
Lecture 012 (April 4, 2005)

Cubical sets

Simplicial sets are contravariant set-valued func-

tors defined on the category of ∆ of finite sets and

order preserving maps, and as such are artifacts of

the combinatorics of finite sets.

Cubical sets depend on or represent the combina-

torics of the power sets of finite ordered sets.

Write

n = {1, 2, . . . , n},
and write

1n = 1×n, 1 = {0, 1}.

10 is the category consisting of one object and one

morphism.

P(n) is the poset of subsets of the set n.

Fact: There is an isomorphism of posets

Ωn : 1n ∼=−→ P(n)

Ωn(ε) = {i | εi = 1} for ε = (ε1, . . . , εn) ∈ 1n.

The box category � consists of certain poset maps

1m → 1n.
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Every finite totally ordered set A has a unique

order-preserving bijection n → A, and it is con-

venient to represent box category morphisms as

poset morphisms P(A) → P(B) where A and B

are finite ordered sets.

There are two families of poset maps P(A) →
P(B) which generate the box category:

1) Suppose A ⊂ B ⊂ C (finite ordered sets).

[A, B] = {D ⊂ C| A ⊂ D ⊂ B} ⊂ P(C)

is called an interval of subsets. There is a canon-

ical poset isomorphism

P(B − A)
∼=−→ [A, B]

defined by E 7→ A ∪ E. The composite

P(B − A)
∼=−→ [A, B] ⊂ P(C)

is called a face functor, and is also denoted by

[A, B].

2) Suppose ∅ 6= B ⊂ C (finite ordered sets). There

is a poset morphism

sB : P(C) → P(B)

defined by E 7→ E ∩B. sB is called a degeneracy

functor.
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The box category � is the subcategory of the

category of poset morphisms 1m → 1n which is

generated by the face and degeneracy functors.

Suppose that A ⊂ B and E are subsets of a finite

ordered set C. There is a commutative diagram

P(B − A)
[A,B]

//

sE∩(B−A)
��

P(C)
sE

��

P((B ∩ E)− (A ∩ E))
[A∩E,B∩E]

//P(E)

which allows one to show that all morphisms of the

box category � are composites

P(C)
sE−→ P(E)

[A,A∪E]−−−−→ P(D).

These decompositions are unique

Examples:

1) Every i ∈ C determines two intervals in P(C),

namely [{i}, C] and [∅, C − {i}].
If C ∼= n, then [{i}, C] uniquely determines a func-

tor

d(i,1) : 1n−1 → 1n,

while [∅, C − {i}] determines a functor

d(i,0) : 1n−1 → 1n.

For ε = 0, 1 d(i,ε) : 1n−1 → 1n is defined by

d(i,ε)(γ1, . . . , γn−1) = (γ1, . . . ,
i
ε, . . . , γn−1).
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2) Every j ∈ C determines a poset map sC−{j} :

P(C) → P(C − {j}), or sj : 1n → 1n−1. sj is

the projection which drops the jth entry:

sj(γ1, . . . , γn) = (γ1, . . . , γj−1, γj+1, . . . , γn)

s1 : 1 → 10 is the map to the terminal object 10.

A cubical set X is a contravariant set-valued

functor X : �op → Set.

A morphism of cubical sets f : X → Y is a

natural transformation of functors, and we have a

category �− Set of cubical sets.

Write Xn = X(1n), and call this set the set of

n-cells of X .

Examples:

1) standard n-cell �n = hom�( ,1n) Every x ∈
Xn is classified by a cubical set map x : �n → X .

The faces d(i,ε)(x) of x are the composites

�n−1 d(i,ε)
−−→ �n x−→ X

The degeneracy sj(x) is represented by

�n+1 sj

−→ �n x−→ X

A cell y is degenerate if y = sjx; otherwise it is

non-degenerate.
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2) The boundary ∂�n is the union of the im-

ages of the maps d(i,ε) : �n−1 → �n. There is a

coequalizer⊔
(ε1,ε2)

0≤i<j≤n

�n−2 ⇒
⊔

(i,ε)
�n−1 → ∂�n

where εi ∈ {0, 1}.
3) un

(i,ε) is the subobject of ∂�n which is generated

by all faces except for d(i,ε) : �n−1 → �n. There

is a coequalizer diagram⊔
�n−2 ⇒

⊔
(j,γ)6=(i,ε)

�n−1 → un
(ε,i)

where the first disjoint union is indexed over all

pairs (j1, γ1), (j2, γ2) with 0 ≤ j1 < j2 ≤ n and

(jk, γk) 6= (i, ε), k = 1, 2.

