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1.2 1

§ 1 Invariant Functions and Covariants

In this paragraph we recall some elementary facts from algebraic geometry and from rep-
resentation theory. Moreover, we give the basic notions of invariant theory like the ring of
invariants and the module of covariants, and explain a number of easy examples. Finally, we
describe two important Finiteness Theorems for the ring of invariant polynomial functions on
a representation space W of a group G. The first one goes back to Hilbert and states that
the invariant ring is finitely generated in case where the linear representation of G on the
coordinate ring of W is completely reducible. The second is due to E. Noether and shows
that for a finite group G the invariant ring is generated by the invariants of degree less or
equal to the order of the group G.

1.1 Polynomial functions. In the following K will always denote an infinite
field. Let W be a finite dimensional K-vector space. A function f : W → K is
called polynomial or regular if it is given by a polynomial in the coordinates
with respect to a basis of W . It is easy to see that this is independent of the
choice of a coordinate system of W . We denote by K[W ] the K-algebra of
polynomial functions on W which is usually called the coordinate ring of W or
the ring of regular functions on W . If w1, . . . , wn is a basis of W and x1, . . . , xn

the dual basis of the dual vector space W ∗ of W , i.e., the coordinate functions,
we have K[W ] = K[x1, . . . , xn]. This is a polynomial ring in the xi because
the field K is infinite (see the following exercise).

Exercise 1. Show that the coordinate functions x1, . . . , xn ∈ K[W ] are
algebraically independent. Equivalently, if f(a1, a2, . . . , an) = 0 for a poly-
nomial f and all a = (a1, a2, . . . , an) ∈ Kn then f is the zero polynomial.
(Hint: Use induction on the number of variables and the fact that a non-zero
polynomial in one variable has only finitely many zeroes.)

A regular function f ∈ K[W ] is called homogeneous of degree d if f(tw) =
tdf(w) for all t ∈ K, w ∈ W . Thus K[W ] = ⊕dK[W ]d is a graded K-algebra
where K[W ]d denotes the subspace of homogeneous polynomials of degree d.
(Recall that an algebra A = ⊕iAi is graded if the multiplication satisfies AiAj ⊂
Ai+j). Choosing coordinates as above we see that the monomials xd1

1 xd2
2 · · ·xdn

n

such that d1 + d2 + · · · + dn = d form a basis of K[W ]d.
We have K[W ]1 = W ∗ and this extends to a canonical identification

of K[W ]d with the dth symmetric power Sd(W ∗) of W ∗:

K[W ] =
⊕

d

K[W ]d =
⊕

d

Sd(W ∗) = S(W ∗)

where S(W ∗) is the symmetric algebra of W ∗.

1.2 Invariants. As usual, we denote by GL(W ) the general linear group, i.e.,
the group of K-linear automorphisms of the K-vector space W . Choosing a
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basis (w1, w2, . . . , wn) of W we can identify GL(W ) with the group GLn(K) of
invertible n×n matrices with entries in K in the usual way: The ith column of
the matrix A corresponding to the automorphism g ∈ GL(W ) is the coordinate
vector of g(wi) with respect to the chosen basis.

Now assume that there is given a subgroup G ⊂ GL(W ) or, more
generally, a group G together with a linear representation on W , i.e., a group
homomorphism

ρ : G → GL(W ).

The corresponding linear action of G on W will be denoted by (g, w) �→ gw :=
ρ(g)w (g ∈ G, w ∈ W ), and we will call W a G-module. In the following,
representations of groups will play a central role. We assume that the reader is
familiar with the basic notion and elementary facts from representation theory.
(See Appendix A for a short introduction.)

Exercises

2. Let ρ : G → GL(W ) be a finite dimensional representation and ρ∗ : G →
GL(W ∗) the dual (or contragredient) representation, i.e., ρ∗(g)(λ) w :=
λ(ρ(g)−1 w), λ ∈ W ∗, w ∈ W . Choosing a basis in W and the dual basis in
W ∗ one has the following relation for the corresponding matrices A = ρ(g)
and A∗ = ρ∗(g): A∗ = (A−1)t.

3. Show that the natural representation of SL2(K) on K2 is selfdual (i.e.,
equivalent to its dual representation) by finding an invertible matrix S such
that (A−1)t = S A S−1 for all A ∈ SL2.

Definition. A function f ∈ K[W ] is called G-invariant or shortly invariant if
f(gw) = f(w) for all g ∈ G and w ∈ W . The invariants form a subalgebra of
K[W ] called invariant ring and denoted by K[W ]G.

Recall that the orbit of w ∈ W is defined to be the subset Gw := {gw | g ∈
G} ⊂ W and the stabilizer of w it the subgroup Gw := {g ∈ G | gw = w}. It is
clear that a function is G-invariant if and only if it is constant on all orbits of
G in W . A subset X ⊂ W is called G-stable if it is a union of orbits, i.e., if one
has gx ∈ X for all x ∈ X, g ∈ G.

Exercise 4. The natural representation of SL2 (and GL2) on K2 has two
orbits. The stabilizer of e1 := (1, 0) is U :=

{
( 1 s

0 1 )
∣∣s ∈ K

}
, the subgroup

of upper triangular unipotent matrices. For any other point (x, y) �= (0, 0)
the stabilizer is conjugate to U .

There is another way to describe the invariant ring. For this we consider the
following linear action of G on the coordinate ring K[W ], generalizing the dual
representation on the linear functions (see Exercise 2):
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(g, f) �→ gf, gf(w) := f(g−1w) for g ∈ G, f ∈ K[W ], w ∈ W.

This is usually called the regular representation of G on the coordinate ring.
(The inverse g−1 in this definition is necessary in order to get a left-action
on the space of functions.) Clearly, a function f is invariant if and only if it
is a fixed point under this action, i.e., gf = f for all g ∈ G. This explains
the notation K[W ]G for the ring of invariants. Moreover, it follows from the
definition that the subspaces K[W ]d are stable under the action. Hence, the
invariant ring decomposes into a direct sum K[W ]G = ⊕dK[W ]Gd and thus is
a graded K-algebra, too.

Exercise 5. Consider the linear action of GL2 on K[x, y] induced by the
natural representation of GL2 on K2.

(a) What is the image of x and y under ( a b
c d ) ∈ GL2(K)?

(b) Show that K[x, y]GL2 = K[x, y]SL2 = K.

(c) Show that K[x, y]U = K[y] where U ⊂ SL2 is the subgroup of upper
triangular unipotent matrices (see Exercise 4).

Example 1. We start with the two-dimensional representation of the multi-
plicative group K∗ := GL1(K) on W = K2 given by t �→

(
t 0
0 t−1

)
. Then the

invariant ring is generated by xy: K[W ]K
∗

= K[xy]. In fact, the subspaces
Kxayb ⊂ K[W ] are all stable under K∗, and t(xayb) = tb−axayb.

Example 2. Next we consider the special linear group SLn(K), i.e., the sub-
group of GLn(K) of matrices with determinant 1, and its representation on the
space Mn(K) of n × n-matrices by left multiplication: (g, A) �→ gA, g ∈ SLn,
A ∈ Mn(K). Clearly, the determinant function A �→ det A is invariant. In fact,
we claim that the invariant ring is generated by the determinant:

K[Mn]SLn = K[det].

Outline of Proof: Let f be an invariant. Define the polynomial p ∈ K[t]

by p(t) := f(

(
t

1

. . .

)
). Then f(A) = p(detA) for all invertible matrices A,

because A can be written in the form

A = g


det A

1
. . .

1

 where g ∈ SLn(K)

and f is invariant. We will see in the next section that GLn(K) is Zariski-dense
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in Mn(K) (Lemma 1.3) which implies that f(A) = p(detA) for all matrices A.
Thus f ∈ K[det]. �

Exercises

6. Determine the invariant rings K[M2(K)]U and K[M2(K)]T under left
multiplication by the subgroup U of upper triangular unipotent matrices
(see Exercise 4) and the subgroup T :=

{(
t 0
0 t−1

) ∣∣t ∈ K∗} of diagonal ma-
trices of SL2.

7. Let Tn ⊂ GLn(K) be the subgroup of invertible diagonal matrices. If
we choose the standard basis in V := Kn and the dual basis in V ∗ we can
identify the coordinate ring K[V ⊕V ∗] with K[x1, . . . , xn, ζ1, . . . , ζn]. Show
that K[V ⊕V ∗]Tn = K[x1ζ1, x2ζ2, . . . , xnζn]. What happens if one replaces
Tn by the subgroup T ′

n of diagonal matrices with determinant 1?
(Hint: All monomials in K[x1, . . . , xn, ζ1, . . . , ζn] are eigenvectors for Tn.)

Example 3. Let Sn denote the symmetric group on n letters and consider the
natural representation of Sn on V = Kn given by σ(ei) = eσ(i), or, equivalently,

σ(x1, x2, . . . , xn) = (xσ−1(1), xσ−1(2), . . . , xσ−1(n)).

As above, Sn acts on the polynomial ring K[x1, x2, . . . , xn] and the invariant
functions are the symmetric polynomials:

K[x1, . . . , xn]Sn = {f | f(xσ(1), . . . ) = f(x1, . . . ) for all σ ∈ Sn}.
It is well known and classical that every symmetric function can be expressed
uniquely as a polynomial in the elementary symmetric functions σ1, σ2, . . . , σn

defined by

σ1 := x1 + x2 + · · · + xn,

σ2 := x1x2 + x1x3 + · · ·xn−1xn,

...
σk :=

∑
i1<i2<···<ik

xi1xi2 · · ·xik
,

...
σn := x1x2 · · ·xn.

We will give a proof of this below.

Proposition. The elementary symmetric functions σ1, σ2, . . . , σn are alge-
braically independent and generate the algebra of symmetric functions:

K[x1, x2, . . . , xn]Sn = K[σ1, σ2, . . . , σn].
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Proof: We proof this by induction on n. Let σ′
1, σ

′
2, . . . , σ′

n−1 denote the ele-
mentary symmetric functions in the variables x1, x2, . . . , xn−1. Then

σ1 = σ′
1 + xn,

σ2 = σ′
2 + xnσ′

1,

...
σn−1 = σ′

n−1 + xnσ′
n−2,

σn = xnσ′
n−1,

hence σi ∈ K[σ′
1, . . . , σ′

n−1, xn]. Assume that the σi’s are algebraically depen-
dent and let F (σ1, σ2, . . . , σn) = 0 be an algebraic relation of minimal degree.
Setting xn = 0 we obtain the relation F (σ′

1, σ
′
2, . . . , σ′

n−1, 0) = 0 between the
σ′

i, hence F (z1, . . . , zn−1, 0) = 0 by induction. This implies that F is divisible
by xn which contradicts the minimality.

Now let f ∈ K[x1, . . . , xn] be a symmetric polynomial. Since every
homogeneous component of f is symmetric, too, we can assume that f is homo-
geneous of some degree N . If we write f in the form f =

∑
i fi(x1, . . . , xn−1)xi

n

then all fi are symmetric in x1, . . . , xn−1 and so, by induction,

fi ∈ K[σ′
1, . . . , σ′

n−1] ⊂ K[σ1, . . . , σn, xn].

Thus f has the form f = p(σ1, . . . , σn)+xnh(σ1, . . . , σn, xn) with two polyno-
mials p and h. Again we can assume that p(σ1, . . . , σn) and h(σ1, . . . , σn, xn)
are both homogeneous, of degree N and N−1, respectively. It follows that f−p
is again homogeneous and is divisible by xn. Since it is symmetric, it is divisible
by the product x1x2 · · ·xn, i.e. f − p = σnf̄ with a symmetric polynomial f̄ of
degree at most N − n. Now the claim follows by induction on the degree of f .

�

Exercises

8. Consider the following symmetric functions nj := xj
1 + xj

2 + · · · + xj
n

called power sums or Newton functions.
(a) Prove the following formulas due to Newton:

(−1)j+1jσj = nj − σ1nj−1 + σ2nj−2 − · · · + (−1)j−1σj−1n1

for all j = 1, . . . , n.
(Hint: The case j = n is easy: Consider f(t) :=

∏
i
(t − xi) and calculate∑

i
f(xi) which is equal to 0. For j < n, the right hand side is a symmetric

function of degree ≤ j, hence can be expressed as a polynomial in σ1, . . . , σj .
Now put xj+1 = . . . = xn = 0 and use induction on n. Another proof can
be found in [Wey46].)
(b) Show that in characteristic 0 the power sums n1, n2, . . . , nn generate
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the symmetric functions.

9. From the natural representation of GL2(K) on W := K2 we get a linear
action of GL2(K) on the coordinate ring K[W ] = K[x, y] (cf. Exercise 5). If
char K = 0 then the representations of SL2 on the homogeneous components
Vn := K[x, y]n (n = 0, 1, . . . ) are all irreducible.
The Vn are the classical binary forms of degree n.

10. Show that a representation ρ : G → GL(W ) is selfdual if and only if
there exists a G-invariant non-degenerate bilinear form B : W × W → K.
Use this to give another solution to Exercise 3.

11. Let f =
∑n

i=0
aix

iyn−i and h =
∑n

j=0
bjx

jyn−j be two binary forms

of degree n (see Exercise 9). Show that for suitable γ0, . . . , γn ∈ Q the
bilinear form B(f, h) := γ0 a0bn + γ1 a1bn−1 + · · · + γn anb0 on Vn × Vn

is SL2-invariant and non-degenerate. In particular, all the Vn are selfdual
representations of SL2.

1.3 Zariski-dense subsets. For many purposes the following notion of “den-
sity” turns out to be very useful.

Definition. A subset X of a finite dimensional vector space W is called
Zariski-dense if every function f ∈ K[W ] which vanishes on X is the zero
function. More generally, a subset X ⊂ Y (⊂ W ) is called Zariski-dense in Y
if every function f ∈ K[W ] which vanishes on X also vanishes on Y .

In other words every polynomial function f ∈ K[W ] is completely determined
by its restriction f |X to a Zariski-dense subset X ⊂ W . Denote by I(X) the
ideal of functions vanishing on X ⊂ W :

I(X) := {f ∈ K[W ] | f(a) = 0 for all a ∈ X}.
I(X) is called the ideal of X. Clearly, we have I(X) =

⋂
a∈X ma where ma =

I({a}) is the the maximal ideal of functions vanishing in a, i.e., the kernel of the
evaluation homomorphism εa : K[W ] → K, f �→ f(a). It is called the maximal
ideal of a. (Choosing coordinates we get ma = (x1−a1, x2−a2, . . . , xn−an).) It
is clear from the definition above that a subset X ⊂ Y (⊂ W ) is Zariski-dense
in Y if and only if I(X) = I(Y ).

Remark. Let X ⊂ Y be two subsets of the K-vector space W . For every field
extension L/K we have W ⊂ WL := L⊗K W . If X is Zariski-dense in Y it is
not a priori clear that this is also the case if X and Y are considered as subsets
of WL. In order to prove this it suffices to show that L ⊗K IK(X) = IL(X).
This is obvious if X is a point, hence IK(X) = ma. The general case follows
from the description of I(X) above as an intersection of maximal ideals (using
Exercise 12).
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Exercises

12. Let V be a K-vector space, not necessarily finite dimensional, let L/K
be a field extension and Ui ⊂ V (i ∈ I) a family of subspaces. Then

L ⊗K (
⋂
i∈I

Ui) =
⋂
i∈I

(L ⊗K Ui) ⊂ L ⊗K V.

13. Let k ⊂ K be an infinite subfield. Then kn is Zariski-dense in Kn.

A subset X ⊂ W defined by polynomial equations is characterized by the
property that it is not Zariski-dense in any strictly larger subset. We call such
a subset Zariski-closed and its complement Zariski-open.

Lemma. Let h ∈ K[W ] be a non-zero function and define Wh := {w ∈ W |
h(w) �= 0}. Then Wh is Zariski-dense in W .

Proof: In fact, if f vanishes on Wh then fh vanishes on W , hence fh = 0.
Since h is nonzero we must have f = 0. �

A typical example of a Zariski-dense subset is GLn(K) = Mn(K)det ⊂ Mn(K).
It was used in the Example 2 of the previous section 1.2.

Exercise 14. Let k ⊂ K be an infinite subfield. Then GLn(k) is Zariski-
dense in GLn(K). Moreover, SLn(k) is Zariski-dense in SLn(K).
(Hint: The first statement follows from Exercise 13 and the Remark above.

For the second statement use the map A �→
( det A

1

. . .

)−1

A.)

Example. Let W be a G-module and assume that G has a Zariski-dense
orbit in W . Then every invariant function is constant: K[W ]G = K. A typical
example is the natural representation of SL(V ) on

V r := V ⊕ V ⊕ · · · ⊕ V︸ ︷︷ ︸
r times

for r < dimV = n. In fact, using coordinates this corresponds to left multipli-
cation of the n × r-matrices by SLn.
In 1.2 Example 2 we have seen that for r = n the invariants are generated by
the determinant function det. This implies again that there are no non-constant
invariants for r < n because the restriction of det to the n×r-matrices vanishes
for r < n. (We use here the fact that every invariant of r < n copies is a
restriction an invariant on n copies; cf. Exercise 27 in 1.5).

The general problem of describing the invariants for arbitrary r is solved by
the First Fundamental Theorem for SLn. We will discuss this in §7 and §8 (see
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7.5 and 8.4).

Exercises

15. Let X ⊂ Y ⊂ W and assume that X is Zariski-dense in Y . Then the
linear spans 〈X〉 and 〈Y 〉 are equal.

16. Let H ⊂ G ⊂ GL(W ) be subgroups and assume that H is Zariski-
dense in G. Then a linear subspace U ⊂ W is H-stable if and only if it is
G-stable. Moreover, we have K[W ]H = K[W ]G.

17. Show that K[V ⊕V ∗]GL(V ) = K[q] where the bilinear form q is defined
by q(v, ζ) := ζ(v) (cf. Exercise 7).
(Hint: The subset Z := {(v, ζ) | ζ(v) �= 0} of V ⊕ V ∗ is Zariski-dense. Fix
a pair (v0, ζ0) such that ζ0(v0) = 1. Then for every (v, ζ) ∈ Z there is a
g ∈ GL(V ) such that g(v, ζ) = (v0, λζ0) where λ = ζ(v).)

1.4 Covariants. Let W, V be two (finite dimensional) vector spaces over K. A
map ϕ : W → V is called polynomial or a morphism if the coordinate functions
of ϕ with respect to some basis of V are polynomial functions on W . It is obvious
that this does not depend on the choice of the basis. As an example consider
the canonical map from W to the r-fold tensor product W ⊗W ⊗· · ·⊗W given
by w �→ w ⊗ w ⊗ · · · ⊗ w or the canonical map from W to the rth symmetric
power Sr W given by w �→ wr.

Given a morphism ϕ : W → V every polynomial function f on V
determines—by composition—a polynomial function ϕ∗(f) := f ◦ ϕ on W .
Thus, we obtain an algebra homomorphism ϕ∗ : K[V ] → K[W ] called the co-
morphism of ϕ which completely determines the morphism ϕ: Choosing coor-
dinates in V we can identify V with Kn and K[V ] with K[y1, y2, . . . , yn] and
then the ith component of ϕ : W → Kn is given by ϕi = ϕ∗(yi).

Exercises

18. The map ϕ �→ ϕ∗ defines a bijection between the set of morphisms
W → V and the set of algebra homomorphisms K[V ] → K[W ]. Moreover,
the following holds:

(a) If ψ : V → U is another morphism then (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

(b) ϕ∗ is injective if and only if the image ϕ(W ) is Zariski-dense in V .

(c) If ϕ∗ is surjective then ϕ is injective.

19. Let ϕ : V → W be a morphism of vector spaces and let X ⊂ Y ⊂ V
be subsets where X is Zariski-dense in Y . Then ϕ(X) is Zariski-dense in
ϕ(Y ).

20. A morphism ϕ : W → V is called homogeneous of degree d if ϕ(λw) =
λdϕ(w) for all w ∈ W , λ ∈ K (cf. 1.1).
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(a) ϕ is homogeneous of degree d if and only if ϕ∗(V ∗) ⊂ K[W ]d. Equiv-
alently, all components of ϕ with respect to any basis of V are homo-
geneous functions of the same degree.

(b) Every morphism can be uniquely written as a sum of homogeneous
morphisms. (The summands are called the homogeneous components
of ϕ.)

21. Denote by K[SL2] the algebra of functions f |SL2 where f is a polynomial
function on M2.

(a) Show that the kernel of the restriction map res : K[M2] → K[SL2] is
the ideal generated by the determinant det:

K[SL2] = K[ā, b̄, c̄, d̄]
∼← K[a, b, c, d]/(ad − bc − 1).

(Hint: Assume first that K is algebraically closed. The general case fol-
lows by showing that SL2(K) is Zariski-dense in SL2(K̄); see Exercise
14.)

(b) The subgroup U ⊂ SL2 of upper triangular unipotent matrices (Exer-
cise 4) acts on SL2 by left multiplication. Show that K[SL2]

U = K[c, d].

22. The orbit map SL2 → K2, g �→ ge1 (see Exercise 4) identifies the
(regular) functions on K2 with the U -invariant functions on SL2 where U
acts on SL2 by right multiplication: (u, g) �→ gu−1.

Now assume that W and V are both G-modules. Generalizing the notion of
invariant functions we introduce the concept of equivariant morphisms, i.e.,
polynomial maps ϕ : W → V satisfying ϕ(gw) = gϕ(w) for all g ∈ G, w ∈ W ,
which leads to the classical concept of covariants (or concomittants).

Definition. Let W and V be two G-modules. A covariant of W of type V is
a G-equivariant polynomial map ϕ : W → V .

Examples 1. Both examples mentioned above, W → W ⊗ W ⊗ · · · ⊗ W and
W → Sr W are covariants with respect to the group GL(W ).
Another example arises from matrix multiplication: Consider the action of
GLn(K) on the n× n-matrices Mn := Mn(K) by conjugation. Then the power
maps A �→ Ai are covariants of type Mn.

Working with covariants rather than only with invariants offers a num-
ber of interesting new constructions. For instance, covariants can be composed
(see Exercise 18). In particular, if ϕ : W → V is a covariant and f ∈ K[V ]G an
invariant then the composition f ◦ ϕ is an invariant of W . Another construc-
tions arises in connection with tensor products. Let V1, V2 be two G-modules
and let p : V1 ⊗ V2 → U be a linear projection onto some other G-module U .
For example, assume that the tensor product V1 ⊗ V2 is completely reducible
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and that U is a direct summand. If ϕ1, ϕ2 are covariants of type V1 and V2,
respectively, then we obtain a covariant (ϕ1, ϕ2)U of type U by composing in
the following way:

(ϕ1, ϕ2)U : W
(ϕ1,ϕ2)−−−−−→ V1 × V2 −→ V1 ⊗ V2

p−→ U

This construction is classically called transvection (in German: Überschiebung).
It was an important tool in the 19th century invariant theory of binary forms.
We will discuss this in detail in the last chapter.

Example 2. Assume char K �= 2 and consider the standard representation of
SL2 on V = K2. Then V ⊗ V = S2 V ⊕ K and the projection p : V ⊗ V → K
is given by (x1, x2)⊗ (y1, y2) �→ x1y2 − y1x2. Given two covariants ϕ, ψ of type
V we thus obtain an invariant by transvection: (ϕ, ψ)K = ϕ1ψ2 − ϕ2ψ1.

A special case of this construction is the multiplication of a covariant ϕ : W → V
with an invariant f ∈ K[W ] which is again a covariant of type V , denoted by
fϕ. In this way we see that the covariants of a fixed type form a module over
the ring of invariants.

Example 3. For the group GLn(K) an interesting example arises from matrix
multiplication (which can be considered as a linear projection p : Mn ⊗Mn →
Mn): For any GLn-module W two covariants of type Mn can be multiplied.
Thus the covariants of type Mn form even a (non-commutative) algebra over
the ring of invariants.

Given a covariant ϕ : W → V of type V the comorphism ϕ∗ defines—
by restriction—a G-homomorphism V ∗ → K[W ]: λ �→ λ ◦ ϕ, which we also
denote by ϕ∗ . Clearly, the comorphism and hence ϕ is completely determined
by this linear map.

Proposition. Let W and V be G-modules. The covariants of W of type V are
in bijective correspondence with the G-homomorphisms V ∗ → K[W ].

Proof: By standard properties of the polynomial ring we know that the algebra
homomophisms K[V ] → K[W ] are in 1-1 correspondence with the K-linear
maps V ∗ → K[W ]. Thus, there is a natural bijection between the morphisms
W → V and the linear maps V ∗ → K[W ] (see Exercise 18) which clearly
induces a bijection between the subset of G-equivariant morphisms and the
subset of G-homomorphisms. �

This proposition shows that the study of covariants of a given G-module W
which was an important task in the classical literature corresponds in our mod-
ern language to the determination of the G-module structure of the coordinate
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ring K[W ].

Exercises

23. Let ϕ be a covariant of type V . Then every homogeneous component
is again a covariant of type V (see Exercise 20).

24. Let G be GL(W ) or SL(W ). Show that the only covariants of W of
type W are the scalar multiplications t · id : W → W , t ∈ K.

25. Let W be a representation of SL2 and let U the subgroup of upper
triangular unipotent matrices. There is an isomorphism K[W ⊕ K2]SL2 ∼→
K[W ]U given by f �→ f̄ where f̄(w) := f(w, (1, 0)).

(Hint: The inverse map is constructed in the following way: For h ∈ K[W ]U

define F : W × SL2 → K by F (w, g) := h(g−1w). Then (a) F (w, gu) =
F (w, g) for all u ∈ U and (b) F (hw, hg) = F (w, g) for all h ∈ SL2. It
follows from (a) that F defines a function F̄ on W × K2 (see Exercise 22)
which is SL2-invariant by (b).)

1.5 Classical Invariant Theory. One of the fundamental problems in Clas-
sical Invariant Theory (shortly CIT) is the following:

Problem. Describe generators and relations for the ring of invariants K[W ]G.

This question goes back to the 19th century and a number of well-known mathe-
maticians of that time have made important contributions: Boole, Sylvester,
Cayley, Hermite, Clebsch, Gordan, Capelli, Hilbert. We refer the
reader to some classical books on invariant theory, like Gordan’s “Vorlesun-
gen” [Gor87], “The algebra of Invariants” by Grace and Young [GrY03],
Weitzenböck’s “Invariantentheorie” [Wei23] and of course the famous “Clas-
sical Groups” of Weyl [Wey46] (see also [Gur64] and [Sch68]). Many impor-
tant notions from modern algebra, like Noetherian Theory, Hilbert’s Syzy-
gies, the “Basissatz” and the “Nullstellensatz”, were introduced in connec-
tion with this problem. Modern treatments of the subject can be found in the
books of Dieudonné-Carrell [DiC70], Fogarty [Fog69], Kraft [Kra85]
and Springer [Spr77].

One of the main general results in this context is the so called First
Fundamental Theorem (shortly FFT). It says that the simultaneous invariants
of a large number of copies of a given representation W can all be obtained from
n copies by “polarization” where n = dimW . We will discuss this in detail in
the following paragraphs. There is also a Second Fundamental Theorem (SFT)
which makes some general statements about the relations. We will say more
about this in the second and the third chapter.

Exercises 26. Let the group Z2 = {id, σ} act on the finite dimensional



12 Invariant Functions and Covariants § 1

K-vector space V by σ(v) = −v (char K �= 2). Determine a system of
generators for the ring of invariants K[V ]σ = K[V ]Z2 .
(Hint: The invariants are the polynomials of even degree.)

27. Let W be a G-module and V ⊂ W a G-stable subspace. Assume that
V has a G-stable complement: W = V ⊕ V ′. Then every invariant function
f ∈ K[V ]G is the restriction f̃ |V of an invariant function f̃ ∈ K[W ].
Use the subgroup U ⊂ SL2 (Exercise 4) to show that the claim above does
not hold for every stable subspace V .

28. Consider the two finite subgroups

Cn :=
{(

ζ 0

0 ζ−1

) ∣∣ ζn = 1
}

and D̃2n := C2n ∪
(

0 1
−1 0

)
· C2n

of SL2(C). Find generators and relations for the invariant rings C[x, y]Cn

and C[x, y]D̃2n .

29. Let L/K be a field extension. For any K-vector space V we put VL :=
V ⊗K L. If G is a group and V a G-module then VL is also a G-module.

(a) Show that VL
G = (V G)L.

(b) For the invariants we have L[V ]G = L ⊗K K[V ]G. In particular, a
subset S ⊂ K[V ]G is a system of generators if and only if it generates
L[V ]G.

(c) If U ⊂ V is a G-submodule and if UL has a G-stable complement in
VL then U has a G-stable complement in V .
(Hint: Consider the natural map Hom(V, U) → Hom(U, U) and use
that Hom(VL, WL) = Hom(V, W )L.)

(d) If the representation of G on VL is completely reducible then so is the
representation on V .

Remark. In general, we work over an arbitrary (infinite) field K. But some-
times it is convenient to replace K by its algebraic closure K̄ and to use
geometric arguments. We have already seen above that for a representation
ρ : G → GL(W ) on a K-vector space W we always have

K̄ ⊗K K[W ]G = K̄[WK̄ ]G where WK̄ := K̄ ⊗K W

(Exercise 29). On the right hand side of the equation we can even replace G by
a larger group G̃ with a representation ρ̃ : G̃ → GL(WK̄) provided that ρ(G) is
Zariski-dense in ρ̃(G̃) (see 1.3 Exercise 16; cf. Remark 1.3). A typical example
is G = GLn(K) (or SLn(K)) and G̃ = GLn(K̄) (or SLn(K̄)) (cf. 1.3 Exercise
14).

1.6 Some Finiteness Theorems. One of the highlights of the 19th century
invariant theory was Gordan’s famous Theorem showing that the invariants
(and covariants) of binary forms (under SL2) are finitely generated ([Gor68]).
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His proof is rather involved and can be roughly described as follows: He gives
a general inductive method to construct all invariants, and then he shows that
after a certain number of steps the construction does not produce any new
invariant. Thus, the finite number of invariants constructed so far form a system
of generators.

It was already clear at that time that it will be very difficult to gener-
alize Gordan’s method to other groups than SL2. So it came as a big surprise
when Hilbert presented in 1890 his general finiteness result for invariants,
using completely new ideas and techniques ([Hil90], [Hil93]). In the following
we give a modern formulation of his result, but the basic ideas of the proof are
Hilbert’s.

Theorem 1 (Hilbert). Let W be a G-module and assume that the repre-
sentation of G on the coordinate ring K[W ] is completely reducible. Then the
invariant ring K[W ]G is finitely generated.

