelations.

This huweyer, is not the full story. Eath year, a maior part of Question 1 concerns a reallife. practicad siteation, where all that is required is basic common selse, and grood minuerical skills. You should look tatelidly at the questions of this type that have been asked for the last ten or so years. Fowever', expect a new seenario to appear this year. Uneless you are confortable dealing with such practical problems. you should probably consider leaving out this questions.

I. Practions

c.g. $\frac{3}{7}$ of a sum of'money is E 64. Find the sum of money.
2. Ratios
e.g. express the ratio 75.3 24
in the form $p: q: r$, where $p, a, p \in \mathbb{N}$

3. l'raportional parts

e.g. a surn of iriontey is disided betwera Scan, Theresc and Mary in the ratio
$5: 2: 4$. If Searl gels $\in 200$.
(i) what is the sum of mency,
(ii) how much do Therese and Mary get?

4. Direct proportion

c.g. 7 diarics cost €39-55. How many ol therse cliaries can be bought for 650.85?
5. Currency conversions
e.g. a wonall walts to change 412500 Japanese Yen inlu euro. The exchange tate is el- 165 Yell. The bank charges $€ 20$ for this conycrsion. How much. in euro, does the wonan get?
6. Percentages
e.g. express 624 grams as a percentage v1 $2 \cdot 6$ kilograms
7. VAT
e.g. at computer is for sale at
fil149. 50 , inclusive of VAT at 21%. What is the jrice of the computur exclusive of $V A T$?
8. Prolit and loss
e.g. al wet dealler sells a cat for $\in 17490$, making a profit of 2 to \% How much had sle paid for the ter?
9. Ineoine tax
e.g. Vark carns 45860 is at monten atcl has tax credits of $€ 240$ for that month.
The standard mate cut olt point is (2.250t and the standard and lugher cates of tax are 20% and 41% respectively. Caleulate Mark's fake hence pay for the munth.
10. Compobnd interest rule e.g. a man invests 68500 . Fe gets 3.5% per anmame compound interest in the first ytara atal 4.2% in the second year.
Calculate the valac of his investinent at the enad of the second year.
11. Compound interest formula
e.g. what sum of money, invested now at 3% per eubnim compound interest, will amount to $\mathrm{F} 4919 \cdot 50$ in seven years time?
12. Time and speed
c.g. a tyoman drives from W/exford to Sifgo. She leaves Wexford at $9: 35$ and arrives in Sligo at 16:23. IT the distane from Wexford to Slign is 3017 km , what was her avereye speed, correet to the nearest kimih?
13. Scientific notation
e.g. write as a decimal

$$
\left(7.9 \times 10^{7}\right)-\left(8.2 \times 10^{6}\right)
$$

14. Approximation and error

c.g. if $60-35$ is taken as an
approximation tor $58 \cdot 7+34 \cdot 8$,
eatculate, corted to two devimal places, the jercentage error.

Algebra

Algebra is the topic covered in (Mestions 2 and 3. Most students and up trying at least one of these questions. it is not possible to reliably predicl whal will appear in each question, so it will be necessary to study all of algebra to be susc of cyen one questiva.

The only formulac that you need to leam in algethia are the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

and the laws of indices.
But there are many, many methods that have to be revised. The mosl important of these are:

* re-atranying a cormula,
* solving ľinear equations.
* sulvinge curedealic equations.
* solving equations with fractions,
* solvitug simultaneous copualionts,
* using the Factor Theorem,
* solving cubic copations,
* resuriting powers, ronts and surds.
* solving equatious using the laws of indiees,
* solving incqualitics.

As you revist these topics, you shoutel concentrate on paying attention to detail. This is not just a request to be as meat as your persorality allows. it is it waming that sloppy woik usually resultis from slonjy thoughas, and generally leads to more mislakes than those made by an organised student. Jiven if you ate not in oryanised persun, pretend Jor one day that your ale!

t. Evaluating expressions

e.g. fint the walue of $a^{2}-2 a b$ when
$a=2$ and $b=3$
2. Liluear equations
e.g. solve for x :

$$
2(5 x-11)-4(5-x)
$$

3. Linear equatigns with fractimes e.g. solye for $x:$

$$
\frac{4-x}{3}=\frac{3 x+2}{5}
$$

4. Manipulaling formulat e.g. write a in lirths al b and c is

$$
\frac{a+2 b}{4}=3 a+c
$$

5. Linear simultancous equations e.g. solve the simultarnous equations

$$
\begin{aligned}
& x \div 3 y=8 \\
& 2 x-y=-5
\end{aligned}
$$

6. Quadratic equations
c.e. solve for $x \in \mathbf{R}$.

$$
2 x^{2}-7 x-4=0
$$

7. Linearinon-linear simultaneous equations
e.g. solve the simultaneous equations

$$
x-2 y=5, x^{2}-y^{2}=8
$$

8. Factor theorem c.e. if $(x+2)$ is a factor of $x^{3}+k x^{1}-8 x-12$, find the value of k
9. Cubic equations e.g. solve the equation

Ordinary level

Paper 1

$x^{2}+2 x^{2}-13 x+10=0$

10. Forming an cepration c.g. form a cubje cquation with roots $4,-1$ and - ?
11. Equations with fractions c.g. solwe the ecouation

$$
\frac{2}{x+1}+\frac{3}{x+2}=2 . \quad x \neq-f, x \neq-2
$$

12. H'owers
e.g. write as a power of E :

$$
\frac{25}{5^{1-x}}
$$

13. Efluations with the nnknown in the index
e.g. solve for x :

$$
4^{3-1}-\left(\frac{8}{\sqrt{2}}\right)
$$

14. Itequalities
e.g. solve the inequality for $x \in \mathbf{R}$:

$$
\frac{x+2}{3}<\frac{2 x-1}{5}
$$

Complex Numbers

Complex numbers. which is exatmined in Question 4 each year, kas been remarkably consistent over the years. Most formblae and methods oceur in any given year. Because of ${ }^{-}$ this predictably, this question enjoys great popularily wifl students. Pul simgly, it yout tackle Question 4 for the last sik or seven years, you will probalily do very well with this question.

The only lonmulae to the learned are:

* áuadratic formulda:

$$
=-\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

* conjugate:

$$
\text { if } z=a+b i \text {, then } \overline{\underline{z}}=a-b j
$$

* modulus:

$$
|a+b i|=\sqrt{a^{2} \div b^{2}}
$$

In addition to this, the following methods should be mastered:

* adding. subbricing. multiplying
complex anubers (rementher $i^{2}=-1$)
* aivision. by usirug the conjugate,
* represerting complex aumbers on an Argand diagram,
* equality:

$$
\begin{aligned}
& \text { if } a+b i-c+d i \\
& \text { theit } \quad a-c \\
& \text { and } \quad b=d .
\end{aligned}
$$

1. Addition and subtraction e.s. if $==8,3 i$ and $w=\cdot 4 \cdot 3 i$, express in the form $a+b i$:
(i) $=: 17$
(ii) $2=1 w$
2. Multiplication
e.g. if $=--1-5 j$ and $: 4-2+7 i$, express in the form a F hi:
(i) $\leq w$
(ii) z^{2}
3. Conjugate and division
e.e. express $\frac{7+4 i}{1+2 i}$ in the form $a \cdots h i$,
where $i^{2}=-1$
4. Argand diagram
e.s. represent cach of the foltowing complex numbers on an Angend diagram:
(i) 3-5i,
(ii) $-2+4 i$.
(iii) -2 ,
(iv) $-i$
5. Modulus
e.g. jf $z=-1+\hat{j} i$ and $w=2+5 i$;
calculate (i) $|=|$. (ii) $|i n|$.
(iii) $|z-w|$
6. Complex equations
c.g. if $z=4-3 i$, write $z^{2}+17$ in the form $a+h i, a, b \in \mathbf{R}$. llathe solve for real k :

$$
k\left(z^{2}+1 \vec{y}\right)=|z|(1-i)
$$

7. Quadratic equations
e.g. solve the following ecpuation for $=\in \mathrm{C}$:

$$
z^{3}-2 z+65=0
$$

8. More quadratic equations c.g. find the value of the real umber α if $4-2 i$ is a rato of $z^{2}+a z+68=0$, anel lind the other roul.

Sequences and Series

Thu sequencts and suries questivn, Question 5, used to be one of the easiest on Paper I. However. its standard has then maisesf over the last tive or six years, and it is now on a par with the other questions.

This topic relics more on formulae than the previous oppics. Neverheless, sulatituting into a formula alone will not answer the question. W'e will also luve to understand the symbols und concepls. and uise al gock bit of algebra.

