High-Perfor mance Floating Point Divide

Albert A. Liddicoat and Michael J. Flynn
Computer Systems Laboratory
Stanford University, Stanford, CA 94305
liddicoat@stanford.edu and flynn@umunhum.stanford.edu

Abstract

In modern processors floating point divide operations of-
ten take 20 to 25 clock cycles, five times that of multipli-
cation. Typically multiplicative algorithms with quadratic
convergence are used for high-performance divide. A di-
vide unit based on the multiplicative Newton-Raphson iter-
ation is proposed. This divide unit utilizes the higher-order
Newton-Raphson reciprocal approximation to compute the
quotient fast, efficiently and with high throughput. The di-
vide unit achieves fast execution by computing the square,
cube and higher powers of the approximation directly and
much faster than the traditional approach with serial multi-
plications. Additionally, the second, third, and higher-order
terms are computed simultaneously further reducing the di-
vide latency. Significant hardware reductions have been
identified that reduce the overall computation significantly
and therefore, reduce the area required for implementation
and the power consumed by the computation. The proposed
hardware unit is designed to achieve the desired quotient
precision in a single iteration allowing the unit to be fully
pipelined for maximum throughput.

1 Introduction

Division can be expressed as the product of the dividend,
and the reciprocal of the divisor, ¢ = a/b = a x (1/b).
Multiplicative techniques such as Newton-Raphson and se-
ries expansion algorithms are often used to compute the
reciprocal for high-performance division [10]. The IBM
PowerPCT™ and Power2™ processors use Newton-
Raphson algorithms to implement divide and square root.
The AMD — K7TM [9] and IBM Power3™M [2] proces-
sors use algorithms based on series expansion for both di-
vide and square root.

Typically, the first-order Newton-Raphson iteration with
quadratic convergence is used. The first-order Newton-
Raphson iteration requires two dependent multiplications
per iteration. Rabinowitz [11] extended the Newton-

Raphson reciprocal recurrence to include higher-order poly-
nomials. The convergence of the higher-order iteration is
Eii1 = bEf“, where E; is the error of the reciprocal ap-
proximation for iteration ¢ and & is the order of the recur-
rence [5].

Series expansion algorithms are also used to compute the
reciprocal using multiplicative iterations. The binomial se-
ries expansion technique, often called Goldschmidt’s algo-
rithm [6] [4], is based on the familiar Taylor series expan-
sion of a function at a point. The binomial expansion algo-
rithm requires two independent multiplications per iteration
and provides quadratic convergence.

Recent work in the area of high-performance division
has shown that higher-order iterations improve perfor-
mance. Wong and Flynn [12] proposed a very-high radix
division scheme that is based on look-up tables and Tay-
lor series approximations for the reciprocal. Higher-order
terms of the Taylor series are computed to increase the
precision of successive quotient approximations. This ap-
proach offers linear convergence while retiring 10 or more
bits per iteration. Ito, Takagi, and Yajima [7] developed
an accelerated higher-order Newton-Raphson division and
square root algorithm suitable for implementation using a
multiply-accumulate unit. This implementation accelerates
the convergence of the higher-order iteration by using a
lookup table to estimate the cube of an intermediate value.
Ercegovac, Lang, Muller, and Tisserand [3] proposed a
method to compute the reciprocal and other functions based
on argument reduction and series expansion. This method
uses tables and small multipliers to compute the terms of a
series expansion. Small serial multipliers are used to com-
pute the square and cube of an intermediate value.

A multiplicative divide unit based on the higher-order
Newton-Raphson reciprocal approximation is proposed and
analyzed. A parallel cubing unit proposed by Liddicoat
and Flynn [8] exposes additional computational parallelism.
The parallel cube computation is extendable to compute
higher powers and thus further accelerate the convergence
of the approximation. The proposed divide unit exploits the
computation parallelism exposed by the parallel powering

units. Furthermore, by using higher-order approximations
the desired precision may be obtained in a single iteration
allowing a fully pipelined implementation.

The various divide algorithms and implementations dif-
fer on several accounts. First, the inherent computational
parallelism that allows latency reduction. Second, the sub-
unit precision and the affect of the subunit precision on the
latency, area, and power consumption required for the di-
vide computation. Finally, the error convergence of the ap-
proximation determines whether it is feasible to compute
the quotient to the desired precision in a single iteration.