Outline of proof: Since the representation of G on K[W ] is completely re-
ducible there is a canonical G-equivariant linear projection R : K[W ] → K[W ]G

which is the identity on K[W ]G. This projection is usually called Reynolds
operator (see Exercise 30 below). It is easy to see that R(hf) = hR(f) for
h ∈ K[W ]G, f ∈ K[W ]. It follows that for every ideal a ⊂ K[W ]G we have
R(K[W ]a) = K[W ]a ∩ K[W ]G = a. Now we start with the homogeneous max-
imal ideal m0 := ⊕d>0K[W ]Gd of K[W ]G. By Hilbert’s Basis Theorem (see
[Art91]) the ideal K[W ]m0 of K[W ] is finitely generated, i.e., there are homo-
geneous polynomials f1, . . . , fs ∈ m0 such that K[W ]m0 = (f1, . . . , fs). But
then m0 = R(K[W ]m0), as an ideal of K[W ]G, is also generated by f1, . . . , fs.
Now it is not difficult to show that any homogeneous system of generators of
m0 is also a system of generators for the invariant ring K[W ]G (see Exercise 31
below). �

The proof above shows that the invariant ring K[W ]G is Noetherian,
i.e., every ascending chain of ideals becomes stationary, or equivalently, every
ideal is finitely generated.

Exercises

30. Let A be a (commutative) algebra and let G be a group of algebra au-
tomorphisms of A. Assume that the representation of G on A is completely
reducible. Then the subalgebra AG of invariants has a canonical G-stable
complement and the corresponding G-equivariant projection p : A → AG

satisfies the relation p(hf) = h p(f) for h ∈ AG, f ∈ A.

31. Let A = ⊕i≥0Ai be a graded K-algebra, i.e., AiAj ⊂ Ai+j . Assume that
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the ideal A+ := ⊕i>0Ai is finitely generated. Then the algebra A is finitely
generated as an algebra over A0. More precisely, if the ideal A+ is generated
by the homogeneous elements a1, a2, . . . , an then A = A0[a1, a2, . . . , an].

This result of Hilbert can be applied to the case of finite groups G as long as
the characterstic of K is prime to the order of G (Theorem of Maschke, see
[Art91] Chap. 9, Corollary 4.9). In characteristic zero there is a more precise
result due to Emmy Noether ([Noe16], 1916) which gives an explicit bound
for the degrees of the generators.

Theorem 2 (E. Noether). Assume charK = 0. For any representation W
of a finite group G the ring of invariants K[W ]G is generated by the invariants
of degree less or equal to the order of G.

Proof: Choose a basis in W and identify K[W ] with the polynomial ring
K[x1, x2, . . . , xn]. For any n-tuple µ = (µ1, µ2, . . . , µn) of non-negative integers
define the following invariant:

jµ :=
∑
g∈G

g(xµ1
1 xµ2

2 · · ·xµn
n ).

Now let f =
∑

µ aµxµ1
1 xµ2

2 · · ·xµn
n be any invariant. Then |G| · f =

∑
g∈G gf =∑

µ aµjµ. Thus we have to show that K[W ]G is generated by the jµ’s where
|µ| := µ1 + · · ·+µn ≤ |G|. For that purpose consider the following polynomials
pj where j ∈ N:

pj(x1, . . . , xn, z1, . . . , zn) :=
∑
g∈G

(gx1 · z1 + gx2 · z2 + · · · + gxn · zn)j .

Clearly, we have pj =
∑

|ρ|=j jρ · zρ1
1 zρ2

2 · · · zρn
n . By Exercise 8 we see that each

pj with j > |G| can be expressed as a polynomial in the pi’s for i ≤ |G|. This
implies that the invariants jρ for |ρ| > |G| can be written as polynomials in the
jµ’s where µ ≤ |G|, and the claim follows. �

In connection with this result Schmid introduced in [Sch89, Sch91]
a numerical invariant β(G) for every finite group G. It is defined to be the
minimal number m such that for every representation W of G the invariant
ring K[W ]G is generated by the invariants of degree less or equal to m. By
Noether’s Theorem above we have β(G) ≤ |G|. Schmid shows (loc. cit.) that
β(G) = |G| if and only if G is cyclic. In general, it is rather difficult to calculate
β(G), except for small groups. For example,

β(Z/2 × Z/2) = 3, β(S3) = 4, β(S4) = 10. β(D2n) = n + 1
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where D2n denotes the dihedral group of order 2n. For the symmertic group
Sn we can find a lower bound by looking at large cyclic subgroups. Denote by
γ(n) the maximal order of an element of Sn. Then we have

β(Sn) ≥ γ(n) and ln γ(n) ∼
√

n lnn

where f(n) ∼ g(n) means that limn→∞
f(n)
g(n) = 1 (see [Mil87]). In particular,

β(Sn) grows more rapidly than any power of n.
For finite abelian groups G the invariant β(G) coincides with the so-

called Davenport constant ([GeS92], see Exercise 32 below).

Exercises (The results of the following two exercises are due to Schmid
[Sch89, Sch91].)

32. Let G be a finite abelian group (written additively). Define the Dav-
enport constant δ(G) to be the length m of the longest non-shortable
expression

0 = g1 + g2 + · · · + gm, gi ∈ G.

(“Non-shortable” means that no strict non-empty subset of the gi’s has sum
zero.)
(a) Show that δ(G) = β(G).
(b) Show that δ(G) = |G| if and only if G is cyclic.
(c) Calculate δ((Z/2)n).

33. Let H ⊂ G be a subgroup. Then β(G) ≤ [G : H]β(H). If H is normal
then β(G) ≤ β(H)β(G/H).
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§ 2 First Fundamental Theorem for
the General Linear Group

We discuss the so-called First Fundamental Theorem for GLn which describes a minimal
system of generators for the “invariants of p vectors and q covectors”, i.e., the invariant
polynomial functions on p copies of the vector space V and q copies of the dual space V ∗

with respect to the natural linear action of GL(V ). This result has an interesting geometric
interpretation.

Then we study the invariants of several copies of the endomorphism ring End(V ) under
simultaneous conjugation and describe a set of generators. This gives the First Fundamental
Theorem for Matrices. We will see in §4 that the two First Fundamental Theorems are
strongly related.

2.1 Invariants of vectors and covectors. Let V be a finite dimensional
K-vector space. Consider the representation of GL(V ) on the vector space

W := V ⊕ · · · ⊕ V︸ ︷︷ ︸
p times

⊕V ∗ ⊕ · · · ⊕ V ∗︸ ︷︷ ︸
q times

=: V p ⊕ V ∗q,

consisting of p copies of V and q copies of its dual space V ∗, given by

g(v1, . . . , vp, ϕ1, . . . , ϕq) := (gv1, . . . , gvp, gϕ1, . . . , gϕq)

where gϕi is defined by (gϕi)(v) := ϕi(g−1v). This representation on V ∗ is the
dual or contragredient representation of the standard representation of GL(V )
on V (cf. 1.2 Exercise 2). The elements of V are classically called vectors, those
of the dual space V ∗ covectors. We want to describe the invariants of V p ⊕V ∗q

under this action. (The easy case p = q = 1 was treated in 1.3 Exercise 17.)
For every pair (i, j), i = 1, . . . , p, j = 1, . . . , q, we define the bilinear function
(i | j) on V p ⊕ V ∗q by

(i | j) : (v1, . . . , vp, ϕ1, . . . , ϕq) �→ (vi | ϕj) := ϕj(vi).

These functions are usually called contractions. They are clearly invariant:

(i | j)(g(v, ϕ)) = (gϕj)(gvi) = ϕj(g−1gvi) = (i | j)(v, ϕ).

Now the First Fundamental Theorem (shortly FFT) states that these func-
tions generate the ring of invariants. The proof will be given in 4.7 after some
preparation in §3 and §4.

First Fundamental Theorem for GL(V ). The ring of invariants for the
action of GL(V ) on V p ⊕ V ∗q is generated by the invariants (i | j):

K[V p ⊕ V ∗q]GL(V ) = K[(i | j) | i = 1, . . . , p, j = 1, . . . , q].

Using coordinates this amounts to the following. Fix a basis in V and the dual
basis in V ∗ and write vi ∈ V as a column vector and ϕj ∈ V ∗ as a row vector:
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vi =

 x1i

...
xni

 , ϕj = (ϕj1, . . . , ϕjn).

Then X := (v1, . . . , vp) is a n× p-matrix and Y :=

 ϕ1

...
ϕq

 is a q × n-matrix,

and we obtain a canonical identification:

V p ⊕ V ∗q = Mn×p(K) ⊕ Mq×n(K).

The corresponding action of g ∈ GLn(K) on the matrices is given by g(X, Y ) =
(gX, Y g−1). Now consider the map

Ψ: Mn×p ×Mq×n → Mq×p, (X, Y ) �→ Y X.

Then the (i, j)-component of Ψ is

Ψij(X, Y ) =
n∑

ν=1

ϕiνvνj = (vj | ϕi), i.e., Ψij = (j | i).

Moreover, the map Ψ is constant on orbits: Ψ(g(X, Y )) = Ψ(gX, Y g−1) =
Y g−1gX = Y X = Ψ(X, Y ). Thus we see again that (i | j) is an invariant.

2.2 Geometric interpretation. We can give a geometric formulation of the
FFT using the language of algebraic geometry. First we remark that the image
of the map Ψ is the subset V n

q×p ⊂ Mq×p of matrices of rank ≤ n (see Exercise
1 below). In fact, V n

q×p is even a closed subvariety which means that it is the
zero set of a family of polynomials (see below and Exercise 2). Now the FFT
says that the map

Ψ: Mn×p ×Mq×n → V n
q×p

is “universal” in the sense that any morphism Φ: Mn×p ×Mq×n → Z into an
affine variety Z which is constant on orbits factors through Ψ, i.e., there is a
unique morphism Φ̄: V n

q×p → Z such that Φ = ΦΨ:

Mn×p ×Mq×n
Ψ−−−−→ V n

q×p�Φ

�Φ̄

Z Z

Thus we see that V n
q×p is an algebraic analogue to the orbit space of the action

which is usually denoted by (Mn×p ×Mq×n)/ GLn. In our situation we say that
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Ψ: Mn×p ×Mq×n → V n
q×p is an algebraic quotient (with respect to the action

of GLn) and use the notation V n
q×p = (Mn×p ×Mq×n)// GLn. By construction,

the quotient map Ψ induces an isomorphism

Ψ∗ : K[V n
q×p]

∼→ K[Mn×p ×Mq×n]GLn ,

where K[V n
q×p] is the coordinate ring of V n

q×p i.e., the K-algebra of all restric-
tions f |V n

q×p
, f ∈ K[Mq×p].

The subvariety V n
q×p ⊂ Mq×p is called a determinantal variety because

it is defined by the vanishing of all (n+1)×(n+1)-minors (Exercise 2). Since the
invariant ring is clearly an integrally closed domain it follows from the above
that V n

q×p is a normal variety. (See the following exercises.)

Exercises

1. Show that every matrix C ∈ Mq×p of rank ≤ n can be written as a
product C = AB with a (q × n)-matrix A and a (n × p)-matrix B.

2. Show that for any n the set of p× q-matrices of rank ≤ n forms a closed
subvariety of Mp×q, i.e., it is the set of zeroes of some polynomials.

(Consider the n + 1 × n + 1-minors.)

3. Let ρ : G → GL(W ) be a finite dimensional representation of a group G.
Then the ring of invariants K[W ]G is normal, i.e., integrally closed in its
field of fractions.

2.3 Invariants of conjugacy classes. Consider the linear action of GL(V )
on End(V ) by conjugation. The orbits of this action are the conjugacy classes
of matrices. For an element A ∈ End(V ) we write its characteristic polynomial
in the form

PA(t) = det(tE − A) = tn +
n∑

i=1

(−1)isi(A)tn−i

where n := dimV and E ∈ End(V ) is the identity. This shows that the si are
invariant polynomial functions on End(V ).

Proposition. The ring of invariants for the conjugation action of GL(V ) on
End(V ) is generated by s1, s2, . . . , sn:

K[End(V )]GL(V ) = K[s1, s2, . . . , sn].

Moreover, the si are algebraically independent.

It is a well known fact from linear algebra that si(A) is the ith ele-
mentary symmetric function of the eigenvalues of A. In particular, if we choose
a bases of V and identify End(V ) with the n × n-matrices Mn(K), the re-
strictions of the si’s to the diagonal matrices D ⊂ Mn(K) are exactly the
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elementary symmetric functions σi on D = Kn. By the main theorem about
symmetric functions (Proposition 1.2) they are algebraically independent and
generate the algebra of symmetric functions. This already proves the second
part of the theorem.

Assume that we know that every invariant function f on Mn is com-
pletely determined by its restriction to D (see Exercise 4 below). Then we
can finish the proof in the following way: The restriction f |D of an invariant
function f is clearly symmetric, hence of the form f |D = p(σ1, . . . , σn) with
a polynomial p in n variables. But then f − p(s1, . . . , sn) is an invariant
function on Mn(K) which vanishes on D, and so by the assumption above
f = p(s1, . . . , sn) ∈ K[s1, . . . , sn].

Following is another proof which does not make use of the theory of
symmetric functions.

Proof of Proposition: Define

S := {


0 an

1 0
. . . . . .

...
1 0 a2

1 a1

 | a1, . . . , an ∈ K} ⊂ Mn(K)

and let X := {A ∈ Mn(K) | A is conjugate to a matrix in S}. We claim that
X is Zariski-dense in Mn(K). In fact, a matrix A belongs to X if and only if
there is a vector v ∈ Kn such that v,Av, . . . , An−1v are linearly independent.
Now consider the polynomial function h on Mn(K) × Kn given by

h(A, v) := det(v, Av, A2v, . . . , An−1v).

It follows from Lemma 1.3 that the subset

Y := {(A, v) | v,Av, . . . , An−1v linearly independent}
= (Mn(K) × Kn)h

is Zariski-dense in Mn(K) × Kn. Its projection onto Mn(K) is X which is
therefore Zariski-dense, too (see 1.4 Exercise 19). This implies that every
invariant function f on Mn(K) is completely determined by its restriction to
S. An elementary calculation shows that for a matrix A = A(a1, . . . , an) from
the set S the characteristic polynomial is given by PA(t) = tn − ∑n

i=1 ait
n−i.

Now f(A) = q(a1, . . . , an) with a polynomial q in n variables, and we have
aj = (−1)j+1sj(A). Hence, the function

f − q(s1,−s2, s3, . . . , (−1)n+1sn)
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is invariant and vanishes on S, and so f = q(s1,−s2, . . . ) ∈ K[s1, . . . , sn]. �

Exercise 4. The set of diagonalizable matrices is Zariski-dense in Mn(K).
In particular, an invariant function on Mn(K) is completely determined by
its restriction to the diagonal matrices.

(Hint: For an algebraically closed field K this is a consequence of the Jor-
dan decomposition. For the general case use 1.3 Exercise 13 and Remark
1.3.)

2.4 Traces of powers. There is another well-known series of invariant func-
tions on End(V ), namely the traces of the powers of an endomorphism:

Trk : End(V ) → K, A �→ Tr Ak, k = 1, 2, . . . .

There are recursive formulas for expressing Trk in terms of the functions si:

Trk = fk(s1, . . . , sk−1) − (−1)kksk for k ≤ n.

In fact, we have the same relations between the Trk’s and the sj ’s as those
which hold for the power sums nk(x) :=

∑n
i=1 xk

i and the elementary symmetric
functions σj (see the following Exercise 6). Hence, if charK > n, the sj can be
expressed in terms of the Trk, k = 1, 2, . . . , n, and we get the following result:

Corollary. If charK = 0 then the functions Tr1,Tr2, . . . ,Trn generate the
invariant ring K[End(V )]GL(V ).

It is easy to see that the corollary does not hold if 0 < charK ≤ n.

Exercises

5. Consider the polynomial

ψ(t) =

n∏
i=1

(1 − txi) = 1 − σ1t + σ2t
2 − · · · + (−1)nσntn

where the σi are the elementary symmetric functions. Determine its loga-

rithmic derivative −ψ′(t)
ψ(t)

=
∑n

i=1
xi

1−txi
as a formal power series and deduce

the Newton formulas:

(−1)j+1j σj = nj − σ1nj−1 + σ2nj−2 − · · · + (−1)j−1σj−1n1

for all j = 1, . . . , n.
(This approach is due to Weyl; see [Wey46] Chap. II.A.3. Another proof
is suggested in 1.2 Exercise 8.)

6. Show that the same relations as above hold for the functions Trk and si:

(−1)j+1j sj = Trj −s1 Trj−1 +s2 Trj−2 − · · · + (−1)j−1sj−1 Tr1

for all j = 1, . . . , n.
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Example (Pairs of 2 × 2 matrices). Assume charK �= 2. The invariants of
pairs of 2×2 matrices (A, B) ∈ M2(K)×M2(K) under simultaneous conjugation
are generated by the following functions:

Tr A, Tr A2, Tr B, ,Tr B2, ,Tr AB.

Moreover, these five invariants are algebraically independent.

Proof: The last statement is easy. Also, we can assume that K is algebraically
closed (see 1.5 Remark 1.5). Moreover, it suffices to consider the traceless ma-
trices M2

′ since we have the direct sum decomposition M2 = K ⊕ M2
′.

There is a Zariski-dense set U ⊂ M2
′ × M2

′ where every pair (A, B) ∈ U is
equivalent to one of the form

(
(

t
−t

)
,

(
a 1
c −a

)
), t, c �= 0.

In addition, such a pair is equivalent to the pair where t and a are replaced
by −t and −a. Thus, an invariant function f restricted to these pairs depends
only on t2, a2, at and c. But

t2 =
1
2

Tr A2, a2 + c =
1
2

Tr B2, at =
1
2

Tr AB

and so

c =
1
2

TrB2 − (Tr AB)2

Tr A2
.

It follows that f can be written as a rational function in TrA2,Tr B2 and
TrAB. Since f is a polynomial function on M2

′ ×M2
′ and the given invariants

are algebraically independent, it follows that f must be a polynomial function
in these invariants. �

2.5 Invariants under simultaneous conjugation. Consider the linear ac-
tion of GL(V ) on End(V )m := End(V )⊕ · · · ⊕End(V ) by simultaneous conju-
gation:

g(A1, . . . , Am) := (gA1g
−1, gA2g

−1, . . . , gAmg−1).

We want to describe the invariants under this action. For every finite sequence
i1, i2, . . . , ik of numbers 1 ≤ iν ≤ m we define a function

Tri1...ik
: End(V )m → K (A1, . . . , Am) �→ Tr(Ai1Ai2 · · ·Aik

).

These generalized traces are clearly invariant functions.

First Fundamental Theorem for Matrices. If charK = 0 the ring of
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functions on End(V )m which are invariant under simultaneous conjugation is
generated by the invariants Tri1...ik

:

K[End(V )m]GL(V ) = K[Tri1...ik
| k ∈ N, 1 ≤ i1, . . . , ik ≤ m].

The proof will be given in 4.7 after some preparation in §3 and §4. In fact, we
will see that in characteristic 0 it is equivalent to the FFT for GL(V ) (2.1).
We have already remarked in 2.4 that the theorem does not hold if charK is
positive and ≤ n.

Remark. The theorem as stated gives an infinite set of generators. We will
show in Chapter II ?? that the traces Tri1...ik

of degree k ≤ n2 already generate
the invariant ring. It is conjectured that k ≤

(
n+1

2

)
suffices, but this is proved

only for dimV ≤ 3 (see [For87]).
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§ 3 Endomorphisms of Tensors

In this paragraph we study the m-fold tensor product V ⊗m as an Sm ×GL(V )-module.
Although seemingly unrelated to our earlier considerations it will turn out that there is a
strong connection with the First Fundamental Theorems discussed in the previous paragraph.
In fact, the results here will provide a first proof of the FFTs valid in characteristic zero (see
§4). Moreover, we obtain a beautiful correspondence between irreducible representations of
the general linear group GLn and irreducible representations of the symmetric group Sm

which is due to Schur.

3.1 Centralizers and endomorphism rings. Let us consider the m-fold
tensor product

V ⊗m := V ⊗ · · · ⊗ V︸ ︷︷ ︸
m times

of a (finite dimensional) vector space V and the usual linear action of GL(V )
given by

g(v1 ⊗ · · · ⊗ vm) := gv1 ⊗ · · · ⊗ gvm.

The symmetric group Sm of m letters also acts on V ⊗m:

σ(v1 ⊗ · · · ⊗ vm) := vσ−1(1) ⊗ · · · ⊗ vσ−1(m).

It is obvious that these two actions commute. Let us denote by 〈GL(V )〉 the
linear subspace of End(V ⊗m) spanned by the linear operators coming from
GL(V ), i.e., by the image of GL(V ) in End(V ⊗m) under the representation
considered above. Similarly, we define the subspace 〈Sm〉 ⊂ End(V ⊗m). Both
are subalgebras and they centralize each other:

ab = ba for all a ∈ 〈GL(V )〉 and all b ∈ 〈Sm〉.
For any subalgebra A ⊂ End(W ) where W is an arbitrary vector space the
centralizer (or commutant) of A is the subalgebra consisting of those elements
of End(W ) which commute with all element of A. It will be denoted by A′:

A′ := {b ∈ End(W ) | ab = ba for all a ∈ A}.
Equivalently, A′ is the algebra of A-linear endomorphisms of W considered as
an A-module:

A′ = EndA(W ).

The next result claims that the two subalgebras 〈GL(V )〉 and 〈Sm〉 introduced
above are the centralizers of each other:

Theorem. Consider the usual linear actions of GL(V ) and Sm on V ⊗m and
denote by 〈GL(V )〉 and 〈Sm〉 the subalgebras of End(V ⊗m) spanned by the
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linear operators from GL(V ) and Sm, respectively. Then

(a) EndSm(V ⊗m) = 〈GL(V )〉.
(b) If charK = 0 then EndGL(V )(V ⊗m) = 〈Sm〉.

The proof of the theorem is divided up into several steps. First we prove as-
sertion (a). Then we show that in characteristic zero assertion (b) follows from
(a) by the “Double Centralizer Theorem” (3.2). Finally, we will give a more
general formulation of the result in (3.3) including a description of V ⊗m as an
Sm ×GL(V )-module.

Exercise 1. Give a direct proof of the theorem in case m = 2.

Proof of (a): We use the natural isomorphism γ : End(V )⊗m ∼→ End(V ⊗m)
given by γ(A1 ⊗ · · · ⊗ Am)(v1 ⊗ · · · ⊗ vm) = A1v1 ⊗ · · · ⊗ Amvm. Then the
corresponding representation GL(V ) → End(V )⊗m is g �→ g ⊗ · · · ⊗ g. We
claim that the corresponding action of Sm on End(V )⊗m is the obvious one:

σ(A1 ⊗ · · · ⊗ Am) = Aσ−1(1) ⊗ · · · ⊗ Aσ−1(m).

In fact,

σ(γ(A1 ⊗ · · · ⊗ Am)(σ−1(v1 ⊗ · · · ⊗ vm)))
= σ(A1vσ(1) ⊗ · · · ⊗ Amvσ(m))
= Aσ−1(1)v1 ⊗ · · · ⊗ Aσ−1(m)vm

= γ(Aσ−1(1) ⊗ · · · ⊗ Aσ−1(m))(v1 ⊗ · · · ⊗ vm).

This implies that γ induces an isomorphism between the symmetric tensors
in End(V )⊗m and the subalgebra EndSm(V ⊗m) of End(V ⊗m). The claim now
follows from the next lemma applied to X := GL(V ) ⊂ W := End(V ). �

Lemma. Let W be a finite dimensional vector space and X ⊂ W a Zariski-
dense subset. Then the linear span of the tensors x ⊗ · · · ⊗ x, x ∈ X, is the
subspace Σm ⊂ W⊗m of all symmetric tensors.

Recall that a subset X ⊂ W is Zariski-dense if every function f ∈ K[W ]
vanishing on X is the zero function (see 1.3).

Proof: Let w1 . . . wN be a basis of W . Then B := {wi1 ⊗ · · · ⊗ wim
}i1,...,im

is
a basis of W⊗m which is stable under the action of Sm. Two elements wi1 ⊗
· · · ⊗ wim

and wj1 ⊗ · · · ⊗ wjm
belong to the same orbit under Sm if an only if

each wi appears the same number of times in both expressions. In particular,
every orbit has a unique representative of the form w⊗h1

1 ⊗w⊗h2
2 ⊗ · · · ⊗w⊗hN

N

where h1 + h2 + · · · + hN = m. Let us denote by rh1...hN
∈ W⊗m the sum
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of the elements in this orbit. Clearly, {rh1...hN
| ∑

hi = m} is a basis of the
symmetric tensors Σm ⊂ W⊗m. In order to prove the lemma we will show that
every linear function λ : Σm → K which vanishes on all x ⊗ · · · ⊗ x, x ∈ X, is
the zero function.

Write x =
∑N

i=1 xiwi. Then

x ⊗ · · · ⊗ x =
∑∑
hi=m

xh1
1 · · ·xhN

N rh1...hN

and so

λ(x⊗m) =
∑

ah1...hN
xh1

1 · · ·xhN

N

where ah1...hN
:= λ(rh1...hN

) ∈ K. This is a polynomial in x1, . . . , xN which
vanishes on X, by assumption. Hence, it is the zero polynomial and so all
ah1...hN

are zero, i.e. λ = 0. �

Exercises

2. Let Fd := K[x1, . . . , xn]d denote the vector space of homogeneous forms
of degree d and assume that char K = 0 or > d. Show that Fd is linearly
spanned by the dth powers of the linear forms.
(Why is here the assumption about the characteristic of K necessary where-
as the lemma above holds in any characteristic?)

3. Let ρ : G → GL(V ) be an irreducible representation and assume that
EndG(V ) = K. Denote by V n the G-module V ⊕ V ⊕ · · · ⊕ V , n-times,
which we identify with V ⊗ Kn.

(a) We have EndG(V n) = Mn(K) in a canonical way.

(b) Every G-submodule of V n is of the form V ⊗ U with a subspace U ⊂
Kn.

(c) If µ : H → GL(W ) is an irreducible representation of a group H then
V ⊗ W is a simple G × H-module.

(d) We have 〈G〉 = End(V ).
(Hint: 〈G〉 is a G × G submodule of End(V ) = V ∗ ⊗ V .)

(e) For every field extension L/K the representation of G on VL := V ⊗K L
is irreducible.
(Hint: 〈G〉L = EndL(VL).)

3.2 Double Centralizer Theorem. If charK = 0 the theorem of Maschke
(see [Art91] Chap. 9, Corollary 4.9) tells us that the group algebra K[Sm] is
semisimple, i.e., every representation of Sm is completely reducible. As a conse-
quence, the homomorphic image 〈Sm〉 of K[Sm] is a semisimple subalgebra of
End(V ⊗m). In this situation we have the following general result (which holds
for any field K):
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Proposition. Let A ⊂ End(W ) be a semisimple subalgebra and A′ := {b ∈
End(W ) | ab = ba for all a ∈ A} its centralizer. Then:

(a) A′ is semisimple and (A′)′ = A.
(b) W has a unique decomposition W = W1 ⊕ · · · ⊕Wr into simple, non-

isomorphic A ⊗ A′-modules Wi. In addition, this is the isotypic de-
composition as an A-module and as an A′-module.

(c) Each simple factor Wi is of the form Ui ⊗Di
U ′

i where Ui is a sim-
ple A-module, U ′

i a simple A′-module, and Di is the division algebra
EndA(Ui)op = EndA′(U ′

i)
op.

Recall that for a G-module W and a simple module U the isotypic component
of W of type U is the sum of all submodules of W isomorphic to U . The isotypic
components form a direct sum which is all of W if and only if W is semisimple.
In that case it is called the isotypic decomposition.

Proof: Let W = W1 ⊕ · · · ⊕ Wr be the isotypic decomposition of W as
an A-module, Wi

∼→ Usi
i with simple A-modules Ui which are pairwise non-

isomorphic. Corresponding to this the algebra A decomposes in the form

A =
r∏

i=1

Ai, Ai
∼→ Mni(Di)

with a division algebra Di ⊃ K. Furthermore, Ui
∼= Dni

i as an A-module where
the module structure on Dni

i is given by A
pr→ Ai

∼→ Mni(Di). It follows that

A′ := EndA(W ) =
∏

EndA(Wi), and

A′
i := EndA(Wi) = EndAi

(Wi)
∼= Msi

(D′
i)

where D′
i := EndAi(Ui) = Dop

i . In particular, A′ is semisimple and

dimAi dimA′
i = n2

i dimDi s2
i dimD′

i = (nisi dimDi)2

= (dimWi)2 = dim End(Wi). (∗)
This implies that the canonical algebra homomorphism Ai ⊗A′

i
∼→ End(Wi) is

an isomorphism. (Recall that Ai ⊗ A′
i is simple.) In particular, Wi is a simple

A ⊗ A′-module. More precisely, consider Ui = Dni
i as a right Di-module and

U ′
i := (Dop

i )si as a left Di-module. Then these structures commute with the A-
resp. A′-module structure, hence Ui ⊗Di U ′

i is a A⊗A′-module and we have an
isomorphism Ui ⊗Di U ′

i
∼→ Usi

i
∼→ Wi.

It remains to show that (A′)′ = A. For this we apply the same rea-
soning as above to A′ and see from (∗) that dimA′

i dimA′′
i = dim End(Wi) =
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dimAi dimA′
i. Hence dim A′′ = dimA and since A′′ ⊃ A we are done. �

Exercise 4. Let V be an irreducible finite dimensional representation of a
group G where EndG(V ) = K, and let W be an arbitrary finite dimensional
representation of G.

(a) The linear map γ : HomG(V, W ) ⊗ V → W , α ⊗ v �→ α(v) is injective
and G-equivariant and its image is the isotypic submodule of W of type
V (i.e., the sum of all simple submodules of W isomorphic to V ).

(b) If there is another group H acting on W and commuting with G then
γ is H-equivariant.

(c) Assume that K is algebraically closed. Then every simple G × H-
module is of the form V ⊗ U with a simple G-module V and a simple
H-module U .

3.3 Decomposition of V ⊗m. Now we are ready to finish the proof of Theo-
rem 3.1. This is contained in the following result which gives a more precise de-
scription of the Sm ×GL(V )-module structure of V ⊗m. In addition, we obtain
a beautiful correspondence between irreducible representations of the general
linear group GL(V ) and of the symmetric group Sm which was dicovered by
Schur in his dissertation (Berlin, 1901).

Decomposition Theorem. Assume charK = 0.

(a) The two subalgebras 〈Sm〉 and 〈GL(V )〉 are both semisimple and are
the centralizers of each other.

(b) There is a canonical decomposition of V ⊗m as an Sm ×GL(V )-module
into simple non-isomorphic modules Vλ:

V ⊗m =
⊕

λ

Vλ.

(c) Each simple factor Vλ is of the form Mλ ⊗Lλ where Mλ is a simple
Sm-module and Lλ a simple GL(V )-module. The modules Mλ (resp.
Lλ) are all non-isomorphic.