The formulac you must know are:

* for all series:

$$
S_{n}=T_{1}+T_{2}+T_{3}+\ldots+T_{n},
$$

* arithnetic gencral term:

$$
T_{n}-n+(n-1) d,
$$

where $a=T_{1}$ and $d=T_{2}-T_{1}$,

* arithnetic sum to at terms:

$$
S_{n}=\frac{11}{2}[2 a+(n-1) d] .
$$

* gewnetric gencral term:

$$
T_{o}=a r^{n-1}
$$

where $a=T_{1}$ and $r=\frac{T_{\underline{2}}}{T_{1}}$,

* geometric sum to n terms:

$$
S_{11}=\frac{a\left(1-r^{\prime \prime}\right)}{1-r} .
$$

You should also be able to prove that a given sequence is arithmetic or geonelric.

1. Sequence notatian
efig the sth terme oreq sequences is given
by $T_{n}=2 n-1$.
(i) Find the filst two cerms of the serucnce.
(ii) Show that $T_{2}+T_{5}-T_{5}+T_{4}$.
2. Series
e.g. for the scrics $a+b-7+\ldots$,
$S_{1}=2$ and $S_{2}=5$.
(i) Find the value of a and the value of b.
(ii) Find S_{y},
3. Arithmetic sequenees
e.t. the first wo terms of an arthmetic seguence are 7, 10. Find
(i) at the tirss term,
(ii) d, the commen ditermace.
(iii) T_{n}, in tems of μ
(iv) the value of n if $T_{1}=5.5$.
4. Aritlmetic series
e.p. for the arithmetic series

$$
4+9+14-\ldots
$$

(i) Find a ond d.
(ii) Express S_{b} in terms oln.
(iii) Hence find S_{10}.
5. Arithmetic problems
c.g. for an arithmetic series, $T_{\mathrm{h}}=25$
and $S_{y}-81$.
(i) Find c andul d.
(ii) Find S_{n} in ternis of n.
6. Proving a senuenee is arillimetic c.g. $T_{a}=3 n+2$ is a sequence.
(i) Express T_{n-1} in terms of it.
(ii) Hence prove Itat $T_{\text {Ir }}$ is ann arithrnetic sequence.
7. Gemmetrie sequences
 sequence is

$$
T_{10}-3^{t-1}
$$

(i) Find a and .
(ii) Show chat $T_{3}>T_{1}+T_{2}$.
8. Gewmetric problems
e.g. the first lhree terms of a geometric sequence are

$$
x-3,1-x, x+3
$$

Find the value of x and the fourth tem of the sequence.
9. Geometric series
e.g. the first two terins of a gemmetric series are

$$
2 \div 1 \div
$$

(i) Firide a and r.
(ii) Find S_{6} in the form $\frac{a}{b}, a, b \in \mathbb{N}$.
(iii) Write $S_{i \prime}$ in the form $k\left(1-\frac{1}{c^{n}}\right)$, where k and c are constants.
10. Proving a sequence is geometric c.g. $T_{n}=4\left(S^{11}\right)$ is a sequenee.
(i) Express T_{18}, in terms of is.
(ii) Fenct prove theal T_{15} is a geometric sequence.

Differentiation

Differentiation is such as important topic in matks at this level and beyond. To reflect this, dilterentiation is exanninsel in each of the last three questions on Paper 1. Because you can only leave out two questions, your will therefore have to perform ditferentiation somewhere on Paper I. (For exam bistorians: there was unly ome exteption (of this: in 2005 , only two questions contained differentiation.)

The main dilfenentialion <utustion. Outsion 7 , is one of the nost reliable on l'aper I. The (a) part is usually one or two easy derivatives. The (b) part typically asks wo of the three rales. The (c) patt examines rates of thanger, incluctivis velowity ancl acceleration, This last patt cals be problematic if not properly prepared.

Up until recensly, the use of differentiation in Questiens 6 anisl 8 was Jimited to dinding slopes and equations of tangents and maximum and minimum points. Now, didferentiation Irom tirst principles and even direct questions on the rules of differentiation can, ancl have been, asked in these fuestions.
Most of the formulae required for didierembiation are contained in the maths tables. These juclude how to differentiate powers, the Product Rule and the Quatient Rule. You should make sure you know where these are in the tables.

The main formulac that you have to learn ale:

* 《iflerentestivn frum lïrsl prinçiplıs:

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{i x n} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{\Delta x \rightarrow 1} \frac{\Delta y^{\prime}}{\Delta x}
\end{aligned}
$$

* the Clain Rule:

$$
\frac{d}{d x}\left(x^{2} \div 2 x\right)^{3}=3\left(x^{2}+2 x\right)^{2}(2 x+2)
$$

* velocity and acceleration:

Ordinary level

Paper 1

> if x is distance, then
> welocity. $v=\frac{\mathrm{dr}}{\mathrm{d} t} \cdot$ and
> atceleration. $a=\frac{d d^{\prime}}{\mathrm{d} t}$.

1. Bifferentiation from first principles
e.g. differentiate $x-2 x^{3}$ with respect to x from lïst principles
2. Differentiation by rule
e.g. differemiate with resject to x
(i) $7 x^{\text {fi }}$
(ii) $3-2 x+5 x^{2}-2 x^{3}$
(iii) $\frac{3}{x^{2}}$
3. Produet rile
e.g. use the Jroduct Rule wo find $\frac{d y}{d x}$ if

$$
y=\{5 x+7\}\left\{2 x^{2}-3 x \div 5\right\}
$$

4. Quotient rule
c.g. find $\frac{d y}{d .5}$ if

$$
y=\frac{x^{2}-3}{2 x-1}
$$

5. Chain Rule
e.n. tind $\frac{d y}{d x}$ it

$$
y=\left(3 x^{2}-5 x+8\right)^{4}
$$

6. Evaluating derivatives
c.g. if $y=\frac{x^{2}-1}{x+2}$, find the value of $\frac{d y}{d x}$ at $x=1$
7. Rates of change
egs the external sulface area, $A \mathrm{~cm}^{2}$. is given by

$$
A=2 x^{2}+30 x
$$

where x is one of the dimensions of the hate. Find the rate of charnge of the surface arca as x changes, when $x=4$.
8. Velocity and acceleration
e.g. a car passes a point p as it slows down to rest. The distance, x metres, travelled by the cal i seconds atter passing l is given by

$$
x=6-\frac{1}{2} t^{2}
$$

(i) Find the speed of the car as is passes p.
(ii) Find the cime taken by the car to come lo rest.
(iii) find the distance travelled by the car in coming to rest.

Functions and Graphs

Many students are wary of Questions 6 and 8, bue most are forced to attempe at leasc one of them. This reluctance is understantable. is the questions have varied greatly over the yeurs.

This topic relies נtore on mbetheds than formulae. The main methods are:

* using fienction rutalion.
* solvine simple cquations.
* plotting linear, quadratic and cubic curyes,
- answering questions on curves we have drawn,
* finding slopes and equations of tangents. using differentiation,
+ finding local max and local min points,

$$
\text { using } \frac{d, r}{d r}=0 \text {. }
$$

* finding the period and the range of a supplied periodic graph,
+ drawing reciprocal grapilis, e.g.

$$
y=\frac{1}{x \quad 2}
$$

* differembiating such functions, and finding points where the tangents have a given slope.

What is not clear is what is going to apptar where. For the last four years, reciprocal graphis have octurted as a major part of Question 8 . But these questions bave been far more wide-rankinge than just sketching the curve. They lave ranged frem function notation, to eratils, to diflerentialion. and back again. These should be studied intently, if you larbour any antertion of tackling Qucstion 8 .