This paper is organized as follows, sections 2 and 3
present the Newton-Raphson and binomial series expansion
divide algorithms. In section 4 the higher-order Newton-
Raphson divider and subunits are proposed. In section 5
significant hardware reductions applicable to the proposed
architecture are presented and the final hardware configura-
tion is discussed. In the remaining sections, the proposed
divide unit is compared to alternate techniques and brief
conclusions are presented.

2 Newton-Raphson Divide Unit

The first-order Newton-Raphson reciprocal approxima-
tion with quadratic convergence is expressed as, X;11 =
X;(2 — bX;). The initial approximation, Xy, for the recip-
rocal of 1/b is generally determined using a ROM lookup
table before the first iteration begins. A fused multiply-
subtract subunit may be used within the iteration to compute
(2—bX;) inasingle operation. Therefore, each iteration re-
quires two dependent multiplication operations.

After the final iteration has completed, the quotient is de-
termined by multiplying the dividend with the reciprocal of
the divisor. Figure 1(a) illustrates the first-order Newton-
Raphson divide unit. Each multiplication within the iter-
ation is dependent on the result produced by the previous
multiplication and must be computed serially. If L itera-
tions are required to achieve the desired quotient precision,
then the latency of the divide unit implemented with a sin-
gle mUItipIier is taiv = tlookuptable + 2Lt it + tmat- Us-
ing two multipliers the total latency may be reduced by one
multiplication if the final multiplication with the dividend is
overlapped in the last iteration since ¢ = (aX ¢) x (2—bX7y).
The latency for the first-order Newton-Raphson divide unit
using two multipliers is ¢4y = tiookuptabie + 2Ltmuit.

The generalized Newton-Raphson reciprocal iteration
may be expressed as the following kg, order iteration,
Xit1 = Xs(14+(1=0X) + (1=bX;)?2 +... + (1 =bX,)F).
Here X is the ., approximation of the reciprocal of the di-
visor, b. Figure 1(b) shows a third-order Newton-Raphson
divide unit designed using standard multiplication, addition,
and subtraction units. The subtraction and additions may be

LUT (1/b)
LUT (1/b)
Xo
n
MUX
b Xi
n
2
a Zo Xi+l
n
a 2 Xi+l
n
q=ab
g=ab
(a) (b)

Figure 1. NR divide (a)lst order (b)3rd order.

fused with the multiplications as described previously with-
out significantly increasing the multiplication latency.

If a single multiplier is used and L iterations are re-
quired for the desired quotient precision, then the latency
of the third-order Newton-Raphson divide unit is t4;, =
tookuptable + 4Ltmuit + tmwe. Due to the faster conver-
gence, one iteration of the third-order divide unit reduces
the reciprocal error by the same amount as two iterations of
the first-order divide unit. The latency for one iteration of
the third-order divide unit is also equivalent to the latency
for two iterations of the first-order divide unit.

As was the case with the first-order divide unit, the final
multiplication with the dividend may be overlapped when
two multipliers are available reducing the latency by one
multiplication. The latency of the divide unit using two
multipliers is tqiy = tiookuptabie + 4Ltmuie. Again the la-
tency for one iteration of the third-order divide unit is equiv-
alent with the latency of two iterations of the first-order
Newton-Raphson iteration. There is no benefit in using a
higher-order iteration if full precision serial multiplications
are used to compute the powers of (1 — bX;).

3 Division by Series Expansion

The disadvantage with the standard form of the Newton-
Raphson divide is that the multiplications in the iteration
are dependent and must be performed serially. Therefore,
each iteration requires two or more serial multiplications.
Binomial series expansion is another multiplicative division
technique with quadratic convergence. The typical form of
the series expansion recurrence is based on the Maclaurin

series were b = 1 + X as shown in equation 1.

1 1

I =3=17x

=1-X+X2-X3+X'—... (D

After factoring equation 1 and multiplying by the divi-
dend a, the quotient, ¢, can be expressed by the multiplica-
tive series shown in equation 2.

q= % =a(1-X)1+X?)(1+ X1 +X%)(1+X)...