Proof: In 3.1 we have already proved that 〈Sm〉′ = 〈GL(V )〉, and so (a) and
(b) follow from the Double Centralizer Theorem 3.2. For the last statement it
remains to show that the endomorphism ring of every simple Sm-modules Mλ

is the base field K. This is clear if K is algebraically closed. For arbitrary K of
characteristic zero it will be proved in 5.7 Corollary 2. �

One easily shows that every irreducible representation of Sm occurs in V ⊗m

provided we have dimV ≥ m (see Exercise 7 below). Let us fix such a repre-
sentation Mλ. Then we obtain in a natural way
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Lλ = Lλ(V ) = HomSm(Mλ, V ⊗m)

as a consequence of the fact that EndSm
(Mλ) = K (Lemma of Schur; cf.

Exercise 9 and Remark below). This shows that Lλ(V ) depends functorially
on V . (This simply means that a linear map ϕ : V → W determines a linear
map Lλ(ϕ) : Lλ(V ) → Lλ(W ), with Lλ(ϕ ◦ψ) = Lλ(ϕ) ◦Lλ(ψ) and Lλ(idV ) =
idLλ(V ).) As an example, if M0 denotes the trivial representation and Msgn the
signum representation of Sm then we find the classical functors

L0(V ) = Sm(V ) and Lsgn(V ) =
∧m

V

(see Exercise 6). The functor Lλ is usually called Schur functor or Weyl
module. We will discuss this again in §5 (see 5.9 Remark 2).

Exercises

5. Give a direct proof of the theorem above in case m = 2.

6. Show that the isotypic component of V ⊗m of the trivial representation of
Sm is the symmetric power Sm V and the one of the signum representation
is the exterior power

∧m
V .

7. If dim V ≥ m then every irreducible representation of Sm occurs in V ⊗m.
(In fact, the regular representation of Sm occurs as a subrepresentation.)

Remark. The fact that the endomorphism rings of the simple modules Lλ and
Mλ are the base field K implies that these representations are “defined over Q,”
i.e., Mλ = M◦

λ ⊗Q K and Lλ = L◦
λ ⊗Q K, where M◦

λ is a simple Q[Sm]-module
L◦

λ a simple GL(Q)-module .
In fact, by the Theorem above we have for K = Q a decomposition

V ⊗m =
⊕

λ M◦
λ ⊗ L◦

λ and so V ⊗m
K =

⊕
λ(M◦

λ ⊗ K) ⊗K (L◦
λ ⊗ K) which shows

that Mλ = M◦
λ ⊗Q K and Lλ = L◦

λ ⊗Q K.

Exercises

8. Let ρ : G → GL(V ) be a completely reducible representation. For any
field extension K′/K the representation of G on V ⊗K K′ is completely
reducible, too.
(Hint: The subalgebra A := 〈ρ(G)〉 ⊂ End(V ) is semisimple. This implies
that A ⊗K K′ is semisimple, too.)

9. Let V be an irreducible finite dimensional K-representation of a group
G. Then EndG(V ) = K if and only if V ⊗K K′ is irreducible for every field
extension K′/K.
(Hint: Show that EndG(V ⊗K K′) = EndG(V ) ⊗K K′.)

The following corollary is clear. For the second statement one simply remarks
that the scalars t ∈ K∗ ⊂ GL(V ) act by tm · id on V ⊗m.
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Corollary. The representation V ⊗m of GL(V ) is completely reducible. For
m �= m′, V ⊗m and V ⊗m′

do not contain isomorphic submodules.

Exercises

10. There is a canonical isomorphism ϕ : End(V )
∼→ End(V )∗. It is induced

by the bilinear form (A, B) �→ Tr(AB) and is GL(V )-equivariant. Moreover,
ϕ∗ = ϕ.

11. There is a natural GL(V )-equivariant isomorphism V ⊗V ∗ ∼→ End(V ).
Which element of V ⊗ V ∗ corresponds to id ∈ End(V ) and which elements
of End(V ) correspond to the “pure” tensors v ⊗ λ?
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§ 4 Polarization and Restitution

In this paragraph we study the multilinear invariants of vectors and covectors and of matrices.
We prove the multilinear versions of the corresponding First Fundamental Theorems from §2
whose proofs have been set aside. In fact, we show that these multilinear versions are both
equivalent to our result from the previous paragraph claiming that the GL(V )-equivariant
endomorphisms of V ⊗m are linearly generated by the permutations (Theorem 3.1b).

Then, using polarization and restitution we will be able to reduce (in characteristic zero)
the general versions of the First Fundamental Theorems to the multilinear case. Thus, we
obtain a first proof of the FFT’s. A completely different proof based on the theory of Capelli
will be presented in §8.

4.1 Multihomogeneous invariants. Consider a direct sum V = V1⊕· · ·⊕Vr

of finite dimensional vector spaces. A function f ∈ K[V1 ⊕ · · · ⊕ Vr] is called
multihomogeneous of degree h = (h1, . . . , hr) if f is homogeneous of degree hi

in Vi, i.e., for all v1, . . . , vr ∈ V , t1, . . . , tr ∈ K we have

f(t1v1, t2v2, . . . , trvr) = th1
1 · · · thr

r f(v1, . . . , vr).

Every polynomial function f is in a unique way a sum of multihomogeneous
functions: f =

∑
fh; the fh are usually called the multihomogeneous compo-

nents of f . This gives rise to a decomposition

K[V1 ⊕ · · · ⊕ Vr] =
⊕
h∈Nr

K[V1 ⊕ · · · ⊕ Vr]h,

where K[V1 ⊕ · · · ⊕ Vr]h is the subspace of all multihomogeneous functions of
degree h. We remark that this is a graduation of the algebra in the sense that

K[V1 ⊕ · · · ⊕ Vr]h · K[V1 ⊕ · · · ⊕ Vr]k = K[V1 ⊕ · · · ⊕ Vr]h+k.

It is also clear that each K[V1⊕· · ·⊕Vr]h is stable under the action of GL(V1)×
· · · × GL(Vr). In particular, if the Vi are representations of a group G we find
a corresponding decomposition for the ring of invariants:

K[V1 ⊕ · · · ⊕ Vr]G =
⊕
h∈Nr

K[V1 ⊕ · · · ⊕ Vr]Gh .

In other words, if f is an invariant then every multihomogeneous component is
also an invariant. This will enable us to reduce many questions about invariants
to the multihomogeneous case.

Exercise 1. Let W, U be two G-modules where G is an arbitrary group.
Show that the homogeneous covariants ϕ : W → U of degree d are in one-to-
one correspondence with the bihomogenous invariants of W ⊕U∗ of degree
(d, 1).
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4.2 Multilinear invariants of vectors and covectors. Consider again the
natural action of GL(V ) on V p ⊕ V ∗q as in §2 and let f : V p ⊕ V ∗q → K
be a multilinear invariant. If f �= 0, then we must have p = q. In fact, if we
apply a scalar λ ∈ K∗ ⊂ GL(V ) to (v, ϕ) = (v1, . . . , vp, ϕ1, . . . , ϕq) we obtain
(λv1, . . . , λvp, λ

−1ϕ1, . . . , λ−1ϕq), hence f(λ(v, ϕ)) = λp−qf((v, ϕ)).
Now the FFT for GL(V ) (2.1) claims that the invariants are gener-

ated by the contractions (i | j) defined by (i | j)(v, ϕ) = ϕj(vi). Therefore, a
multilinear invariant of V p ⊕ V ∗p is a linear combination of products of the
form

(1 | i1)(2 | i2) · · · (p | ip)

where (i1, i2, . . . , ip) is a permutation of (1, 2, . . . , p). Thus the following is a
special case of the FFT for GL(V ).

Theorem (Multilinear FFT for GL(V )). Assume charK = 0. Multilinear
invariants of V p ⊕ V ∗q exist only for p = q. They are linearly generated by the
functions

fσ := (1 | σ(1)) · · · (p | σ(p)), σ ∈ Sp .

This theorem holds in arbitrary characteristic by the fundamental work of De
Concini and Procesi [DeP76], but our proof will only work in characteristic
zero since it is based on the double centralizer theorem.

Proof: We will prove the following more general statement:

Claim. The theorem above is equivalent to Theorem 3.1(b) stating that

EndGL(V ) V ⊗m = 〈Sm〉.

Let us denote by M the multilinear functions on V m ⊕ V ∗m. Then we have in
a canonical way

M = (V ⊗ · · · ⊗ V ⊗ V ∗ ⊗ · · · ⊗ V ∗)∗ = (W ⊗ W ∗)∗

where W := V ⊗m. Now there is a canonical isomorphism

α : End(W ) ∼→ (W ⊗ W ∗)∗

given by α(A)(w ⊗ ψ) = ψ(Aw) which is clearly GL(W )-equivariant. Hence,
we get a GL(V )-equivariant isomorphism End(V ⊗m) ∼→ (V ⊗m ⊗ V ∗⊗m)∗ = M
which induces an isomorphism

EndGL(V )(V ⊗m) ∼→ MGL(V ) = {invariant multilinear functions}.
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Let us calculate the image of σ ∈ End(V ⊗m) under α:

α(σ)(v1 ⊗ · · · ⊗ vm ⊗ ϕ1 ⊗ · · · ⊗ ϕm)
= (ϕ1 ⊗ · · · ⊗ ϕm)(σ(v1 ⊗ · · · ⊗ vm))
= (ϕ1 ⊗ · · · ⊗ ϕm)(vσ−1(1) ⊗ · · · ⊗ vσ−1(m))
= (ϕ1 | vσ−1(1))(ϕ2 | vσ−1(2)) · · · (ϕm | vσ−1(m))
= fσ−1(v1 ⊗ · · · ⊗ vm ⊗ ϕ1 ⊗ · · · ⊗ ϕm).

Thus, α〈Sm〉 = 〈fσ | σ ∈ Sp〉 and the claim follows. �

4.3 Multilinear invariants of matrices. Now we look for multilinear in-
variants on m copies of End(V ). Let σ ∈ Sm and write σ as a product of
disjoint cycles (including all cycles of length one):

σ = (i1, . . . , ik)(j1, . . . , jr) · · · (l1, . . . , ls).

Define a function Trσ : End(V )m → K by

Trσ(A1, . . . , Am) :=
Tr(Ai1 · · ·Aik

) Tr(Aj1 · · ·Ajr ) · · ·Tr(Al1 · · ·Als).

Clearly, Trσ is a multilinear invariant. It is easy to see that it does not depend
on the presentation of σ as a product of disjoint cycles (cf. Exercise 2 below).
It is now obvious that the following theorem is a special case of the FFT for
matrices (2.5).

Theorem (Multilinear FFT for matrices). Assume charK = 0. The mul-
tilinear invariants on End(V )m are linearly generated by the functions Trσ,
σ ∈ Sm.

Again this holds in arbitrary characteristic by the fundamental work of De
Concini and Procesi [DeP76], but our proof only works in characteristic
zero.

Proof: This result follows from the multilinear FFT for GL(V ) which we have
just proved. In fact, we have again the following more precise statement:

Claim. The theorem above is equivalent to Theorem 4.2, the multilinear version
of the FFT for GL(V ).

The multilinear functions on End(V )m can be identified with (End(V )⊗m)∗.
This time we want to use the following canonical isomorphism. (Recall that
End(V ) ∼→ End(V )∗ in a canonical way, see 3.3 Exercise 10.)

β : V ⊗ V ∗ ∼→ EndV, β(v ⊗ ϕ)(u) = ϕ(u)v.
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In other words, β(v ⊗ ϕ) is a rank one linear endomorphism of V with image
Kv and kernel kerϕ. The following two statements are easily verified:

(a) Tr(β(v ⊗ ϕ)) = ϕ(v),
(b) β(v ⊗ ϕ) ◦ β(w ⊗ ψ) = β(v ⊗ ϕ(w)ψ).

Now β induces a GL(V )-equivariant isomorphism

β̃ : V ⊗m ⊗ V ∗⊗m ∼→ End(V )⊗m.

Hence, the dual map β̃∗ identifies the multilinear invariants of End(V )m with
those of V m ⊗ V ∗m. The claim follows once we have shown that β̃∗(Trσ) = fσ.
Let σ = (i1, . . . , ik)(j1, . . . , jr) · · · (l1, . . . , ls) be the decomposition into disjoint
cycles. Then, using (b) and (a) above we find

Trσ β̃(v1 ⊗ · · · ⊗ vm ⊗ ϕ1 ⊗ · · · ⊗ ϕm)
= Trσ(β(v1 ⊗ ϕ1)β(v2 ⊗ ϕ2) · · · )
= Tr(β(vi1 ⊗ ϕi1)β(vi2 ⊗ ϕi2) · · ·β(vik

⊗ ϕik
)) · · ·

= Tr(β(vi1 ⊗ ϕi1(vi2)ϕi2(vi3) · · ·ϕik−1(vik
)ϕik

) · · ·
= ϕi1(vi2)ϕi2(vi3) · · ·ϕik

(vi1) · · ·
But σ(iν) = iν+1 for ν < k and σ(ik) = i1, etc., and so the last product equals

m∏
i=1

ϕi(vσ(i)) = fσ(v1 ⊗ · · · ⊗ vm ⊗ ϕ1 ⊗ · · · ⊗ ϕm)

which proves the claim. �

Remark. Although our proofs of the two theorems 4.2 and 4.3 above are only
valid in characteristic zero we have shown more generally that, independently
of the characteristic of the field K, they are both equivalent to the statement
that EndGL(V ) V ⊗m = 〈Sm〉.

Exercises

2. Show that Tr(ABC) = Tr(BCA) = Tr(CAB) for all A, B, C ∈ End(V ).

3. Let R be a finite dimensional algebra. The multiplication of R corre-
sponds to a tensor µ ∈ R∗ ⊗ R∗ ⊗ R and the automorphism group of R is
equal to the stabilizer of µ in GL(R).

4. Let V, W be two finite dimensional vector spaces and let γ : V ∗ ⊗ W
∼→

Hom(V, W ) be the canonical isomorphism. Then a tensor t corresponds to
a homomorphism of rank ≤ r if and only if t can be written as a sum of at
most r pure tensors λi ⊗ wi.
(Cf. 3.3 Exercise 11)
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4.4 Polarization. Let f ∈ K[V ] be a homogeneous function of degree d.
Calculating f on a vector of the form v =

∑d
i=1 tivi, ti ∈ K, vi ∈ V , we obtain

f(t1v1 + · · · + tdvd) =
∑

s1+···+sd=d

ts1
1 · · · tsd

d fs1...sd
(v1, . . . , vd) (∗)

where the polynomials fs1...sd
∈ K[V d] are well defined and are multihomoge-

neous of degree (s1, . . . , sd).

Definition. The multilinear polynomial f1 1...1 ∈ K[V d] is called the (full)
polarization of f . It will be denoted by Pf .

Lemma. The linear operator P: K[V ]d → K[V d](1,1,... ,1) has the following
properties:

(a) P is GL(V )-equivariant;
(b) Pf is symmetric;
(c) Pf(v, v, . . . , v) = d! f(v).

Proof: The first two statements (a) and (b) are easily verified. For (c) we
replace in (∗) every vi by v and obtain on the left hand side:

f((
∑

i

ti)v) = (
∑

i

ti)df(v) = (td1 + · · · + d! t1t2 · · · td)f(v),

and the claim follows. �

4.5 Restitution. Next we define the inverse operator to polarization.

Definition. For a multilinear F ∈ K[V d] the homogeneous polynomial RF
defined by RF (v) := F (v, v, . . . , v) is called the (full) restitution of F .

Again, R : K[V d](1,... ,1) → K[V ]d is a linear GL(V )-equivariant operator and
we have RPf = d! f by the property (c) of the lemma above. As a consequence,
we get the following result.

Proposition. Assume charK = 0 and let V be a finite dimensional represen-
tation of a group G. Then every homogeneous invariant f ∈ K[V ]G of degree
d is the full restitution of a multilinear invariant F ∈ K[V d]G.

In fact, f is the full restitution of 1
d!Pf , which is a multihomogeneous invariant

by Lemma 4.4 above.

Exercises

5. Show that PRF is the symmetrization of F defined by
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sym F (v1, . . . , vd) :=
∑

σ∈Sd

F (vσ(1), . . . , vσ(d)).

6. Let f ∈ K[V ] be homogeneous of degree d and write

f(sv + tw) =

d∑
i=0

sitd−ifi(v, w), s, t ∈ K, v, w ∈ V.

Then the polynomials fi are bihomogeneous of degree (i, d−i) and the linear
operators f �→ fi are GL(V )-equivariant. Moreover, fi(v, v) =

(
d
i

)
f(v). In

particular, if G is any subgroup of GL(V ) then f is an invariant under G if
and only if all fi are G-invariant.
The fi’s are sometimes called partial polarizations of f .

4.6 Generalization to several representations. For some applications we
have in mind we need a slight generalization of the results above. The proofs
are obvious and left to the reader.

Let f ∈ K[V1 ⊕ · · · ⊕ Vr] be a multihomogeneous polynomial of de-
gree d = (d1, . . . , dr). Denote by Pi the linear operator “full polarization with
respect to the variable vi ∈ Vi.” Then

Pf := PrPr−1 · · · P1f ∈ K[V d1
1 ⊕ V d2

2 ⊕ · · · ⊕ V dr
r ]

is a multilinear polynomial which we call again the polarization of f . Similarly,
we define the restitution RF of a multilinear F ∈ K[V d1

1 ⊕ · · · ⊕ V dr
r ] by

RF (v1, . . . , vd) := F (v1, . . . , v1︸ ︷︷ ︸
d1

, v2, . . . , v2︸ ︷︷ ︸
d2

, . . . , vr, . . . , vr︸ ︷︷ ︸
dr

).

Lemma. The two linear operators

P: K[V1 ⊕ · · · ⊕ Vr](d1,... ,vr) → K[V d1
1 ⊕ · · · ⊕ V dr

r ]multlin

R : K[V d1
1 ⊕ · · · ⊕ V dr

r ]multlin → K[V1 ⊕ · · · ⊕ Vr](d1,... ,dr)

are GL(V1) × · · · × GL(Vr)-equivariant and satisfy the following conditions:

(a) Pf is multisymmetric (i.e., symmetric with respect to the variables in
Vi for each i);

(b) RPf = d1! d2! · · · dr! f ;
(c) PRF is the multisymmetrization of F :

PRF (v(1)
1 , . . . , v

(d1)
1 , . . . ) =

=
∑

(σ1,... ,σr)∈Sd1×···×Sdr

F (v(σ1(1))
1 , . . . , v

(σ1(d1))
1 , . . . ).
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As before we obtain the following important consequence about multihomoge-
neous invariants:

Proposition. Assume charK = 0 and let V1, V2, . . . , Vr be representations of
a group G. Then every multihomogeneous invariant f ∈ K[V1 ⊕ · · · ⊕ Vr]G

of degree d = (d1, . . . , dr) is the restitution of a multilinear invariant F ∈
K[V d1

1 ⊕ · · · ⊕ V dr
r ]G.

4.7 Proof of the First Fundamental Theorems. Now we are ready to
complete the proof for the FFTs. Our Theorem 4.2 states that every multilinear
invariant F of V p ⊕ V ∗p is a linear combination of the invariants

fσ = (1 | σ(1)) · · · (p | σ(p)), σ ∈ Sp .

Any (partial) restitution of such an fσ is a monomial in the (i | j). By Propo-
sition 4.5 above this shows that every invariant of V p ⊕ V ∗q is a polynomial in
the (i | j). Or,

If charK = 0 the FFT 2.1 for vectors and covectors is a consequence
of its multilinear version stated in Theorem 4.2.

In case of matrices a similar argument can be used: The restitution of the
invariant Trσ is a product of functions of the form Tr(i1, . . . , ik). As above,
this implies the following result:

If charK = 0 the FFT 2.5 for matrices is a consequence of its multi-
linear version stated in Theorem 4.3.

Thus, we have completed a first proof of the two versions of the First Fundamen-
tal Theorem. The argument is rather indirect and only valid in characteristic
zero. We will give a completely different approach later in §8 which is based on
the Capelli-Deruyts expansion. There it will follow from the FFT for SLn

(see Remark 8.5).

4.8 Example: Invariants of forms and vectors. Let Fd denote the space
of homogeneous forms of degree d on the vector space V : Fd := K[V ]d.

Question. What are the invariants of Fd ⊕ V under GL(V )?

There is an obvious invariant ε given by “evaluation”: ε(f, v) := f(v). We claim
that this is a generator of the invariant ring:

K[Fd ⊕ V ]GL(V ) = K[ε].

Proof: Let h : Fd ⊕ V → K be a bihomogeneous invariant of degree (r, s) and
let h̃ be the full polarization of h with respect to the first variable. Then
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h̃ : F r
d ⊕ V → K

is a multihomogeneous invariant of degree (1, 1, . . . , 1, s). Composing h̃ with the
dth power map ζ �→ ζd : V ∗ → Fd we obtain a multi-homogeneous invariant

H : V ∗r ⊕ V → K

of degree (d, d, . . . , d, s). Now it follows from the FFT for GL(V ) (2.1) that
rd = s and that H is a scalar multiple of the invariant (1 | 1)d(2 | 1)d · · · (r | 1)d.

On the other hand, starting with h = ε we find h̃ = ε and H(ζ, v) =
ζ(v)d, hence H = (1 | 1)d. Since Fd is linearly spanned by the dth powers of
linear forms we see that h̃ is completely determined by H and therefore h is a
scalar multiple of εr. �

Exercises

7. Show that the invariants of a form f of degree d and two vectors v, w
are generated by the following invariants εi, i = 0, 1, . . . , d:

K[Fd ⊕ V 2]GL(V ) = K[ε0, . . . , εd], εi(f, v, w) := fi(v, w)

where the fi are the partial polarizations of f as defined in Exercise 6.

8. The homogeneous covariants Mn(K) → Mn(K) of degree d are lin-
early spanned by the maps A �→ hi(A)Ad−i, i = 0, 1, . . . , d, where hi is
a homogeneous invariant of Mn(K) of degree i. It follows that the covari-
ants Mn(K) → Mn(K) form a free module over the invariants with basis
µi : A �→ Ai, i = 0, 1, . . . , n − 1.
(Hint: Use Exercise 1.)
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§ 5 Representation Theory of GLn

In this paragraph we show that in characteristic zero every rational representation of GLn

is completely reducible. This will be deduced from the general fact that every polynomial
representation of GLn occurs as a subrepresentation of a direct sum of suitable tensor powers
(Kn)⊗m which are all completely reducible by our results from §3. Then we develop the
theory of weights and describe the irreducible representations of GLn by their highest weights.
Finally, we will have a new look at the Decomposition Theorem 3.3.

5.1 Polynomial and rational representations. Let V be a finite dimen-
sional vector space over K. We want to extend the notion of a regular function
on a vector space (1.1) to more general varieties.

Definition. A function f : GL(V ) → K is called polynomial if it is the restric-
tion of a polynomial function f̃ ∈ K[End(V )]. It is called regular if detr ·f is
polynomial for some r ∈ N. The ring of regular functions is called the coordinate
ring of GL(V ) and will be denoted by K[GL(V )].

Since GL(V ) is Zariski-dense in End(V ) (1.3) we have in a canonical way:

K[End(V )] ⊂ K[GL(V )] = K[End(V )][det−1].

A representation ρ : GL(V ) → GL(W ) is called polynomial if the entries ρij(g)
of the matrix ρ(g) with respect to a basis of W are polynomial functions on
GL(V ). It is called rational if they are regular functions on GL(V ). We also say
that W is a polynomial or a rational GL(V )-module. We leave it to the reader
to check that this does not depend on the choice of a basis in W .

Exercise 1. Let ρ : GL(V ) → GLN (K) an irreducible polynomial represen-
tation. Then the matrix entries ρij ∈ K[GL(V )] are homogeneous polyno-
mials of the same degree. More generally, every polynomial representation ρ
is a direct sum of representations ρ(i) whose matrix entries are homogeneous
polynomials of degree i.
(Hint: Let ρ(tE) =

∑
i
tiAi. Then the Ai form a system of central idempo-

tents: AiAj = δijAi.)

It is obvious how to generalize the notion of polynomial and rational functions
to products of the form GL(V1) × GL(V2) × · · · . Thus we can also talk about
polynomial and rational representations of such groups.

5.2 Construction of representations and examples. The next lemma
follows immediately from the definitions.

Lemma. Let ρ : GL(V ) → GL(W ) be a rational representation.

(a) There is an n ∈ N such that detn ⊗ρ is polynomial.
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(b) ρ is polynomial if and only if ρ extends to a polynomial map

ρ̃ : End(V ) → End(W ),

and this extension is unique.

Let ρ : GLn(K) → GL(W ) be a rational representation where W is a K-vector
space. For every field extension K ′/K we get a rational representation

ρK′ : GLn(K ′) → GL(K ′ ⊗K W )

and ρK′ is polynomial if and only if ρ is polynomial.
In fact, by the lemma above we may assume that ρ is polynomial and therefore
defines a polynomial map ρ̃ : Mn(K) → Mm(K) which satisfies the following
identity:

ρ̃ij(. . . ,
∑

l

arlbls, . . . ) =
∑

k

ρ̃ik(A)ρ̃kj(B)

for A = (ars), B = (bpq) ∈ GLn(K). Since GLn(K) is Zariski-dense in Mn(K)
(Lemma 1.3) this is an identity of polynomials and therefore holds for every
field extension K ′/K and all A = (ars), B = (bpq) ∈ GLn(K ′).

Exercises

2. If ρ : GLn(K) → GL(W ) is an irreducible rational representation and
assume that EndGLn(W ) = K. Then ρK′ : GLn(K′) → GL(K′ ⊗K W ) is
irreducible, too.
(Cf. 3.1 Exercise 3)

3. Let ρ : GLn(K) → GL(W ) be a rational representation, W a finite di-
mensional K-vector space, and let k ⊂ K be an arbitrary subfield. Let kW
denote the space W considered as a (possibly infinite dimensional) k-vector
space. Then the linear action of GLn(k) on kW is locally finite and rational.
(This means that every finite dimensional k-subspace of kW is contained in
a finite dimensional GLn(k)-stable subspace which carries a rational repre-
sentation of GLn(k).)

Examples. We leave it as an exercise to prove the following statements.

(1) The natural representation of GL(V ) on V ⊗m is polynomial.
(2) detn : GL(V ) → GL1 is a rational representation for every n ∈ Z; it

is polynomial for n ≥ 0.
(3) If W1, W2 are polynomial (resp. rational) representations of GL(V )

then so are the direct sum W1 ⊕W2 and the tensor product W1 ⊗W2.
(4) If W is a rational representation then the dual representation W ∗ is

rational, too.
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(5) Subrepresentations and quotient representations of polynomial (resp.
rational) representations are again polynomial (resp. rational).

(6) If W is a polynomial (resp. rational) representation, then so are the
symmetric powers Sn W and the exterior powers

∧n
W .

Some properties of the exterior powers
∧j are collected in the following exer-

cises.

Exercises

4. For every linear map f : V → W we have linear maps
∧j

f :
∧j

V →∧j
W for all j. This defines a regular map∧j

: Hom(V, W ) → Hom(
∧j

V,
∧j

W )

of degree j. If V, W are G-modules then
∧j

is G-equivariant.

5. For every j = 0, . . . , dim V there are canonical GL(V )-equivariant iso-

morphisms
∧j

V ∗ ∼→ (
∧j

V )∗ given by

λ1 ∧ · · · ∧ λj : v1 ∧ · · · ∧ vj �→
∑
σ∈Sj

sgn σ λ1(vσ(1)) · · ·λj(vσ(j)).

.

6. Choose a basis (e1, . . . , en) of V and define the linear map

µ :
∧n−1

V → V ∗ by e1 ∧ · · · ∧ êi ∧ · · · en �→ εi

where (ε1, . . . , εn) is the dual basis of V ∗. Show that

(a) µ is an isomorphism and µ(gω) = det g · µ(ω) for g ∈ GL(V ).

(b) µ is independent of the choice of a basis, up to a scalar.

(For a generalization see the next exercise.)

7. For j = 0, 1, . . . , dim V there is a non-degenerate GL(V )-equivariant

pairing
∧j

V ×
∧n−j

V →
∧n

V � K given by (ω, µ) �→ ω∧µ. In particular,
we have isomorphisms

(
∧j

V )∗ =
∧j

V ∗ � det−1 ∧n−j
V

of GL(V )-modules.

Let us recall that the coordinate ring K[W ] can be identified with the symmetric
algebra of the dual space (1.1):

K[W ] = S(W ∗) = ⊕n≥0 Sn W ∗.

So we see that for every rational representation W of GL(V ) the coordinate
ring K[W ] is a direct sum of rational representations. In particular, every finite
dimensional subspace of K[W ] is contained in a finite dimensional rational
representation. This is expressed by saying that the action of GL(V ) on the
coordinate ring K[W ] given by
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(gf)(w) := f(g−1w) for g ∈ GL(V ), w ∈ W

is locally finite and rational.

Exercises

8. The one-dimensional rational representations of K∗ = GL1(K) are of
the form t �→ tr where r ∈ Z.

9. Every one-dimensional rational representation of GL(V ) is of the form
detr : GL(V ) → GL1, r ∈ Z.
(Hint: Assume K algebraically closed. Choose a basis of V and restrict ρ
to the diagonal matrices. Then ρ(diag(a1, . . . , an)) = ar1

1 ar2
2 · · · arn

n by the
previous exercise. Since the matrices diag(a1, . . . , an), diag(aσ(1), . . . , aσ(n))
are both conjugate we get ρ(diag(a1, . . . , an)) = (a1 · · · an)r. Now use the
fact that the diagonalizable matrices are Zariski-dense in GLn (2.3 Exercise
4).)

10. If ρ is an irreducible rational representation of GL(V ) then the restric-
tion ρ|SL(V ) is also irreducible.

5.3 Complete reducibility in characteristic zero. The next result holds
in any characteristic.

Proposition. Every polynomial representation of GL(V ) is isomorphic to a
subrepresentation of a direct sum of the form

⊕
i V ⊗mi .

By Corollary 3.3 this implies that in characteristic zero every polynomial rep-
resentation of GL(V ) is completely reducible. With Lemma 5.2(a) this extends
immediately to every rational representation:

Corollary 1. If charK = 0 every rational representation of GL(V ) is com-
pletely reducible.

Another consequence is that every irreducible polynomial representation W of
GL(V ) occurs in some V ⊗m. Moreover, the integer m is uniquely determined
by W since we have

tw = tm · w for all t ∈ K∗ ⊂ GL(V ) and w ∈ W.

Corollary 2. Every irreducible polynomial representation W of GL(V ) occurs
in a unique V ⊗m.

Definition. The number m is called the degree of the representation W .

For the multiplicative group K∗ := GL1(K) we get the following result which
holds in any characteristic. It follows immediately from the proposition above
and Lemma 5.2(a) (see Exercise 8).
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Corollary 3. Every rational representation of K∗ is diagonalizable and the
irreducible representations of K∗ are of the form t �→ tm, m ∈ Z.

