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By JOHN H. HOLLAND ANn JOHN H. MILLER'

Artificial Adaptive Agents in Economic Theory

Economic "analysis has largely avoided
questions about the way in which economic
agents make choices when confronted by a
perpetually novel and evolving world. As a
result, there are outstanding questions of
great interest to economics in areas ranging
from technological innovation to strategic
learning in games. This is so, despite the
importance of the questions, because stan
dard tools and formal models are ill-tuned
for answering such questions. However, re
cent advances in computer-based modeling
techniques, and in the subdiscipline of arti
ficial intelligence called machine learning,
offer new possibilities. Artificial adaptive
agents (AAA) can be defined and can be
tested in a wide variety of artificial worlds
that evolve over extended periods of time.
The resulting complex adaptive systems can
be examined both computationally and ana
lytically, offering new ways of experimenting
with and theorizing about adaptive eco
nomic agents.

Many economic systems can be classified
as complex adaptive systems. Such a system
is complex in a special sense: (i) It consists
of a network of interacting agents (process
es, elements); (ii) it exhibits a dynamic, ag
gregate behavior that emerges from the in
dividual activities of the agents; and (iii) its
aggregate behavior can be described with
out a detailed knowledge of the behavior of
the individual agents. An agent in such a
system is adaptive "if it satisfies an addi
tional pair of criteria: the actions of the
agent in its environment can be assigned a
value (performance, utility, payoff, fitness,
or the like); and the agent behaves so as to
increase this value over time. A complex
adaptive system, then, is a complex system
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containing adaptive agents, networked so
that the environment of each adaptive agent
includes other agents In the system.

Complex adaptive systems usually operate
far from a global optimum or attractor. Such
systems exhibit many levels of aggreBation,
organization, and interaction, each level
having its own time scale and characteristic
behavior. Any given level cari usually be
described in terms of local niches that can
be exploited by particular adaptations. The
niches are various, so it is rare that any
given agent can exploit all of them, as rare
as finding a universal competitor in a tropi
cal forest. Moreover, niches are continually
created by new adaptations. It is because of
this ongoing evolution of the niches, and the
perpetual novelty that results.. that the sys
tem operates far from any global attractor.
Improvements are always possible and, in
deed, occur regularly. The everexpanding
range of technologies and products in an
economy, or the everimproving strategies in
a game like chess, provide familiar exam
ples. Adaptive systems may settle down
temporarily at a local optimum, where per
formance is good in a comparative sense,
but they are usually uninteresting if they
remain at that optimum for an extended
period.

A theory of complex adaptive systems
based on AAA makes possible the develop
ment of well-defined, yet flexible, models
that exhibit emergent behavior. Such mod
els can capture a wide range of economic
phenomena precisely, even though the de
velopment of a general mathematical theory
of complex adaptive systems is still in its
early stages.' The AAA models comple
ment current theoretical directions; they are

lIt is imporrant in this research to determine just
where the potential for general solutions exists. There
are simple models of ceJlular automata, for example,
wherein the solutions to particular questions are com
putationally irredUcible-the shortest way to analyze
the system is to run the complete computation.
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not intended as a substitute. Many of themost interesting questions concern points ofoverlap between AAA models and classicaltheory. As a minimal requirement, whereverthe new approach overlaps classical theory,it must include verified results of that theory in a way reminiscent of the way in whichthe formalism of general relativity includesthe powerful results of classical physics.

I. Why Study Artificial Adaptive Agents?

The AAA models have several characteristics that are not available in traditionalmcdeling techniques. Models based on purelinguistic descriptions, while infinitely flexible, often fail to be logically consistent.Mathematical models lose flexibility, butgain a consistent structure and general solution techniques. The AAA models, specifiedin a computer language, retain much of theflexibility of pure linguistic models, whilehaving precision and consistency enforcedby the language. The resul ting models aredynamic and are "executable" in the sensethat the unfolding behavior of the modelcan be observed step by step. This makes itpossible to check the plausibility of the behavior implied by the assumptions of themodel. The precision of the definitions alsoopens AAA models to mathematical analysis. The ability to explore a wide range ofphenomena involving learning and adaptation, linked with the rigor imposed by acomputer language, provides a powerfulmodeling technique.2