)

Each multiplication in equation 2 quadratically reduces
the error in the quotient ¢ and is considered an iteration to-
wards the final quotient. Here, go = a, ¢ = a * (1 — X),
and gi+1 = q,(]. + XT) =q; Xr; fori > 1.

Let rop = (]. —X), do = (1 +X) and d; = d;_1 *
r;—1 thenr; = (2 —d;) for i > 1. A multiplication and
subtraction must be performed to obtain the next factor r;.
Within each iteration both d; and r; must be computed, and
a fused multiply-subtract cannot be used.

Figure 2 shows a divide unit based on the iterative form
of the binomial series expansion. The right side of the di-
vide unit computes the next factor ;1 while the left side
computes the quotient approximation ¢;11. The factor r; 41
is independent of the quotient, ¢;11, computation and there-
fore the two multiplications may occur simultaneously.

Similarly to the Newton-Raphson division, a lookup ta-
ble can be used to reduce the number of iterations required
to obtain the desired precision. The first term (1 — X),
or product of the first few terms (1 — X)(1 + X?2)(1 +
X*)...(1 + X2™), is found in a ROM lookup table. Then
dm+1 18 computed by multiplying the result returned from
the lookup table by (1 + X). The initial quotient approxi-
mation for ¢, 1 is computed by multiplying the dividend,
a, by the result returned from the lookup table such that
giv1 =ax (1—-X)(1+X?)(1+X*)...(1+X2"). These
two multiplications are also independent and may occur in
parallel. Then the iterations continue as before.

The latency of the binomial expansion divide algorithm
depends on how many multipliers are used and the num-
ber of iterations, L, required to obtain the desired quotient
precision. If one multiplier is used, then the divide unit la-
tency is tgiv = tlookuptable + 2Lt e + tmuie. Here, the
subtract must be overlapped with the quotient multiplica-
tions. If two multipliers are used then the latency reduces to
tdiv = tlookuptable + tmult + L(tZ’sC’omp + tmult)-

Interestingly, if a single multiplier is used the binomial
expansion divide unit latency is equivalent to that of the
Newton-Raphson divide unit. However, if two multipliers
are used then the latency of the binomial expansion divider
is reduced by approximately, L(¢muit — t2 sComp) — tmuit-

It has been shown that the first-order Newton-Raphson
algorithm and the binomial expansion algorithms are equiv-
alent when Xy = b — 1. In fact, they are two different ways
of expressing the same computation. Both algorithms re-
quire the same number and type of operations. However,
due to the way each algorithm is expressed, the multipli-
cations in the Newton-Raphson iteration are dependent and
must be performed serially while the two multiplications
in the binomial expansion are independent and can be per-
formed in parallel.

LUT (1-X)
o

qO:a dO=b=(1+X)

Figure 2. Binomial expansion divide unit.

4 Proposed Divide Architecture

The divide unit may compute the quotient directly and
need not iterate to a solution. The error in the initial ap-
proximation and the convergence of the computation must
be sufficient to guarantee the desired quotient precision will
be achieved with one computation. This joint constraint im-
plies that there is a tradeoff between the lookup table size
and the computational complexity of the algorithm.

Next, we express the quotient directly as the product of
the dividend and the k;,-order Newton-Raphson reciprocal
approximation, g = ¢ = aX(1+ (1 -bX)' +(1-bX)*+
..+ (1= bX)*). Here X is the initial estimation of ; gen-
erally found in a lookup table with error, Ejgoruptabie. The
quotient error is expressed as, £, = bEﬁjg,ﬁupmble. The k¢p,-
order approximation increases the number of bits of preci-
sion of X by a factor of k£ + 1. Therefore, in order to com-
pute an n-bit reciprocal in a single iteration the precision

of the initial approximation must be 77 bits. The lookup

table size must be (2%¥+1) x (%47) bits. For example, the
third-order Newton-Raphson approximation would require
a2% x 2 bit lookup table.

Figure 3 illustrates the hardware structure required to im-
plement the proposed higher-order divide unit. The latency
of the divide unit is t4;y < tiookuptabie + Stmuse. Here, it
is assumed that the powers of (1 — bX) may be computed
directly, in parallel, and faster than a full precision multipli-
cation. Liddicoat and Flynn [8] propose a parallel cubing
unit and describe a parallel squaring unit suitable for the
proposed higher-order divide architecture. These powering
units are described in more detail in subsection 4.3.