Proof of Proposition: Let ρ : GL(V ) → GL(W ) be a polynomial represen-
tation and ρ̃ : End(V ) → End(W ) its extension (Lemma 6.2(b)). On End(V )
we consider the linear action of GL(V ) given by right multiplication:

g A := A · g−1 for g ∈ GL(V ), A ∈ End(V ).

For every λ ∈ W ∗ we define a linear map

ϕλ : W → K[End(V )] by ϕλ(w)(A) := λ(ρ̃(A)w)

where w ∈ W and A ∈ End(V ). This map ϕλ is GL(V )-equivariant:

ϕλ(gw)(A) = λ(ρ̃(A)gw) = λ(ρ̃(A · g)w) = ϕλ(w)(A · g)
= (gϕλ(w))(A).

Furthermore, ϕλ(w)(id) = λ(w). Choosing a basis λ1, . . . , λm of W ∗ this im-
plies that the linear map

ϕ : W → K[End(V )]m, w �→ (ϕλ1(w), . . . , ϕλm
(w))

is injective and GL(V )-equivariant. Thus, every m-dimensional polynomial rep-
resentation occurs in K[End(V )]m.

It remains to show that every finite dimensional subrepresentation of
K[End(V )] can be GL(V )-equivariantly embedded in a direct sum of tensor
powers V ⊗j . By definition of the GL(V )-action on End(V ) we have End(V ) �
(V ∗)n, hence

K[End(V )] � K[(V ∗)n] � S(V n) � S(V ) ⊗ · · · ⊗ S(V )

as a GL(V )-module. Now S(V ) =
⊕

m≥0 Sm V , and for each m we have a
GL(V )-linear embedding

Sm V ↪→ V ⊗m, v1v2 . . . vm �→
∑

σ∈Sm

vσ(1) ⊗ · · · ⊗ vσ(m)

which identifies Sm V with the symmetric tensors in V ⊗m. This finishes the
proof of the proposition. �

Remark. There are two basic steps in the proof above. First we show that
every polynomial representation of GL(V ) occurs in K[End(V )]m for some m
where the linear action on K[End(V )] comes from right multiplication of GL(V )
on End(V ). Then we show that every finite dimensional subrepresentation of
End(V ) is contained in a direct sum ⊕iV

⊗ni . We will use this again in a more
general situation in the following section.
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5.4 Generalization to linear groups and SLn. We want to extend the pre-
vious considerations to arbitrary subgroups G ⊂ GL(V ), the so-called linear
groups. A K-valued function f : G → K is called regular (respectively polyno-
mial) if it is the restriction of a regular (resp. polynomial) function on GL(V ).
We denote by K[G] the algebra of regular functions on G and by K[G]pol the
subalgebra of polynomial functions. Clearly, the two coincide if and only if
G ⊂ SL(V ). As above, this allows to define polynomial and rational representa-
tions ρ : G → GL(W ) meaning that the matrix entries ρij with respect to any
basis of W are polynomial, respectively regular functions on G.

It is obvious from the definition that the restriction of a polynomial
(resp. rational) representation of GL(V ) to G is again polynomial (resp. ratio-
nal). Moreover, the standard constructions forming direct sums, tensor prod-
ucts, symmetric and exterior powers, sub- and quotient representations lead
again to polynomial (resp. rational) representations (see Examples 5.2).

Exercises

11. Embed GLn(K) × GLm(K) into GLm+n(K) in the usual way:

(A, B) �→
(

A 0
0 B

)
.

(a) GLn(K) × GLm(K) is Zariski-closed in GLm+n(K).

(b) There is a canonical isomorphism

K[GLn] ⊗K K[GLm]
∼→ K[GLn ×GLm]

given by (f ⊗ h)(A, B) := f(A)h(B).
(Hint: Consider first the subvector space Mn ×Mm ⊂ Mn+m.)

(c) If G ⊂ GLn(K) and H ⊂ GLm(K) are subgroups consider G×H as a
subgroup of GLm+n(K). Then we have a canonical isomorphism

K[G] ⊗K K[H]
∼→ K[G × H]

defined as in (b).
(Hint: It follows from (b) that the map exists and is surjective. Now
choose a K-basis (fi)i∈I of K[G] and assume that the function

∑
i
fi⊗

hi is identically zero on G × H. Then show that hi(B) = 0 for all
B ∈ H.)

12. Let G ⊂ GL(V ) be a subgroup and denote by Ḡ the Zariski-closure:

Ḡ := {h ∈ GL(V ) | f(h) = 0 for all f ∈ I(G)}.
(I(G) is the ideal of G, see 1.3.)

(a) Ḡ is a subgroup of GL(V ). (Hint: Look at left and right multiplications,
first with elements from G, then with those from Ḡ.)

(b) K[Ḡ] = K[G] and K[Ḡ]pol = K[G]pol.
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(c) Ḡ and G have the same rational representations, i.e., ρ �→ ρ|G is an
equivalence of categories.

The right multiplication of G on itself determines a linear representation of G
on K[G] and on K[G]pol in the usual way:

ρ(g)f (h) := f(hg) for g, h ∈ G.

Lemma. The representation ρ on K[G] is locally finite and rational. It is
polynomial on K[G]pol.

Proof: By definition, the (linear) restriction maps K[GL(V )] → K[G] and
K[End(V )] → K[G]pol are surjective and G-equivariant. Thus it suffices to
consider the case G = GL(V ). We have already remarked in 5.2 that the rep-
resentation on K[End(V )] is locally finite and polynomial. In fact, End(V )∗ �
V ⊕· · ·⊕V = V n under the given representation and so K[End(V )]m � Sm(V n).
Since K[GL(V )] =

⋃
i det−i K[End(V )] it follows that the representation on

K[GL(V )] is locally finite and rational. �

Now we can generalize Proposition 5.3.

Proposition 1. Every polynomial representation of G is isomorphic to a sub-
quotient of a direct sum of the form ⊕iV

⊗ni .

(A subquotient of a representation W is a subrepresentation of a quotient repre-
sentation of W . Clearly, a subquotient of a subquotient is again a subquotient.)

Proof: (See Remark at the end of 5.3.) The same argument as in the proof of
Proposition 5.3 shows that every polynomial representation W of G occurs in
K[G]pol

m for some m. Thus there exists a finite dimensional G-stable subspace
W̃ ⊂ K[End(V )]m such that W is a subquotient of W̃ . Now we have seen in
the proof of Proposition 5.3 that every such W̃ is contained in a direct sum
⊕iV

⊗ni . �

Corollary. If the representation of G on V ⊗m is completely reducible for all
m, then every rational representation of G is completely reducible. Moreover,
every irreducible polynomial representation occurs in some V ⊗m.

As a first application we see that every rational representation of the subgroup
Tn ⊂ GLn(K) of diagonal matrices is completely reducible. We will discuss this
in the next section 5.6.

Proposition 2. Assume charK = 0. Then every rational representation ρ
of SL(V ) is completely reducible. Moreover, ρ is the restriction of a rational
representation ρ̃ of GL(V ), and ρ is irreducible if and only if ρ̃ is irreducible.
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Proof: It is easy to see that the restriction of any irreducible representaiton of
GL(V ) to SL(V ) is again irreducible (cf. Exercise 10). Thus the representation
of SL(V ) on V ⊗m is completely reducible for any m which proves the first
claim by the corollary above. Moreover, this implies that every subquotient is
isomorphic to a subrepresentation. Hence, every irreducible representation of
SL(V ) occurs in some V ⊗m and is therefore the restriction of a polynomial
representation of GL(V ). �

Exercise 13. Let ρ, ρ′ be two irreducible representations of GL(V ) and
assume that ρ|SL(V ) � ρ′|SL(V ). Then ρ′ � detr ·ρ for some r ∈ Z.
(Hint: HomSL(V )(W

′, W ) is a GL(V )-stable one-dimensional subspace of
Hom(W ′, W ). Now use Exercise 9.)

5.5 Frobenius Reciprocity. Let G be a finite group and H ⊂ G a subgroup.
If W is a H-module we denote by IndG

H W the induced G-module (or induced
representation) which is usually defined by

IndG
H W := KG ⊗KH W.

where KG, KH denote the group algebras. On the other hand, every G-module
V can be regarded as an H-module by restriction; we will denote it by V |H .

Proposition (Frobenius reciprocity). Let V be an irreducible representa-
tion of G and W an irreducible representation of H. Assume that EndG(V ) =
K = EndH(W ). Then

mult(V, IndG
H W ) = mult(W, V |H)

where mult(V, U) denotes the multiplicity of the irreducible representation V in
the representation U .

The proof will follow from a more general result which holds for arbitrary linear
groups. It is easy to see that IndG

H W is canonically isomorphic to {η : G → W |
η(gh−1) = hη(g) for all h ∈ H} (see Exercise 14 below).

Definition. Let H ⊂ G ⊂ GLn(K) be linear groups and let W be a rational
H-module (5.4). Then we define the induced G-module by

IndG
H(W ) := {η : G → W regular | η(gh−1) = hη(g) for all h ∈ H}.

The right hand side will be shortly denoted by MorH(G, W ).

By definition, we have

IndG
H(W ) = (K[G] ⊗ W )H

where the H-action is given by h(f ⊗ w) := fh ⊗ hw and fh(g) := f(gh)
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(h ∈ H, g ∈ G). This shows that IndG
H(W ) is a locally finite and rational G-

module.

Exercise 14. For finite groups H ⊂ G and any H-module W there is a
canonical G-isomorphism

MapH(G, W )
∼→ K[G] ⊗K[H] W

associating to an H-equivariant map η : G → W the element
∑

g∈G
g⊗η(g).

(The H-action on G is given by right multiplication (g, h) �→ gh−1.)

Theorem. Let H ⊂ G ⊂ GLn(K) be linear groups, V a rational G-module and
W be a rational H-module. There is a canonical isomorphism

HomG(V, IndG
H(W )) ∼→ HomH(V |H , W )

given by ϕ �→ eW ◦ ϕ where eW : IndG
H(W ) → W sends α to α(e).

Proof: The map ϕ �→ eW ◦ ϕ is clearly well-defined and linear. The inverse
map has the following description: If ψ : V |H → W is H-linear and v ∈ V define
ϕv : G → W by ϕv(g) := ψ(g−1v). It is clear that ϕv is H-equivariant and so
ϕv ∈ IndG

H W . Now it is easy to verify that ϕ : v �→ ϕv is a G-equivariant linear
map and that ψ �→ ϕ is the inverse map to ϕ �→ eW ◦ ϕ. �

Now suppose that V is an irreducible (rational) representation of G such that
EndG(V ) = K. If U is a completely reducible (locally finite and rational)
representation then the multiplicity of V in U is given by

mult(V, U) = dim HomG(V, U).

This shows that the Theorem above generalizes the Frobenius Reciprocity for
finite groups given in the Proposition at the beginning of this section.

5.6 Representations of tori and weights. In this section the characteristic
of K can be arbitrary. Consider the group

Tn :=

t =

t1
. . .

tn

 ∣∣t1, . . . , tn ∈ K∗

 ⊂ GLn(K)

of diagonal matrices which can be identified with the product

GL1 ×GL1 × · · · × GL1︸ ︷︷ ︸
n times

= (K∗)n

(see Exercise 11). Such a group is called an n-dimensional torus. Its coordinate
ring is given by
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K[Tn] = K[x1, x
−1
1 , x2, x

−1
2 , . . . , xn, x−1

n ] =
⊕

r1,... ,rn∈Z

Kxr1
1 xr2

2 · · ·xrn
n

and the linear action of Tn on this algebra (by right multiplication, see 5.4) is
the obvious one: ρ(t)xi = tixi.

Proposition. Every rational representation of Tn is diagonalizable and the
one-dimensional representations are of the form

ρ

t1
. . .

tn

 = tr1
1 tr2

2 · · · trn
n

where r1, . . . , rn ∈ Z.

Proof: This is an immediate consequence of Corollary 5.4. �

Exercise 15. Let ρ : GLn → GL(W ) be a rational representation. Then ρ
is polynomial if and only if ρ|Tn is polynomial.
(Hint: Use the fact that the diagonalizable matrices are Zariski-dense in
Mn; see 2.3 Exercise 4.)

The one-dimensional representations of a torus T form a group (under multi-
plication), the character group of T . It will be denoted by X (T ) and is usually
written additively:

X (Tn) =
n⊕

i=1

Zεi where εi

 t1
. . .

tn

 := ti.

In other words, χ = r1ε1 + r2ε2 + · · · rnεn ∈ X (Tn) corresponds to the rational
(invertible) function xr1

1 xr2
2 · · ·xrn

n ∈ K[Tn].
Given a rational representation ρ : GLn → GL(W ) we can decompose

W with respect to Tn:

W =
⊕

λ∈X (T )

Wλ, Wλ := {w ∈ W | ρ(t)w = λ(t) · w for all t ∈ Tn}.

The characters λ ∈ X (T ) such that Wλ �= 0 are called the weights of W , the
eigenspaces Wλ are the corresponding weight space, and the non-zero elements
of Wλ are the weight vectors.

For example, the weights of
∧k

Kn are {εi1 + · · · + εik
| i1 < i2 <

· · · < ik} and the weights of Sk Kn are {εj1 + · · ·+ εjk
| j1 ≤ j2 ≤ · · · ≤ jk}. In

both cases the weight spaces are one-dimensional.
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Exercises

16. Determine the weights and the weight spaces of the adjoint representa-
tion

Ad: GLn → GL(Mn), Ad(g)A := g · A · g−1.

17. Identify the symmetric group Sn with the subgroup of permutation
matrices of GLn, i.e., σ ∈ Sn corresponds to the linear map which sends ei

to eσ(i), i = 1, . . . , n.

(a) Sn normalizes Tn, and Sn Tn = Tn Sn is the normalizer of Tn in GLn.

(b) Let ρ : GLn → GL(W ) be a rational representation. For any weight
space Wλ and any σ ∈ Sn the automorphism ρ(σ) of W induces
an isomorphism Wλ � Wσ(λ) where the weight σ(λ) is defined by
σ(λ)(t) := λ(σ−1 t σ).

5.7 Fixed vectors under Un and highest weights. For i �= j and s ∈ K
define the following elements

uij(s) = E + sEij ∈ GLn(K),

where Eij ∈ Mn is the matrix with entry 1 in position (i, j) and 0’s elsewhere.
Clearly, uij(s) ·uij(s′) = uij(s+s′) and so Uij := {uij(s) | s ∈ K} is a subgroup
of GLn isomorphic to the additive group K+. Furthermore, Uij is normalized
by Tn:

t uij(s) t−1 = uij(tit−1
j s) for t =

 t1
. . .

tn

 ∈ Tn, s ∈ K.

It is well known that the elements uij(s) where i < j and s ∈ K generate the
subgroup Un of upper triangular unipotent matrices:

Un :=


 1 ∗ ∗

. . . ∗
1


 = 〈uij(s) | i < j, s ∈ K〉.

This group Un is usually called the standard unipotent subgroup of GLn(K).

Exercise 18. Give a proof of the last statement.
(Hint: Left multiplication of a matrix A by uij(s) corresponds to the ele-
mentary row operation “adding s times the jth row to the ith row”.)

The following is the basic result in the theory of highest weights.

Lemma. Let λ be a weight of W and w ∈ Wλ a weight vector. There are
elements wk ∈ Wλ+k(εi−εj), k ∈ N where w0 = w such that
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uij(s)w =
∑
k≥0

sk · wk, s ∈ K.

Proof: Consider the application ϕ : s �→ uij(s)w. Since W is a rational GLn-
module and detuij(s) = 1 it follows that ϕ : K → W is a polynomial map,
hence of the form ϕ(s) =

∑
k≥0 sk · wk for suitable wk ∈ W . For t ∈ Tn we get

t ϕ(s) = t uij(s)w = (tuij(s)t−1)(tw)
= uij(tit−1

j s)(tw) = uij(tit−1
j s)(λ(t) · w)

=
∑
k≥0

λ(t)(tit−1
j s)k · wk

for all s ∈ K. Thus we get t wk = λ(t)(tit−1
j )k · wk which shows that wk ∈

Wλ+k(εi−εj). �

Definition 1. The weights of the form
∑

i<j nij(εi − εj) where nij ≥ 0 are
called positive weights. Equivalently, λ =

∑
i miεi is positive if and only if

m1 + m2 + · · ·+ mn = 0 and m1, m1 + m2, m1 + m2 + m3, . . . ≥ 0. We define a
partial ordering on the weights by setting

λ � µ if and only if λ − µ is a positive weight.

Now we can prove the main result about weights of GLn-modules.

Proposition. Let W be a non-trivial GLn-module. Then we have WUn �= 0.
Moreover, let w ∈ WUn be a weight vector of weight λ and let W ′ := 〈GLn w〉 ⊂
W be the submodule generated by w. Then the weight space W ′

λ is equal to Kw,
and the other weights of W ′ are all ≺ λ.

Proof: The lemma above implies that for every weight vector w ∈ Wλ and
i < j we have uij(s)w ∈ w+

∑
µ
λ Wµ. So, if λ is a maximal weight with respect

to the partial ordering then w is fixed under 〈uij(s) | i < j, s ∈ K〉 = Un which
proves the first claim.
For the second we need the fact that U−

n TnUn is Zariski-dense in GLn where
U−

n := {ut | u ∈ Un} are the lower triangular unipotent matrices (see Exercise
19 below). Thus, for any weight vector w ∈ WUn the set U−

n TnUnKw = U−
n Kw

is Zariski-dense in GLn Kw. It follows from the lemma above that U−
n w ⊂ w+∑

µ≺λ Wµ and so U−
n Kw ⊂ Kw⊕∑

µ≺λ Wµ. Hence, GLn w ⊂ Kw⊕∑
µ≺λ Wµ

and the claim follows. �

It is easy to see that with the notation of the proof above W ′ = 〈GLn w〉 =
〈U−

n w〉 (see 1.3 Exercise 15).
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Exercises

19. For a matrix A = (aij) ∈ Mn(K) the determinants det Ar of the sub-
matrices of the form Ar := (aij)

r
i,j=1 are called the principal minors. Show

that U−
n TnUn is the set of those matrices whose principal minors are all

�= 0. In particular, U−
n TnUn is Zariski-dense in Mn(K).

U−
n TnUn is called the open cell of GLn.

20. Show that the module W ′ generated by a weight vector w ∈ W Un as
in the proposition above is indecomposable, i.e., W ′ cannot be written as a
direct sum of two non-zero submodules.

Remark. The torus Tn normalizes the standard unipotent subgroup Un of
GLn. It follows that for any GLn-module W the subspace WUn is stable under
Tn and therefore a direct sum of weight spaces.

Corollary 1. Assume charK = 0 and let W be a GLn-module. Then W is
simple if and only if dimWUn = 1. In this case WUn is a one-dimensional
weight space Wλ and all other weights of W are ≺ λ.

This is clear from the proposition above and the complete reducibility in char-
acteristic zero (3.3 Corollary 1).

Definition 2. A simple module W as in the corollary above is called a module
of highest weight λ.

Exercise 21. Assume that char K = 2 and consider the representation on
W := S2 V where V = K2 is the standard representation.

(a) W U2 = Ke2
1, and 〈GL2 e2

1〉 = Ke2
1 ⊕ Ke2

2 is isomorphic to V .

(b) (W ∗)U2 = Kx1x2⊕Kx2
2, Kx1x2 is the determinant representation and

〈GL2 x2
2〉 = W ∗.

Corollary 2. Assume charK = 0.

(a) If W is a simple GLn(K)-module then EndGLn(W ) = K.
(b) Every rational representation of GLn(K) is defined over Q.

Recall that this completes the proof of the Decomposition Theorem 3.3.

Proof: We first remark that a simple GLn-module W remains simple under
base field extensions which implies (a) (cf. 3.3 Exercise 9). In fact, it follows
from the weight space decomposition that (K ′ ⊗K W )λ = K ′ ⊗K Wλ and so
(K ′ ⊗K W )Un = K ′ ⊗K WUn .

We have already seen in Remark 3.3 that assertion (a) is equivalent
to the fact that all simple submodules of V ⊗m are defined over Q. This proves
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(b) by Corollary 2 of 5.3. Here is another proof of this result: Let W be a
simple GLn(K)-module and λ its highest weight. Then W considered as a Q-
vector space is a locally finite and rational GLn(Q)-module (see Exercise 3).
Now choose w ∈ WUn . By the Proposition above the Q-vector space WQ :=
〈GLn(Q)w〉Q ⊂ W spanned by GLn(Q)w is a simple GLn(Q)-module of highest
weight λ. Thus, K ⊗Q WQ is also simple and the canonical homomorphism
K ⊗Q WQ → W is an isomorphism. �

Examples. Assume char K = 0 and let V = Kn.

(1) The GLn-modules
∧j

V , j = 1, 2, . . . , n (V = Kn) are simple with highest
weight ε1+· · ·+εj . The GLn-modules Sk V , k = 1, 2, . . . are simple with highest
weight kε1.

(In fact, one easily sees that (
∧j

V )Un = K(e1 ∧ . . . ∧ ej) and that (Sk V )Un =
Ke1

k.)

(2) If W is a simple GLn-module of highest weight λ = p1ε1+· · ·+pnεn then the
dual module W ∗ is simple of highest weight λ∗ := −pnε1 −pn−1ε2 −· · ·−p1εn.

(In fact, pnε1 + pn−1ε2 + · · · p1εn = σ0λ is the lowest weight of W where
σ0 is the order reversing permutation σ0(i) = n + 1 − i; see Exercise 17 or
the following section 5.8. Now the claim follows since the weights of W ∗ are
{−µ | µ a weight of W}.)

Exercises

22. (char K = 0) Every rational representation of GL(V )×GL(V ′) is com-
pletely reducible. Every irreducible representation is of the form W ⊗ W ′

with irreducible representations W and W ′ of GL(V ) and GL(V ′), respec-
tively. (Cf. 3.3 Exercise 4.)

23. Show that the traceless matrices M′
n := {A ∈ Mn(K) | Tr A = 0}

form a simple GLn-module (with respect to conjugation: (g, A) �→ gAg−1)
of highest weight ε1 − εn.

24. Consider two rational representations ρ and ρ′ of the torus Tn. Show
that ρ and ρ′ are equivalent if and only if Tr ρ(t) = Tr ρ′(t) for all t ∈ Tn.

5.8 Highest weight modules. Assume that char K = 0. To complete the
picture we describe the weights which occur as a highest weight of a simple
GLn-module. Moreover, we show that two simple GLn-modules with the same
highest weight are isomorphic.

First we remark that the group Sn of permutation matrices in GLn

normalizes the torus Tn:
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σ−1


t1

t2
. . .

tn

 σ =


tσ(1)

tσ(2)

. . .
tσ(n)

 .

Therefore, we get an action of Sn on the character group X (Tn) defined by
σ(χ(t)) := χ(σ−1tσ), i.e. σ(εi) = εσ(i). It is easy to see (cf. Exercise 17 (b)) that
for a rational representation ρ : GLn → GL(W ) the linear map ρ(σ) induces
an isomorphism Wλ

∼→ Wσ(λ). Thus, the weights of W are invariant under the
action of Sn.

Proposition 1. The element λ =
∑n

i=1 piεi is a highest weight of a simple
GLn-module if and only if p1 ≥ p2 ≥ · · · ≥ pn. The module is polynomial if and
only if pn ≥ 0.

Proof: It is obvious from the above that for every µ ∈ X (Tn) there is a σ ∈ Sn

such that σ(µ) =
∑n

i=1 piεi satisfies p1 ≥ p2 ≥ · · · ≥ pn. But then σ(µ) � µ
and so a highest weight has to satisfy this condition. In order to construct a
simple module with this highest weight we write λ =

∑n
i=1 piεi in the form

λ = m1ω1 + m2ω2 + · · ·+ mnωn where ωj := ε1 + · · ·+ εj is the highest weight
of

∧j
Kn (5.7 Example (2)). By assumption we have m1, . . . , mn−1 ≥ 0, and

we see that the element

w := e⊗m1
1 ⊗ (e1 ∧ e2)⊗m2 ⊗ · · · ⊗ (e1 ∧ . . . ∧ en−1)⊗mn−1

∈ V ⊗m1 ⊗ (
∧2

V )⊗m2 ⊗ · · · ⊗ (
∧n−1

V )⊗mn−1

is fixed under Un and has weight λ′ :=
∑n−1

i=1 piωi. It follows from Proposition
6.6 that the submodule W ′ := 〈GLn w〉 is simple of highest weight λ′. Hence
W := detmn ⊗W ′ is simple of highest weight λ = λ′ + mnωn. In addition, W ′

is polynomial and so W is polynomial, too, in case mn = pn ≥ 0. Conversely, it
is clear that for a polynomial representation every weight µ =

∑
qiεi satisfies

qi ≥ 0 for all i. �

Definition. A weight of the form λ =
∑n

i=1 piεi where p1 ≥ p2 ≥ · · · ≥ pn

is called a dominant weight . The dominant weights form a monoid Λ = ΛGLn

generated by the fundamental weights

ω1 := ε1, ω2 := ε1 + ε2, . . . , ωn := ε1 + · · · + εn

and by −ωn:

ΛGLn
= Nω1 + Nω2 + · · · + Nωn−1 + Zωn.

The fundamental weights ωi are the highest weights of the irreducible repre-
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sentations
∧i

V , i = 1, . . . , n (see 5.7 Example 1 and the proof above).

Remark. Let W be a GLn-module of highest weight λ =
∑n

i=1 piεi. Then W
occurs in V ⊗m if and only if

∑n
i=1 pi = m and pn ≥ 0. In this case we have

pi ≥ 0 for all i and pj = 0 for j > m. This follows immediately from the
construction given in the proof above.

So we see that the number |λ| :=
∑n

i=1 pi coincides with the degree
of W (see 5.3 Corollary 2); we call it the degree of λ. The maximal k such that
pk �= 0 is called the height of λ. We will come back to this notion in in the
next paragraph (Definition 6.2) where we will show among other things that
ht(λ) is the minimal k such that W occurs as a subrepresentation of S(V k) (6.6
Corollary 2).

Exercise 25. Let W be a GLn-module of highest weight λ. Then the weight
spaces Wdetk are stable under Sn ⊂ GLn, and Wdetk �= 0 if and only if
n = k · |λ|.

Proposition 2. Two simple GLn-modules are isomorphic if and only if they
have the same highest weight.

Proof: Let W1 and W2 be two simple GLn-modules of the same highest
weight λ and let w1 ∈ W1 and w2 ∈ W2 be highest weight vectors. Then
w := (w1, w2) ∈ W1 ⊕ W2 is Un-invariant and of weight λ. Thus, the submod-
ule W ′ := 〈GLn w〉 ⊂ W1 ⊕ W2 is simple. If follows that the two projections
pri : W1 ⊕ W2 → Wi induce non-trivial homomorphisms W ′ → Wi, hence iso-
morphisms W ′ ∼→ W1 and W ′ ∼→ W2. �

Exercise 26. Denote by τ the automorphism A �→ (A−1)t of GLn. If
ρ : GLn → GL(W ) is a rational representation then ρ ◦ τ is isomorphic
to the dual representation ρ∗.

5.9 The decomposition of V ⊗m revisited. Using the results of the previous
sections we can reformulate Theorem 3.5 which describes the decomposition of
V ⊗m as a Sm ×GL(V )-module. In §7 we will use a different approach and
calculate the characters of the irreducible components in this decomposition.

Proposition 1. Let V = Kn. The Sm ×GLn-module V ⊗m admits an isotypic
decomposition of the following form

V ⊗m =
⊕

λ

Vλ(n) =
⊕

λ

Mλ ⊗ Lλ(n)

where λ runs through the set {∑ piεi | p1 ≥ p2 ≥ · · · ≥ pn ≥ 0,
∑

pi = m},
Lλ(n) is a GLn-module of highest weight λ and Mλ a simple Sm-module.
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Remark 1. In the notation above we use an index n to emphasize the de-
pendence on GLn. In fact, an element λ =

∑
i>0 piεi (p1 ≥ p2 ≥ · · · ) can be

seen as a character of Tn as soon as pj = 0 for j > n. Hence, there exists a
GLn-module of highest weight λ for every n ≥ ht(λ). Moreover, using the usual
embedding GLn ⊂ GLn+1 we get a canonical inclusion

Lλ(n) ⊂ Lλ(n + 1) = 〈Lλ(n)〉GLn+1 ,

and it follows that 〈Vλ(n)〉GLn+1 = Vλ(n + 1). Thus, the Sn-modules Mλ do
not depend on n.

Remark 2. If we do not want to specify a basis of V we write Lλ(V ) for the
corresponding simple GL(V )-module. In fact, we have in a canonical way

Lλ(V ) = HomSm(Mλ, V ⊗m)

because EndSm(Mλ) = K. This shows that V �→ Lλ(V ) can be regarded as
a functor . This means that a linear map ϕ : V → W determines a linear map
Lλ(ϕ) : Lλ(V ) → Lλ(W ), with Lλ(ϕ ◦ ψ) = Lλ(ϕ) ◦ Lλ(ψ) and Lλ(idV ) =
idLλ(V ). In particular, if G is any group and V a G-module then Lλ(V ) is again
a G-module:

Lλ : ModG → ModG

where ModG denotes the category of G-modules. As an example, L(d)(V ) =
Sd(V ) and L(1r)(V ) =

∧r
V .

Exercise 27. Show that Lλ(V ∗) = Lλ(V )∗ in a canonical way and that
this module is isomorphic to Lλ∗(V ).

We can say a bit more about the modules Mλ. Let W be any rational GLn-
module. Then the weight space Wdet is a Sn-module because the character det
is fixed under Sn ⊂ GLn (see 5.6 Exercise 17).

Lemma. Let λ be a highest weight and put n = |λ|. Then the Sn-module
Lλ(n)det is isomorphic to Mλ.

Proof: We have

(V ⊗n)det =
⊕

σ∈Sn

Keσ where eσ := eσ(1) ⊗ eσ(2) ⊗ · · · ⊗ eσ(n).

This is an Sn ×Sn-module where the action of the second factor comes from
the inclusion Sn ⊂ GLn: (τ, ν)eσ = eνστ−1 for (τ, ν) ∈ Sn ×Sn. Clearly, this is
the regular representation, i.e., (V ⊗n)det �

⊕
λ Mλ ⊗ Mλ. Thus
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Vn(λ)det � Mλ ⊗ Lλ(n)det � Mλ ⊗ Mλ

and the claim follows. �

Examples. (Sn V )det = Ke1e2 · · · en is the trivial representation of Sn and
(
∧n

V )det =
∧n

V is the sign representation of Sn.
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§ 6 Irreducible Characters of GL(V ) and Sm

Following Weyl’s Classical Groups [Wey46] we describe the characters of the irreducible
polynomial representations of GLn, the so-called Schur polynomials, and relate them to the
characters of the symmetric group. As a consequence, we obtain some classical decomposition
formulas (Cauchy’s formula and Pieri’s formula).
In this paragraph we assume char K = 0.