The AAA models offer a way of approaching one of the major questions ofpresent theory. Current theoretical COnstructs, based on optimization principles,often require technically demanding derivations. It is an obvious criticism of theseconstructs that real agents lack the behavioral sophistication necessary to derive theproposed solutions. This dilemma is resolved if it is postulated that adaptive mechanisms, driven by market forces, lead the

2Programming even a simple market is instructiveon the limitations of both the pure Jinguistic and mathematical approaches.

agents to act as if they were optimizing (see,for example, Milton Friedman, 1953). AMexplicitly model this link between adaptation and market forces, and can thus beused to analyze the conditions under Whichoptimization behavior will (not) occur.Insofar as human behavior is driven byadaption, an understanding of AAA mayprove to be a useful benchmark for, andprovide insights into, existing human experiments (see, for example, J. A Andreoni andMiller, 1990; Brian Arthur, 1990).J An experiment consisting of artificial agents aJ·lows the utility, risk aversion, information,knowledge, expectations, and learning ofeach subject to be carefully controlled.Moreover, at any point in the experiment,the knowledge and learning of the artificialagents can be "reset" to any desired previous state, and subtle variations of the environment can be analyzed. The strategy (aswell as the behavior) of the AAA can always be explicitly analyzed, something notusually possible with human subjects. Finally, the infinite patience and low motivational needs of AAA "subjects" implies thatlarge-scale experiments can be conducted ata relatively low cost.
A major feature of AAA models is theirability to produce emergent behavior. Awide variety of behaviors can arise endoge·nously, even though these behaviors, as withany model, are constrained by the initialstructure. The possibilities are so rich that itis often difficult to predict on a priorigrounds what behaviors and structures willemerge. It thus becomes possible to explorerealms that were unanticipated when themodel was defined. Analysis of these emergent phenomena should offer both insightsand suggestions for new theorems about theeffects of adaptive agents in economic systems.

The AAA models may also prove usefulin studying economic systems that have ei·ther an absence or a plethora of theoreticalsolutions. Many important economic prob-

JArtificial agents could also be used as "subjeasfl inpilot studies to identify POtentially interestine DCW hu~man experiments.
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lems, such as double-auction strategies,
multisectoral general equilibrium models,
and the like, have no easily derived analytic
solutions. Several AAA techniques were
originally designed as optimization methods
for environments that are nonlinear, noisy,
discontinuous, or involve enormous search
spaces. As a result, they offer useful numer
ical techniques for such problems in eco
nomics. At the opposite extreme are sys
tems with multiple solutions. For example,
in repeated games, the Folk theorem often
admits a vast number of potential solutions.
In these cases, the interaction of the adap
tive systems with the economic environment
may narrow the set of potential solutions.

. Different equilibria may have different de
grees of adaptive complexity.

Beyond complementing current theoreti
cal and empirical work, AAA offer the pa
tential for unique extensions of current the
ory. The mechanisms generating the global
behavior of a complex adaptive system can
be directly observed when the computer is
an integral part of the theory. For such
theories, the computer plays a role similar
to the role the microscope plays for biology:
It opens up new classes of questions and
phenomena for investigation. Problems that
prove difficult for traditional mathematical
approaches are often easily implemented as
an AAA system. In that form, they can be
dissected and modified with ease, 'providing
new opportunities for theory generation and
testing. More generally, the potential for
the development of a general calculus of
"adaptive mechanics" exists. A calculus of
these systems would combine the advan
tages of analytic perspicacity with com
puter-driven hypothesis testing.

II. Some Current Artificial Adaptive
Agent Techniques

A wide range of computer-based adaptive
algorithms exist for exploring AAA systems,
including classifier systems, genetic algo
rithms, neural networks, and reinforcement
learning mechanisms. The multiplicity of
techniques presents a problem for analysis.
How sensitive are the results to a particular
incarnation of the adaptive agent? This

problem, of course, confronts any attempt
to lessen the rationality postulates tradition
ally used in economic theory. Usually, there
is only one way to be fully rational, but
there are many ways to be less rational. It is
important in building a theory based on
AAA to construct agents that exhibit robust
behavior across algorithmic choices. Cur
rent economic studies of adaptive agents
rely on genetic algorithms (R. M. Axelrod,
1987; Miller, 1989; Andreoni-Miller) and
classifier systems (R. Marimon et aI., 1990;
Arthur).