The proposed divide unit may be fully pipelined if two
small multipliers, the powering units, and one full multiplier
are used. Small multipliers are used to compute (1 — bX)
and (aX) since X is approximately £ bits in length. A
third-order divide unit would be constructed out of two 1
size multipliers, one squaring unit, one cubing unit, and one
full multiplier. A 24-bit implementation of the proposed
third-order divide unit is presented and discussed in detail
in the following subsections.

LUT (X= 1/b)
) n/(k+1) x n/(k+1)

~ni(k+1)

1-bX

* ‘(an)z‘ ‘(1—bx)3‘ o ‘(1—bx)k‘

1+ sum

o]

n{
g=ahb

Figure 3. Proposed higher-order NR divide.

4.1 Lookup table

An initial approximation for the reciprocal of the divisor
is determined by a table lookup. The A + 1 most significant
bits of the divisor are used to index the lookup table and the
m + 1 most significant bits of the reciprocal approximation
are returned from the lookup table. A 2" x m bit ROM
with h address bits and an m-bit word size is used for the
lookup table since the most significant bit is constant for
normalized IEEE floating point operands [1].

In order to eliminate the need to represent negative num-
bers in the computation, the lookup table must be pro-
grammed such that the (1 — bX) fused multiply-subtract

always produces a positive result. Furthermore, if the re-
sult of the (1 — bX) computation is positive then the com-
puted reciprocal will be equal to or less than the true recip-
rocal. This can be demonstrated by realizing that the exact
reciprocal can be computed using an infinite-order Newton-
Raphson approximation. If (1 —bX) is positive then the ex-
act reciprocal is proportional to an infinite sum of decreas-
ing positive terms and a finite-order approximation is the
truncation of this infinite series.

To guarantee that (1 — bX) > 0, the lookup table must
return a value that when multiplied by b is always less than
or equal to one. This can be accomplished by programming
the table entries such that the value stored in each lookup ta-
ble address is less than the reciprocal for all possible values
of b that map to that particular address location. Let byyyne
be equivalent to the divisor b truncated to h + 1 bits. To
determine the value to store in each address of the lookup
table we first add 27" t0 bspyne SO that bipyne + 27" > b
for any possible b. The reciprocal of byyyn. + 27" is then
computed noting that ;—L—— < . Finally the result

of ;— == is truncated to m + 1 bits. All of the table
entries are of the form 0.1zzx...xzz. The first digit to the
right of the radix point is always one and therefore does not
need to be stored in the lookup table. If the lookup table
is programmed according to this procedure, then it will al-
ways return an approximation less than % and the result of
the (1 — bX) fused multiply-subtract operation is always
positive. The value to be programmed in each address of
the lookup table are a function of the address, the number
of bits used to address the lookup table 4, and the number
of output bits from the table m.

To determine the best lookup table size we exhaustively
simulated several table sizes using full precision computa-
tions. The results from these simulations are shown in table
1. The table size of 27 x 7 bits was selected for the recip-
rocal approximation since the maximum error was less than
0.5ulps (unitin the last place). Furthermore, the number of
leading zeros to the right of the radix point in the (1 — bX)
computation is guaranteed to be six or more when using a
lookup table of this size.

Table 1. Lookup table sizes for 24-bit operand

Ad bits | Wd bits | Thl Size | Lead 0’s Error
6 6 384 5 1.40 ulps
6 7 448 5 0.95 ulps
7 6 768 5 0.53 ulps
*7 7 896 6 0.13 ulps

4.2 Computing (1 — bX)

The first arithmetic operation that follows the lookup ta-
ble access is the (1 — bX') fused multiply subtract. Since X
is approximately ;% bits, a small multiplier is used.

The divisor b is in the normalized IEEE single precision
format. Therefore, by3 = 1 and bits b2 through by depend
on the value stored in b. In order to compute the result of
(1 — bX), b is sign extended with eight leading zeros and
then the two’s complement of b is taken to produce —b. The
sign extended —b is represented by 8 leading 1’s, then one
zero, followed by the complement of bits b2 to by and an
additional one is added to bit by to complete the twos com-
plement. The bits from X are used to select partial products
of —b. Lastly the constant “1.0” is added to the partial prod-
uct array (PPA) to account for the 1 that —b.X is subtracted
from to form (1 — bX). Figure 4 illustrates the hardware
unit required to calculate (1 — bX).

