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Shape from X:
Psychophysics and
Computation

Heinrich H. Bulthoff

The Many Routes to Shape

The human visual system derives a variety of information
about the three-dimensional (3D) structure of the envi-
ronment from different cues. This is illustrated in figure
20.1, where computer simulations of surface properties of
a simple geometric form under different lighting condi-
tions can lead to quite different 3D impressions. If an
ellipsoid of rotation with Lambertian reflectance proper-
ties (like a table tennis ball) is simulated to be illuminated
only by ambient light (equal amount of light from all
directions), no inference of the 3D shape of the object can
be made. The addition of a single point light source in the
far distance (i.e., parallel illumination) allows our visual
system to interpret the shading variations as a three-
dimensional form; in other words, it computes shape from
shading. The 3D impression of the ellipsoid becomes
stronger when a highlight is added to the image by using
a different shading model (Phong, 1975) for the computer
graphic simulation. We get the strongest impression of
the 3D shape of the object in the lower right of figure
20.1, where an additional source of information is avail-
able through simulation of surface texture. Note that not
only the form of the object but also the perceived orienta-
tion of the object changes with the number of simulated
depth cues. By observing figure 20.1 we can ask our-
selves, what are the correct form and orientation of the
object? Can we infer the correct 3D shape from 2D
images? What are the best cues for shape? Which are
better for orientation? We hope to answer some of these
questions in the next few sections.

The outline of this chapter is as follows. First we moti-
vate the need for cue integration in human and machine
vision. In the next section we describe different repre-
sentations of depth and how they can be assessed in
psychophysical experiments. We discuss in detail two
different techniques to measure shape-from-X, local and
global shape probes, and how they are used to measure



Fig. 20.1

Shape from X. The shape of the four objects looks quite different
because the visual system derives different shape information from
different shape cues. All four images were generated for the same 3D
shape (ellipsoid of rotation) but with different simulated surface
properties and under different lighting conditions.

shape from stereo, shading, and texture. In the following
section we discuss an important and often neglected
aspect of stereo vision: intensity-based stereo or shape
from disparate shading. Bilthoff and Mallot (1988)
showed that the human visual system can perceive depth
in disparate images which have no discontinuities (zero
crossings in the Laplacian of filtered images). This is a
surprising finding because many theories in human and
machine stereo vision are based on matching discontinui-
ties in image intensities. An intensity-based stereo mech-
anism can be very useful for “direct” surface interpolation
of surfaces with large smooth regions and should inte-
grate with more robust measurements of edge-based
stereo. In the section entitled Shape from Highlights we
demonstrate an additional source of shape information
that has been regarded previously as more of a nuisance
than a useful cue to shape. Blake and Biilthoff (1990)
showed that the human visual system can make use of
the relative disparity of highlights in glossy images. For
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most machine vision algorithms these highlights are most
undesirable because the disparity (or motion) of the high-
light is different from the underlying structure and there-
fore can lead to false depth (or motion) measurements.
The human visual system, on the other hand, can use
this information in situations where only ambiguous in-
formation about surface shape is available, for example, in
order to disambiguate the convex-concave ambiguity of
shape-from-shading. This is a perfect example of the “dis-
ambiguation” type of cue integration. Other types of
cue integration are discussed in Integration of Depth
Modules. In the final section, a theoretical framework for
cue integration is discussed briefly. A more detailed de-
scription of this framework can be found in Biilthoff and
Yuille (1990).

The Need for Integration

The shape and depth cues simulated in figure 20.1 (and
others) have been formalized in terms of computational
theory and have been implemented as single modules in
machine vision systems. Related studies from psycho-
physics and computational vision exist mainly for stereo
(Julesz, 1971; Marr & Poggio, 1976, 1979; Mayhew &
Frisby, 1981; Prazdny, 1985) and shading (Blake, Zisser-
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man & Knowles, 1985; lkeuchi & Horn, 1981; Mingolla &
Todd, 1986; Pentland, 1984). There are also a number of
studies on depth from texture (Aliomonos & Swain, 1985;
Bajcsy & Lieberman, 1976; Cutting & Millard, 1984; Ken-
der, 1979; Pentland, 1986; Witkin, 1981), line drawings
(Barrow & Tenenbaum, 1981), surface contours (Stevens,
1981; Stevens & Brookes, 1987) and structure-from-
motion (Koenderink, 1986; Longuet-Higgins & Prazdny,
1981; Landy, 1987; Ullman, 1979,1984), accommodation
(Pentland, 1985), and occlusion (Haynes and Jain, 1987).
Most implementations are quite successful for synthetic
images but less reliable for natural images. On the con-
trary, the human visual system more easily extracts depth
from the multiple 3D cues available in natural images
compared to the isolated cues found in synthetic images
(e.g.. random dot stereograms). In order to study how the
human visual system can integrate the information from
multiple cues so successfully, we developed methods for
quantitative measurement of perceived depth and shape
with stimuli that are closer to natural images than those
used in most psychophysical experiments. Using compu-
ter graphic techniques, we have precise control over the
different shape and depth cues and we can use them in
supportive or contradictory combinations to study the
interaction between them and get a better idea how
different cues are integrated into a stable representation
of the 3D world. But before we discuss this, we will
examine the question of what kinds of representations can
be used by our visual system.

How to Represent the Third Dimension?