3) The assignment 1n 7→ B(1n) defines a simplicial

set-valued functor � → S. If X is a simplicial set,

there is an associated singular cubical set S(X),

with n-cells

S(X)n = hom(B(1n), X).

Note that B(1n) ∼= (∆1)×n. The singular functor

S : S → �−Set has a left adjoint | | : �−Set →
S, called triangulation, which is defined by

|Y | = lim−→
�n→Y

B(1n).
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The colimit is indexed by members of the cell cat-

egory i�Y : the objects of the cell category are the

cells �m → Y and the morphisms of i�Y are the

incidence relations

�r //

��5
55

55
5 �m

����
��
��
�

Y

NB: there are similarly defined realization and sin-

gular functors

| | : �− Set � Top : S

relating cubical sets and topological spaces; real-

ization is left adjoint to the singular functor.

4) Suppose that C is a small category. The cubi-

cal nerve B�C is the cubical set with n-cells

B�Cn = homcat(1
n, C).

The cells of B�C are the hypercube diagrams in

C.
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There is a good notion of skeleta for cubical sets:

skn X is the subobject of X which is generated by

the cells Xk, 0 ≤ k ≤ n. Clearly, skn−1 X ⊂
skn X , and one can show that there is a pushout

⊔
x∈NXn ∂�n //

��

skn−1 X

��⊔
x∈NXn �n // skn X

where NXn denotes the non-degenerate part of

Xn. Proving this requires showing that if x, y are

degenerate n-cells with the same boundary, then

x = y — see Lemma 18 of “Categorical homotopy

theory”
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A cofibration of cubical sets is a monomorphism,

a weak equivalence of cubical sets is a map

f : X → Y which induces a weak equivalence

|X| → |Y | of triangulations (equivalently a weak

equivalence Bi�X → Bi�Y ). A fibration of cu-

bical sets is a map which has the RLP wrt to all

inclusions un
(i,ε) ⊂ �n.

Theorem: (Cisinski)

1) With these definitions �−Set satisfies the ax-

ioms for a proper closed model category.

2) The cubical singular and triangulation functors

induce a Quillen equivalence

| | : Ho(�− Set) ' Ho(S) : S�.

Cisinski’s theorem is perhaps the deepest result

in abstract homotopy theory. It is mentioned for

cultural reasons here, and will not be needed in the

sequel. It is proved in Cisinski’s thesis, and again

in “Categorical homotopy theory”.

One can use standard techniques to show that there

is a model structure on cubical sets for which the

cofibrations are monomorphisms and weak equiv-

alences are those maps which induce weak equiva-

lences of triangulations, and that the resulting ho-
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motopy category is Quillen equivalent to the stan-

dard homotopy category for simplicial sets. Show-

ing that the fibrations are as described is the in-

teresting part.

There’s one little problem: categorical products of

cubical sets are very badly behaved.

Example: An n-cell (σ, τ ) : �n → �1 ×�1 is a

pair of n-cells of �1.

�1 × �1 has two distinct non-degenerate 2-cells,

namely the identity on 12 and the twist automor-

phism τ : 12 → 12. These 2-cells have the com-

mon boundary that one expects, namely ∂�2 (up

to a twist), but there is an additional non-degenerate

1-cell ∆ : 1 → 12 given by the diagonal map. It

follows that |�1 × �1| has the homotopy type of

S2 ∨ S1.

The problem is fixed as follows: define

�n ⊗�m = �n+m,

and more generally set

X ⊗ Y = lim−→
�n→X, �m→Y

�n ⊗�m.

Then one can show that there is a natural isomor-

phism

|X ⊗ Y | ∼= |X| × |Y |.
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Remark: I did not say that �− Set has a sim-

plicial model structure, because it doesn’t. It has,

instead, a cubical model structure, with function

complex object hom(X, Y ) specified by

hom(X, Y )n = hom(X ⊗�n, Y ).

Note that if i : A → B and j : K → L are

cofibrations of cubical sets, then the induced map

(B ⊗K) ∪(A⊗K) (A⊗ L) → (B ⊗ L)

is a cofibration (for this you need to know that

triangulation reflects monomorophisms — Cor. 23

of “Categorical homotopy theory”) which is trivial

if either i or j is trivial. It follows that if p : X →
Y is a fibration and if i : A → B is a cofibration

as above, then the map

hom(B, X) → hom(A, X)×hom(A,Y )hom(B, Y )

is a fibration which is a weak equivalence if either

i or p is trivial. This is the cubical analogue of

Quillen’s axiom SM7 and so one could say that

cubical sets has a cubical model structure
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