Recall that exhaustive simulation indicates that the lead-
ing six bits to the right of the radix point will always be
zero. These bits do not have to be computed, further reduc-
ing the hardware needed for the (1 —bX') computation. The
boxed area in figure 4 indicates the columns in the PPA that
need to be summed to compute the 24 most significant bits
of (1 — bX). The PPA can be reduced using a Wallace tree
structure in four CSA delays. The area required to imple-
ment the PPA for the (1 — bX) unit is approximately 30%
of the size of a 24-bit direct multiplier partial product array.

1111111
11111111
111111110
11111111008
[1111111100bb
111111110000
[111111110bbbb

111111110bbbbb
1.0

00000000000000/0999g9QqggqgqgQqqqgqgqqgagqqgqgqqgqx

-~

g=(1-bX)=0.000000g q q ...q
23 22 21 0

Figure 4. (1—-bX) fused multiply-subtract unit.

4.3 Computing the powersof (1 — bX)

A squaring circuit that computes the square of a 24-bit
operand 25% faster with slightly less than half the area re-
quired to perform a 24-bit direct multiplication is used to
compute (1 — bX)?2. Figure 5 illustrates the squaring unit
partial product array reduction.

Similarly the cube may be computed directly and con-
currently with the square using the cubing unit proposed by

Figure 5. Squaring unit PPA reduction using
2 x a;a; = a;a; + a;a;.

Liddicoat and Flynn [8]. Figure 6 shows the partial prod-
uct array required to compute the parallel cube for a 4-bit
operand. Figure 6 also identifies three reductions that may
be applied to reduce the size of the PPA. The terms from the
1st reduction have a weight of one while terms from the 2nd
and 3rd reductions have a weight of three. The terms with
a weight of three are summed is carry save fashion using a
Wallace Tree. Then the three times multiple is computed
and summed with the 1X terms using a carry free addition
stage.

The precise cube of the 24-bit input produces a 72-bit
result. The exact cube is not needed to achieve the desired
quotient precision for the divide unit. In section 5, trunca-
tions of the reduced cube PPA are studied. These reductions
not only decrease the area requirement but also the latency
of the cube operation. The reduced parallel cube is approx-
imately 63% faster than computing the cube using direct
multipliers and requires only about 10% of the area that is
required by a single n-bit direct multiplier.

The parallel cubing unit is easily extendable to com-
pute higher-order powers of (1 — bX). Using higher-order
powers of (1 — bX) will accelerate the convergence of the
Newton-Raphson approximation and reduce the precision
needed by the initial reciprocal estimate X .

4.4 Computing the Final Multiplications

The multiplication of a x X is a small multiplication
since X is approximately = bits. The multiplication area
is about 30% that of a full 24-bit direct multiplication. A
slow area efficient multiplier may be used since the re-
sult of this computation is not needed until after the pow-
ers of (1 — bX) have been computed. The final multiplier
computes the product of (aX) with the sum of powers of
(1 — bX) to produce the final quotient. This is the only full
multiplication that is required by the proposed divide unit.

a & g
. a a4
. 3, & g
33, (33| (B35
aga |azy <
a3, |aaa
a%d @
XY
TES
N
aaa aad aad aad
333 333, 2438 333
aaa, 233 aaa 3aa
aad, 233 3433 4%
aga, 3,33 333 4
aga, aaa 3aa 4aa,
ox & - - & - - & - . g
®3X ””” a3 ax &% %y ay A% ag A% 00
ag, aag a3 Ay ag,
@3x aga aay, %aa,

Figure 6. Parallel cubing unit PPA reductions,
(1) a; = aja;a4, (2) 3 *aja; = (aj0:a; + aaa5 +
a;aja;), and (3) 6 x axaja; = (ara;a; + araja; +
ajara; + aja;ar + a;ara; + a;ajag).