6.1 Characters. As before let Tn ⊂ GLn denote the subgroup of diagonal
matrices. If ρ : GLn → GL(W ) is a rational representation, the function

χρ : (x1, . . . , xn) �→ Tr ρ(

x1

. . .
xn

)

is called the character of ρ. It will also be denoted by χW .

Lemma. Let ρ, ρ′ be rational representations of GLn.

(a) χρ ∈ Z[x1, x1
−1, . . . ], and χρ ∈ Z[x1, . . . , xn] in case ρ is polynomial.

(b) χρ is a symmetric function.
(c) If ρ and ρ′ are equivalent representations of GLn then χρ = χρ′ .

Proof: (a) follows from the definitions, see 5.1. For (b) we use the action of
Sn ⊂ GLn on Tn by conjugation which we discussed in 5.8. The last statement
is clear by definition. �

We have shown in the last paragraph that an irreducible representation ρ of
GLn is determined (up to equivalence) by its highest weight (5.8 Proposition
2). On the other hand, it is easy to see that the character χρ determines all
the weights of ρ and even their multiplicities (i.e., the dimensions of the weight
spaces; see the following Exercise 1). It follows that two representations with
the same character are equivalent. We will see this again in 6.6 as a consequence
of the character theory.

Exercise 1. Show that the character χW determines the weights of W and
their multiplicities (i.e., the dimensions of the corresponding weight spaces).
(Use 5.7 Exercise 24.)

The next proposition collects some simple facts about characters. The proofs
are easy and will be left to the reader.

Proposition.

(a) Let W1, W2 be two rational representations of GLn. Then χW1⊕W2 =
χW1 + χW2 and χW1⊗W2 = χW1 · χW2 .
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(b) If W is an irreducible polynomial representation of degree m (see 5.3
Corollary 2) then χW is a homogeneous polynomial of degree m.

(c) The character of the dual representation W ∗ is given by

χW∗(x1, . . . , xn) = χW (x−1
1 , . . . , x−1

n ).

Examples. Let V = Kn.

(1) χV ⊗m = (x1 + · · · + xn)m.
(2) χS2 V =

∑
i≤j xixj , χ∧2V =

∑
i<j xixj .

(3) χdet = x1x2 · · ·xn, χV ∗ = x−1
1 + · · · + x−1

n .
(4) χ∧n−1V =

∑n
i=1 x1 · · · x̂i · · ·xn = (x1 · · ·xn)(x−1

1 + · · · + x−1
n ).

The characters of the symmetric powers Sj V (i.e., the sum over all monomials
of degree j) are called the complete symmetric polynomials:

hj(x1, . . . , xn) := χSj V =
∑

i1≤i2≤···
xi1xi2 · · ·xij .

We obviously have the following generating function:
n∏

i=1

1
1 − xit

=
∞∑

j=0

hj · tj .

These polynomials hj are special cases of Schur polynomials which we are
going to introduce and discuss in the next section.

Exercise 2. The representation ρ : GLn → GL(W ) is polynomial if and
only if its character χρ is a polynomial.
(Hint: Use 5.6 Exercise 15.)

6.2 Schur polynomials. Let P denote the set of decreasing finite sequences
of natural numbers:

P := {λ = (λ1, λ2, . . . ) | λi ∈ N, λ1 ≥ λ2 ≥ . . . , λi = 0 for large i}.
The elements of P are called partitions and are geometrically represented by
their Young diagram with rows consisting of λ1, λ2, . . . boxes, respectively.
E.g., the partition (6, 4, 3, 3, 1) is represented by
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Mostly, we will identify the partition λ with its Young diagram; if we want
to emphasize the difference we use the notion YD(λ) for the Young diagram
associated to the partition λ.

By Proposition 1 of 5.8 the highest weights
∑

i piεi of irreducible poly-
nomial representations of GLn can be identified with the partitions (p1, p2, . . . )
subject to the condition that pi = 0 for i > n. This leads to the following
definition.

Definition. For λ ∈ P we define the height (or the length) of λ by

htλ := max{i | λi �= 0} = length of the first column of YD(λ)

and the degree of λ by

|λ| :=
∑

i

λi = # boxes in YD(λ).

For example, for the partition λ = (6, 4, 3, 3, 1) above we find htλ = 5 and
|λ| = 17.

We have P =
⋃

m≥0 Pm, where Pm := {λ ∈ P | |λ| = m} are the
partitions of m, i.e., the Young diagrams with m boxes.

Now we fix a number n ∈ N. Let λ ∈ P be of height ≤ n, λ =
(λ1, . . . , λn). Define

vλ(x1, . . . , xn) := det


xλ1+n−1

1 xλ2+n−2
1 · · · xλn

1

xλ1+n−1
2

...


=

∑
σ∈Sn

sgn σ xλ1+n−1
σ(1) xλ2+n−2

σ(2) · · ·xλn

σ(n).

Clearly, vλ is an alternating homogeneous polynomial ∈ Z[x1, . . . , xn] of degree
|λ| +

(
n
2

)
. Moreover,

v(0,... ,0)(x1, . . . , xn) =
∏
i<j

(xi − xj)

is the Vandermonde determinant which will be denoted by ∆(x1, . . . , xn).
Since every vλ vanishes for xi = xj (i �= j) it is divisible by ∆. The polynomial

sλ(x1, . . . , xn) :=
vλ(x1, . . . , xn)
∆(x1, . . . , xn)

∈ Z[x1, . . . , xn]

is called the Schur polynomial associated to λ. It follows from the definition
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that sλ is a symmetric homogeneous polynomial of degree |λ|.

Exercises

3. Show that s(1,1,... ,1) = x1x2 · · ·xn. More generally, we have s(k,k,... ,k) =
(x1x2 · · ·xn)k.

4. Let ht λ = r. Then we have

sλ(x−1
1 , . . . , x−1

n ) (x1 · · ·xn)r = sλc(x1, . . . , xn)

where λc is the complementary partition defined by

λc := (n − λr, . . . , n − λ1).

We denote by Z[x1, . . . , xn]sym the subring of Z[x1, . . . , xn] of symmetric poly-
nomials and by Z[x1, . . . , xn]alt the subgroup of alternating polynomials.

Lemma. (a) {vλ | htλ ≤ n} is a Z-bases of Z[x1, . . . , xn]alt.
(b) {sλ | htλ ≤ n} is a Z-bases of Z[x1, . . . , xn]sym.

Proof: (a) Let f ∈ Z[x1, . . . , xn]alt and let αxr1
1 xr2

2 · · ·xrn
n be the leading term

of f with respect to the lexicographic ordering of the exponents (r1, . . . , rn).
Then r1 > r2 > . . . > rn ≥ 0 because f is alternating. Now we define λ :=
(r1 − n + 1, r2 − n + 2, . . . , rn) ∈ P. Then vλ has leading term xr1

1 · · ·xrn
n and

this term cancels in f1 = f − αvλ. The claim now follows by induction.
(b) This is an immediate consequence of (a): Every alternating function is
divisible by the Vandermonde determinant ∆ and so Z[x1, . . . , xn]alt = ∆ ·
Z[x1, . . . , xn]sym. �

Exercises

5. The Schur polynomial sλ has leading term xλ1
1 xλ2

2 · · ·xλn
n in the lexico-

graphic ordering.

6. Let m < n. Then

sλ(x1, . . . , xm, 0, . . . , 0) =

{
sλ(x1, . . . , xm) for ht λ ≤ m,
0 for ht λ > m.

(Hint: One has vλ(x1, . . . , xn−1, 0) = x1x2 · · ·xn−1 vλ(x1, . . . , xn−1) if λn =
0 and similarly

∏
i<j

(xi − xj)
∣∣
xn=0

= x1x2 · · ·xn−1

∏
i<j<n

(xi − xj).)

7. Pieri’s formula.Let λ be a partition of height ≤ n. Show that

sλ ·
n∏

i=1

1

1 − xi
=

∑
µ

sµ

where the sum is over all partitions µ such that µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥
· · · ≥ µn ≥ λn. This means that YD(µ) is obtained from YD(λ) by adding
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some boxes to the rows, at most one box to every column. (Both sides of
the equation are considered as formal power series in x1, . . . , xn.)
(Hint: Multiplying with ∆ the claim becomes∑

σ

sgn σ x�1
σ(1) · · ·x

�n
σ(n) ·

∑
i1,... ,in

xi1
1 · · · xin

n =

=
∑

m1,... ,mn

∑
τ

sgn τ xm1
τ(1) · · ·x

mn
τ(n)

where �i := λi + n − i and the sum is over all m1 ≥ �1 > m2 ≥ �2 > · · · >
mn ≥ �n.)

8. Let λ be a partition of height ≤ n. Show that

sλ ·
∑

i1<···<ik

xi1 · · ·xik =
∑

µ

sµ

where the sum is over all partitions µ of height ≤ n such that YD(µ) is
obtained from YD(λ) by adding some boxes, at most one to every row.
(Hint: See previous exercise.)

6.3 Cauchy’s formula. We have the following formula where both sides are
considered as elements in the ring Z[[x1, . . . , xn, y1, . . . , yn]] of formal power
series: ∏

i=1,... ,n
j=1,... ,m

1
1 − xiyj

=
∑

ht λ≤min(n,m)

sλ(x1, . . . , xn)sλ(y1, . . . , ym).

Proof: It is easy to reduce this to the case n = m: Assume m < n. Then the
claim follows by setting xm+1 = . . . = xn = 0 in the formula for

∏n
i,j=1

1
1−xiyj

and using Exercise 6 above. For n = m Cauchy’s formula is a consequence of
the following two formulas:

det
(

1
1 − xiyj

)
= ∆(x1, . . . , xn) · ∆(y1, . . . , yn) ·

n∏
i,j=1

1
1 − xiyj

(∗)

det
(

1
1 − xiyj

)
=

∑
ht λ≤n

vλ(x1, . . . , xn) · vλ(y1, . . . , yn) (∗∗)

The first one is obtained by induction on n. Subtracting the first row from all
other rows in the matrix

(
1

1−xiyj

)
i,j

and using

1
1 − xiyj

− 1
1 − x1yj

=
xi − x1

1 − x1yj
· yj

1 − xiyj
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we get

det
(

1
1 − xiyj

)
=

=
(x2 − x1)(x3 − x1) · · · (xn − x1)∏n

j=1(1 − x1yj)
· det

 1 1 · · ·
y1

1−x2y1

y2
1−x2y2

· · ·
...

 .

Now we subtract in the matrix on the right hand side the first column from all
others and use

yj

1 − xiyj
− y1

1 − xiy1
=

yj − y1

1 − xiy1
· 1
1 − xiyj

.

This gives

det

 1 0 · · · 0
y1

1−x2y1

y2
1−x2y2

· · · yn

1−x2yn

...
...

 =

=
(y2 − y1)(y3 − y1) · · · (yn − y1)∏n

i=2(1 − xiy1)
det

(
1

1 − xiyj

)
i,j=2,... ,n

.

Or

det
(

1
1 − xiyj

)
=

=
(x2 − x1) · · · (xn − x1)(y2 − y1) · · · (yn − y1)∏

i or j =1(1 − xiyj)
· det

(
1

1 − xiyj

)
i,j=2,...

from which (∗) follows by induction.

For the second equation (∗∗) we put 1
1−xiyj

=
∑

ν≥0(xiyj)ν and obtain

det
(

1
1 − xiyj

)
=

∑
σ∈Sn

sgn σ
n∏

i=1

∑
ν≥0

(xiyσ(i))ν

=
∑

σ∈Sn

sgn σ
∑

ν1,... ,νn

xν1
1 · · ·xνn

n yν1
σ(1) · · · y

νn

σ(n)

=
∑

ν1,... ,νn≥0

xν1
1 · · ·xνn

n

∑
σ∈Sn

sgn σ yν1
σ(1) · · · y

νn

σ(n).

This shows that in the first summation we can assume that all νi are different.
Hence, this summation can be replaced by a double summation over all ν1 >
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ν2 > . . . > νn and all permutations:∑
ν1>...>νn

∑
τ∈Sn

xν1
τ(1) · · ·x

νn

τ(n)

∑
σ∈Sn

sgn σ · yν1
τσ(1) · · · y

νn

τσ(n) =

=
∑

ν1>...>νn

∑
τ∈Sn

sgn τ · xν1
τ(1) · · ·x

νn

τ(n) ·
∑

µ∈Sn

sgn µ · yν1
µ(1) · · · y

νn

µ(n),

and the claim follows from the definition of vλ(x1, . . . , xn). �

6.4 Newton polynomials. Let ni(x1, . . . , xn) := xi
1 + xi

2 + · · · + xi
n denote

the power sum and define for µ ∈ P:

nµ(x1, . . . , xn) :=
∏
i≥1

nµi(x1, . . . , xn).

This is a homogeneous symmetric function in Z[x1, . . . , xn] of degree |µ|. The
nµ(x1, . . . , xn) are called Newton polynomials. Since the Schur polynomials
form a bases of the symmetric functions (Lemma 6.2 (b)) we can express nµ in
terms of the sλ’s:

nµ(x1, . . . , xn) =
∑

ht λ≤n; |λ|=|µ|
aλ(µ) sλ(x1, . . . , xn) (1)

where aλ(µ) ∈ Z. It is not hard to see that the aλ(µ) do not depend on n, the
number of variables (cf. Exercise 6).

Now recall that there is a canonical bijection between the conjugacy
classes in Sm and the partitions Pm of m: For σ ∈ Sm the corresponding
partition µ(σ) is given by the lengths of the cycles in a decomposition of σ
as a product of disjoint cycles (see Exercise 10 in the following section 6.5).
Using this we will understand the coefficients aλ(µ) as class functions on Sm,
m := |λ|:

aλ : Sm → Z, σ �→ aλ(µ(σ)).

We will show in the next section that the aλ are exactly the irreducible char-
acters of Sm.

Exercise 9. Frobenius’ formula.For a polynomial f ∈ Z[x1, . . . , xn] we
denote by [f ]�1···�n the coefficient of the monomial x�1

1 · · ·x�n
n in f . Then we

have the following formula:

aλ(µ) = [∆ · nµ]�1···�n

where �i := λi + n − i.

Remark. The Newton polynomials nµ(x1, . . . , xn) can also be interpreted as
traces. Let σ ∈ Sm and consider the endomorphism
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ϕ := σ ◦

x1

. . .
xn


of V ⊗m where V = Kn. If σ has partition µ then

Tr ϕ = nµ(x1, . . . , xn).

In fact, the lines K(ei1 ⊗ · · · ⊗ eim) ⊂ V ⊗m are stable under ϕ. Hence, Tr ϕ is
the sum over those monomials xi1xi2 · · ·xim

for which ei1 ⊗ · · · ⊗ eim
is fixed

under σ. We may assume that

σ = (1, 2, . . . , µ1)(µ1 + 1, . . . , µ1 + µ2) · · · (m − µs + 1, . . . , m).

Then a tensor ei1 ⊗ ei2 ⊗ · · · ⊗ eim is fixed under σ if and only if it is of the
form e⊗µ1

j1
⊗ e⊗µ2

j2
⊗ · · · ⊗ e⊗µs

js
. Hence

Tr ϕ =
∑

j1,... ,js

xµ1
j1

· · ·xµs

js
= (

∑
i

xµ1
i )(

∑
i

xµ2
i ) · · · (

∑
i

xµs

i )

= nµ(x1, . . . , xn).

6.5 The irreducible characters of Sm. We want to show that the coefficients
aλ in formula (1) of 6.4 are the irreducible characters of Sm. A first step is to
prove the following orthogonality relations:

Lemma 1. Let λ, λ′ ∈ Pm. Then∑
σ∈Sm

aλ(σ) aλ′(σ) =

{
m! for λ = λ′,
0 otherwise.

Proof: We use Cauchy’s formula 6.3. Taking the formal logarithm we get

log

 n∏
i,j=1

1
1 − xiyj

 =
n∑

i,j=1

∑
ν≥0

xν
i yν

j

ν
=

∑
ν≥0

nν(x)nν(y)
ν

.

Since exp log = id we can calculate the term of degree m in the expansion of∏
i,j

1
1−xiyj

in the following way:

Rm = term of degree m in exp

∑
ν≥0

nν(x)nν(y)
ν


=

∑
r1+2r2+
···+srs=m

n1(x)r1n2(x)r2 · · ·ns(x)rsn1(y)r1 · · ·ns(y)rs

1r12r2 · · · srsr1!r2! · · · rs!
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Now the sequences r = (r1, . . . , rs) with r1 + 2r2 + · · · + srs = m correspond
bijectively to the partitions of m:

r = (r1, . . . , rs) ↔ µ = (s, s, . . . , s︸ ︷︷ ︸
rs

, s − 1, . . . , s − 1︸ ︷︷ ︸
rs−1

, . . . , 1, 1, . . . , 1︸ ︷︷ ︸
r1

),

and the number

γ(µ) :=
m!

1r12r2 · · · srsr1! · · · rs!

is equal to the number of elements in the conjugacy class of Sm corresponding
to µ (see Exercise 10 below). Hence

Rm =
∑

µ∈Pm

1
m!

γ(µ)nµ(x)nµ(y)

=
∑

µ∈Pm

1
m!

γ(µ)
∑

λ,λ′∈Pm

aλ(µ)aλ′(µ)sλ(x)sλ′(y)

=
∑

λ,λ′∈Pm

 ∑
µ∈P�

1
m!

γ(µ) aλ(µ)aλ′(µ)

 sλ(x)sλ′(y).

Looking at the right hand side of Cauchy’s formula 6.3, we get

Rm =
∑

λ∈Pm

sλ(x)sλ(y),

and the claim follows. �

Exercise 10. Show that two permutations σ, τ ∈ Sm are conjugate if and
only if they correspond to the same partition λ (i.e., they have the same
cycle lengths in their decomposition into disjoint cycles). Prove that the
number of elements in the conjugacy class corresponding to the partition
λ = (srs , (s − 1)rs−1 , . . . , 2r2 , 1r1) is given by

γ(λ) :=
m!

1r12r2 · · · srsr1! · · · rs!
.

The next step is to show that the aλ are virtual characters, i.e., Z-linear combi-
nations of characters. Recall that there is another Z-bases {rλ | λ ∈ P,htλ ≤ n}
of the symmetric polynomials Z[x1, . . . , xn]sym which has already been used in
the proof of Lemma 3.1: For λ = (λ1, λ2, . . . , λn) the function rλ(x1, . . . , xn)
is the sum of the monomials in the orbit of xλ1

1 xλ2
2 · · ·xλn

n under Sn. Now we
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express the Newton polynomials in terms of the rλ’s:

nµ(x1, . . . , xn) =
∑

|λ|=|µ|
bλ(µ) rλ(x1, . . . , xn). (2)

Lemma 2. With the notation above we have:

(a) aλ ∈ ∑
η Z bη;

(b) bη ∈ aη +
∑

λ>η Z aλ, where > is the lexicographic ordering;

(c) bλ is the character of the induced representation IndSm

Sλ
K of the trivial

representation K where Sλ := Sλ1 × · · · × Sλr
⊂ Sm, m := |λ|.

(Recall that the induced representation IndSm

Sλ
K is the permutation represen-

tation coming from the action of Sm on the coset space Sm/Sλ, i.e., IndSm

Sλ
K

has a basis of the form eτ̄ (τ̄ ∈ Sm/Sλ) and σ(eτ̄ ) = eστ .)

Proof: (a) To see this we express the rλ’s in (2) in terms of Schur polynomials
and compare with equation (1) in 6.4.
(b) With respect to the lexicographic ordering of the exponents the function
vλ = ∆·sλ has leading term xλ1+n−1

1 xλ2+n−2
2 · · ·xλn

n . Since the function ∆·rλ =∏
i<j(xi − xj) · rλ has the same leading term we must have a relation of the

form:

sλ = rλ +
∑
λ′<λ

γλλ′rλ′ , γλλ′ ∈ Z.

Putting this into formula (1) of 6.4 and comparing with (2) above we get

bη = aη +
∑
λ>η

γληaλ.

(c) We have to show that bλ(µ) is the number of fixed points of a permutation
σ ∈ Sm with partition µ acting on the coset space Sm /Sλ. Equation (2) above
has the form

(xµ1
1 + xµ1

2 + · · · )(xµ2
1 + xµ2

2 + · · · ) · · · =

=
∑

λ

bλ(µ)(xλ1
1 xλ2

2 · · ·xλn
n + · · · ).

This shows that bλ(µ) is the number of possibilities to decompose the set M =
{µ1, µ2, . . . , µm} into m disjoint subsets M = M1 ∪ M2 ∪ . . . ∪ Mm such that
the sum of the µj ’s in Mi is equal to λi. We claim that this number equals the
number of fixed points of a permutation σ with partition µ acting on Sm /Sλ.
In fact, τ Sλ is fixed under σ if and only if τ−1στ ∈ Sλ which implies that the
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set M = {µ1, . . . , µm} of the cycle lengths of σ is decomposable in the way
described above. It is now easy to see that the fixed points correspond exactly
to the different decompositions of M . �

Now we are ready to prove the main result of this section.

Theorem. For every λ ∈ Pm there is an irreducible K-linear representation
of Sm with character aλ. In particular, the aλ (λ ∈ Pm) are the irreducible
characters of Sm.

We use the notation Mλ(K) = Mλ for a simple Sm-module (defined over K)
with character aλ. We will see in a moment that this is in accordance with the
notation introduced in 3.3 and 5.9.

Proof: It follows from Lemma 2 (a) and (c) that aλ =
∑

γiχi with irre-
ducible characters χi and γi ∈ Z. The orthogonality relations (Lemma 1) imply∑

γ2
i = 1. Hence aλ or −aλ is an irreducible character. Using Lemma 2 (b)

(and again (c)) we see that the sign must be +1 since the character bλ is a sum
of irreducible characters with positive coefficients. It also follows that the repre-
sentation IndSm

Sλ
K must contain a unique subrepresentation Mλ with character

aλ because aλ occurs with multiplicity one in bλ. �

Exercises

11. Let λ = (λ1, . . . , λr) be a partition of m. Show that

dim Mλ =
m!

�1! · · · �r!

∏
i<j

(�i − �j)

where �i = λi + m − i.
(Hint: Use the Frobenius formula of Exercise 9:

dim Mλ = aλ(1) = [∆(x1 + · · · + xr)
r]�1···�r .

12. Hook length formula. To each box B in a Young diagram we asso-
ciate a hook consisting of all boxes below or to the right hand side of B; its
length is by definition the number of boxes in the hook. Prove the following
formula:

dim Mλ =
m!∏

hook lengths
.

(Hint: Use the previous exercise.)

The next result is clear from the above (cf. Proposition 3.3 and Corollary 5.7).

Corollary. For every field extension K ′/K we have Mλ(K)⊗K K ′ ∼= Mλ(K ′)
as Sm-modules. In particular, every Sm-module M is defined over Q, and for
a simple module M we get EndSm(M) = K.
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Examples. (1) For λ = (m) we have IndSm

Sm
K = K, hence b(m) = a(m) is the

trivial character and M(m) = K, the trivial representation.

(2) For λ = (m−1, 1) we see that IndSm

Sm−1
K is the natural representation of Sm

on Km and b(m−1,1) = a(m−1,1) + a(m). Thus M(m−1,1) � Kn/K(1, 1, . . . , 1).

6.6 The irreducible characters of GLn. Now we are in position to prove
the main result about the characters of GLn which is due to Schur.

Theorem. For every partition λ of height ≤ n there is an irreducible polynomial
representation Lλ of GLn whose character is the Schur polynomial sλ. The Lλ

represent all isomorphism classes of simple polynomial GLn-modules. Moreover,
Lλ has highest weight

∑
i λiεi.

Proof: Consider the representation of Sm ×GLn on V ⊗m, V = Kn and its
character

χ(σ;x1, . . . , xn) := Tr(σ ◦

x1

. . .
xn

) : Sm ×Tn → K.

Since the aλ form a Z-basis of the class functions on Sm we can write χ in the
form

χ =
∑

λ∈Pm

aλ · s̃λ with s̃λ ∈ Z[x1, . . . , xn].

On the other hand, we have the Sm ×GL(V )-stable decomposition

V ⊗m ∼=
⊕
λ∈P′

Mλ ⊗ Lλ

with a suitable subset P ′ ⊂ Pm and certain irreducible polynomial represen-
tations Lλ of GLn (Theorem 3.3). Hence, by uniqueness, s̃λ = χLλ

for λ ∈ P ′

(and s̃λ = 0 otherwise). Now we have seen in Remark 6.4 that

χ(σ, x1, . . . , xn) = nµ(x1, . . . , xn)

where µ = µ(σ) is the partition of σ. Since we know from equation (1) in 6.4
that

nµ(x1, . . . , xn) =
∑

|λ|=m, ht λ≤n

aλ(µ)sλ(x1, . . . , xn)

we finally get χLλ
= sλ for λ ∈ P ′ = {λ ∈ Pm | htλ ≤ n}.
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The last statement of the theorem is clear since sλ has leading term xλ1
1 · · ·xλn

n

in the lexicographic ordering (see Exercise 5). �

Remark. By the last statement of the theorem the notation Lλ is in accor-
dance with the one introduced in 5.9. We also write Lλ(n) or Lλ(K) in order
to emphasize the group GLn or the base field K. If we do not want to specify
a basis in V we use the notation Lλ(V ) for the corresponding simple polyno-
mial GL(V )-module for which we have the following functorial description (cf.
Remark 5.9):

Lλ(V ) = HomSm(Mλ, V ⊗m).

Moreover, we get

EndGLn Lλ(K) = K and Lλ(K) ⊗K K ′ ∼= Lλ(K ′)

for any field extension K ′/K. Since the Schur polynomials sλ are linearly
independent (Lemma 6.2 (b)) we see again that every rational representation
of GLn is determined by its character, up to equivalence (cf. 5.8 Exercise 24).

From the above we get the following decomposition formula for V ⊗m

as a Sm ×GL(V )-module which was considered earlier in 3.3 and again in 5.9.
It can now be seen as a representation theoretic interpretation of formula (1) of
6.4 expressing the Newton polynomials in terms of the Schur polynomials.

Corollary 1. We have

V ⊗m ∼=
⊕

|λ|=m, ht λ≤dim V

Mλ(K) ⊗ Lλ(V )

as Sm ×GL(V )-modules.

We can also give representation theoretic interpretation of Cauchy’s formula
6.3.

Corollary 2. As a representation of GL(V ) × GL(W ) we have

S(V ⊗ W ) ∼=
⊕

ht λ≤h

Lλ(V ) ⊗ Lλ(W )

where h := min(dimV, dimW ). More precisely,

Sd(V ⊗ W ) ∼=
⊕

ht λ≤h, |λ|=d

Lλ(V ) ⊗ Lλ(W ).

In particular, we see that Lλ(V ) occurs in S(V m) if and only if htλ ≤ m.
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Proof: It is easy to see that∏
i=1...n,j=1... ,m

1
1 − xiyj

is the (formal) character of the representation of GLn ×GLm on the symmetric
algebra S(Kn ⊗ Km) = K[xij | i = 1, . . . , n; j = 1, . . . , m]. Now we can argue
as in the proof of the Theorem above to get the required result. �

Finally, from Pieri’s formula (Exercises 7 and 8) we obtain the following rules:

Corollary 3. For any partition λ of height ≤ n = dimV we have

Lλ ⊗ Sm(V ) =
⊕

µ

Lµ(V )

where the sum if over all partitions µ of degree |µ| = |λ| + m and height ≤ n
whose Young diagram is obtained from YD(λ) by adding m boxes, at most one
to each column. Similarly, one gets

Lλ ⊗ ∧m(V ) =
⊕

µ

Lµ(V )

where the sum if over all partitions µ of degree |µ| = |λ| + m and height ≤ n
whose Young diagram is obtained from YD(λ) by adding m boxes, at most one
to each row.

Example. We have the following decompositions

L(2,1)(V ) ⊗ S2(V ) ∼= L(4,1) ⊕ L(3,2) ⊕ L(3,1,1) ⊕ L(2,2,1)

corresponding to the Young diagrams

	 	 	
	

	

	
	

	

and similarly L(2,1)(V ) ⊗ ∧2(V ) ∼= L(3,2) ⊕ L(3,1,1) ⊕ L(2,2,1) ⊕ L(2,1,1,1).

Exercise 13. Show that ht λ is the smallest integer r such that detr Lλ(n)∗

is a polynomial module and prove that detht λ Lλ(n)∗ � Lλc(n) where λc is
the complementary partition (n − λr, . . . , n − λ1), r = ht λ.
(Hint: Use 6.1 Proposition (c) and Exercises 2 and 4.)

6.7 Decomposition of tensor products. Let G be a linear group and as-
sume that every rational representation of G is completely reducible. Given two
irreducible representations V and W of G it is an important task to determine
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the decomposition of the tensor product V ⊗ W as a direct sum of irreducible
representations. This means that we want to calculate the multiplicities

mλ := mult(Vλ, V ⊗ W )

where λ parametrizes the irreducible representations of G. We have already seen
two such examples in the previous paragraph, deduced from Perie’s formula,
namely the decomposition of the GL(V )-modules L⊗Sm(V ) and L⊗∧m(V ) (6.6
Corollary 3). We will first show that there is an interesting relation between
such multiplicities for the general linear group and those for the symmetric
group.

For three partitions λ, µ, ρ of height ≤ n we define the following mul-
tiplicities:

Nλµ
ρ := mult(Lρ, Lλ ⊗ Lµ).

where all modules are considered as GLn-modules. We will see in a moment
that Nλµ

ρ does not depend on n as long as n ≥ htλ, htµ,ht ρ. Equivalently, we
have

Lλ ⊗ Lµ �
⊕

ρ

Nλµ
ρ Lρ.

Proposition. Let λ be a partition of p, µ a partition of q and ρ a partition of
m := p + q. Consider Sp ×Sq as a subgroup of Sm in the usual way. Then we
have

Nλµ
ρ := mult(Lρ, Lλ ⊗ Lµ) = mult(Mλ ⊗ Mµ, Mρ|Sp ×Sq

),

and Nλµ
ρ = 0 if |ρ| �= |λ| + |µ|.

Proof: This is an easy consequence of Cauchy’s formula (6.6 Corollary 1).
We have

V ⊗p ∼=
⊕
|λ|=p

Mλ ⊗ Lλ and V ⊗q ∼=
⊕
|µ|=q

Mµ ⊗ Lµ.
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Thus we get for V ⊗m = V ⊗p ⊗ V ⊗q as an Sp ×Sq ×GLn-module

V ⊗m ∼=
⊕

|ρ|=m

Mρ ⊗ Lρ

∼=
⊕

|λ|=p,|µ|=q

(Mλ ⊗ Mµ) ⊗ (Lλ ⊗ Lµ)

∼=
⊕

|λ|=p,|µ|=q,|ρ|=m

(Mλ ⊗ Mµ) ⊗ (Nµλ
ρ Lρ)

∼=
⊕

|ρ|=m

 ⊕
|λ|=p,|µ|=q

Nµλ
ρ (Mλ ⊗ Mµ)

 ⊗ Lρ.