Genetic algorithms (GAs) were developed
by Holland (1975) as a way of studying
adaptation, optimization, and learning. They
are modeled on the processes of evolution
ary genetics. A basic GA manipulates a set
of structures, called a population. Struc
tures are usually coded as strings of charac
ters drawn from some finite alphabet (often
binary). For example, in a game context, a
string might be interpreted either as a sim
ple strategy (a rule table) or as a computer
program for playing the game (a finite au
tomaton). Depending upon the model, an
agent may be represented by a single string,
or it may consist of a set of strings corre
sponding to a range of potential behaviors.
For example, a string that determines an
oligopolist's production decision could ei
ther represent a single firm operating in a
population of other firms, or it could repre
sent one of many possible decision rules for
a given firm. Whaiever the interpretation,
each string is assigned a measure of perfor
mance, called its fitness, based on the per
formance of the corresponding structure in
its environment. The GA manipulates this
population in order to produce a new popu
lation that is better adapted to the environ
ment.

In execution, a GA first makes copies of
strings in the population in proportion to
their observed performance, filter strings
being more likely to produce copies. As a
result, filter strings are more likely to con
tribute to the new population. After the
copies are produced, they are modified by
the application of genetic operators. The
genetic operators provide for the introduc
tion of new strings (structures) that .still
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retain some of the characteristics of thefitter strings in the parent population.The primary genetic operator for a GA isthe crossover operator. The crossover operator is executed in three steps: 1) a pair ofstrings is chosen from the set of copies; 2)the strings are placed side by side and apoint is randomly chosen somewhere alongthe length of the strings; 3) the segments tothe left of the point are exchanged betweenthe strings. For example, crossover of 111000and 010101 after the second position produces the offspring strings 011000 and110101. Crossover, working with reproduction according to performance, turns out tobe a powerful way of biasing the systemtoward certain patterns, building blocks, thatare consistently associated with above-average performance.
It can be proved (see Holland, 1975) thatGAs are a powerful technique for locatingimprovements in complicated high-dimensional spaces. They exploit the mutual information inherent in the population, ratherthan simply trying to exploit the best individual in the population. We can liken eachof the potential building blocks to one armof an n-armed bandit. Under this interpretation, each successive generation samplesthe building blocks in a way that closelycorresponds to the optimal solution of ann-armed bandit problem. The GA learns bybiasing the search toward combinations ofabove-average building blocks. Reproduction and crossover are very simple operations that impose low-information andprocessing requirements on the agents employing them.

A classifier system (CS) (Holland et a!.,1986) is an adaptive rule-based system thatmodels its environment by activating appropriate clusters of rules. It uses a GA torevise its rules. Each rule is in condition/action form, and many rules can be activesimultaneously. The action part of a rulespecifies a message that is to be postedwhen the rule is activated. The conditionpart of a rule specifies messages that mustbe present for it to be activated. Thus, eachrule is a simple message-processing devicethat emits a specific message when certainother messages are present. Overt actionsaffecting the environment are the result of

messages directed to the system's outputdevices (effectors), while information fromthe environment is received via messagesgenerated by its input devices (detectors).The overall system is computationally COmplete in the sense that any program writtenin a programming language, such as FORTRAN, can also be implemented by a CS.A CS-rule does not automatically post itsmessage when its condition part is satisfied.Rather, it enters a competition with otherrules having satisfied conditions. The outcome of this competition is based on aquantity, called strength, assigned to eachrule. A rule's strength measures its pastusefulness, and it is modified over time byone of the system's learning algorithms (seebelow). There may be more than one winner of the competition at any giventime-hence a cluster of rules can react toexternal situations. A CS operates on largenumbers of rules, with a small number ofsimple, domain-independent mechanisms. Itprovides emergent, learned capabilities forreacting to its environment.
A CS adapts or learns through the'application of two well-defined machinelearning algorithms. The first algorithm,called a bucket-brigade algorithm, adjustsrule strengths. Each rule is treated as anintermediate producer in a complex economy, buying input messages and selling output messages. When a satisfied rule R succeeds in the competition to post its ownmessage, it pays the rule(s) that suppliedthe messages satisfying its condition part.This amount is subtracted from R's strength.On the next time-step, if other rules aresatisfied by R's message, and win the COmpetition in tum, then R receives the rules'payment. R's strength is increased accordingly. The net effect of the two transactionsis R's profit (loss). Some rules also act directly on the environment in a way thatproduces direct payoff from the environment to the system. Their strength is increased in proportion to that payoff. A rule'sstrength will increase over time only if itearns a profit, on average, in these transactions. Generally this happens only if therule directly produces payoff, or else belongs to one or more causal chains leadingto payoff. Under appropriate conditions, the
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strengths assigned by the bucket-brigade al
gorithm do converge to a useful measure of
the rule's contributions to system perfor
mance (Holland et al.).