I. Function notation

e.g. $f(x)=x^{2}-2 x+5$, for all $x \in \mathbf{R}$.
(i) Find $f(1)$ and $f(4)$.
(ii) Find $f(x+1)$, and write your answer in the lorm $a x^{2}-b x+c$.
(iii) For what value of x is $f(x)=3$?
2. LILecar graphs.
e.g. he disistice, $D \mathrm{~km}$. between 1 wo ships f hours after one ship leaves a harbout is given by

$$
D-8+2 \cdot 5 t
$$

Dratw tux graph of D agginsl f. placiny Ion the herizomal axis, fior $0 \leq s<4$. Usc your grapl to estimate the length of time for which the distance between the slips is between 10 km and 15 km .
3. Quadratic graphs
c.e. sketch a graph of

$$
f(x)=x^{2} \cdot \cdot 4 x \cdot 3, \text { fnir } \cdot 1 \leq x \leq 5
$$

Scribble bax

5. Questions on graphs
e.g. tratw a graph of the furction

$$
f(x)=x^{7}-2 x^{2}-7 x \div 4
$$

in the donain $-3 \leq x \leq 4$.
Use your graph to estimate the values of x lor which
(i) $x^{1}-2 x^{2}-7 x=0$.
(ii) $f(x)$ is increasing,
(iv) $x>0$ and $f(x)$ is decreasing
6. Turning points
e.g. let $f(x)=x^{3}+3 x^{2}-9 x-5$.
(i) lind $f^{\prime \prime}(x)$, the derivative of $f(x)$.
(ii) Firnd the co-urdinates of the local maximum and local minimum joints of the curve $y=f(x)$.
7. Reciprocal graphs
e.g. draw a graph of the function

$$
f(x)=\frac{1}{x}
$$

for $-4 \leq x \leq 4, x \in \mathrm{R}, x \neq 0$.
Find $f^{\prime}(x)$. the derivative of $f(x)$.
Find the cu-ortinates of the peints un the curve $y=f(x)$ at which the targents
leave a slope of -1 .
Show theu the curve has ne lutringe points.
8. Periodic graphs

e-g. a section of the graph of the periodic function, $y=f(x)$, is shown abowe. Find
(i) the period and the range of the furstion,
(ii) f(19).

SAMPLE QUESTIONS

1. Arithmetic and Money

Question

(a) Express 720 cubic centimeires as a fraction of 1 . 2 litres. Give your answer in is simplest form.
Note: 1 liter $=1000$ cubic entimetres.

Ordinary level Paper 1

(b) (i) Calculate the value of $\frac{\left(2.04 \times 10^{8}\right\}+\left(3.05 \times 10^{7}\right)}{3.5 \times 10^{+}}$, and write your answer in decimal thom.
(ii) Geclan spends $633-8 \bar{i}$ in a grocery shop and $€ 11-29$ in a betrdware shop.
He approximates his total expenditure to be $\mathrm{E}(24+12)$. Caleulate, correct to one decimal place. tis prercentage error.
(c) Hugh has a net income of $£ 4577$ for a particular month. I is max credis are $€ 270$ for the month and the standard rate cet oll' point is e2950. The standard and higher rates of tax are 20% and 41% respleclively. Calculate his gross income for the month.

Solution

(a) 1.2 litres $=1200 \mathrm{cmr}^{2}$

Jiraction $=\frac{720}{12704}=\frac{3}{5}$
(b) (i) By caleulator,

$$
\begin{aligned}
& \frac{\left(2.04 \times 10^{3}\right)+\left(3.05 \times 10^{7}\right)}{3.5 \times 10^{+}} \\
& =6706\}
\end{aligned}
$$

(ii) Truc value $=€ 23 \cdot 87+€ 11 \cdot 29$

$$
=€ 35 \cdot 16
$$

$$
\% \text { error }=\frac{\dot{\oplus} \cdot 3 \cdot 16--30 \mid}{35 \cdot 16} \times 104 \%
$$

$$
\begin{aligned}
& -\frac{0.84}{35 \cdot 16} \times 100 \% \\
& =2.4 \%
\end{aligned}
$$

(c) Let Ex be the grows income.

Standard rate: 62950 2.20%

$$
=€ 590
$$

Hjehter rake: $\quad \mathrm{E}(x-2950)(241 \%$ $=\mathrm{f}(0 \cdot 4 \mathrm{~L} x-1290 \cdot 50)$
Gross tax:
$=€ 590+€(0 \cdot 4 \mid x-1290 \cdot 50)$ $=f(0 \cdot 4 \mathrm{~L} x-6(9.50)$
Tax credits:

$$
=€ 270
$$

Nel 1ax:
$-\epsilon(0.41 x-619.50)-6270$ $=(:(41 \cdot 41 x-889 \cdot 50)$
Then
Gross inconc: $=\mathrm{E} x$
Net tax:

$$
=€(0 \cdot 41 x-889 \cdot 50)
$$

Net income:
$=€ x-\epsilon(0 \cdot 41 x-889 \cdot 50)$
$=€(0 \cdot 59 x \div 889 \cdot 50)$
Given:
4. $59 . \mathrm{r}+889 \cdot 50-4577$
$0 \cdot 59 x=3687 \cdot 50$

$$
x=\frac{3687 \cdot 50}{0.59}
$$

$$
x-6256
$$

His gross income for the month is 66250 .

2. Algebra

Questien

(a) Solve tor $x \in \mathbb{R}$:

$$
3(2-x)+5=2(4-x)
$$

(b) (i) Express c in lerms of a and b if

$$
b=\frac{4 n-3 c}{5} \text {. }
$$

Find the value of c when $a=12$ and $b-5$.
(ii) $(x-2)$ is a factor of
$2 x^{3}-11 x^{2}+k x-6$. Find the value of $k=\mathbf{R}$.
(c) (i) Solve lor $x \in \mathbf{R}$:

$$
3^{3,+1}-\frac{9^{x}}{\sqrt{3}}
$$

(ii) Solve the equation
$(\sqrt{2 x}+\sqrt{x+1})(\sqrt{2 x}-\sqrt{x \div 1})=5$. for $x \in \mathbf{R}, x>0$.

Solution

(a) $3(2-x)+5=2(4-x)$
$6-3 x+5=8-2 x$
$-3 x+11=8-2 x$
$-3 x=-3-7 x$
$-x=-3$
$x=3$
(b) (i) $b=\frac{4 a-3 c}{5}$

$$
5 b=4 a-3 c
$$

$5 b \div 3 c=4 \mathrm{ct}$
$3 c=4 a \cdot \cdot 5 b$
$c=\frac{4 a \cdot \cdot 5 h}{3}$
$a=12, b=5$;

$$
c=\frac{4(12)-5(5)}{3}-\frac{23}{3}
$$

(ii) L也 $f(x)=2 x^{2}-1+x^{2}+k x-6$.

Put $x-2=0$. Thus $x=2$. As
$x \quad 2$ is a factor.
$f(2)=0$
$2(2)^{3}-1(2)^{2}+k(2)-6=0$
$16-44+2 k-G=0$
$2 k=34$
$k=17$
(c) (i) $3^{3 \times 11}=\frac{9^{x}}{\sqrt{3}}$

$$
\begin{aligned}
& 3^{3+1}=?_{3}^{2-)^{3}} \\
& \frac{1}{3^{2}} \\
& 3^{3 x+1}=3^{2 x} \stackrel{1}{2} \\
& 3 x+1=2 x-\frac{1}{2} \\
& 6 x+2=4 x-1 \\
& 2 x=-3 \\
& x=-\frac{3}{2}
\end{aligned}
$$

(ii) $(\sqrt{2 x}+\sqrt{x+1})(\sqrt{2 x}-\sqrt{x+1})=5$ $\sqrt{2 x}(\sqrt{2 x}-\sqrt{x-1})$

$$
+\sqrt{x+1}(\sqrt{2 x}-\sqrt{x+1})=5
$$

2x. $\sqrt{2 x} \sqrt{x \mid 1}$

$$
+\sqrt{2 x} \sqrt{x+1}-(x+1)=5
$$

$$
2 x-(x+1)=5
$$

$$
x-1=5
$$

$x-6$,

3. Complex Numbers

Question

(a) Express in the form $a+b i$, where

$$
a, b \in \mathbf{R} \text { and } i^{2}--1:
$$

$$
(-1+4 i)^{2} .
$$

(b) (i) [f $z=2-3 i$ and $u=4+i$, investigulle ir

$$
|=+w|-|=|+|w| .
$$

(ii) Solve forr $=\in Z$:

$$
z^{2}-2 z \div 5=0
$$

(c) $1 . e \mathrm{e}=\mathbb{- i}+i$
(i) Fixpress $=-\frac{1}{z}$ in the form $x+w, x, y \in \mathbf{R}$.
(ii) Find the values of the real nurnbers s and k il

$$
k\left(z-\frac{1}{z}\right)+t i=2+i
$$

Solution

(ii) $(-1+4 i)^{2}-(-1+4 i)(-1+4 i\}$

$$
\begin{aligned}
& =-1(-1+i j)+1 i(-1+4 i) \\
& =1-4 i-4 i+16 i^{2} \\
& -1-N i+16(-1) \\
& --15-8 i
\end{aligned}
$$