This shows that Mρ|Sp ×Sq
∼=

⊕
|λ|=p,|µ|=q Nµλ

ρ (Mλ ⊗ Mµ) and the claim fol-
lows. �
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§ 7 Some Classical Invariant Theory

In the following paragraphs we give another approach to the First Fundamental Theorem
for GLn which will enable us to generalize it to all classical groups. It is based on the
representation theory of the general linear group and on the Capelli-Deruyts expansion.
Along these lines we discuss two fundamental results due to H. Weyl concerning invariants
of several copies of a representation V of an arbitrary group G ⊂ GL(V ). In this context
we introduce the algebra of differential operators generated by the polarization operators.
They will play an important rôle in the theory of Capelli. Finally, we study multiplicity free
algebras and show how they are related to the problems discussed so far and how they can
be used to obtain different proofs of some of our previous results.

Throughout the end of the text we assume char K = 0.

7.1 GLp-action on invariants. We come back to the general situation from
the very beginning of these notes (see §1.5). Let V be a finite dimensional
K-vector space and G ⊂ GL(V ) an arbitrary subgroup. We want to discuss
the G-invariants of p copies of the representation V where p is any natural
number. For this purpose we introduce the following linear action of GLp on
V p = V ⊕ · · · ⊕ V :

h(v1, . . . , vp) := (v1, . . . , vp) · h−1 for h ∈ GLp

where the right hand side has the obvious meaning of multiplication of matrices:
If A = (aij)

p
i,j=1 then

(v1, . . . , vp) · A := (. . . ,

p∑
i=1

aijvi, . . . ).

Choosing a basis and identifying V p with the n × p matrices Mn×p this action
is just right multiplication with the matrix h−1.

Remark. There are two natural actions of GLp on V p depending on the fol-
lowing two identifications:

V p = Kp ⊗ V or V p = Hom(Kp, V ).

The two actions are obtained from each other by the outer automorphism h �→
(h−1)t. All results we are going to describe are true for both actions, perhaps
with some minor changes in notation. We have chosen the latter since it has the
advantage that the corresponding representation on the coordinate ring K[V p]
is polynomial.

The action of GLp on V p clearly commutes with the natural diagonal action of
GL(V ). Hence, we get the following result about the G-invariants.

Lemma. The ring of invariants K[V p]G is stable under GLp.
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For r ≤ p we include V r ⊂ V p using the first r copies of V :

V r ↪→ V p : (v1, . . . , vr) �→ (v1, . . . , vr, 0, . . . , 0).

This map is equivariant with respect to the inclusion of the corresponding
groups:

GLr ↪→ GLp : A �→
(

A 0
0 Ep−r

)
. (1)

Moreover, we have an inclusion of the coordinate rings

K[V r] ↪→ K[V p]

corresponding to the linear projection pr : V p → V r onto the first r copies,
i.e., we identify K[V r] with those functions f ∈ K[V p] which do not depend
on the last p − r copies of V . This inclusion is clearly GL(V )-equivariant, but
also equivariant with respect to the homomorphism (1) above. In particular,
we obtain

K[V r]G = K[V r] ∩ K[V p]G ⊂ K[V p]G.

By the lemma above K[V p]G even contains the GLp-module generated by
K[V r]G:

〈K[V r]G〉GLp ⊂ K[V p]G. (2)

(As before, we use the notation 〈S〉GLp for the GLp-module generated by a
subset S of a representation of GLp.)

A fundamental result which is due to Weyl says that we have equal-
ity in (2) as soon as r ≥ dimV ([Wey46] II.5 Theorem 2.5A). This result is
sometimes refered to by saying that “one can see all invariants already on
n = dimV copies”.

Theorem A (H. Weyl). For every p ≥ n := dimV we have K[V p]G =
〈K[V n]G〉GLp . In particular, if S ⊂ K[V n]G is a system of generators then
〈S〉GLp generates the invariant ring K[V p]G.

The classical proof of this result is based on the Capelli-Deruyts expansion.
We will discuss it in the next paragraph (see 8.2). Here we use the representation
theory of GLp to obtain a more direct proof based on our results from §5 about
highest weights of GLp-modules. (See Corollary 1 of the following section.)

Exercises 1. Verify the theorem for the standard (1-dimensional) repre-
sentation of the finite cyclic group µm := {ζ ∈ K∗ | ζm = 1} ⊂ GL1 of
order m.

2. Determine the invariants of several copies of the standard 2-dimensional
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representation of T :=
{(

t 0
0 t−1

) ∣∣ t ∈ K∗} ⊂ GL2.
(Cf. 1.2 Exercise 6.)

3. Let V be an n-dimensional representation of G and assume that K[V n]G

is generated by the invariants of degree ≤ N for some N > 0. Then this
holds for the invariants of any number of copies of V .

7.2 Up-invariants and primary covariants. We use the notation from the
previous section.

Proposition. Assume p ≥ n := dimV and let M ⊂ K[V p] be a GLp-stable sub-
space. Then, as a GLp-module, M is generated by its intersection with K[V n]:

M = 〈M ∩ K[V n]〉GLp
.

Before giving the proof of the proposition we want to draw some consequences.
Part (a) of the following corollary is Weyl’s Theorem A of the previous section
7.1.

Corollary 1. Assume that the subspace F ⊂ K[V n]G generates K[V n]G as an
algebra.

(a) For p ≥ n the invariants K[V p]G are generated by 〈F 〉GLp .
(b) For p ≤ n the invariants K[V p]G are generated by the restrictions

res F := {f |V p | f ∈ F}. Moreover, res F = F ∩ K[V p] in case F is
GLn-stable.

Proof: (a) Let p ≥ n and denote by R ⊂ K[V p] the subalgebra generated by
〈F 〉GLp . Then R ⊂ K[V p]G, and R is GLp-stable. Since R ⊃ K[F ] = K[V n]G =
K[V p]G ∩ K[V n] the proposition above implies that R = K[V p]G .
(b) For p ≤ n consider the restriction map res : K[V n] → K[V p], f �→ f |V p

which is G-equivariant and induces the identity on K[V p] ⊂ K[V n]. Hence, the
composition

K[V p]G ↪→ K[V n]G res−−→ K[V p]G

is the identity, too, and so K[V n]G → K[V p]G is surjective. This shows that
res(F ) generates K[V p]G. Finally, the equation resF = F ∩ K[V p] certainly
holds in case F is a multihomogeneous subspace of K[V n]. Since F is GLn-
stable this follows from the next lemma. �

Lemma. A GLp-stable subspace F ⊂ K[V p] is multihomogeneous.

Proof: We give the argument for p = 1; the general case follows easily by
induction. Let f ∈ F ⊂ K[V ] and let f = f0+f1+· · ·+fs be the decomposition
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into homogeneous components. For t ∈ K∗ = GL1 we get tf = f0 + t · f1 + t2 ·
f2 + · · · + ts · fs ∈ F . Choosing s + 1 different values t0, t1, . . . , ts ∈ K∗, the
linear system

tif = f0 + ti · f1 + · · · + ti
s · fs, i = 0, 1, . . . , s

has an invertible coefficient matrix: Its determinant is a Vandermonde deter-
minant. Hence fi ∈ 〈tif | i = 0, 1, . . . , s〉 ⊂ F . �

Now we come to the proof of the proposition above. It is a consequence
of the theory of highest weights developed in 5.7.

Proof of the Proposition: Since the representation of GLp on K[V p] is
completely reducible (5.3) it suffices to show that for every simple submodule
M ⊂ K[V p] we have M ∩ K[V n] �= 0. In fact, this implies 〈M ∩ K[V n]〉GLp =
M for all simple submodules M , hence for any submodule. We have seen in
Proposition 5.7 that MUp �= 0 where

Up := {

1 ∗ ∗
. . . ∗

1

 ∈ GLp}

is the subgroup of the upper triangular unipotent matrices. So it remains to
prove that K[V p]Up ⊆ K[V n]. By induction it suffices to show that for p > n
a Up-invariant function f ∈ K[V p] does not depend on the last variable vp.
Consider an element

v = (v1, v2, . . . , vn, vn+1, . . . , vp) ∈ V p

where v1, v2, . . . , vn are linearly independent. Then there exist α1, . . . , αp−1 ∈
K such that α1v1 + α2v2 + · · · + αp−1vp−1 + vp = 0. Putting

u =


1 0 · · · α1

1 · · · α2

. . .
...
1

 ∈ Up,

we get u(v1, . . . , vp−1, 0) = (v1, . . . , vp−1, vp). Since the elements v as above
form a Zariski-dense subset of V p this shows that a Up-invariant function
does not depend on the last variable vp. �

From the proof we get the following corollary:

Corollary 2. For any p ≥ n we have K[V p]Up ⊂ K[V n].
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The subalgebra PC := K[V n]Un appears in the classical literature as the algebra
of primary covariants. We will discuss this in more details in 8.1 (see also 7.7
Example 2).

Remark. Another proof of the proposition above follows from the Capelli-
Deruyts expansion (Theorem 8.1, see 8.2). This expansion can be regarded as
an explicit way to write a function f ∈ K[V p] in the form f =

∑
Aifi where

the fi belong to the primary covariants and the Ai are certain linear operators
preserving GLp-stable subspaces.

7.3 Polarization operators. We want to give another description of the GLp-
submodule 〈S〉GLp generated by a subset S ⊂ K[V p] using certain differential
operators. In modern terms, we study the action of the Lie algebra of GLp

on the coordinate ring K[V p] by derivations and of its envelopping algebra by
differential operators.

First we introduce the following linear operators ∆ij on K[V p] where
1 ≤ i, j ≤ p:

∆ijf (v1, . . . , vp) :=
f(v1, . . . , vj + tvi, . . . , vp) − f(v1, . . . , vp)

t

∣∣∣∣
t=0

.

They are called polarization operators. Using coordinates in V and putting
vi = (x(i)

1 , . . . , x
(i)
n ) we see that

∆ij =
n∑

ν=1

x(i)
ν · ∂

∂x
(j)
ν

.

Clearly, ∆ij is a derivation of the algebra K[V p], i.e. ∆ij(fh) = f ∆ijh+h ∆ijf
for f, h ∈ K[V p]. Or, in more geometric terms, ∆ij is the vector field on V p

given by

(∆ij)(v1,... ,vp) = (0, . . . , 0, vi
j
, 0, . . . , 0).

The next lemma explains the meaning of these operators with respect to the
Taylor-expansion.

Lemma. For f ∈ K[V p] and t ∈ K we get

f(v1, . . . , vj + tvi, . . . , vp) =
∞∑

ν=0

tν

ν!
· ∆ ν

ijf (v1, . . . , vp).

Proof: The coefficients in the usual Taylor-expansion with respect to t are
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f ν(x1, . . . , xp) :=
(

∂ν

∂tν
f(v1, . . . , vj + tvi, . . . , vp)

)
t=0

.

But it is easy to see that(
∂ν+1

∂tν+1
f(. . . , vj + tvi, . . . )

)
t=0

=
(

∂

∂t
fν(. . . , vj + tvi, . . . )

)
t=0

.

Hence, by induction, fν = ∆ ν
ijf . �

Examples. (a) If vj does not occur in f then ∆ijf = 0.
(b) Assume that f is linear in vj . Then

∆ijf(v1, . . . , vj , . . . , vp) = f(v1, . . . , vi
j
, . . . , vp),

i.e., vj is replaced by vi.
(c) The full polarization Pf of a homogeneous polynomial f ∈ K[V ] of degree
d which was defined in 4.4 has the following description:

Pf = ∆d0 · · ·∆20∆10f.

Here we work in the coordinate ring K[V d+1] where d = deg f and use the
notation (v0, v1, v2, . . . , vd) for elements in V d+1, assuming that f = f(v0) is a
function depending only on the first copy of V d+1.

7.4 Differential operators. Let W be a finite dimensional K-vector space.
The algebra of linear operators on K[W ] generated by the derivations

∂

∂w
: f(u) �→ f(u + tw) − f(u)

t
|t=0

and the multiplication with functions f ∈ K[W ] is called the ring of differential
operators on W . We will denote it by D(W ) and consider it as a subalgebra of
EndK(K[W ]). Using coordinates in W it is easy to see that every D ∈ D(W )
can be (uniquely) written in the form

D =
∑

fα
∂α

∂xα where fα ∈ K[W ] and

∂α

∂xα :=
∂α1+α2+···+αm

∂x1
α1∂x2

α2 · · · ∂xm
αm

.

The linear operators of the form
∑

fi
∂

∂xi
are the polynomial vector fields on

W , i.e., the derivations of K[W ].

Definition. Let U = U(p) ⊂ D(V p) be the subalgebra of differential operators
on V p generated by the polarization operators ∆ij , i, j = 1, . . . , p.
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Proposition. Let M ⊂ K[V p] be a linear subspace. Then M is stable under
GLp if and only if it is stable under U(p). If M is finite dimensional and GLp-
stable then the subalgebra of End(M) generated by GLp coincides with the image
of U(p) in End(M).

In other words, a subspace M ⊂ K[V p] is GLp-stable if and only if it is stable
under polarization, i.e., if f ∈ M implies ∆ijf ∈ M for all ∆ij . Furthermore,
the GLp-span 〈S〉GLp

of a subset S ⊂ K[V p] can be obtained by applying
successively polarization operators in all possible ways and forming the linear
span:

〈S〉GLp
= 〈U(p) S〉.

We shortly say 〈S〉GLp is obtained from S by polarization. In these terms we
can rephrase Weyl’s Theorem A (7.1).

Corollary. Let G ⊂ GL(V ) be a subgroup and let S ⊂ K[V n]G be a system
of generators of the ring of invariants, n := dimV . For every p ≥ n we get a
system of generators for K[V p]G by polarizing S.

Proof of the Proposition: For t ∈ K and 1 ≤ i, j ≤ p define as in 5.7

uij(t) := E + tEij ∈ GLp (t �= −1 in case i = j).

It is well known that these matrices generate GLp (see §5, Exercise 18). Fur-
thermore, for f ∈ K[V p] we find

(uij(t)f)(v1, . . . , vp) = f(v1, . . . , vj + tvi, . . . , vp)

=
∑

ν

tν

ν!
∆ ν

ijf(v1, . . . , vp), (3)

by Lemma 7.3 above. Clearly, the sum is finite and the same argument as in
the proof of Lemma 7.2 implies that

〈uij(t)f | t ∈ K〉 = 〈∆ ν
ijf | ν = 0, 1, . . . 〉.

Thus we get the first claim. In addition, formula (3) shows that

uij(t) = exp(t∆ij) :=
∑
ν≥0

tν

ν!
∆ ν

ij

as an operator on K[V p]. (Note that for a given f we have ∆ ν
ijf = 0 for large

ν.) If we restrict this operator to a finite dimensional GLp-stable subspace
M the right hand side becomes a finite sum and is therefore an element of
U(p). Arguing again as in the proof of Lemma 7.2 we see that the finite set
{∆ ν

ij |M} ⊂ End(M) lies in the span of the linear operators uij(t), t ∈ K. �
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Exercise 4. Prove that the commutator subgroup of GLp(K), i.e., the
subgroup generated by all commutators (g, h) := ghg−1h−1 (g, h ∈ GLp),
is equal to SLp(K).

7.5 Invariants of unimodular groups. In case of a unimodular subgroup
G ⊂ SL(V ) we can improve Weyl’s Theorem A (7.1). Let n := dimV and fix
a basis of V . Then the determinant det(v1, . . . , vn) is defined for every n-tuple
of vectors vi ∈ V = Kn as the determinant of the n × n matrix consisting of
the column vectors v1, . . . vn. This allows to define, for every sequence 1 ≤ i1 <
i2 < . . . < in ≤ p, an SL(V )-invariant function

[i1, . . . , in] : V p → K, (v1, . . . , vp) �→ det(vi1 , . . . , vin
).

The following result is again due to Weyl (cf. [Wey46] II.5 Theorem 2.5A).
The proof will be given in 8.2.

Theorem B. Assume that G is a subgroup of SL(V ). For p ≥ n = dimV
the invariant ring K[V p]G is generated by 〈K[V n−1]G〉GLp together with all
determinants [i1, . . . , in].

As before, this can be rephrased in the following way:

Corollary 1. Let S ⊂ K[V n−1]G be a system of generators. Then we get a gen-
erating system for K[V p]G by polarizing S and adding all possible determinants
[i1, . . . , in].

Exercise 5. Show that a polarization of a determinant [i1, . . . , in] is either
0 or again a determinant.

As a consequence we obtain a preliminary version of the FFT for the special
linear group. The general case will be given in the next paragraph (see Theorem
8.4).

Corollary 2 (Preliminary FFT for SLn). For SL(V ) acting on several
copies of V the invariant ring K[V p]SL(V ) is generated by the determinants
[i1, . . . , in]. In particular, K[V p]SL(V ) = K for p < n.

Proof: The first statement follows from the second by the corollary above,
and the second claim is clear since SL(V ) has a Zariski-dense orbit in V n−1.

�

Exercises

6. Consider the subgroup N :=
{(

t 0
0 t−1

)
,
(

0 −t

t−1 0

) ∣∣ t ∈ K∗} of SL2 with

its natural representation on V = K2. Show that the invariant ring K[V p]N

is generated by the invariants x2
i y

2
i and xiyj − xjyi (1 ≤ i < j ≤ p).
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7. The invariants of any number of 2 × 2 matrices (A1, . . . , Ar) ∈ M2(K)r

under simultaneous conjugation are generated by the following functions:
Tr Ai, Tr AiAj and Tr AiAjAk.
(Hint: Since M2 = K ⊕M2

′ where M2
′ are the traceless 2× 2 one can apply

Theorem B for n = 3. Now use Example 2.4 and show that [A, B, C] =
Tr ABC for A =

(
a b
c −a

)
corresponding to the column vector (a, b, c)t).

7.6 The First Fundamental Theorem for Sn. Consider the standard rep-
resentation of the symmetric group Sn on V = Kn by permutation:

σei = eσ(i) or σ(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)).

The invariant ring K[x1, . . . , xn]Sn is the algebra of symmetric polynomials
which is generated by the elementary symmetric functions σ1, . . . , σn (see 1.2
Example 3). It is natural to ask for a description of the invariants of several
copies of the standard representation of Sn. Again this question has been an-
swered by H. Weyl (see [Wey46] II.A.3).

Theorem. The invariants K[V p]Sn are generated by the polarizations of the
elementary symmetric functions.

Proof: In order not to overload notation let us denote the variables on the
different copies of V by x, y, . . . , z. As in the proof of Proposition 1.2 we use
induction on n and denote by σ′

1, . . . , σ′
n−1 the elementary symmetric functions

of n−1 variables. Let A ⊂ K[V p]Sn = K[x1, . . . , xn, y1, . . . , zn]Sn be the subal-
gebra generated by the polarizations of the elementary symmetric functions σi

and by A′ ⊂ A the subalgebra generated by the polarizations of the elementary
symmetric functions σ′

i. Polarizing the relations

σ1 = σ′
1 + xn,

σ2 = σ′
2 + xnσ′

1,

...
σn−1 = σ′

n−1 + xnσ′
n−2,

σn = xnσ′
n−1,

we find that the A ⊂ A′[xn, yn, . . . , zn].

Now let f = f(x, y, . . . , z) be an invariant and write

f =
∑

α,β,... ,γ

fα,β,... ,γxα
nyβ

n · · · zγ
n

where the fα,β,... ,γ do not depend on the last variables xn, yn, . . . , zn. Clearly,
the coefficients fα,β,... ,γ are invariants under Sn−1 and therefore elements from
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A′, by induction. It follows that f ∈ A′[xn, yn, . . . , zn] ⊂ A[xn, yn, . . . , zn].
Since f is an invariant under Sn we have f = 1

n!

∑
σ∈Sn

σf . Therefore, it
suffices to show that

∑
i xα

i yβ
i · · · zγ

i ∈ A for all α, β, . . . , γ ≥ 0. But clearly,
this sum is a polarization of the invariant

∑
i xα+β+···+γ

i which is contained in
K[σ1, . . . , σn] and the claim follows. �

Remark. It was asked by several people whether this result holds for every
finite reflection group, i.e., for every finite subgroup G ⊂ GLn(C) which is
generated by pseudo-reflections. (An element of finite order in GLn(C) is called
a pseudo-reflection if it fixes a hyperplane pointwise.) It is not difficult to see
that the result holds for the Weyl-groups of type Bn and also for the dihedral
groups (see Exercise 8 below). But Wallach showed that it is false for the
Weyl group of type D4. We refer to the paper [Hun96] of Hunziker for a
detailed discussion of this problem.

Exercise 8. Let D2n ⊂ GL2(C) be the dihedral group of order 2n:

D2n :=
{(

ζ 0

0 ζ−1

) ∣∣ ζn = 1
}
∪

{(
0 ζ

ζ−1 0

) ∣∣ ζn = 1
}

,

i.e., D2n = Cn ∪ ( 0 1
1 0 ) · Cn. Then K[x, y]D2n = K[xnyn] and the invariants

of any number of copies of K2 are generated by the polarizations of xnyn.

7.7 Multiplicity free representations. Let G be a product of general linear
and special linear groups or, more generally, a linear group as in 5.4. Assume
that G acts on a (commutative) K-algebra A by means of algebra automor-
phisms

ρ : G → Autalg A ⊂ GL(A)

and that this representation is locally finite and rational (5.2). Such an algebra
will be called a G-algebra. Typical examples are the coordinate rings of rational
representations of G (Lemma 5.4).

Exercise 9. Let H be an arbitrary group acting on an algebra A by means
of algebra automorphisms. Assume that every finite dimensional subrep-
resentation of A is completely reducible. Then A =

⊕
λ

Aλ where Aλ is
the isotypic component of type λ, i.e., the sum of all simple submodules of
isomorphism class λ. Moreover, A0 = AH is a subalgebra and each Aλ is an
AH -submodule.

Definition. A G-algebra is called multiplicity free if A is a direct sum of
simple G-modules which are pairwise non-isomorphic. A representation W of
G is called multiplicity free if the coordinate ring K[W ] is multiplicity free.
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Multiplicity free algebras appear in the literature at several places, see e.g.
[Had66], [ViP72], [Kra85]. Recently, Howe used it to deduce many results
from classical invariant theory in a systematic way [How95].

Examples. (a) The symmetric algebra S(V ) =
⊕

i Si V is multiplicity free
with respect to GL(V ) and SL(V ). The same holds for the coordinate ring
K[V ] = S(V ∗).

(b) The Cauchy formula (6.6 Corollary 2) shows that S(V ⊗W ) and K[V ⊗W ]
are multiplicity free with respect to GL(V ) × GL(W ). For the group SL(V ) ×
SL(W ) it is multiplicity free only in case dimV �= dimW . In fact, for V = W
there are non-constant invariants.

(c) The exterior algebra
∧

V is multiplicity free for GL(V ).

From now on assume that G is a product GLp1 ×GLp2 × · · ·×SLq1 ×SLq2 × · · ·
and denote by ΛG the monoid of highest weights. Any G-algebra A has an
isotypic decomposition

A =
⊕

λ∈ΛG

Aλ,

see Exercise 9 above. Define

ΩA := {λ ∈ ∧G | Aλ �= 0}.

Lemma. Assume that A is a domain.

(a) ΩA is a submonoid, i.e., ΩA + ΩA = ΩA.
(b) Suppose that A is multiplicity free. If ΩA is generated by λ1, . . . , λs

then A is generated as an algebra by Aλ1 + · · ·+Aλs . In particular, A
is finitely generated.

Proof: (a) For any λ ∈ ΩA denote by aλ ∈ Aλ a highest weight vector. If
λ, µ ∈ ΩA then aλaµ is a vector �= 0 of maximal weight in AλAµ ⊂ A and so
its weight λ + µ occurs in ΩA.
(b) Let ai ∈ Aλi be highest weight vectors, i = 1, . . . , s. If λ ∈ ΩA, λ =∑s

i=1 miλi then a := am1
1 am2

2 · · · ams
s is a highest weight vector of weight λ and

so Aλ = 〈a〉GLn ⊂ Am1
λ1

Am2
λ2

· · ·Ams

λs
. �

7.8 Applications and Examples. We regard V p as a GL(V )×GLp-module
as in 7.1. For k ≤ m := min(p, dimV ) we have a GL(V )-equivariant multilinear
map

ϕk : V p →
k∧

V, (v1, v2, . . . , vp) �→ v1 ∧ v2 ∧ · · · ∧ vk.
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Thus the simple module (
∧k

V )∗ =
∧k

V ∗ occurs in K[V p] in degree k. More-
over, ϕk is also equivariant with respect to the action of Up ⊂ GLp which is
trivial on

∧k
V . Thus we find (

∧k
V )∗ =

∧k
V ∗ ⊂ K[V p]Up

k .

We claim that the algebra K[V p]Up is generated by V ∗,
∧2

V ∗, . . . ,
∧m

V ∗ where
m := min(p, dimV ).

Proof: The Cauchy formula (6.6 Corollary 2) tells us that

K[V p] = S(V ∗ ⊗ Kp) =
⊕

λ

Lλ(V ∗) ⊗ Lλ(p).

where λ runs through the dominant weights of height ≤ m. Therefore, the
algebra

A := K[V p]Up =
⊕

λ

Lλ(V ∗) ⊗ Lλ(p)Up �
⊕

λ

Lλ(V ∗)

is multiplicity free, and ΩA = {λ = (p1, . . . , pm)} is the monoid generated
by ω1, . . . , ωm. Clearly, Lωk

(V ∗) corresponds to the submodule
∧k

V ∗ of A
constructed above, and the claim follows by Lemma 1 above. �

Choosing a basis (e1, . . . , en) in V we can identify the elements of V p with
n × p matrices

X =


x

(1)
1 x

(2)
1 · · · x

(p)
1

x
(1)
2 x

(2)
2 · · · x

(p)
2

...
...

...
x

(1)
n x

(2)
n · · · x

(p)
n

 .

Then the map ϕk : V p → ∧k
V is given by

ϕk(X) =
∑

r1<···<rk

det


x

(1)
r1 · · · x

(k)
r1

...
...

x
(1)
rk · · · x

(k)
rk

 er1 ∧ er2 ∧ · · · ∧ erk
.

Thus we have proved the following result.

Proposition. The invariant ring K[V p]Up is generated by the subspaces V ∗,∧2
V ∗, . . . ,

∧m
V ∗, m := min(p, dimV ). Identifying V p with the n×p matrices

as above an explicit system of generators is given by the k×k minors extracted
from the first k columns of the matrix X for k = 1, . . . , m. In particular, we
have K[V p]Up = K[V n]Un for p ≥ n = dimV .
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The algebra K[V n]Un is classically called the algebra of primary covariants (see
7.2. We will discuss it in more details in the next paragraph (see 8.1).

Next we want to give an easy criterion for a representation to be
multiplicity free which is due to Servedio [Ser73]. We denote by T and U the
subgroups of G of diagonal and upper triangular unipotent matrices:

T = Tp1 × Tp2 × · · · × T ′
q1

× T ′
q2

× · · ·
U = Up1 × Up2 × · · · × Uq1 × Uq2 × · · · .

T normalizes U , and B := T · U = U · T is the subgroup of upper triangular
matrices, usually called Borel subgroup of G. There is a canonical projection
p : B → T with kernel U which induces an inclusion p∗ : K[T ] ↪→ K[B] of
regular functions in the usual way. It follows that the restriction χ �→ χ|T
defines an isomorphism of character groups which allows us to indentify X (B)
with X (T ). Moreover, p∗ induces an isomorphism

p∗ : K[T ] ∼→ K[B]U ⊂ K[B].

The proofs of these statements are easy (see the following exercise 10).

Exercises

10.

11. A G-algebra is multiplicity free if and only if all weight spaces of the
invariant algebra AU are one-dimensional.

Lemma. Let W be a representation of G and assume that there is a vector
w0 ∈ W such that the B-orbit Bw0 = {bw0 | b ∈ B} is Zariski-dense in W .
Then

(a) K[W ] is multiplicity free.
(b) If K[W ] contains a simple G-module of highest weight λ then the

character λ vanishes on the stabilizer Bw0 := {b ∈ B | bw0 = w0}.

Proof: The orbit map B → W , b �→ bw0, induces an inclusion K[W ] ↪→ K[B],
f �→ f̃ where f̃(b) := f(bw0). This is a B-homomorphim where B acts on B by
left multiplication. Thus

K[W ]U ↪→ K[B]U � K[T ].

and this map is T -equivariant. It follows that all weight spaces of K[W ]U are
one-dimensional and so K[W ] is multiplicity free (Exercise 11).

If f ∈ K[W ]U is a highest weight vector of weight λ and b ∈ Bw0 then
f(w0) �= 0 and f(w0) = f(bw0) = λ(b−1)f(w0) and so λ(b) = 1 �
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Examples. (a) The standard representations of GLn and SLn on V = Kn

admit a dense Bn-orbit Bnen = V \ {0} and (Bn)en = Bn−1 embedded in
the obvious way. Thus we see again that K[V ] is multiplicity free and that
every highest weight λ of K[V ] must be a multiple of −εn: K[V ] = S(V ∗) =⊕

j Sj V ∗ � ⊕
j L−jεn

(V ). For SLn we have −εn = ε1 + · · · εn−1 which means
that V ∗ =

∧n−1
V (see 5.2 Exercises 6 and 7).

(b) Consider Mn as a GLn ×GLn-module where (g, h)A = gAht, i.e.,
we identify Mn with V ⊗V . The open cell BnBt

n is the B = Bn×Bn-orbit of E
and the stabilizer is given by BE = {(t, t−1) | t ∈ Tn}. It follows that K[Mn] is
multiplicity free and if (λ, µ) occurs as a highest weight then λ(t) + µ(t−1) = 0
for all t ∈ Tn. i.e., λ = µ. Hence

K[V ⊗ V ] = S(V ∗ ⊗ V ∗) �
⊕

λ

Lλ(V ∗) ⊗ Lλ(V ∗).

Similarly on finds K[End(V )] � ⊕
λ Lλ(V ∗) ⊗ Lλ(V ).

(c) With the same considerations we obtain a short proof of the
Cauchy formula (6.6 Corollary 2). Consider V ⊗W as a representation GL(V )×
GL(W )-module. As above, one sees that there is a dense B-orbit, namely the
orbit of the element u := e1 ⊗ f1 + · · · em ⊗ fm where (ei)i and (fj)j are bases
of V and W and m := min(dimV, dimW ). The stabilizer is {(t, t−1) | t ∈ Tm}.
As above we see that the possible irreducible components of A := S(V ⊗W ) are
given by Lλ(V ) ⊗ Lλ(W ) where htλ ≤ m. They all occur since the generators
of the corresponding monoid ΩA occur. Thus we have

S(V ⊗ W ) =
⊕

λ dominant of height ≤m

Lλ(V ) ⊗ Lλ(W ).