In order to generate and test 'new ap:
proaches to the environment, the CS needs
a second learning algorithm, a rule discovery
algorithm. A GA can be used for this pur
pose, because the rules of a CS can be
represented by strings in an appropriate
alphabet, and a rule's strength amounts to a
measure of its performance. The GA, by
forming new rules in terms of tested, above
average building blocks, transfers experi
ence from the past to new situations. Plausi
ble new rules result-rules to be tested
and retained or discarded on the basis of
their ability to enhance the performance of
the CS.

Under the combined effects of the
bucket-brigade and genetic algorithms, rules
become coupled in complex networks. Clus
ters and hierarchies of rules emerge. Over
time, these substructures serve as building
blocks for still more complex substructures.
A CS agent can: 1) generate broad cate
gories for describing its environment (so
that experience can be brought to bear on
novel situations); 2) progressively refine and
elaborate the relation between categories
(using experience to make distinctions and
associations not previously possible); 3) use
these categories to build internal models
that supply the agent with expectations
about the world; 4) treat all internal models
as provisional (subject to confirmation or
refutation as experience accumulates); and
5) generate new hypotheses that are plausi
ble in terms of accumulated experience.
Moreover, because of the bucket-brigade
algorithm, these activities can proceed in an
environment where payoff is intermittent or
rare. Such capacities enable a CS agent that
is not omniscient to act with increasing ra
tionality.

fiI. Towards a Mathematics of Complex
Adaptive Systems

A mathematical calculus appropriate to
the study of complex adaptive systems must
meet distinctive requirements. The usual
mathematical tools, exploiting linearity,

fixed points, and convergence, provide only
an entering wedge. In addition we need a
mathematics that works in close conjunction
with computer modeling techniques-one
that puts more emphasis on combinatorics
and algorithms. We require techniques that
emphasize the emergence of structure, par
ticularly internal models, through the gener
ation, combination, and interaction of build
ing blocks. The present situation seems quite
similar to that of evolutionary theory prior
to the development of a mathematical the
ory of genetic selection (R. A. Fisher, 1930).

Though there is nothing like an overall
theory, there are some extant pieces of
mathematics that are relevant. The schema
theorems for genetic algorithms (Holland,
1975) offer some insight into processes that
discover and recombine building blocks. It
appears that schema theorems are special
cases of a much more general formulation
of the effects of recombination in evolution.
This formulation should bring some of the
more sophisticated tools of mathematical
genetics to bear on adaptive agent models.
Mathematical work aimed at understanding
the evolution of CS may also be useful.
The progressive development of hierarchi
cal organization can be treated as the ad
dition of levels to a quasi homomorphism
(Holland et al.).

Perpetual novelty can be modeled by a
regular Markov process in which each of the
states has a recurrence time that is large
with respect to any feasible observation time.
Equivalence classes can be imposed and
used as the states of a derived Markov
process (Holland, 1986). Work by Miller
and S. Forrest (1989), based on S. A.
Kauffman's (1984) studies of random graphs,
provides additional insights into the emer
gent structures of CSs.

IV. Conclusions

The AAA research complements ongoing
theoretical and empirical work, allowing ex
ploration and analysis of previously inacces
sible phenomena. What are the future
prospects for this line of inquiry? Early work
with AAA in economics has shown that they
can acquire sophisticated behavioral pat
terns. Observation of the course of learning
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in these AAA has already increased our
understanding of some economic -issues.
Even limited AAA open up new avenues
for analyzing decentralized, adaptive, and
emergent systems. Steady advances in com
putation and AAA modeling offer ever more
powerful tools for programming artificial
worlds. By executing these models on a
computer we gain a double advantage:
(i) An experimental format allowing free
exploration of system dynamics, with com
plete control of all conditions; and (jj) an
opportunity to check the various unfolding
behaviors for plausibility, a kind of "reality
check." Whether or not agents in such
worlds behave in an optimal manner, the
very act of contemplating such systems will
lead to important questions and answers.
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