(b) (i) $|z|=|\underline{2}-3 i|$

$$
\begin{aligned}
&=\sqrt{2^{2}+(-3)^{2}} \\
&=\sqrt{13} \approx 3 \cdot 6 \mid \\
&|w|=|4+i| \\
&=\sqrt{4^{2}-11^{-}} \\
&=\sqrt{17} \approx+|\cdot| 2 \\
&|=+w|=|(2-3 i) \div(4+i)|
\end{aligned}
$$

$$
\begin{aligned}
& =|6-2 i| \\
& =\sqrt{6^{2}+(-7)^{2}} \\
& =\sqrt{40} \approx 6.32
\end{aligned}
$$

As $|\bar{a}|+|110|=3 \cdot 61+4 \cdot 12$

$$
=7.73 \neq 6.32
$$

(ii) $z^{2}-2 z+5-0$
$[a-1, b--2, c-5]$
$z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{-(-2) \pm \sqrt{i-2)^{2}-4(1)(5)}}{7(1\}}$
$=\frac{2-\sqrt{420}}{2}$
$=\frac{2 \pm \sqrt{-16}}{2}$
$=\frac{2-4 i}{2}$
$=1 \pm 2 i$
The roots are $1+2 i$ and $]-2 i$.
(c) (i) $\frac{1}{z}=\frac{1}{1+i} \times \frac{1-i}{1-i}$
$=\frac{1-i}{1-i+i-i^{2}}$
$-\frac{1 \cdot i}{1+1}$
$=\frac{1-i}{2}$
$=\frac{1}{2}-\frac{1}{2} i$
$z-\frac{1}{z}=(1+i)-\left(\frac{1}{2}-\frac{1}{2} i\right)$
$=\left(1-\frac{1}{2}\right)+\left(1+\frac{1}{2}\right) i$ $=\frac{1}{2}+\frac{3}{2} i$
(it) $k\left(=\cdots \frac{1}{\bar{y}}\right)^{\prime}, t i=2+i$
$k\left(\frac{1}{2}+\frac{3}{2} i\right)+t i=2+i$
$k(1+3 i)+2 t i=4 \div 2 i$
$k+3 k i+2 t i=4-2 i$
$k+(3 k \div 3 t) i=4+2 i$
$\mathrm{Rc}=\mathrm{Re}:$
$k=4 \quad \ldots$ I
Im $=$ = lm ;
$3 k+2 t=2 \quad \ldots 2$
2: $\quad 3(4)+2 t=2$
$2 t=-10$
$t-5$.

exam byef

Ordinary level Paper 1
 4. Functions, Graphs \& Differentiation

Questian

(a) $g(x)=\overline{3}+3 x$, for all $x \in \mathbf{R}$
(i) Find $g(2)$ and $g(15)$.
(ii) tind the constana k if $g(1.5)-k g(2)$.
(b) (i) Find the value of $\frac{d j^{\prime}}{d r}$ at $r=1$ if

$$
y=\frac{x^{2}-2}{2 x-3}
$$

(ii) Firtad the value of $\frac{\mathrm{d} y}{\mathrm{dr}}$ whet $x=-2$ if $y^{\prime}=\left(5 x^{2}+8 x-5 h^{k}\right.$.
(c) Let $f(x)=\frac{1}{x-2}, x \in \mathbf{R}, x \neq 2$.
(i) Complere the following talle:

x	$f(x)$
$\cdot 2$	
-1	
0	
\cdots	\cdots
$1 \cdot 5$	
$2 \cdot 5$	
-3	
4	
5	
6	

(ii) Draw the graph of $f:=f(x)$ in the (lemain $-2 \leq x \leq 6$.
(iii) Find $f^{\prime}(x)$, the derivative of $f^{\prime}(x)$. (iv) find the co-ordinates of the points on the curve $y=f(x)$ at which
the slope of the tangent is $-\frac{1}{4}$.

Solution

(a) $g(x)=7,3 x$
(i) $g(2)=7.3(2)=13$
$g(15)=7+3(15)=52$
(ii) $g(15) \div k g(7)$
$52=k(13)$
$52=13 k$
$b=4$
(b) (i) $y=\frac{x^{2}-2}{2 x+3}$

$$
\begin{array}{ll}
u-x^{2}-2 & v-2 x+3 \\
\frac{d y}{d x}=2 x & \frac{d v}{d x}=2 \\
\frac{d y}{d x}-\frac{v \frac{d}{d r}-u \frac{d v}{d r}}{v^{2}} &
\end{array}
$$

$$
=\frac{(2 x+3)(2 x)-\left(x^{2}-2\right)(2)}{(2 x+3)^{2}}
$$

$$
\text { At } x=1 \text {, }
$$

$$
\frac{d y}{d x}=\frac{(5)(2)-(-1)(2)}{(5)^{2}}
$$

$$
=\frac{12}{25}
$$

(ii) $y^{-\left(5 x^{1}+8 x-5\right)^{2}}$
$\frac{\mathbf{d} y}{\mathbf{d x}}=8\left(5 x^{2}-8 x-5\right)^{7}(10 x-8)$
A1 $x=-2$,
$\frac{d y}{d x}=8(-1)^{7}(-12)$
$=8(-1)(-12)$
$=96$
(c) (i) $y=f(x)=\frac{1}{x-2}$

Asymprere (broak): $x-2-0$
Table:

x	$f(x)$
$\cdots-2$	$-\frac{1}{4}$
-1	$\cdots \frac{1}{3}$
0	$-\frac{1}{2}$
1	-1
$1-5$	-2
$2 \cdot 5$	2
\cdots	-1
4	$\frac{1}{2}$
5	$\frac{1}{3}$
6	$\frac{1}{4}$

(ii) Grapl:

$$
\begin{aligned}
& \frac{-1}{(x-2)^{2}}=\frac{-1}{4} \\
& 4-\{x-2\}^{2} \\
& x-2=2 \text { or } x-2=-2 \\
& x=4 \text { or } x=0 \\
& \text { Points ate }\left(4, \frac{1}{2}\right) \text { anal }\left(0,-\frac{1}{2}\right) .
\end{aligned}
$$

(iii) $f(x)=\frac{1}{x-2}=(x-2)^{-1}$

$$
f^{\prime}(x)=-(x-2)^{2}=\frac{-1}{(x-2)^{2}}
$$

(iv) Slope $=-\frac{1}{4}$

Getting the right results: Two Institute of Education students Jennifer Kenny-Boyd (left) and Caroline Marron celebrating after getting their Leaving Cert results last year. Both got the points they needed to do the courses they wanted

SAMPLE QUESTIONS

Ordinary level Paper 2

Paper Two

As bas been the case for the last couple of years, you will have the weck-end to recover from Maths Paper I. and get ready for Maths Paper 2, whicls will be held on the moming of Monday, June $9^{\text {th }}$. [t goes widhout saying that. no mater what happens on Paper], you should wot indulge in post-mortems, but rather focus on the taik ahead. You should alse be aware that the najority of students perform better on Paper 2. This should offier some comfort, but doesn'1 leave any room for complacency.

Because Maths Paper 2 is to be followed in rapich successitun over the next few clays iny [risl, Business, French and History, you will not have as much time as you may think over the week-end to prepare lor Paper 2. The weekend should be leit for rapid revision. going through the key formulae and methods for cach of the topics you may attempt.

All your serinus revisitun must be done in the weeks and months prior to the start of the Leaving Cent.

Unlike Paper 1, Paper 2 contains two sections. Section A contains seven questions, of which you must attempt fiwe. Section B conlains four questions. one on each of the foul option topics, of which you only have to attempt one

Because ol time bonstrairits. most studerns have only scudied one option topic. For this reason, they will bave no choice in Section B. It is also common for stodents not to cover cerain topics in Section A. liot example. many studelus do mot cover neometry and enlagements, Question 4, due to perceived difficulty, dislike and/or disinterest. Also, no rew studemls lind it hated to relate to probalility, Question 6, and so have no intention of thying this question.

All of this leaves many stuclems emering Faper ? with theis six questions predetemined, i.e. with absolutely no choice. On Paper I, this would be highly dangerous. bul till Paper 7 it is not so bat.
[n general, Paper 2 is more benigu than Paper 1. having fiwer variations from ytar to ytar. It also has less algelra contem than Paper I. which is seen as a good thing by most people.

Nevertheless, each topic you intend to tackle nust be treated with respect and revised in depth. This is especially true if you enter the exam with little or ne choice.

One thing to be warf of with Paper 2 is the timing. Wany questions involve drawing graphs, e.g. the co-ordinate geometry questions, statistics and linear programming. You should practice drawing these accurately, elliciently, but most imporlanily. quickly.

Areas and Volumes

Question 1 , dealing with areas and volumes, is a wery popular question with most students. There are a number of good reasons for this. First of all. nuch of the material is larmiliar since, lumine Cert., ancl so is seen as not being too difficult.