5 The Final Hardware Configuration

The number of bits in a multiplier PPA, increase by the
square of the operand length n2 , while the squaring unit
area grows by £n? and the cubing unit grows by £n3[8].
Therefore, effort must be made to minimize the intermedi-
ate operand length and the required output precision from
each subunit. Significant reductions in the hardware area
required to implement the subunits are presented in this sec-
tion.

The divide unit has been exhaustively simulated to de-
termine the maximum error in the reciprocal computation
for various truncations of the cubing unit PPA. Figure 7 in-
dicates the reciprocal maximum error in terms of ulps for
varying truncations of the cubing unit PPA. A sharp knee
exists in the curve when 60 or more of the least significant
columns have been truncated. Only the eight most signifi-
cant columns of the cubing unit PPA are required to achieve
an error of less than 0.5 ulps.

Additionally, the divide unit has been exhaustively sim-
ulated to determine the maximum error in the reciprocal for
various truncations of the squaring unit given that 59, 60
and 61 columns have been truncated from the cubing unit
PPA. Similarly, a sharp knee exists in the curve plotting
the reciprocal error versus the number of least significant

e}

(2] ~
T T

&)
T

N w
T T

Reciprocal Maximum Error (ulps)
= »

(=]

10 20 30 40 50 60 70
Cube PPA Columns Truncated

o

Figure 7. The reciprocal error versus the cub-
ing unit PPA column truncation (24-bit).

columns truncated from the squaring unit. Truncating up
to 29 columns from the squaring unit PPA does not signifi-
cantly increase the reciprocal error.

The reciprocal accuracy is less than 0.5 ulps for the de-
sign points listed in Table 2. Design 2 was selected since
the maximum PPA height and number of bits in the PPA
are minimized. Furthermore, Design 2 achieves the small-
est maximum error. Therefore, the least significant 31
columns of the squaring unit PPA and the least significant
60 columns in the cubing unit PPA may be truncated. The
PPA area for the squaring unit is less than 15% of the size of
a 24-bit direct multiplier while the PPA area for the cubing
unit is less than 10% of the size of a 24-bit direct multiplier.
Since the squaring and cubing units have been significantly
reduced, the latency of these units is less than that of a sin-
gle multiplier. In fact the cube computation is 63% faster
than can be computed using serial multipliers.

Finally, the divide unit has been exhaustively simulated
to determine the maximum error in the reciprocal for var-
ious truncations of the (1 — bX) multiply unit given that
the cubing unit PPA has been truncated by 60 columns and
the squaring unit by 31 columns. The least significant three
columns of the (1 —bX') multiply-subtract unit may be trun-

Table 2. Reciprocal error for truncated units.

Cb trunc | Sqrtrunc | Err(ulp) | PPA ht | PPA bits
1 59 32 0.43 16 139
*2 60 31 0.42 12 140
3 61 29 0.49 12 147

cated while maintaining an error of less than 0.5 ulps. A
maximum reciprocal error of 0.496 ulps is achieved with
the cubing unit truncated by 60 columns, the squaring unit
truncated by 31 columns, and the (1—bX) multiply-subtract
unit truncated by 3 columns.

Let’s re-examine the third-order Newton-Raphson recip-
rocal approximation 3 = X« (1+ (1 —bX)+ (1 —bX)?+
(1 -bX)3) = XSwhere S = (1 +(1—-bX)+(1—
bX)? + (1 — bX)3). In figure 8 the bit fields for each of
the four components of S have been aligned. In this fig-
ure the X’s represent bits that will be computed by columns
in the PPA for each unit and the T’s indicate columns that
may be truncated from the PPA for each unit. From this
diagram it is clear that most of the bits form the (1 — bX)
multiply subtract unit will contribute to the 24 most signif-
icant bits of .S, while only about % of the columns from
the squaring unit and approximately % of the columns from
the cubing unit contribute to the 24 most significant bits of
S. Progressively less computation is required to achieve the
higher-order terms of the Newton-Raphson iteration.

The design that was presented in the preceding discus-
sion was selected to minimize latency and hardware area
under the constraint of computing the reciprocal to less than
0.5 ulps error. By slightly increasing the number of columns
in the square and cube computations, the worst-case recip-
rocal error will be improved. The lookup table precision
required depends on the order of the Newton-Raphson itera-
tion and the precision of the sub-unit computation. Increas-
ing the number of columns in the sub-unit PPAs will de-
crease the lookup table precision needed to achieve a given
worst-case error. The lookup table area may be reduced
by 50% for each bit of precision that it is reduced. There-
fore, the designer may trade off computational complexity
for area or vice versa.