We remark that this completes Example 2, independent of earlier considera-
tions.

(d) Consider the representation S2 V of GL(V ). Choosing a basis we
can identify S2 V with the symmetric 2 × 2 matrices with the GLn-action
A �→ gAgt. Again the Bn-orbit of E is Zariski-dense and its stabilizer is{(±1

. . .
±1

)}
. Thus S(S2 V ) is multiplicity free and if λ =

∑n
i=1 piεi occurs

as a highest weight then λ is even, i.e., all pi are even. The monoid of even
dominant weights of height ≤ n = dimV is generated by 2ω1, . . . , 2ωn. It is
easy to see that the representations L2ωi(V ) all occur in S(S2 V ). Hence
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S(S2 V ) =
⊕

λ even ht λ≤n

Lλ(V ).

In particular we have the following plethysm:

Sm(S2 V ) =
⊕

λ even
|λ|=m, ht λ≤n

Lλ(V )
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§ 8 Capelli-Deruyts Expansion

8.1 Primary covariants. We fix a bases of V and identify V p with the n× p-
matrices:

V p = Mn×p(K) : (v1, . . . , vp) ←→

x11 · · · x1p

...
...

xn1 · · · xnp

 .

Hence K[V p] = K[xij | i = 1, . . . , n, j = 1, . . . , p].

Definition. Let PC = PCn ⊂ K[V n] be the subalgebra generated by all k×k-
minors extracted from the first k columns of the matrix (xij)i,j=1,... ,n (7.8).
This subalgebra PCn is classically called the algebra of primary covariants.

For n = 2 we have

PC = K[x11, x21, x11x22 − x21x12]

and in general

PC = K[x11, . . . , xn1, x11x22 − x21x12, . . . , xn−11xn2 − xn1xn−12, . . .

. . . ,det(xij)n
i,j=1].

Remark. It follows from the definition that for any p ≥ n the primary covari-
ants PC ⊂ K[V p] are invariant under the subgroup

Up := {

1 ∗
. . .

0 1

 ∈ GLp}

of GLp which acts by right multiplication on V p as in 7.1. In fact, we have
already seen in Proposition 7.8 that PCn = K[V p]Up . We will discuss this
again in §9.

The fundamental result here is the following Capelli-Deruyts-expansion
which is also called Gordan-Capelli-expansion.

Theorem. For every multihomogeneous f ∈ K[V p] there are linear operators
Ai, Bi ∈ U(p) such that

f =
∑

i

AiBif and Bif ∈ PC for all i.

The operators Ai and Bi only depend on the multidegree of f .
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(Since f is multihomogeneous and PCn a homogeneous subalgebra one can
always assume if necessary that the elements Bif are multihomogeneous, too.)

This theorem will follow from Capelli’s identity 9.3, see 9.5. Here we
first draw some consequences.

8.2 Proof of Weyl’s Theorems. We will show now that the two Theorems
of Weyl (7.1 and 7.5) follow easily from the expansion-formula above. Recall
that the operators Ai, Bi ∈ U(p) stabilize every GLp-stable subset U ⊂ K[V p]
(Proposition 7.4). Hence for every f ∈ U we get

Bif ∈ U ∩ PCn ⊂ U ∩ K[V n]

and therefore

f =
∑

AiBif ∈ 〈U ∩ K[V n]〉GLp

which proves Theorem A of 7.1.
For the proof of Theorem B (7.5) we can assume that Bif is multi-

homogeneous. Since the determinant [1, . . . , n] is the only generator of PCn

which contains the variables xin of the last copy of V in V n we have Bif =
h · [1, . . . , n]d with h ∈ PCn ∩K[V n−1] and d ∈ N. Now

∆ij(h · [1, . . . , n]d) =
= ∆ijh · [1, . . . , n]d + dh · [1, . . . , n]d−1 · ∆ij [1, . . . , n].

Since ∆ij [1, . . . , n] is again a determinant we obtain

AiBif ∈ K[〈K[V n−1]G〉GLp , [i1, . . . , in]],

and the claim follows.

Remark. In these proofs we have not used the full strength of the Capelli-
Deruyts-expansion (cf. the remarks in 9.4).

8.3 A generalization of Weyl’s Theorems. Let V1, . . . , Vr be (finite di-
mensional) representations of a group G and consider the direct sum V p :=
V1

p1 ⊕ V2
p2 ⊕ · · · ⊕ Vr

pr . There is an obvious action of

GLp := GLp1 ×GLp2 × · · · × GLpr

on V p commuting with G. Furthermore

K[V p] := K[V1
p1 ⊕ · · · ⊕ Vr

pr ] = K[V1
p1 ] ⊗ K[V2

p2 ] ⊗ · · · ⊗ K[Vr
pr ].

Again we have a G-equivariant inclusion

K[V1
p′
1 ⊕ · · · ⊕ Vr

p′
r ] ↪→ K[V1

p1 ⊕ · · · ⊕ Vr
pr ]
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in case p′i ≤ pi for all i which is also equivariant with respect to the inclusion

GLp′
1
× · · ·GLp′

r
↪→ GLp1 × · · · × GLpr .

Theorem A. Assume pi ≥ ni := dimVi for all i and let U ⊂ K[V1
p1 ⊕ · · · ⊕

Vr
pr ] be a GLp1 × · · · × GLpr

-stable subset. Then

U = 〈U ∩ K[V1
n1 ⊕ · · · ⊕ Vr

nr ]〉GLp1 ×···×GLpr
.

Theorem B. Assume that all representations Vi of G are unimodular (i.e.
the image of G is contained in SL(Vi) for all i). Then the ring of invariants
K[V1

p1 ⊕· · ·⊕Vr
pr ]G is generated by 〈K[V1

n1 ⊕· · ·⊕Vr
nr ]G〉GLp1 ×···×GLpr

and
all determinants [i1, . . . , inj

]j, j = 1, . . . , r.

(Here [. . . ]j denotes the determinant extracted from the pj copies of Vj in V p.)
The proofs are the same as before, once we have established the fol-

lowing result, generalizing Theorem 8.1:

Theorem 3. For every multihomogeneous f ∈ K[V1
p1 ⊕ · · · ⊕ Vr

pr ] there are
operators Ai, Bi ∈ U(p1, . . . , pr) such that

f =
∑

i

AiBif and Bif ∈ PC ⊂ K[V1
n1 ⊕ · · · ⊕ Vr

nr ].

(Here U(p1, . . . , pr) is the subalgebra of End(K[V1
p1 ⊕· · ·⊕Vr

pr ]) generated by
the polarization operators ∆(ν)

ij ∈ End(K[Vν)pν ]) and PC is the tensor product
of the PCν ⊂ K[Vν

nν ], i.e., PC is generated by all k× k-minors extracted from
the first k rows in each block Vν

nν of V n.)

Proof: By Theorem 8.1 we have for each ν = 1, . . . , r operators A
(ν)
i , B

(ν)
i ∈

U(pν) such that

f =
∑

i

A
(ν)
i B

(ν)
i f and B

(ν)
i f ∈ K[V1

p1 ] ⊗ · · ·
ν

PCν · · · ⊗ K[Vr
pr ].

(The operators only affect the variables in Vν
pν .) Clearly the operators Ai

ν ,
Bi

ν commute with the operators Ai
ν′

, Bi
ν′

for ν′ �= ν. Hence we find

f =
∑

i

AiBif

where each Ai is of the form A
(1)
j1

A
(2)
j2

· · ·A(r)
jr

and similarly for Bi. But then

Bif ∈ PC1 ⊗ · · · ⊗ PCr = PC

and the claim follows. �
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As in the previous paragraph 7 we can draw the following consequences
from the theorems above:

Corollary 1. Let V1, V2, . . . , Vr be representations of a group G, ni := dimVi,
and let S ⊂ K[v1

n1 ⊕ · · · ⊕ Vr
nr ]G be a generating set. Then for every repre-

sentation V of the form V1
p1 ⊕ · · · ⊕ Vr

pr we get a generating set for the ring
of invariants K[V ]G by polarizing S.

Corollary 2. If K[V1
n1 ⊕ · · · ⊕ Vr

nr ]G is finitely generated resp. generated
by invariants of degree ≤ N , then this holds for the invariant ring of any
representation of the form V1

p1 ⊕ · · · ⊕ Vr
pr .

(This is clear since polarizing a homogeneous function does not change the
degree.)

Corollary 3. Let V1, . . . , Vr be unimodular representations of a group G,
dimVi = ni, and let S ⊂ K[V1

n1−1 ⊕ · · · ⊕ Vr
nr−1]G be a generating set. Then

the ring of invariants of any representation of the form V1
p1 ⊕ · · · ⊕ Vr

pr is
generated by the polarization of S and all possible determinats [i1, . . . , inν ]ν ,
ν = 1, . . . , r.

8.4 The First Fundamental Theorem for SLn. As an application of the
methods developed so far we give another proof of the First Fundamental The-
orem for SLn and obtain a new proof of the FFT for GLn, which is more direct
than the first one.

Theorem (FFT for SLn). The ring of invariants K[V p ⊕ V ∗q]SL(V ) is gen-
erated by the scalar products 〈j | i〉 and the determinants [i1, . . . , in] and
[j1, . . . , jn]∗.

(In order to define the determinants we assume that some bases of V has
been fixed and we choose in V ∗ the dual bases. Then [i1, . . . , in](v, ϕ) :=
det(vi1 , . . . , vin) and [j1, . . . , jn]∗(v, ϕ) := det(ϕj1 , . . . , ϕjn) as usual.)

Proof: In view of 8.3 Corollary 3 we have to show that the invariant ring
K[V n−1 ⊕ V ∗n−1]SL(V ) is generated by the scalar products 〈j | i〉 = 〈ϕj | vi〉.
The method of “cross-sections” which we are going to use now will be important
also in the next chapter.
Fix a bases ε1, . . . , εn of V ∗ and define the following subset U of V n−1⊕V ∗n−1:

U := {(v1, . . . , ϕ1, . . . , ϕn−1) | ϕ1, . . . , ϕn−1 linearly independent}.
Put

S := {(v1, . . . , vn−1, ε1, . . . , εn−1) | vi ∈ V } ⊂ U.
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(This set S is a cross-section.) Restricting a function to S defines a homomor-
phism

α : K[V n−1 ⊕ V ∗n−1] → K[V n−1] = K[xij |1 ≤ i ≤ n, 1 ≤ j ≤ n − 1]

by α(f)(v1, . . . , vn−1) = f(v1, . . . , vn−1, ε1, . . . , εn−1). (Here the coordinate
function xij ∈ (V n−1)∗ is the composition V n−1

prj→ V
εi→ K as usual.) Since

U is Zariski-dense in V n−1 ⊕ V ∗n−1 and since every SL(V )-orbit in U meets
S (i.e. SL(V ) · S = U) the homomorphism α restricted to the invariants J :=
K[V n−1 ⊕ V ∗n−1]SL(V ) is injective:

α|J : J ↪→ K[V n−1].

In order to prove the theorem we have to show that J = K[〈j | i〉 | i, j =
1, . . . , n − 1] =: A. Now

α(〈i | j〉)(v1, . . . , vn−1) = 〈vj | εi〉 = xij(v1, . . . , vn−1),

hence α(A) = K[xij | i, j = 1, . . . , n − 1]. Since α|J is injective it remains to
see that α(J) ⊂ K[xij | i, j = 1, . . . , n − 1]. Consider the subgroup

H := {g ∈ SL(V ) | gεi = εi for i = 1, 2, . . . , n − 1}

= {


1

1
1

. . .
α1 α2 · · · αn−1 1

 | αi ∈ K}.

This group H clearly stabilizes S, and every SL(V )-invariant function restricts
to an H-invariant function on S � V n−1, i.e.

α(J) ⊆ K[V n−1]H .

We claim that K[V n−1]H ⊆ K[xij | i, j = 1, . . . , n − 1] = α(A) which means
that an H-invariant function f ∈ K[xij | i = 1, . . . , n, j = 1, . . . , n − 1] does
not depend of xn1, . . . , xn n−1. (This clearly implies the theorem by what we
have said above.)

Write the matrix (xij) = (v1, . . . , vn−1) ∈ Mn×n−1 as a matrix of row
vectors wi ∈ Kn−1:

(v1, . . . , vn−1) =


w1

w2

...
wn

 , wi ∈ Kn−1.
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Then we get for g =

 1
1

. . .
α1 ··· αn−1 1

:

g


w1

...
wn−1

0

 =


w1

...
wn−1∑

αiwi

 .

It follows that the subset H · {

 w1

...
wn−1

0

 | wi ∈ Kn−1} is Zariski-dense in

Mn×n−1. Hence an H-invariant function on Mn×n−1 does not depend on the
last row of the matrix (xij). �

8.5 Remark. The theorem above implies the FFT for GLn. In fact, let f ∈
K[V p ⊕V ∗q] be a GL(V )-invariant. Then it is also an SL(V )-invariant and can
therefore be written in the form

f =
∑

ν

ανpνdνd∗ν (∗)

where αν ∈ K, pν is a product of factors 〈j | i〉, dν a product of nν factors
[i1, . . . , in] and d∗ν a product of mν factors [j1, . . . , jn]∗. Now for every scalar
λ ∈ K∗ ⊂ GL(V ) we have

f =λf =
∑

ν

ανsνdνd∗νλn(mν−nν).

Hence we may assume that nν = mν in (∗). But

[i1, . . . , in] · [j1, . . . , jn]∗ = det(〈jρ | iµ〉)ρ,µ=1,... ,n,

and the claim follows.

Example. Let G be a finite group and Vreg = K[G] the regular representation.
It’s well known that every irreducible representation W of G occurs exactly
dimW times in Vreg. (We assume K to be algebraically closed.) Hence a gen-
erating system for the ring of invariants of any representation of G can be
obtained from a generating system of K[Vreg]G by polarization.
If the group G is simple then every representation is unimodular. Hence we can
replace Vreg by the smaller representation containing each non-trivial represen-
tation W only dimW − 1 times, but we have to add all possible determinants
as generators of the ring of invariants.
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§ 9 The Theory of Capelli

In this paragraph we prove a fundamental relation between the polarization operators ∆ij

which is due to Capelli. As a consequence, we obtain a proof of the Capelli-Deruyts
expansion formula from the previous paragraph (Theorem 8.1) which was the basic ingredient
for the two theorems of Weyl (Theorem 7.1 and 7.5).
We start with a special case, the famous Clebsch-Gordan formula.

9.1 Clebsch-Gordan formula. One of the first occurrences of polarization
operators and the formal relations among them was in the Clebsch-Gordan
formula.

Consider two copies of the vector space V = K2 and denote the vari-

ables by x =
(

x1

x2

)
and y =

(
y1

y2

)
. On K[V 2] = K[x1, x2, y1, y2] define the

following linear differential operators:

Ω := det

(
∂

∂x1

∂
∂y1

∂
∂x2

∂
∂y2

)
=

∂

∂x1

∂

∂y2
− ∂

∂x2

∂

∂y1
,

∆xx := x1
∂

∂x1
+ x2

∂

∂x2
,

∆yy := y1
∂

∂y1
+ y2

∂

∂y2
,

∆xy := x1
∂

∂y1
+ x2

∂

∂y2
,

∆yx := y1
∂

∂x1
+ y2

∂

∂x2
,

[x, y] := det
(

x1 y1

x2 y2

)
.

These operators belong to the ring D = D(V 2) ⊂ EndK[V 2] of differential
operators, i.e., the subalgebra generated by the derivations ∂

∂x1
, ∂

∂x2
, ∂

∂y1
, ∂

∂y2

and the multiplications with x1, x2, y1, y2 (see 7.4). Every δ ∈ D has a unique
expression in the form

δ =
∑

α1,α2,β1,β2

fα1α2β1β2

(
∂

∂x1

)α1
(

∂

∂x2

)α2
(

∂

∂y1

)β1
(

∂

∂y2

)β2

where fα1,α2,β1,β2 ∈ K[V 2]. The basic relations in D are

∂

∂t
s = s

∂

∂t
for s �= t and

∂

∂t
t = t

∂

∂t
+ 1.
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We have also introduced the subalgebra U = U(2) ⊂ D(V 2) generated by
the polarization operators ∆xx,∆xy,∆yx,∆yy. The natural representations of
GL(V ) and GL2 on V 2 define linear actions of these groups (and even of the
group GL(V 2)) on EndK[V 2] which normalize the subalgebra D(V 2). We have
already remarked and used the fact that the polarization operators (and hence
all operators from U) are GL(V )-invariant, i.e., they commute with GL(V ) (see
7.3).

Exercises

1. Prove the following identities:

(a) ∆yx[x, y] = [x, y]∆yx and ∆xx[x, y] = [x, y](∆xx + 1).

(b) ∆xyΩ = Ω∆xy and Ω∆xx = (∆xx + 1)Ω.

2. Show that [x, y]U = U [x, y] and ΩU = U Ω. In other words, the left
ideals generated by [x, y] or Ω are two-sided.

3. The subalgebra of D consisting of constant coefficient differential oper-

ators δ =
∑

cα1α2β1β2

(
∂

∂x1

)α1
(

∂
∂x2

)α2
(

∂
∂y1

)β1
(

∂
∂y2

)β2
, cα1α2β1β2 ∈ K, is

canonically isomorphic to the symmetric algebra S(V 2). The multiplication
induces an isomorphism

K[V 2] ⊗ S(V 2)
∼→ D(V 2)

which is equivariant with respect to GL(V ) and GL2(K) (and even GL(V 2)).

4. Show that D(V 2)GL(V ) = U(2) and that D(V 2)SL(V ) is generated by the
polarization operators together with [x, y] and Ω.

An explicit computation (which we leave to the reader) shows that we have the
following identity:

[x, y] · Ω = det
(

∆xx + 1 ∆xy

∆yx ∆yy

)
:= (∆xx + 1)∆yy − ∆yx∆xy (2)

Remark. One has to be careful when expanding the determinant on the right
because of the non-commutativity of the operators. We agree that a deter-
minant will be read conventionally by columns from left to right.

Let f ∈ K[V 2] be homogeneous of degree (m, n). From (2) we first get

(∆xx + 1)∆yy = ∆yx∆xy + [x, y]Ω,

hence
(m + 1)nf = ∆yx∆xyf + [x, y]Ωf
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or

f =
1

(m + 1)n
(∆yx∆xyf + [x, y]Ωf). (3)

Theorem (Clebsch-Gordan formula). For every degree (m, n) there are
rational coefficients ai = ai(m, n) ∈ Q such that

f =
min(m,n)∑

i=0

ai[x, y]i∆n−i
yx ∆n−i

xy Ωif

for all homogeneous polynomials f ∈ K[x1, x2, y1, y2] of degree (m, n).

Proof: We use induction on n = degy f . If n = 0 there is nothing to prove. So
let us assume that n > 0. By (3) we have

f =
1

(m + 1)n
(∆yx∆xyf + [x, y]Ωf),

and we can apply induction on ∆xyf and Ωf : There are rational coefficients bi

and ci such that

∆xyf =
min(m+1,n−1)∑

i=0

bi[x, y]i∆n−1−i
yx ∆n−1−i

xy Ωi∆xyf

and

Ωf =
min(m−1,n−1)∑

j=0

cj [x, y]j∆n−1−j
yx ∆n−1−j

xy ΩjΩf.

Thus

f =
1

(m + 1)n
(∆yx

min(m+1,n−1)∑
i=0

bi[x, y]i∆n−1−i
yx ∆n−1−i

xy Ωi∆xyf

+ [x, y]
min(m−1,n−1)∑

j=0

cj [x, y]j∆n−1−j
yx ∆n−1−j

xy ΩjΩf). (4)

Now we use the fact that ∆y,x commutes with [x, y] (see Exercise 1) and obtain

f =
1

(m + 1)n
(
∑
i≥0

bi[x, y]i∆n−i
yx ∆n−i

xy Ωif +
∑
j≥1

cj−1[x, y]j∆n−j
yx ∆n−j

xy Ωjf),

hence the claim. �
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9.2 Clebsch-Gordan decomposition. What is the meaning of the formula
of Clebsch-Gordan? We first show that it has the properties of the Capelli-
Deruyts expansion (Theorem 8.1). Remember that in the present situation
the primary covariants are given by PC = K[x1, x2, [x, y]] (see 8.1). We claim
that the operator

Bi := [x, y]i∆n−i
xy Ωi

belongs to the algebra U = U(2) generated by the polarization operators
and that Bif ∈ PC for any f of degree (m, n). The second claim is clear
since ∆n−i

xy Ωif has degree (m + n − 2i, 0). For the first we remark that Bi =
∆n−i

xy [x, y]iΩi (see Lemma 9.1) and that [x, y]iΩi ∈ U . In fact, [x, y]Ω ∈ U by
formula 2 in 9.1. By induction, we can assume that [x, y]iΩi =: P ∈ U . Since
ΩU = UΩ (Exercise 2) we obtain [x, y]i+1Ωi+1 = [x, y]PΩ = [x, y]ΩP ′ ∈ U .

So we have an expansion

f =
∑

AiBif where Ai := ai∆n−i
yx

which has the required properties of the Capelli-Deruyts expansion 8.1.

Next we remark that the polarization operators ∆ commute with the
action of GL(V ) and that [x, y] commutes with SL(V ). Hence the operator
∆n−i

xy Ωi defines a SL(V )-equivariant linear map

pi : Rm,n → Rm+n−2i,0

where Rr,s := {f ∈ K[V ⊕ V ] | f homogeneous of degree (r, s)}.

Proposition. There is an SL(V )-equivariant isomorphism

Rm,n
∼→

min(m,n)⊕
i=0

Rm+n−2i,0

given by f �→ (. . . ,∆n−i
xy Ωif, . . . ). The inverse map is

(f0, f1, . . . ) �→
min(m,n)∑

i=0

ai[x, y]i∆n−i
yx fi.

Proof: By the Clebsch-Gordan formula the composition of the two maps
is the identity on Rm,n. It therefore suffices to show that the two spaces have
the save dimension, i.e.

min(m,n)∑
i=0

(m + n − 2i + 1) = (m + 1)(n + 1).
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We leave this as an exercise. �

Remark. Denote by Ri := K[V ]i = K[x1, x2]i the binary forms of degree i.
Then the proposition above says that we have the following decomposition of
the tensor product of the two SL2-modules Rm and Rn:

Rm ⊗ Rn �
min(m,n)⊕

i=0

Rm+n−2i.

Exercises

5. The representations Ri of SL2 are selfdual , i.e. equivalent to the dual
representation R∗

i . In particular Ri � Si V .

6. The Ri, i = 0, 1, 2, . . . form a complete set of representatives of the
irreducible SL2-modules.

7. We have the following decomposition formulas:

S2 Ri = R2i ⊕ R2i−4 ⊕ R2i−8 ⊕ · · ·∧2
Ri = R2i−2 ⊕ R2i−6 ⊕ · · ·

9.3 Capelli’s identity. Capelli was able to generalize the formula (1) of 9.1
to any number of variables. We write the vectors x1, x2, . . . , xp ∈ V = Kn as
column vectors:

xi =

 x1i

...
xni

 i = 1, . . . , p.

Recall that the polarization operators ∆ij are the differential operators on
K[V p] given by

∆ij = ∆xixj =
n∑

ν=1

xνi
∂

∂xνj

(see 7.3). Now we define the Capelli operator C by

C := det


∆11 + (p − 1) ∆12 ∆13 · · · ∆1p

∆21 ∆22 + (p − 2) ∆23 · · · ∆2p

...
∆p1 ∆p2 · · · ∆pp


(Remember that the expansion of the determinant is by columns from left to
right.) The main result which is due to Capelli states that we have the formal
analogs of the usual rules for determinants.



98 The Theory of Capelli § 9

Theorem (Capelli). The differential operator C satisfies the following rela-
tions:
(a) If n < p, then C = 0.

(b) If n = p then C = [x1, . . . , xn]Ω where Ω := det
(

∂
∂xij

)n

i,j=1
.

(c) If n > p then

C =
∑

j1<j2<...<jp

det


xj11 · · · xj1p

xj21 · · · xj2p

...
xjp1 · · · xjpp

 det


∂

∂xj11
· · · ∂

∂xj1p

...
∂

∂xjp1
· · · ∂

∂xjpp

 .

Proof: The idea of the proof is quite simple. The identities are similar to the
usual determinant identities except for the additional summands p − i in the
diagonal of C which would hold if we were dealing with commuting operators.
We want to use this and introduce a second set of variables ξ1, . . . , ξp,

ξi =

 ξ1i

...
ξni


with corresponding operators

∆ξixj :=
n∑

ν=1

ξνi
∂

∂xνj
and Cξ,x := det(∆ξixj ).

Since we are working with distinct variables ξi and xj we can use the usual
rules to calculate the determinant Cξ,x in the three cases n < p, n = p, n > p
and obtain

(a) Cξ,x = 0 for n < p,

(b) Cξ,x = [ξ1, . . . , ξn] · det
(

∂
∂xij

)
for n = p,

(c) Cξ,x =
∑

i1,... ,ip
|ξ|i1,... ,ip ·

∣∣ ∂
∂x

∣∣
i1,... ,ip

for n > p,

where |ξ|i1,... ,ip and
∣∣ ∂
∂x

∣∣
i1,... ,ip

are the minors of the matrices (ξ1, . . . , ξn) and(
∂

∂xij

)
corresponding to the rows i1, . . . , ip. Now we apply on both sides of these

equations the operator ∆xpξp∆xp−1ξp−1 · · ·∆x1ξ1 which eliminates the variables
ξi. What we need to prove is the following:
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(a) The operator ∆xpξp · · ·∆x1ξ1Cξ,x coincides with C on functions which
do not depend on the variables ξi.

(b) The operator ∆xpξp · · ·∆x1ξ1 |ξ|i1,... ,ip

∣∣ ∂
∂x

∣∣
i1,... ,ip

coincides with the

operators |x|i1,... ,ip ·
∣∣ ∂
∂x

∣∣
i1,... ,ip

on functions not depending on the
variables ξi.

The second statement is clear since

∆xpξp · · ·∆x1ξ1 |ξ|i1,... ,ip = |x|i1,... ,ip .

For the proof of (a) we need the following commutation relations: Let a, b, c, d ∈
{xi, ξi} be distinct. Then

(a) ∆ab commutes with ∆cd,

(b) ∆ab∆bc = ∆bc∆ab + ∆ac,

(c) ∆ab∆ca = ∆ca∆ab − ∆cb,

(d) ∆ab∆ba = ∆ba∆ab + ∆aa − ∆bb.

The verification is straightforward; we leave it as an exercise.

We want to prove by induction that ∆xkξk
· · ·∆x1ξ1Cξ,x equals the

following operator

Ck :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆x1x1 + (p − 1) · · · ∆x1xk
∆x1xk+1 · · · ∆x1xp

∆x2x1 · · · ∆x2xk
∆x2xk+1 · · · ∆x2xp

...
...

...
...

∆xkx1 · · · ∆xkxk
+ (p − k) ∆xkxk+1 · · · ∆xkxp

∆ξk+1x1 · · · ∆ξk+1xk
∆ξk+1xk+1 · · · ∆ξk+1xp

...
...

...
...

∆ξpx1 · · · ∆ξpxk
∆ξpxk+1 · · · ∆ξpxp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
i.e., Ck it is the determinant of the matrix whose first k rows are those of C
and the last p− k rows are those of Cξ,x. (We write |A| for the determinant of
the matrix A.) Clearly, it is enough to show that ∆xkξk

Ck−1 = Ck. Using the
commutation rules we obtain (for k > 1)
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∆xkξk
Ck−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(∆x1x1 + p − 1)∆xkξk

...
∆xk−1x1∆xkξk

∆ξkx1∆xkξk
+ ∆xkx1

∆ξk+1x1∆xkξk

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...
0

∆xkx1

0
...
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(∆x1x1 + p − 1)∆xkξk

...
∆xk−1x1∆xkξk

∆ξkx1∆xkξk

...
∆ξpx1∆xkξk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
We agree that all entries of our matrices where there is no indication are those
of the original determinant Ck−1. For example, in the matrices above the last
p − 1 columns are those of Ck−1.

If we apply the second summand to a function f(x1, .., xp) the term
∆ξkx1∆xkξk

gives contribution zero: Look at the cofactor D of this term (i.e.,
delete the first column and the k-th row and take the determinant); it does not
contain a term of the form ∆ξkxi

, hence Df does not depend on the variable
ξk. Therefore we get for the sum above

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...
0

∆xkx1 0 · · · 0
0
...
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(∆x1x1 + p − 1)∆xkξk

...
∆xk−1x1∆xkξk

0
∆ξk+1x1∆xkξk

...
∆ξpx1∆xkξk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
In the second summand—call it S—we bring the term ∆xkξk

over to the second
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column:

S =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆x1x1 + p − 1 ∆xkξk
∆x1x2

∆x2x1 ∆xkξk
(∆x2x2 + p − 2)

...
...

∆xk−1x1 ∆xkξk
∆xk−1xk

0 ∆xkξk
∆ξkx2

∆ξk+1x1 ∆xkξk
∆ξk+1x2

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Applying again the commutation rules and dropping the factor ∆ξkx2∆xkξk

using the same reasoning as above, we get (in case k > 2)

S =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆x1x1 + p − 1 0
∆x2x1 0

...
...

∆xk−1x1 0
0 ∆xkx2 0 · · · 0

∆ξk+1x1 0
...

...
∆ξpx1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆x1x1 + p − 1 ∆x1x2 ∆xkξk
∆x1x3

∆x2x1 ∆x2x2 + p − 2 ∆xkξk
∆x2x3

...
...

...
∆xk−1x1 ∆xk−1x2 ∆xkξk

∆xk−1x3

0 0 ∆xkξk
∆ξkx3

∆ξk+1x1 ∆ξk+1x2 ∆xkξk
∆ξk+1x3

...
...