Secondly: the three parts of the question have contentued to a regtar patern over the last good number of years. There is nothing to suggers that this patlera is to be disrapted this year.

The (a) part teditionally deals with a plane figure, e.g. a triangle, a circle or a sweter, and asks stuklents to calculate a length or an area. The basic fermulae are either well known or in the maths tables, except

$$
\begin{aligned}
& \text { lenyth of arc }=2 \pi r \times \frac{A}{360} \\
& \text { anta of sector }=\pi r^{2} \times \frac{A}{360} .
\end{aligned}
$$

Since 1996, the (b) pare has atways deall with the use of Simpson's Rele to approximate ant area. These have been very similar to each other, and can be well prepared. There is a form of Simpson's Rule on page 42 of the Maths lables. Howews, this is very abstact and mose lind it inaceessible. You are weil advised to leam your own form of the Rule, or learn how to lay ols the calculation in the form of a table.

The (c) part always deals with the volume of a solid, whith may be a compound solid. There is usually an easy introduction, but before the end you will probably haye to solve an equation to calculate a dimension. The required formulae are on page 7 of the Mathls lables.

1. Areas
e.g. two circles of radius length 8 cm touch at a single point, as shown.

area in the diadgramt.
2. Prisms e.g. the triangular hase of a prisun bas area $16 \mathrm{~cm}^{2}$ and the height of the prism is 22 cm . Calculale the velurne ol the prism.
3. Spleres and hemispheres e.g. a sphere has diameter 16 cm . Express its volunne in terms of π.
4. Cylinders
eg. calculate, in iems of π, the volume of a cylinder which has a base of radius 8 cm and a beight of 16 cm
5. Cones

e.g. a hollow cone las its axis vertical and its apcx below as showio. Its lecight is 30 cm and the radius ol its base is 24 cm . Wattr is poured in 10 a heielth of 20 cm . Fxpress the volume of the water as a percentage of the volume of the cones
6. Compound volimes

e.g. a solid figure consists of a cylinder lopped by a conte. The raclius of toolh the cylinder and the cone is 4 cm . The slant height of the cone is 5 cm and the total height of the dieure is 7 cm .
(i) Find the height of the cons.
(ii) Find the height of the cylinder.
(iii) Find the volunse of the figure in tenis of κ.
7. Forming equations
c.g. a sphere has a volume of 1 litre, i.e.
$1060 \mathrm{~cm}^{3}$. Taking $\pi=3 \cdot 14$, dind the
lenglh of the cadius of the splece.
corcee to one decimal plate.
8. Equal volume's
e.g. a solid metal sphere has radius 6 cm . Express the volume of the sphere in terms of π.
The sphere is melted down and recast as a solid cylinder of height 4.5 cm . Find the lenglh wh the radians of the eylinder.
9. Simpsoil's Rule
e.g. the sketch below shows a small plot of land.

Al equal intervals of x metres along「ab]. perpendicular measurements are made to the edges of the plot. The measurements to the top tdge are $30 \mathrm{~m} .26 \mathrm{~m}, 18 \mathrm{~m}, 34 \mathrm{~m}$ and 24 m . The measurements to the botom edge arc $24 \mathrm{~m}, 20 \mathrm{~m}, 30 \mathrm{nt}, 16 \mathrm{~m}$ and 22 m . Al a and b, the measurements are 0 cm . Using Simpson's Rule, the area of the plot is estimated to the $3968 \mathrm{~m}^{3}$. Calculatex.

The line

Question 2 deals with co-ordinate geometry of the lite, and is atempled by altoost every student. Again, monst of the basic material is familiar from Junior Cert., and familiarity breeds contentment.

However, chis question is taken for granted at your peril. Tluere are many fomulac to be leanmed, and guile a lew methorls. For cach formala, you must learn the formula exactly, know precisely when it is used and know how to substitute values into the formula.

A list of the key formula is:

* distance formula.
* midpocint lommala,
* Slape formula.
* equation of a line formula,
* arca of a triangle formula.

The following methods are also important:

* slopes of perperdicular lines,
* delermining if a point is on a line.
* plocting lines,
* finding the points of intersection of two lines,
* Iratislations.

Cacially, you should also practise multi-part questions, which often form the (b) or (c) part of Leaving Cert questions. This is where a mumber of successive, linked parts are asked. A diapram is usually essential to keep track of what is going on.

Maths

Ordinary level Paper 2

l．Distance and midpoint e．g．find the co－ordinates of m ，the midpoint of $[a b]$ ，if $a=(-1,6)$ and $b-(i, 2)$ ．Verity that $|a m|-\mid m h h^{\circ}$.
2．Slope
e．g．$p=(1,3)$ and $q=(5,1)$ ．Find the slope of the line peq and investigate if prt is perpendicular to the line with equation $3 x \quad 2 y^{\prime}=$ ？
3．Pletting lines e．g．plot the line $3 x-y=9$ and verify that che line contains the point（ $2,-3$ ）
4．Equation of a line e．g．tind the equation of the line oh if $u=(2,-3)$ and $h=(4,5)$
5．Connected lines
e．g．find the equation of the line through $a=(-1,6)$ which is perpendicular to the line $x+3 y-8$
6．Translations c．e．$a=(3,-4\}, b=(-1,-2\}, c=(5,1)$ ． Find the co－orelinates of αi° abou is a parallelogram．
7．Area of a triangle
e．g．find the ates ol the lriangle with
vertices（ $5,-1$ ）．（2，7），$(-3,2)$ ．

The Eircle

Question 3 also deals with co－ordibate geonetry，but this time of the circle．［1 is nearly as popular as the line question， although it is probably the curestios with the greatest algebra concent on Pajper 2.

First of all，it is imporeant to be axaare that every functuda and method from the line thay le required here in Question 3．Because of this，there are only taro newf fommilae bere， aleng with a fiew new methods．

The required formulae are both for the equation of a circle，and are：
＊circle，centre $(0,0)$ ，radius r ：

$$
x^{2} 1 y^{2}=x^{2}
$$

＊circle，centre（ k, k ），radius r ：

$$
(x-h)^{2}+(y-k)^{2}-r^{2}
$$

The methods include
＊determining if a poim is on，inside or outside a given circle．
＊Finding the centre and the radius，given， For example，the endpoints ol a diameter．
＊finding the equation of a tangent at a point on a circle，
＊Finding the equation of a parallel tangent，
＊linding the points of intersection and a circle with centre $(0,0)$ ．

The last method here involves solving a linear，non－dinear system of simultaneous equalions．which is first stadied in ulgebra， bul should be tevised lor the circle．

1．The equation $x^{2}+y^{2}=r^{2}$
e．g．find the equation of the circle with centre（ 0,0 ）and which contains the point（ $-5,2$ ）
2．The equation $(x-j)^{3}+(y-k)^{2}-r^{2}$ e．g．find the equation of the circle which luas $[p q]$ as a dianteter where
$\beta=(7,2 j$ and $q=(1,6)$
3．Point on a circle e．g．the point（ $k, 7$ ）belongs to the circle

$$
(x+2)^{2}+(y-4)^{2}-34
$$

Find the value of the real number k ．
4．Finding the centre and the radius e．g．find the co－ordinates of the centre and the length of the radius of the circles
（i）$x^{2}+y^{2}-53$
（ii）$(x+5)^{1}+(y-1)^{2}=17$
5．Position of a point relative to a circle e．g．investigate if the goint $(6,-4)$ is outside the circle

$$
(x+4)^{2}+\left(y-[)^{2}=45\right.
$$

6．Equation of a tangent e．g．$p(3,1)$ is a poine on the circle

$$
(x-2)^{2}+(y+3)^{2}=17
$$

（i）Find the slope of the tangent to the citcle at p ．
（ii）Find the equation of this tangent．
7．l＇arallel tangents
e．g．find the equation of T ，the tangent
to the citc⿱⿰㇒一十凵⿴囗十灬丶 $(x+4)^{2}+(y-3)^{2}=74$ at the poist $p(3,-2)$ ．
Find the equation ol T_{1} ．the other tangent to the circle which is parallel to I ．
8．Intersection of a line and a circle e．g．fiad the co－ordinates ol the puints of intersection of the line $3 x+y=10$ and the circele $x^{2} \div y^{2}=20$ ．

Geometry and Enlargements

Very few sudents study geometry theorems and colargenents，which is examined in Quesion 4．And umang those who do．Jiwtr intered to tackle the question in the leaving Celt．The ferception is that geometry proofs are boring，fussy and pointless．Naturally， matly teathers disagree，but still lind it