Ub=X (1+ (1-bX) "+ (1-bX) % + (1-bX) °)

S

<—— 24 bits —

(1-bX) => o o[X X X......][]
@-bx) %> [1.000 . XXX X[TTTereennenn. T
(@-bx) 3> [0.000....... DX XTI o 7|

~— 24 bits —

Figure 8. 3" order Newton-Raphson approxi-
mation sub-unit precision.

6 Summary

Division by functional iteration utilizes multiplication
as the fundamental operation. We presented the standard
Newton-Raphson reciprocal iteration and the binomial se-
ries expansion reciprocal iteration. The computational par-
allelism in these approaches is limited to two parallel mul-
tiplications.

We proposed a divide unit architecture based on the
higher-order Newton-Raphson reciprocal iteration. The di-
vide unit uses truncated squaring, cubing and powering
units. A 24-bit third-order implementation was used as an
example to describe the divide unit in detail.

We found that the first (1—b5X)!, second (1—bX)2, third
(1—bX)? and fourth (1 —bX)* order computations require
progressively less precision. Reducing the precision of the
higher-order computations will maximize the efficiency, re-
duce the latency and minimize the power consumption of
the overall computation. The reduction in the precision of
the higher-order computations in the proposed architecture
differs from the typical Newton-Raphson or series expan-
sion approach. The later algorithms require full precision
computation after the first iteration.

Furthermore, truncating the subunits significantly re-
duces the area required to implement the divider. The
(1—0bX) fused multiply-subtract unit, squaring unit, cubing
unit, and the (aX') multiply unit require respectively 30%,
15%, 10%, and 30% of the area that is required by a di-
rect multiplier. If the divider is designed with separate units
then the entire implementation would be less than the size
of two full precision multipliers. The final multiplication
may be performed on a shared multiplier further reducing
the dedicated hardware requirement by the divide unit.

A 53-bit IEEE double precision divide unit was also de-
signed and tested. The same design techniques were applied
to the double precision unit. To reduce the lookup table size
the highest-order 5 columns of the (1 — X)* parallel com-
putation were included. Adding a few additional columns
for the (1 — bX)* terms only increased the 1X PPA by a
total of 8 bits and the 3X PPA by a total of two bits. Using a
214 x 14 bit lookup table the 53-bit reciprocal can be com-
puted in one iteration with the squaring unit and cubing unit
truncated to approximately 14% and 12% of the size of a
53-bit direct multiplier. A second 53-bit design was studied
using a lookup table of 213 x 14 bits, half the size of the
previous 53-bit design point. The truncated squaring unit
was approximately 14% of the size of a 53-bit direct multi-
plier and the truncated cubing unit was approximately 25%
of the size of a 53-bit direct multiplier. The 53-bit designs
were proportionally very similar to the results for the 24-bit
designs indicating that the proposed architecture scales well
over the studied range.

Table 3 summarizes the area requirements of the mul-

Table 3. Divide area comparison (IEEE DP)

Algorithm Lookup Thl Size | HW Area
N-R 15%-order 28,672B 2 Mult.
Series Expansion 28,672B 2 Mult.
N-R 37¢-order 28,672B 2 Mult.
Ito... [7] 61,440B 1 Mult-Acc.
Erc... [3] 65,536B ~ 2 Mult.
Proposed Arch. 14,336B ~ 2 Mult.

Table 4. Divide latency comparison

Algorithm Iter. Comp. Latency
N-R 1%¢-order 2 1SM+3FM
Series Expansion | 2 1SM+2Sub+2FM
N-R 37<-order 1 1SM+3FM
Ito... [7] 4 4FMAC
Erc... [3] 1 | 2SM+2SNM+1SDA+1FM
Proposed Arch 1 2SM+1FM

tiplicative divide techniques for IEEE double precision
operands. The lookup table requires most of the dedicated
area needed to implement the divide unit. Table 4 summa-
rizes the latencies for the multiplicative division algorithms
discussed. In the table the following abbreviations are used,;
SM=small multiply % x n, SNM=small narrow multiply
7 X 4, FM=full multiply n x n, SUB=subtract n — n,
FMAC=full multiply accumulate n xn—n, SDA=3 operand
signed digit adder. The proposed divide unit has the lowest
latency and area requirements. Additionally, the number of
iterations required by each algorithm to achieve an error re-
duction of bE} ;... is listed. The implementations listed in
Table 4 and 5 were selected for comparison since each one
requires the area of approximately two multipliers or less.