...
∆ξpx1 ∆ξpx2 ∆xkξk

∆ξpx3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
We continue this until we bring ∆xkξk

over to the k-th column and obtain:

∆xkξk
Ck−1 =
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k−1∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...
0

0 · · · 0 ∆xkxi 0 · · · 0
0
...
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆xkξk
∆x1xk

...
∆xkξk

∆xk−1xk

0 · · · 0 ∆xkξk
∆ξkxk

∆xkξk
∆ξk+1xk

...
∆xkξk

∆ξpxk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(Remember that in the empty spaces we have to put the entries of Ck−1.)
Applying the commutation rules to the last term—call it T—and dropping the
factor ∆ξkxk

∆xkξk
as before, we obtain three summands:

T = U + V + W :

U =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆x1xk
∆xkξk

...
∆xk−1xk

∆xkξk

0 · · · 0 0
∆ξk+1xk

∆xkξk

...
∆ξpxk

∆xkξk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆x1xk

...
∆xk−1xk

0 · · · 0 0 ∆xkξk
∆ξkxk+1 · · · ∆xkξk

∆ξkxp

∆ξk+1xk

...
∆ξpxk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...
0

0 · · · 0 ∆xkxk
0 · · · 0

0
...
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



9.3 Capelli’s identity 103

W =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−∆x1ξk

...
−∆xk−1ξk

0 · · · 0 0
−∆ξk+1xk

...
−∆ξpxk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

For U we have used the fact that ∆xkξk
commutes with all operators in the

last p − k columns except those in the k-th row. Applying again commutation
relations and dropping factors as above, we can replace the k-th row of U by
(0, . . . , 0,∆xkxk+1 , . . . ,∆xkxp). Here we get for C ′ := ∆xkξk

Ck−1 − W :

C ′ :=
k−1∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...
0

0 · · · 0 ∆xkxi 0 · · · 0
0
...
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ U + V =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆x1x1 + p − 1 · · · ∆x1xk−1 ∆x1xk
· · · ∆x1xp

∆x2x1 · · · ∆x2xk−1 ∆x2xk
· · · ∆x2xp

...
...

...
...

∆xk−1x1 · · · ∆xk−1xk−1 + p − k + 1 ∆xk−1xk
· · · ∆xk−1xp

∆xkx1 · · · ∆xkxk−1 ∆xkxk
· · · ∆xkxp

∆ξk+1x1 · · · ∆ξk+1xk−1 ∆ξk+1xk
· · · ∆ξk+1xp

...
...

...
...

∆ξpx1 · · · ∆ξpxk−1 ∆ξpxk
· · · ∆ξpxp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
This is almost Ck except the (k, k)-entry which should be ∆xkxk

+p−k. There-
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fore, we are done if we can show that W equals (p − k)C ′′ with

C ′′ :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...
0

0 · · · 0 1 0 · · · 0
0
...
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where the integer 1 is in position (k, k) and the empty spaces have to be filled
with the entries of Ck−1. In fact, we have

(p − k)C ′′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...
0

∆xkx1 · · · ∆xkxk−1 p − k ∆xkxk+1 · · · ∆xkxp

0
...
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
which has the same columns as C ′ except the k-th and therefore C ′+(p−k)C ′′ =
Ck. Let us expand W with respect to the k-th column:

W = −
k−1∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

...
0

0 · · · 0 ∆xiξk
0 · · · 0

0
...

0 · · · 0 0 ∆ξkxk+1 · · · ∆ξkxp

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−
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p∑
j=k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

...
0 · · · 0 0 ∆ξkxk+1 · · · ∆ξkxp

...
0

0 · · · 0 ∆ξjξk
0 · · · 0

0
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In the first k − 1 summands W ′
i we can bring the factor ∆xiξk

to the k-th row
(the only place where ξk appears). Using ∆xiξk

∆ξkxj = ∆ξkxj ∆xiξk
+ ∆xixj

and dropping the first summand we obtain

W ′
i =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

...
0

0 · · · 0 1 0 · · · 0
0
...
0 ∆xixk+1 · · · ∆xixp

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...
0

0 · · · 0 0 ∆xixk+1 · · · ∆xixp

0
...
0

0 · · · 0 1 0 · · · 0
0
...
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Similarly we find for the second p − k summands W ′′
j :

W ′′
j = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...
0

0 · · · 0 1 0 · · · 0
0
...
0 ∆ξjxk+1 · · · ∆ξjxp

...
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Now we see that these matrices are obtained from C ′′ by replacing the first
k entries in the i-th row of W ′

i , i = 1, . . . , k − 1 and in the j-th row of W ′′
j ,

j = k+1, . . . , p by zero. Let us call D the matrix obtained from C ′′ by removing
the k-th row and the k-th column, and denote by Dt, t = 1, . . . , p−1 the matrix
obtained from D by replacing the first k − 1 elements in the t-th row by zero.
Then we clearly have

C ′′ = detD,

W ′
i = detDi i = 1, . . . , k − 1

W ′′
j = detDj−1 j = k + 1, . . . , p.

Now the claim follows from the next lemma. �

Lemma. Let D be an m × m matrix with non necessarily commuting entries.
Denote by D

(l)
t the matrix obtained from D by replacing the first l entries in

the t-th row by zero. Then for every l = 0, 1, . . . , m we have

m∑
t=1

det D
(l)
t = (m − l) det D.
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Proof: We use induction on l. Remark that

det D
(l−1)
t = det D

(l)
t +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...
0

0 · · · 0 atl 0 · · · 0
0
...
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Hence
m∑

t=1

detD
(l−1)
t =

m∑
t=1

detD
(l)
t + det D.

�

9.4 Some applications. Let f = f(x1, . . . , xp) ∈ K[V p] be multihomogeneous
of degree (d1, d2, . . . , dp). As before, we denote by Cp the Capelli operator

Cp = det


∆11 + p − 1 ∆12 · · · ∆1p

∆21 ∆22 + p − 2
...

∆p1 · · · ∆pp

 .

Lemma. Cpf = cp ·f +
∑

i<j Cij∆ijf , where cp = (d1+p−1)·(d2+p−2) · · · dp

and Cij ∈ U(p), the algebra generated by the ∆ij.

Proof: By definition we have

Cp =
∑
σ∈§p

sgn σ ∆̃σ(1)1∆̃σ(2)2 · · · ∆̃σ(p)p

where

∆̃ij =
{

∆ij for i �= j
∆ii + p − i for i = j

Now ∆̃11∆̃22 · · · ∆̃ppf = (d1 + p − 1)(d2 + p − 2) · · · dp · f and every other
monomial in the sum above has the form

∆̃i11 · · · ∆̃ijj∆̃j+1 j+1∆̃j+2 j+2 · · · ∆̃pp

with ij < j. This term applied to f can be written as Cij∆ijf with i = ij < j.
�
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Application 1. There are operators Ai, Bi ∈ U(p) such that f =
∑

i AiBif
and Bif depends only on x1, . . . , xn.

Proof: We may assume that p > n and dp �= 0; otherwise there is nothing
to prove. Thus Cp = 0 by Capelli’s identity, and we obtain from the lemma
above:

c · f =
∑
i<j

Cij∆ijf with some c �= 0.

Now we use induction on the multidegree of f , ordered in the antilexicographic
way. Then deg ∆ijf < deg f for i < j, hence

∆ijf =
∑

l

Aij
l Bij

l (∆ijf)

for some operators Aij
l , Bij

l ∈ U(p). It follows that

f =
1
c

∑
i<j

Cij

∑
l

Aij
l Bij

l ∆ijf =
∑
i<j

(
1
c
CijA

ij
l )(Bij

l ∆ij)f

which has the required form. �

Remarks. (a) The proof shows that the operators Ai, Bi depend only on the
multidegree of f .

(b) Application 1 is sufficient to prove the first theorem of Weyl (Theorem
7.1; see 8.2).

Application 2. There are operators Ai, Bi ∈ U(p) such that f =
∑

AiBif
where Bif is of the form Bif = [x1, . . . , xn]sihi(x1, . . . , xn−1).

Proof: Using Application 1 it is easy to reduce to the case where f depends
only on x1, . . . , xn. In this situation (p = n) we have the identity

Cn = [x1, . . . , xn] · Ω.

Hence, with the lemma above

c · f +
∑
i<j

Cij∆ijf = [x1, . . . , xn]Ωf. (1)

We can assume that f depends on xn, i.e. c = cn �= 0. By induction on the
multidegree (in antilexicographic order) we get

∆ijf =
∑

Aij
l Bij

l ∆ijf
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with Bij
l ∆ijf of the form [x1, . . . , xn]sh(x1, . . . , xn−1), which implies that the

sum
∑

i<j Cij∆ijf has the required form.
It remains to handle the right hand side of (1). The induction hypoth-

esis also applies to Ωf

Ωf =
∑

AkBkΩf (2)

with BkΩf = [x1, . . . , xn]sk · hk(x1, . . . , xn−1). From the two relations

∆ij [x1, . . . , xn] = [x1, . . . , xn]∆ij if i �= j, and
∆ii[x1, . . . , xn] = [x1, . . . , xn](∆ii + 1)

whose proofs are straightforward we see that for every polarization operator A
we have an equation [x1, . . . , xn]A = A′[x1, . . . , xn] with some other operator
A′ (cf. Exercise 1). Hence we obtain from (2)

[x1, . . . , xn]Ωf =
∑

A′
k([x1, . . . , xn]BkΩ)f.

Now [x1, . . . , xn]BkΩf = [x1, . . . , xn]sk+1hk(x1, . . . , xn−1) and has therefore
the required form. On the other hand

[x1, . . . , xn]BkΩ = B′
k[x1, . . . , xn]Ω = B′

kCn ∈ U(n)

which shows that the right hand side of (1) has the required form, too. �

Remarks. (a) Again we see that the operators Ai, Bi only depend on the
multidegree of f .

(b) As above Application 2 is sufficient to prove the second theorem of Weyl
(Theorem 7.5; see 8.2).

(c) We have seen in the proof that for every D ∈ U(n) we have

[x1, . . . , xn]D = D′[x1, . . . , xn]

for some D′ ∈ U(n), i.e., conjugation with [x1, . . . , xn] induces an automorphism
of U(n). We will denote it by D �→ D′.
(Remember that all this takes place in End(K[V n]).)

9.5 Proof of the Capelli-Deruyts expansion. Let us recall the notation.
The vectors xi are written as column vectors

xi =

 x1i

...
xni

 ∈ V = Kn.
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In case p ≤ n we denoted by |x|i1,... ,ip the minor of (x1, . . . , xn) extracted from
the rows i1, . . . , ip. Similarly,

∣∣ ∂
∂x

∣∣
i1,... ,ip

is defined with respect to the matrix(
∂

∂xij

)
i,j=1,... ,n

.

Capelli-Deruyts expansion. For every multihomogeneous polynomial f =
f(x1, . . . , xp) there are operators Ai, Bi ∈ U(p) depending only on the multi-
degree of f such that

f =
∑

i

AiBif and Bif ∈ PC,

where PC ⊂ K[V n] is the subalgebra of primary covariants, generated by all
k × k-minors extracted from the first k columns of (xij), k = 1, 2, . . . , n.

Using 9.4 Application 1 one reduces to the case p = n. The claim now follows
from the next proposition which is slightly more general.

Proposition. Let p ≤ n and f(x1, . . . , xp) multihomogeneous. Then there are
operators Ai, Bi ∈ U(p) depending only on the multidegree of f such that

f =
∑

AiBif

and Bif is a sum of monomials in the k × k-minors extracted from the first k
columns of (xij), where k = 1, . . . , p.

Proof: The case p = 1 is obvious. Let us assume p > 1 and that f depends
on xp. Now the Capelli-identity says

Cpf =
∑

i1,... ,ip

|x|i1,... ,ip

∣∣∣∣ ∂

∂x

∣∣∣∣
i1,... ,ip

f. (1)

By Lemma 9.4 we have

Cpf = c · f +
∑
i<j

Cij∆ijf with c = cp �= 0

Now the induction hypothesis applies to ∆ijf and we obtain operators Aij
l ,

Bij
l ∈ U(p) such that

∆ijf =
∑

l

Aij
l Bij

l f with Bij
l of the required form.
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To handle the right hand side of (1) we can also use induction:∣∣∣∣ ∂

∂x

∣∣∣∣
i1,... ,ip

f =
∑

AlBl

∣∣∣∣ ∂

∂x

∣∣∣∣
i1,... ,ip

where Al,Bl ∈ U(p) and Bl

∣∣ ∂
∂x

∣∣
i1...ip

f are of the required form.

(Since deg
∣∣ ∂
∂x

∣∣
i1,... ,ip

f = deg f − (1, 1, . . . , 1), the operators Al, Bl do not
depend on i1, . . . , ip.) Now we have

|x|i1,... ,ip

∣∣∣∣ ∂

∂x

∣∣∣∣
i1,... ,ip

f =
∑

A′
l|x|i1,... ,ipBl

∣∣∣∣ ∂

∂x

∣∣∣∣
i1,... ,ip

f

and |x|i1,... ,ipBl

∣∣ ∂
∂x

∣∣
i1,... ,ip

f has the required form. On the other hand we get∑
i1,... ,ip

|x|i1,... ,ip

∣∣∣∣ ∂

∂x

∣∣∣∣
i1,... ,ip

f =
∑

l

A′
lB

′
l

∑
i1,... ,ip

|x|i1,... ,ip

∣∣∣∣ ∂

∂x

∣∣∣∣
i1,... ,ip

f

=
∑

l

A′
lB

′
lCpf.

Hence, B′
lCp =

∑
i1,... ,ip

|x|i1,... ,ipBl

∣∣ ∂
∂x

∣∣
i1,... ,ip

∈ U(p) and we are done. �
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§ 10 The First Fundamental Theorem for
Orthogonal and Symplectic Groups

As another application of the Theorems of Weyl (7.1, 7.5) we prove the First Fundamental
Theorem for the orthogonal group On, the special orthogonal group SOn and the symplectic
group Spn, i.e., we describe a system of generators for the invariants on several copies of the
natural representation of these groups.

Throughout the whole paragraph we assume that char K = 0.

10.1 Orthogonal and symplectic groups. Let V = Kn and denote by

(v | w) :=
n∑

i=1

xiyi for v = (x1, . . . , xn), w = (y1, . . . , yn) ∈ V

the standard symmetric form on V . As usual the orthogonal group is defined
by

On := On(K) := {g ∈ GLn(K) | (gv | gw) = (v | w) for all v, w ∈ V }
and the special orthogonal group by

SOn := SOn(K) := {g ∈ On(K) | det g = 1} = On(K) ∩ SLn(K).

It is easy to see that SOn is a subgroup of On of index 2. In terms of matrices
A we have A ∈ On if and only if AtA = E where At denotes the transposed
matrix.

Exercises

1. Show that SO2(C) is isomorphic to C∗ and that the natural 2-dimensional
representation of SO2(C) corresponds to the representation of C∗ with
weights ±1.
(Hint: An explicit isomorpism is given by ( a b

c d ) �→ a + ib.)

2. Show that O2(C) is a semidirect product of C∗ with Z/2. More generally,
On is a direct product of SOn with Z/2 for odd n and a semidirect product
for even n.

〈v | w〉 :=
m∑

j=1

(x2j−1y2j − x2jy2j−1)

be the standard skew symmetric form on V and define the symplectic group by

Spn := Spn(K) := {g ∈ GLn(K) | 〈gv | gw〉 = 〈v | w〉 for v, w ∈ V }.
To get a more explicit description of Spn we introduce the following skew-
symmetric n × n-matrix
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J :=


I

I
. . .

I

 where I :=
(

0 1
−1 0

)
.

By definition we have 〈v | w〉 = vJwt. Therefore, a n × n-matrix A belongs to
Spn if and only if AtJA = J .

Exercises

3. Show that Sp2(K) = SL2(K).

4. Show that all non-degenerate skew forms on K2m are equivalent, i.e., for
any skew-symmetric 2m × 2m-matrix S there is a g ∈ GLn(K) such that
gtSg = J . This holds for any field K in any characteristic. (In characteristic
2 one has to assume that the form is alternating, i.e., 〈v | v〉 = 0 for all
v ∈ V .)

5. Let n = 2m or n = 2m + 1 and consider the subgroup

T := SO2 × SO2 × · · · × SO2︸ ︷︷ ︸
m times

⊂ SOn

embedded in the usual way.

(a) The matrices A ∈ SOn(C) which are diagonalizable (in GLn(C)) form
a Zariski-dense subset.

(b) Every diagonalizable matrix A ∈ SOn(C) is conjugate (in SOn(C)) to
a matrix of T .

(c) For any field extension L/K the subgroup SOn(K) is Zariski-dense
in SOn(L).

Lemma. Sp2m is a subgroup of SL2m.

Proof: Recall that the Pfaffian Pf(S) of a skew-symmetric 2m × 2m-matrix
S ∈ M2m(K) is a homogeneous polynomial of degree m in the entries of S
which is determined by the following two conditions:

det S = (Pf S)2 and Pf(J) = 1.

We claim that Pf(gtSg) = det g ·Pf S for all g ∈ GL2m(K). In fact, consider the
function f(g) := Pf(gtSg) · (det g · Pf S)−1 which is defined for g ∈ GL2m(K)
and S an invertible skew-symmetric 2m×2m-matrix. The first condition above
implies that f(g)2 = det(gtSg) · ((det g)2 · det S)−1 = 1. Since f(e) = 1 the
claim follows.

Now let g ∈ Sp2m. Then gtJg = J and so 1 = Pf J = Pf(gtJg) =
det g · Pf J = det g. �
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Exercises

6. Let v1, . . . , v2m ∈ K2m. Then Pf(〈vi | vj〉)i,j = [v1, . . . , v2m].
(Hint: If A is the matrix with rows v1, . . . , v2m, then AJAt = (〈vi | vj〉)i,j .)

7. For any field extension L/K the subgroup Spn(K) is Zariski-dense in
Spn(L).
(Hint: As in Exercise 5 we can define a subgroup

T := Sp2 × · · · × Sp2︸ ︷︷ ︸
m times

⊂ Sp2m

with similar properties.)

p copies of the natural representation V = Kn: For v = (v1, . . . , vp) ∈ V p and
g ∈ On, SOn or Sp2m set g · v := (gv1, . . . , gvp). If we apply the symmetric
form to the ith and jth factor of V p we obtain for every pair 1 ≤ i, j ≤ p an
On-invariant function v = (v1, . . . , vp) �→ (vi | vj) which we denote by (i | j):

(i | j)(v1, . . . , vp) := (vi | vj).

Now the First Fundamental Theorem (shortly FFT) states that these functions
generate the ring of invariants:

10.2 First Fundamental Theorem for On and SOn.

(a) The invariant algebra K[V p]On is generated by the invariants (i | j),
1 ≤ i ≤ j ≤ p.

(b) The invariant algebra K[V p]SOn is generated by the invariants (i | j),
1 ≤ i ≤ j ≤ p together with the determinants [i1, . . . , in], 1 ≤ i1 <
i2 < . . . < in ≤ p.

every pair 1 ≤ i, j ≤ p the following invariant functions on V p:

〈i | j〉(v1, . . . , vp) := 〈vi | vj〉.

10.3 First Fundamental Theorem for Sp2m. The algebra K[V p]Sp2m is
generated by the invariants 〈i | j〉, 1 ≤ i < j ≤ p.

Proof of the FFT for On and SOn: We first remark that (a) follows from
(b). In fact, since a determinant [i1, . . . , in] is mapped to −[i1, . . . , in] under
any g ∈ On \SOn we see from (b) that the On-invariants are generated by the
(i | j) and all products [i1, . . . , in][j1, . . . , jn] of two determinants. But

[i1, . . . , in][j1, . . . , jn] = det((ik | il)n
k,l=1)
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and the claim follows.
Secondly, we can assume that K is algebraically closed. In fact, we

have K[V p]SOn(K) = K ⊗K (K[V p]SOn(K)) where K denotes the algebraic
closure of K (cf. 1.5 Exercise 29), and K[V p]SOn(K) = K[V p]SOn(K) because
SOn(K) is Zariski-dense in SOn(K) (see Exercise 5). This will allow us to
use geometric arguments. Moreover, by Weyl’s Theorem B (7.5) it suffices to
prove (b) for p = n − 1. We will procede by induction on n.

For n = 1 the group SOn is trivial and there is nothing to prove.
Assume now that n > 1. We identify V ′ := Kn−1 with the subspace {v =
(x1, . . . , xn−1, 0)} ⊂ V . The normalizer N in SOn of the orthogonal decompo-
sition V = V ′ ⊕ Ken is the intersection (GLn−1 ×GL1) ∩ SOn which has the
form

N = {(g, λ) | g ∈ On−1, λ = det g}.

It follows that the restriction homomorphism K[V n−1] �→ K[V ′n−1] induces a
map

ρ : K[V n−1]SOn → K[V ′n−1]On−1 .

Clearly, the invariant (i | j) is mapped onto the corresponding invariant on
V ′n−1 which we denote by (i | j)′. By induction (and by what we said above),
the (i | j)′ generate K[V ′n−1]On−1 . Thus it suffices to show that the homomor-
phism ρ is injective. This follows if we can prove that the set

On ·V ′n−1 = {g · v | g ∈ On, v ∈ V ′n−1}
is Zariski-dense in V n−1. Define

Z := {v = (v1, . . . , vn−1) ∈ V n−1 | det((vi | vj)) �= 0}.
This is the Zariski-open subset of V n−1 where the function det((vi | vj)) does
not vanish (see 1.3). Given v = (v1, . . . , vn) ∈ Z, the subspace W (v) spanned
by v1, . . . , vn has dimension n − 1 and the symmetric form (. | .) restricted to
W (v) is non-degenerate. Hence, there is a g ∈ On such that g(W (v)) = V ′.
(in fact, W (v) and V ′ are isomorphic as orthogonal spaces, because K is al-
gebraically closed, and V = W (v) ⊕ W (v)⊥ = V ′ ⊕ Ken are both orthogonal
decompositions.) It follows that g · v = (gv1, . . . , gvn−1) ∈ V ′n−1. As a conse-
quence, Z ⊂ On ·V ′n−1 which shows that On ·V ′n−1 is Zariski-dense in V n−1.

�

Proof of the FFT for Sp2m: Again we can use Weyl’s Theorem B (7.5)
since Sp2m is a subgroup of SL2m by Lemma 10.1 above and the determinants



116 The First Fundamental Theorem for On and Sp2m § 10

[v1, . . . , v2m] are contained in K[〈i | j〉] (see Exercise 6). Thus it suffices to
consider the case p = 2m − 1. As before, we assume that K is algebraically
closed and we proceed by induction on m.

For m = 1 we have Sp2 = SL2 (Exercise 3) and the claim is obvious
since there are no non-constant invariants. Assume m > 1 and consider the two
subspaces

V ′ := {v = (x1, . . . , x2m−2, 0, . . . , 0)} and
V ′′ := {v = (0, . . . , 0, x2m−1, . . . , x2m)}

of V. The restriction of the skew form 〈. | .〉 to both is non-degenerated and
V = V ′ ⊕ V ′′ is an orthogonal decomposition. The embeddings

V ′2m−1
↪→ V ′2m−2 ⊕ (V ′ ⊕ V ′′) ↪→ V 2m−1

induce homomorphisms (by restriction of functions)

K[V 2m−1]Sp2m
ρ−−−−→ K[V ′2m−1]Sp2m−2 ⊗ K[V ′′]Sp2��

K[V ′2m−1]Sp2m−2

where the second map is an isomorphism since K[V ′′]Sp2 = K. By induction
(and Weyl’s Theorem) we can assume that the images of the functions 〈i | j〉
generate the invariants K[V ′2m−1]Sp2m−2 . Hence, it suffices to prove that ρ is
injective. Again this will follow if we show that the set

Sp2m ·(V ′2m−1 ⊕ V ) =
{(gv1, . . . , gv2m−1) | g ∈ Sp2m, v1, . . . , v2m−2 ∈ V ′, v2m ∈ V }

is Zariski-dense in V 2m−1. For this consider the subset

Z := {v = (v1, . . . , v2m−1) ∈ V 2m−1 | det(〈vi | vj〉)2m−2
i,j=1 �= 0}

which is Zariski-open in V 2m−1. For any v ∈ Z the subspace W (v) spanned
by v1, . . . , v2m−2 is of dimension 2m − 2 and the restriction of the skew form
〈. | .〉 to W (v) is non-degenerate. Thus, there is a g ∈ Sp2m such that gW (v) =
V ′ and therefore gv = (gv1, . . . , gv2m−2, gv2m−1) ∈ V ′2m−2 ⊕ V . Or, Z ⊂
Sp2m ·(V ′2m−2 ⊕ V ) and the claim follows. �

10.4 Simultaneous conjugation of 2× 2-matrices. Let K be algebraically
closed, e.g. K = C. The adjoint representation of SL2 is isomorphic to the
standard representation of SO3. In fact, the representation of SL2 on sl2 :=
{A ∈ M2 | Tr A = 0} by conjugation leaves the non-degenerate quadratic form
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q(A) := det A − 1
2 Tr A2 invariant. Using the basis E1 :=

(
i 0
0 −i

)
, E2 := ( 0 i

i 0 ),
E3 :=

(
0 1
−1 0

)
we find q(x1E1 + x2E2 + x3E3) = x2

1 + x2
2 + x2

3. It follows
that the image of SL2 in GL(sl2) = GL3 is contained in SO3. One verifies
that they are in fact equal (see Exercise 8 and 9 below). As a consequence
from the FFT for SO3 we find that the invariants of any number of copies of
sl2 under simultaneous conjugation are generated by the “quadratic” traces
Trij : (A1, . . . , Ap) �→ Tr(AiAj) and the “cubic” traces Trijk : (A1, . . . , Ap) �→
Tr(AiAjAk):

K[sl2p]SL2 = K[Trij ,Trijk | 1 ≤ i ≤ j ≤ k ≤ p].

In fact, we have (Ai, Aj) = 1
2 Tr AiAj and [AiAjAk] = 1

2 Tr AiAjAK . Similarly,
one finds that the invariants of several copies of 2 × 2-matrices under simul-
taneous conjugation are generated by the traces Trij , Trijk together with the
usual traces Tri : (A1, . . . , Ap) �→ Tr Ai:

Proposition. K[M2
p]GL2 = K[Tri,Trij ,Trijk | 1 ≤ i ≤ j ≤ k ≤ p].

multi-traces Tri1,...,ik
are generators, but it did not give any bounds for the de-

gree k. As a consequence of the proposition above, every trace function Tri1,...,ik

for k > 2 can be expressed as a polynomial in the traces Tri and Trij .
For further reading about this interesting example and related ques-

tions we refer to the article [Pro84] of Procesi.

Exercises

8. Show that a special linear automorphism ϕ of sl2(C) which leaves the
determinant invariant is given by conjugation with an invertible matrix. In
particular, the image of SL2(C) in GL(sl2) � GL3(C) under the adjoint
representation is equal to SO3(C).
(Hint: Since ϕ(

(
1 0
0 −1

)
) has determinant −1 (and trace 0) it is conjugate to(

1 0
0 −1

)
, hence we can assume that ϕ(

(
1 0
0 −1

)
) =

(
1 0
0 −1

)
. Now C

(
1 0
0 −1

)⊥
=

C ( 0 1
0 0 ) ⊕ C ( 0 0

1 0 ) and ϕ acts on this space by an element of SO2. It is easy
to see that every such element is given by conjugation with some

(
t 0
0 t−1

)
.)

9. Give another proof of the equality SL2(C)/{±1} � SO3(C) by using the
following fact:
If H ⊂ G ⊂ GLn are subgroups such that H contains an open Zariski-
densesubset of G then H = G.

10.5 Remark. The First Fundamental Theorem for all classical groups has
been shown to be valid over the integers Z by DeConcini and Procesi in
[DeP76]. This fundamental result has influenced a lot the further development
in this area, in particular, the so-called “Standard Monomial Theory” of Lak-
shmibai, Musili, Seshadri et al. which is an important tool in the geometry
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of flag varieties [LaS78] ([LMS79], [LaS86], [Lak]).
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Form eine ganze Funktion mit numerischen Koeffizienten einer endlichen
Anzahl solcher Formen ist. J. Reine Angew. Math. 69 (1868) 323–354.

[Gor87] Gordan, P.: Vorlesungen über Invariantentheorie. Zweiter Band: Binäre
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senschaften. vol. IB2, 1899, pp. 320–403.

[Mey92] Meyer, W. Fr.: Bericht über den gegenwärtigen Stand der Invariantentheo-
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dual, 2, 16

dual representation, 39

envelopping algebra, 76
equivariant linear map, 97
equivariant morphisms, 9
evaluation homomorphism, 6
exterior powers, 40

fixed point, 3
Frobenius reciprocity, 45
full polarization, 33
full restitution, 34
functor, 28, 54
functorial, 28
fundamental weight, 52

G-algebra, 81
general linear group, 1
generalized traces, 21
generating function, 57
Gordan-Capelli expansion, 87
graded algebra, 1
graduation, 30
group algebra, 25

height, 53, 58
highest weight, 50
highest weight module, 50, 51
homogeneous, 1, 8
homogeneous components, 9
hook, 66

ideal of X, 6
indecomposable, 50
induced G-module, 45
induced representation, 45, 65
invariant, 2
invariant ring, 2
invertible matrices, 2
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irreducible character, 62
isotypic component, 26
isotypic decomposition, 26
isotypic submodule, 27

length, 58
lexicographic ordering, 59, 65
Lie algebra, 76
linear action, 2
linear groups, 43
linear representation, 2
locally finite, 39, 41

maximal ideal of a, 6
module of covariants, 10
module, G-module, 2
morphism, 8
multihomogeneous, 30
multihomogeneous components, 30
multilinear, 30
multiplicative group, 3, 41
multiplicity, 45, 46, 56
multiplicity free, 82

Newton functions, 5
Newton polynomial, 62
Noetherian, 13
normal, 18

open cell, 50
orbit, 2
orbit space, 17
orthogonal group, 113
orthogonality relations, 63
outer automorphism, 72

partial ordering, 49
partial polarization, 34
partitions, 57
Pfaffian, 114
plethysm, 86

polarization, 30, 33, 35
polarization operator, 76
polynomial, 1, 38, 43
polynomial G-module, 38
polynomial map, 8
polynomial representation, 38
polynomial vector fields, 77
positive weights, 49
power sum, 62
power sums, 5
primary covariants, 76, 84, 87
principal minor, 50
pseudo-reflection, 81

quotient map, 18
quotient representation, 40

rational, 43
rational G-module, 38
rational representation, 38
regular, 1, 38, 43
regular function, 1
regular representation, 3, 92
restitution, 30, 34, 35
Reynolds operator, 13
ring of differential operators, 77

Schur functor, 28
Schur polynomial, 58
selfdual, 2, 98
semisimple, 25
special linear group, 3
special orthogonal group, 113
stabilizer, 2
stable, 2
subquotient, 44
subrepresentation, 40
symmetric algebra, 1
symmetric group, 4
symmetric polynomials, 4
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symmetric power, 1
symmetric powers, 40
symmetric tensor, 24
symmetrization, 34
symplectic group, 113

tensor product, 39
tensor product, m-fold, 23
torus, 46
trace, 20
traceless, 51
traces of powers, 20
transvection, 10
triangular, 2

Überschiebung, 10
unipotent matrices, 2
unipotent subgroup, 48

Vandermonde determinant, 58
vector field, 76
virtual characters, 64

weight, 47
weight space, 47
weight vector, 47
Weyl module, 28

Young diagram, 57

Zariski-closed, 7
Zariski-closure, 43
Zariski-dense, 6
Zariski-open, 7