Scribble bax

difficult to instil any enthusiasm among students．

Howeyer，if you can overlook such negalive atiludes and locus tmp picking guestions that will generate good marks，this may be one to consider．The（4）part always cunlains a very easy application of one of the theorems．

Then the（b）math always asks ons of ten standard proofs．Although tedious，if you go to the lrouble of ketming them，it is at guaranteed 20 marks．

The（c）part thell bovers entargements．In practice，questions on eulargements are just an applicalion of Theorem 5 liom geometry． I lowever，you have is loarn some terminology，e．g．centre of enlargement and scale factor．There is alse one resuft to be remembered，i．e．that if the scale factor is k ， then the area of a region is multiplied by k^{2} to fond the area bo its image．

1．Proofs of theorems
e．g．Jrove that if three juarallel lines make intereepts of eqjual Iength on a transversal，then they will also make intercepts of equal length on any other transwersal．
2．Questions on thearemis e．g．in the cliagrain，de $\|$｜$a c,\left|b d^{\prime}\right|=9$ ．
$\cdot a d \mid=3$ and $\mid b c]=7$ ；tind $|c c|$

3．Enlargements e．g．the triangle cade is the image ol ${ }^{\circ}$ the triangle abe under an enlargement， centre a ．$\left|t^{\prime}\right| \angle C d^{\prime}\left|=7,\left|u E^{\prime}\right|=10-5\right.$ and

$$
t b d \mid=5, \text { lind }
$$

（i）the stale factor of the enlergement，
（ii）$|a c|$ ，
（iii）the area of $\Delta u d c$ if the area of $\Delta a b c=2$.

Ordinary level Paper 2

Trigonometry

Question 5 examines trigonometry, and is orde of the more mechantical questions on Paper 2. It is popular for both negative and positive reasoms. As a begative, it is seen by some as "nol as bad as some ol' the other questions'.

As a positive. many recognise that nearly all the rexuluied Jomblae are in the maths tables the gulestions tend to be of a practical nature. for the most part, and usually involve using a calculator.

The only formulae that thesed to be leamed are hasic, or used elsewhere:

* Pythagoras' theorem:

$$
a^{2}+b^{2}-c^{2}
$$

* trig ratios:

$$
\sin =\frac{u p p}{h y p}, \cos =\frac{\mathrm{ad} d \mathrm{i}}{\mathrm{~h}[\mathrm{y}]}, \tan =\frac{\mathrm{opp}}{\mathrm{adj}}
$$

* lengll of are and arca of seetor (ste) Areas and Volunles).

Of course, you must empletely master using your calculator to work out trig Jinctions, e.g. $\sin 57^{\circ}$, and due jurverse trig Jinfrions, e.g. to find the angle A such that $\cos A=0.45$.
['or general triangles, you should know where to find the area of a trianole formula. the Sine Rule and the Cosine Rule in the maths tables. You miust also know how to decide which rule to use, ankl how to use it correctily.

More complicated questions, usually (c) parts, involve more thand one triangle.] [etre you must know how to decide which triangle to start with and how to proceed.
[ifially, know how to ase the compound angle formulae, e.g.
$\sin (J+B)-\sin A \cos B+\cos A \sin B$,
which are given on page 9 of the tables.

1. Usiag a calculator
e.g. ust your calculater to tind
(i) $\cos 39^{\circ}$
(ii) the angle $0^{\circ}<A<90^{\circ}$, to the nearest degree, if $\sin A=0.61 .57$
2. Connected ratios
e.g. if $\sin A-\frac{9}{4]}$, for $0^{\circ} \leq A \leq 90^{\circ}$.
express ran A in the form $\begin{aligned} & P \\ & q\end{aligned}$, where
$p, q \in L$
3. Area of a triangle
e.g. in the triangle $\mu(\mathrm{r}$.
$p q\left|-15 \cdot 8,\left|m^{r}\right|-12 \cdot 6\right.$ and $\angle p q r^{\prime} \mid=82^{\circ}$

Find the area ol the triangle pgr. correct to one decimal place.
4. Sine Rule e.g. in the triangle $x:=,|y=|=8 \cdot 3$, $\angle y x-44^{\circ}$ and $|\angle y x x|-72^{\circ}$.

Find $|x y|$, emect to one decimal place.
5. Cosine Rule
e.g. in the triangle $a b c,|a h|-6 \mathrm{~cm}$,
$\cdot b c \mid=5 \mathrm{~cm}$ and $|\angle a b c|=79^{\circ}$. Find
$a c \mid$. werect to one decimel plact.

6. Solving tiangles
e.g. in the triangle $x y z,|x y|=12.3 \mathrm{~cm}$, . $\angle x z \mid-48^{\circ}$ and $|\angle x E|-61^{\circ}$. Find:
(i) $|\angle x=|$.
(ii) $|x=|$, correct to one decinal place,
(iii) $|y=|$, correct to one decinal place.

7. Arcs and secters
e.g. a cirele tas radius of lengeth 21 cm and cenatre o. A sector of this circle hass an angle of 246^{*} at 0 . Taking $\pi-3.14$, calculare the area of this sector.
8. Compound angles
e.g. the angles A and B are shown in the riglt-angled triangles below.

Use the triangles so find as fractions
(i) $\cos (A+B)$;
(ii) $\sin (A+B)$.

Prohahility

Probability, which is examined in Question 6 . is a completely difitrem brand of maths than the rest of our course. 'There is 110 algebra, there are few formulae, and most of the calculations involve counting, ustally by calculator.

The fonnula we use are:

* one thing and another: multiply numbers of tutcomes
* one way or another way:
add numbers of outcomes
* arrange a different objects:
$n!$ belton on a calculator
* choose r objects lisom n diflesent objuets: nCr button on a calculator
* problabitity of event, E :

$$
P(E)=\frac{r}{n}
$$

$=$ no. of favourable outcomes
Although this may sound casy, the real problem wisilh some probability gutslions is to reakl a chung of text, decide whether we ought to arronge or choose, or work out a probability, and decide how many objects are inwolyed. All of this must be done before using the caleulator to find the answer. This task is not evelyone's cuj , of tea.

If we are asked to lind a probability, it is important to realise that the answer muse lie hetween of and 1 .

1. Fundamental principle of counting

 e.g. Sean fontis a password by laking one of the letters of his manme along: with two of cle digits from 0 to 9 . e.g. E26. N44.(i) How manly passwords are possible?
(ii) How many passwords start with a vowel?
(iii) How many passwords contain two even numbers?
2. Arrangenents (permatations)
e.g. whers all the letters of the word FRIFNDI, Y are armanged,
(i) bow many arrangements are possible,
(ii) how manty of these arrangerments start with the letter F :
(iii) how many of these arangements slart with a wovel and end with Y ?
3. Combinations (chuites) e.g. from a groun of twelve students and five teaclers, a conmmittee of four is to be chosen.
(i) How many cominitees arte possible if there ale no restrictions?
(ii) How many committees are possible if there must be two students and two teachers?
4. Probability
e.g. a club las 12 men and is women as members. 8 ol the men are full menbers and 4 are assoctate members. 6 of the women are fill members and 12 are associate members.
A single elub member is chestn at
random. What is the prohatilety that
(i) the cluls member chosen is an associate member?
(ii) the club member chesen is is litl member who is a womant?
5. Two-stage probability e.g. a bag contains seven blue beads, four yelfow beads and five white beads. Two heads are chosen at ratelom from the bag.
(i) What is the probability that the two beads chosen ate bluc?
(ii) What is the probability that meither bead is white?
(iii) What is the probability that one beud is yelfore and the other is white?

Statistics

The last question in Section A, which deals with statistics, is one of the mose popular on Paper 2. This is perhaps because it contains yraphs and a number of tasy to apply rormulae.

There are two types of graph that you can be asked to constract: a histugtam and a cumulative frequency curve. These are very different, and great care must be taken with their constniction. For example, you must use graph paper, draw the axes with a ruler and put scales on the axes. lior histograms. the heights of the rectangles must be correct, as must the locations of their bases. For a cumulative lieguency curve, the correet points must be plocted and joined up. We can alm be asked to deduce values, e.g. the median, interguartilc rasge, from a cumblative freguency curve.

Ordinary level Paper 2

[n addition to graphs, we can be asked to jeiform a mumber of calculations:

* the median of a list:
this is simply the midelle number when arrariged in order.
* the mean of a list:

$$
\bar{x}=\frac{x_{1}+\cdot x_{2}+\ldots+x_{n}}{n}
$$

* The mean ol a table: use a formula or your own constructed table.
* standard deviation:
use a fortula or table to liest the stanclard deviation of a list or table.