The proposed architecture is easily amenable to a fully
pipelined implementation. Since the quotient is computed
in a single pass through the subunits. A new divide op-
eration can be dispatched each cycle. This differs from
the first-order Newton-Raphson iteration and binomial se-
ries expansion technique that require multiple iterations to
achieve the same convergence as the proposed architecture.
Our algorithm and the Ercegovac, Lang, Muller, Tisserand
approach are fully pipeline-able without a significant in-
crease in hardware.

7 Conclusions

A fast, efficient, and high-throughput divide unit is pro-
posed. This unit utilizes the higher-order Newton-Raphson

reciprocal approximation. Parallel squaring, cubing and
powering units perform low latency concurrent computa-
tion and reduce the overall latency of the divide unit. It
has been demonstrated that progressively less computa-
tion is required to compute the second, third and higher-
order terms. Therefore, significant hardware reductions are
achievable by truncating the powering unit partial prod-
uct arrays. The proposed architecture achieves the de-
sired precision in a single iteration and is amenable to a
fully pipelined implementation that dispatches one divide
instruction per cycle. Designing an optimal divide unit for a
specific operand length requires balancing the subunit pre-
cision and lookup table size.

References

[1] ANSI/IEEE Std 754-1985, IEEE Standard for Binary
Floating-Point Arithmetic, 1985.

[2] R.C. Agarwal, F. G. Gustavson, and M. S. Schmookler. Se-
ries Approximation Methods for Divide and Square Root in
the Power3™ Processor. In Proc. 14th IEEE Symp. on
Computer Arithmetic, pages 116-123, April 1999.

[3] M. D. Ercegovac, T. Lang, J.-M. Muller, and A. Tisserand.
Reciprocation, Square Root, Inverse Square Root, and Some
Elementary Functions Using Small Multipliers. IEEE Trans-
actions on Computers, 49(7):628-637, July 2000.

[4] M. D. Ercegovac, D. W. Matula, J.-M. Muller, and
G. Wei. Improving Goldschmidt Division, Square Root, and
Square Root Reciprocal. |EEE Transactions on Computers,
49(7):759-763, July 2000.

[5] M. Flynn. On Division by Functional Iteration. |[EEE Trans-
actions on Computers, C-19(8):702-706, August 1970.

[6] R. E. Goldschmidt. Applications of Division by Conver-
gence. Master’s thesis, Dept. of Electrical Engineering,
Massachusetts Institute of Technology, Cambridge, Mass.,
June 1964.

[7] M. Ito, N. Takagi, and S. Yajima. Efficient Initial Approx-
imations and Fast Converging Methods for Division and
Square Root. In Proc. 12th IEEE Symp. on Computer Arith-
metic, pages 2-9, July 1995.

[8] A. Liddicoat and M. Flynn. The Parallel Square and Cube
Computation. In |[EEE 34th Asilomar Confernce on Sgnals,
Systems and Computers, October 2000.

[9] S. F. Oberman. Floating Point Division and Square Root
Algorithms and Implementation in the AMD-K7 Micropro-
cessor. In Proc. 14th IEEE Symp. on Computer Arithmetic,
pages 106-115, April 1999.

[10] S. F. Oberman and M. Flynn. Division Algorithms
and Implementations. |EEE Transactions on Computers,
46(8):833-854, August 1997.

[11] P. Rabinowitz. Multiple-Precision Division. In Communi-
cations of the ACM, volume 4, page 98, February 1961.

[12] D.Wong and M. Flynn. Fast Division Using Accurate Quo-
tient Approximations to Reduce the Number of Iterations.
In IEEE Transactions on Computers, pages 981-995, Au-
gust 1992.