A word of warning: do net do one of these calculations entirely ort a caleulator, show no working, and just write down the answer, If you get the answer right: great. But if it is wonsy, you stand to lose all marks for that parl.

1. Elistograms
e.g. a group of students was asked how many huars they spent walching television on a particular night and the results are given in the cathle helow

hours	(${ }^{-1} 1$	1..2	$2 \cdot 3$	35
stukents	12	16	8	10

(i) How many students were in the class?
(ii) Represent this data on a histoyrram.
(iii) What is the gratest possible number of students who could have watched ion television at all?
2. Mcan
e.g. if the mean of the numbers
$4, x .2 .8 .6$ is x, find the value or x.
3. Weighted mean
e.g. calculate the weighted mean of the results 6, 10, 15, 3, 7 whose respective weights itre 2, 1, 1. 4.2
4. Standard deviation
e.g. calculate the mear and the standard duviation ol lhe following distribulion:

Result	1	2	3: 4
Frequency	20	14	10 : 5

5. Comulative frequency curve
c.g. the weights, in kg. of a number of parcels passing throumb a sorting olfice was recorded as follows.

kyy	$0-2$	$2-4$	$4-6$	$6-8$
Number	12	24	10	6

Compiete the fullowing cumulative frequency mable.

ker	<2	<4	<6	≤ 8
Number				

Draw a cumulative frequenty curve and use it to estimate the numuler' of parcels which weighed
(i) [ess than 5 kg ,
(ii) more than 3 kg .
(iii) between 3 kg and 5 kg .
6. Median and interquartile range e.g. the atyes (in years) of a number of children in a playground were recorded anel are shown in the table helow.

Age	$0-3$	$3-6$	$6-9$	$9-12$
No.	9	17	10	6

Drew a cumblative fiequency curve and use it to estimate
(i) the median age of the children,
(ii) the inlertuartile ratrge.

OPTIONS

Section 13 of Paper 2 conlains (ine qutustion on each of the four option topies:
Question 8: Further geometry
Question 9: Vectors
Question 10: Further sequences and serits
Question 11: Lincar programming
Sudents are only required to answer one guestion from this section, and for this reason most sudents only study ort of these topics.

Of the four questions, Question It is the most popular, probably because it is seen as theing ant externsions of con-ordirale gecmerry. The (n) part of this question inyolves drawing or daming onte or more half planes. Thue (b) parl contains a practical situation that bas to be converted into incqualities which are then plotes.

The other options may not be as propular as linear progratmining hul eath has its ownil following. [t is sufficient to say that whichever option topic you study, make sure you are very farmiliar with the lyges of questions asked on that topic.

SAMPLE QUESTIONS

1. The Line

Question

(a) Find the slope of the line containing the points $(-1,4)$ ancl (2.3).
(b) Plot the line $7 x-2 y=14$.
(c) L is the line $2 x-3 y=4$.
(i) Verify that $a(-1,-2)$ belongs to L.
(ii) K is the line which contains the jwint $b(9,-4)$ and which is jerjendicular to L. lind the equation of K.
(iii) L and K intersect at the point c. Find the co-ordinates plec.
(iv) Find the area of the triangle abe.

Scriblle bax

Solution

(a) $\quad\left(x_{1}, x_{1}\right) \quad\left(x_{1}, y_{1}\right)$

$$
(-1,4) \quad(2,3)
$$

slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$=\frac{3-4}{2+1}$
$=\frac{-1}{3}$
(b) $7 x-2 y=14$
x-axis: L.et $y=$ th.

$$
4 x-2(0)=14
$$

$x=$?
(2,0)
, $=$ axis: Let $x=0$.
7(0)-2y-14
$y=-7$
$(0,-7)$

(c) (i) $L ; \quad 2 x-3 y=4$
$a(-1,-2)$:
2(-5)-3(-2)-4
$-2 \div 6-4$
4-4 True.
Thes a belongs to L.
(ii) L : $2 x-3 y=4$
$[a=2 . b--3]$
$m=-\frac{a}{b}$
$=-\frac{2}{-3}$
$-\frac{2}{3}$
$K \perp L$.
Slope of $K=\frac{3}{2}$.
$\left(r_{1}, b_{1}\right)$
m
$b(9,-4)$
$-\frac{3}{2}$
Esination ol R : ;

Ordinary level Paper 2

$$
(y+4)=\cdot \frac{3}{2}(x \cdot 9)
$$

(iii)

$$
\begin{aligned}
& 2(y+4)=-3(x-9) \\
& 2 y+8=-3 x-27 \\
& 2 y=-3 x+19 \\
& 3 x \div 2 y=19
\end{aligned}
$$

is the equation of K.

f.:	$2 x-3 y=4$
K;	$3 x+2 y=19$
Thers	
$L \times 2$:	$4 x-6 y=8$
$K \times 3$:	$9 x+6 y=57$
	$\frac{13 x}{x-5}=65$
κ :	3(5) 12 j ' $=15$
	15, $2 y=14$
	$2 \mathrm{y}=4$
	$y=2$

Thus $c=(5,2)$.
(iv) I translating,

$$
\begin{aligned}
& a(-1,-2) h(5,-4) \quad c(5,2) \\
& \begin{array}{ccc}
1,2 & 1,2 & 1,2 \\
\hline(0,0) & \left(1 i_{1},-2\right) & (6,4) \\
& \left(x_{1}, y_{1}\right) & \left(x_{2}, y_{2}\right)
\end{array} \\
& \text { Arca } \Delta=\frac{1}{2}|(10)(4)-(6)(-2)| \\
& =\frac{1}{2}|40+12| \\
& =\frac{1}{2}|\leqslant 2| \\
& =\frac{1}{2}(52) \\
& =26 \text { square units. }
\end{aligned}
$$

2. The Circle

Question

(a) Determine, by calculation, if the point $(3,-3)$ is inside the cirith $x^{2}+y^{2}=20$.
(b) Find the points all intersection of the lirbe $x+y=3$ and the cirelc $x^{2}+y^{2}=29$.
(c) $a(0,3), b(4,-3)$ and $c(-2,-7)$ are the vertices of a triargle.
(i) Verify that ab is pergendiculiar to be.
(ii) Find the equation of the circle C which contailes a, band c.

Solution

(a) $\quad x^{1} \div y^{2}=20$
(3.-3): $(3)^{2}+(-3)^{2} \quad 20$ $9+9 \quad 26$ $18<20$
Thus (3,3) is inside the circle.
(b) $\mathrm{L}: \quad x \mid y=3$
$y=3 \quad x$
C: $\quad x^{2}+y^{2}-29$
$x^{2}+(3-x)^{2}=29$
$x^{2}+(3-x)(3-x)=29$
$x^{2}+9-3 x-3 x+x^{2}-29$
$2 x^{2}-6 x-20=0$
$x^{2} 3 x \quad\{0=4$
$(x-5)(x+2)=0$
$x-5-0$ or $x+2-0$
$x=5$ or $x=-2$
I.; $y-j-x$
$x-5 ; \quad y-3-(5)-2$
One puint of inlersection is $(5,-2)$.
$x=-2 ; y=3-(-2)=5$
The other puind of intersection is ($-2,5$).
(c) (i) Let m_{l} be the slope of $a b$, where
$a=(0,3)$ and $b=(4,3)$.

$$
m_{1}=\frac{-3-3}{4-0}=\frac{-6}{4}=\frac{-3}{2}
$$

Let m_{1} be the slope of $b c$, where

$$
b-(4,-3) \text { and } c-(-2,-7) \text {. }
$$

$$
m_{1}=\frac{-7+3}{-2-4}=\frac{-4}{-6}=\frac{2}{3}
$$

As $m_{1} m_{2}=\left(\frac{-3}{2}\right)\left(\frac{2}{3}\right)=-1$.

$$
a b \perp b c .
$$

(ii) Centre of c.' is the midjoint of $[a c]$.

$$
\begin{aligned}
(h, k) & =\left(\frac{0-2}{2}, \frac{3-7}{2}\right) \\
& -\left(-1,-\frac{2}{2}\right)
\end{aligned}
$$

Radius of C is the distance from $(-1,-2)$ to $a=(0,3)$.

$$
\begin{aligned}
r & =\sqrt{(0+1)^{2}+(3+2)^{2}} \\
& =\sqrt{1^{2}+5^{2}} \\
& =\sqrt{26}
\end{aligned}
$$

Thus the equation of C is

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x+1)^{2}+(y-2)^{2}=26
\end{aligned}
$$

3. Trigonometry

Question

(a) Copy the triangle shown below and indicate ont it the angle A il

$$
\text { tan } A=\frac{45}{28}
$$

Show that $\sin A+\cos A<\tan A$.
(b) A circle bas eentre O and radius lengh $10 \mathrm{~cm} . \mathrm{opg}$ is a sector of this circle and $|\angle \mathrm{moq}|-15 \mathrm{t}^{\circ}$.

Find, in ternis of π :
(i) the length of the sinnor arc $p q$. (ii) the area of the sector rapy.
(c) In the diagrann,
$|x z|=12 \mathrm{~cm}$,
$|x y|=|x z|$,
$|\angle y x z|=50^{\circ}$ and
$|\angle I n x|=45^{\circ}$.

Calculate
(i) $|x=|$, correct to oru decimal place,
(ii) $\mid x$ uf , wotrect to me decimal place.

Solution

(a) The angle A is slown below.

$$
\tan A=\frac{o p p}{a d j}=\frac{45}{28}
$$

[Jien

$$
\begin{aligned}
& \sin A=\frac{\text { opp }}{\text { byp }}=\frac{45}{53} \\
& \cos A=\frac{\text { adj }}{\text { hyp }}-\frac{28}{53}
\end{aligned}
$$

$\sin A+\cos A=\frac{45}{53}+\frac{28}{53}=\frac{73}{53}=1 \cdot 377$
tall $A=\frac{45}{28}=1,6107$
Thus $\sin A+\cos A<\tan A$.
(b) (i) Lengeth of are $=2 \pi r \times \frac{A}{360}$

$$
\begin{aligned}
& -2 \pi(10) \times \frac{150}{360} \\
& =20 \pi \times \frac{5}{12} \\
& =\frac{25 \pi}{3} \mathrm{cml}
\end{aligned}
$$

(ii) Area sector $=\pi r^{-2} \times \frac{A}{360}$

$$
\begin{aligned}
& =\pi(10)^{2} \times \frac{150}{360} \\
& =100 \pi \times \frac{5}{12} \\
& =\frac{125 \pi}{3} \mathrm{~cm}^{2}
\end{aligned}
$$

(c) (i) $\Delta x v=$

As the triangle is isosceles.
$|\angle x y=|=|\angle x=y|$.

Thus

Ordinary level Paper 2

$2 \mid \angle 33.1+50^{\circ}-180^{\circ}$
 $2|\angle x y=|=130^{\circ}$
 $|\angle \mathrm{nz}|=65^{\circ}$
 Scribble lax

-

T.et $\quad a=|. x=|$.

By the Sine Rule,

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B} \\
& \frac{a}{\sin 65^{\circ}}-\frac{12}{\sin 50^{\circ}} \\
& a-\frac{12 \sin 65^{\prime \prime}}{\sin 55^{\circ}} \\
& a=14.2 \mathrm{~cm} .
\end{aligned}
$$

(ii) $\Delta x u z$.

$$
\begin{aligned}
& |\angle x=x|=180^{2}-65^{\circ} \\
& -115^{\circ} \\
& |\angle \bar{x} \cdot n|+115^{\circ} \div 45^{\circ}=180^{\circ} \\
& |\angle z, n|=20^{\circ} .
\end{aligned}
$$

「.e.t $\quad a-|x u|$.
By the Sine kule,

$$
\begin{aligned}
& \frac{a}{\sin A I}=\frac{b}{\sin B} \\
& \frac{a}{\sin \left[15^{\circ}\right.}=\frac{16-2}{\sin 45^{\circ}} \\
& a=\begin{array}{c}
14 \cdot 2 \sin \left[15^{\circ}\right. \\
\sin 45^{\circ}
\end{array} \\
& a=18.2 \mathrm{~cm} .
\end{aligned}
$$

4. Statistics

Question

(a) The mean of the mumbers 3, 4, 5, 6. 7 is 5. Calculate the standard deviation correct to one decimal place.
(b) The numbers $6,11,13,3,7$ have weights $2.5,1, x$. 1 respectively. If the weighted mean is 8 , find the value of x.
(c) The amounts of money spent by a number of customers in a convenjence store in a orn hour periol are shown in the histogranl below.

(i) Copy and complete the following grouped fiequency table.

| Amound (in 6) | $4 \cdot 2$ | $2 \cdot 4$ | $4 \cdot 8: 8 \cdot 12$ |
| :---: | :---: | :---: | :---: | :---: |
| No. or euslomens | | | 20 |

(ii) By taking the data at the middinterval valtes, estimate the mona amourl spent by customers. Giye your answer cortece to the nearess cent.
(iii) What is the greatest number of ellstomers who coukd have spent less that to in the converience store?

Solution

(a) $3,4,5,6,7$.

Table:

x	$x-\bar{x}$	$(x-\bar{x})^{2}$
3	-2	4
4	-1	1
5	13	0
6	1	1
7	2	4
	Tolat	10

Then

$$
\begin{aligned}
\sigma & =\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}} \\
& -\sqrt{\frac{10}{5}}-\sqrt{2}-1 \cdot 4 .
\end{aligned}
$$

(b) Table:

x	w	$x w$
6	2	12
11	5	55
13	1	13
3	x	$3 x$
7	1	7
Totals	$x \div 9$	$87+3 x$

Given:
weighted memn - 8

$$
\begin{aligned}
& \frac{\sum x 1}{\sum 15}=8 \\
& \frac{8 \bar{y}+3 x}{x+9}=8 \\
& 87+3 x=8 x+72 \\
& 15=5 x \\
& x=3 .
\end{aligned}
$$

(c) (i)

TAs the fregmency of '8 -12' is 2\% and there are iot htocks in shis. rectante, each black represems? cunfomers.;

Fialliag in the table:

Amount (in fi)	$11-2$	$2-4$	$1-8$	$8-12$
No. of cuscemers	-5	12	16	20

(ii) Table:

Interval	x	f	.$x f$
$0-2$	1	4	4
$2-4$	3	12	36
$4-8$	6	16	96
$8-12$	10	20	200
$\ldots \ldots$.	Totals	52	$3 . .36$

Then

$$
\bar{x}=\stackrel{\sum y f}{2 f}=\frac{336}{s 2}=(i \cdot 46 .
$$

Thus the mean amount spent is $66 \cdot 46$.
(iii) The greatest number of eustomers whe could have spent less than e6 is $4-12+16-32$.

NEXT WEDNESDAY
Languages ExamBrief with Orals

Nobody Forgets a great Teacher...

Teaching excellence and the Institute of Education are, and always have been, synonymous. Indeed, some of the Institute's teachers have become legends in their own time, such is the quality of their teaching and the high level of their results. A significant cohort of teachers have been with the Institute for two or even three decades.

The Institute of Education's teachers are renowned for:

- An established reputation for teaching excellence and dedication
- A proven record of exam achievement by their students
- Their commitment to the academic success of their students
- Their energy and enthusiasm

Many of our teachers are authors of standard school textbooks and are contributors to educational publications and educational radio programmes Our teachers are keenly aware of examination techniques and requirements.

Class Notes

While priority is, and always has been, the excellence of the classroom tuition the Institute further specialises in providing extra help for its students in the form of notes. Summaries of topics taught, sample papers containing examination-type questions with model answers etc., are given wherever necessary, in order to clarify and reinforce classroom tuition.

Examination techniques

Teachers will concentrate on examination-type questions and advise on examination techniques throughout all courses.

Excellent Teachers + Hard Working Students = Outstanding Results

Top 10 Reasons for Studying at The Institute of Education

1.39 Years Experience

Founded in 1969, the Institute of Education has 39 years experience helping students realise their full potential.

2. Gifted Teachers

The Institute of Education is renowned for it's dedicated and gifted teachers.

3. Outstanding Results

Irelands number one top provider of students to Irish and UK Universities.
4. Supervised Study - 7 days a week

Two well aired Study Halls.

5. Attendance Monitoring

There is continuous student monitoring of attendance, punctuality and participation in class tests.

6. Wide Subject Choice

The Institute offers a broad range of subject choice.

7. Create Your own Timetable

Create a timetable that works for you.

8. Excellent Career Guidance

The Institute of Education places great emphasis on Career Guidance.

9. Superb Class Notes

Class work at the Institute is reinforced by the excellent 'Institute Notes'.

10. Excellent Facilities

The Institute offers; Science Laboratory, Home Economics Kitchen, Computer Room, Art Room, Music Room and Study Halls.

Now Interviewing 5 th \& 6th Year Full Time Courses Commencing Sept 08