Raw data, such as a range map from depth and shape cues,
can be thought of as a trivial, or zero-order representation of
the spatial structure of a scene. Higher-order descriptors can
be derived from image data that make interesting spatial
properties of the viewed scene explicit. The question of
what constitutes a useful 3D descriptor can be answered
in the light of the action that it should subserve. For
example, a pointwise depth map can be useful for precise
manipulation of objects while surface curvature (without
exact range data) might be useful for the recognition of
complex 3D shapes such as faces.

Which cues are relevant to one particular 3D descrip-
tor? Occlusion contributes more readily to depth ordering
than to surface curvature. Shading contributes more quali-
tatively to curvature than quantitatively to a depth map,
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Fig. 20.2

3D descriptors. Different depth cues provide information about
different 3D descriptors (e.g., range, shape, orientation). Try to
estimate the angle between the long axes of the ellipsoids (for the
correct answer, see text). (After Biilthoff & Mallot, 1990.)
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Fig. 20.3

Shape representation. 3D structure perceived from 2D image can

be represented at different levels of abstraction. The depth cues
themselves constitute multiple zero-order representations.
Higher-order representations, i.e., 3D descriplors, can be derived
from interaction and integration of several of these zero-order
representations. Different psychophysical experiments (much as
computer vision tasks) involve various combinations of 3D
descriptors. It is not clear whether a unique 3D representation exists
that serves as a common data basis for all types of behavior dealing
with the spatial structure of the environment. (Redrawn from Bilthoff
& Mallot, 1990.)

and texture more to object orientation than to object
form. This is illustrated in figure 20.2, where three pairs of
ellipsoids are shown whose long axes of elongation are
orthogonal to each other. The orthogonal orientation is
best seen in part C, where texture and specular shading
provide sufficient 3D information. If texture is used with-
out shading (part A), the orientation of the objects can
usually be perceived correctly, while the objects them-
selves appear flat. On the contrary, if shading is the only
cue (part B), the objects appear nicely curved but it is
difficult to see them orthogonal to each other.

How to Assess Properties of Multiple
Representations?

Since the perception of three-dimensional scenes relies on
so many different depth cues, which can lead ta various
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descriptions of that scene in terms of distance, surface
orientation, surface curvature and shape, we measured
some of these 3D descriptors (depth map, curvature, and
object orientation) for different depth cues (stereo, shad-
ing, highlight, texture, see figure 20.3).

The relation of shading (with and without highlights),
stereo, and texture in the 3D perception of smooth and
polyhedral surfaces was studied with computer graphic
psychophysics (see appendix A). For polyhedral and tex-
tured objects, stereo disparities were associated with loca-
lized features, that is, the intensity changes at the facet
or texel boundaries, while for the smooth surfaces only
shading disparities occurred. For most of our experiments
we used ellipsoids of revolution (viewed end-on) for the
following reasons:

+ As is shown later (Images Without Zero-Crossings),
images of Lambertian shaded smooth ellipsoids with
moderate eccentricities do not contain Laplacian zero-
crossings when illuminated centrally with parallel light.
This allows us to study intensity-based stereo mechan-
isms.

» The surfaces are closed and are naturally outlined by a
planar occluding contour. This contour was placed in the
zero disparity plane and did not allow the subjects to
derive depth from binocular disparities.

» Convex objects such as ellipsoids do not cast shadows
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or generate reflections on their own surface. Therefore,
shading (attached shadows) could be studied without in-
terference from cast shadows.

« End-on views of ellipsoids can be thought of as a model
example of depth interpolation of a surface patch between
sparse edge data.

Local and Global Depth Probes

Depending on the type of representation we wanted to
measure quantitatively, we used two different types of
probes (see appendix B). The depth probe can measure
locally perceived depth, but has some disadvantages with
depth cues which are better viewed monocularly (e.g.,
shading and texture). The global shape probe is more
appropriate for the latter case but cannot be used to
derive a precise depth map for all points in the image:

« Local depth. We mapped perceived depth with a small
probe or cursor that was interactively adjusted to match
the depth of the perceived surface (further details in ap-
pendix B). The depth of this probe was defined by edge-
based stereo disparity and all other cue combinations
were compared to the percept generated by edge-based
stereo. All images were viewed binocularly with the
depth cursor superimposed and hence had a zero disparity
cue in them. Each adjustment of the probe gives a graded
measurement of distance, or local depth, that is, this ex-
periment corresponds to the 3D descriptor depth map
in the scheme of figure 20.3. Note that the binocularly
viewed local probe can interfere with monocular cues
like shading and texture. Therefore, a more global shape
probe was used to extend the range of possible shape
measurements.

« Global shape. The global shapes of two objects with
different combinations of depth cues were compared di-
rectly (Further details in appendix B). Since all images
showed end-on views of ellipsoids with different elonga-
tion, this measurement corresponds to curvature or form as
a 3D descriptor.

« Global orientation. Object orientation can be measured
in a matching task where long ellipsoids of different or-
ientation are compared. While surface orientation is ap-
parently hard to determine for human observers (Min-

golla & Todd, 1986; Todd & Mingolla, 1983), the orienta-
tion of entire objects (e.g., orientation of generalized cy-
linders) can be measured easily in a matching task.

Shape From Stereo and Shading (Local
Measurements)*

In the first series of experiments, 165 measurements were
performed, each consisting of 45 adjustments of the depth
probe to the perceived surface. Results were consistent in
all three subjects and were pooled, since the differences
were noticeable only in the standard deviation. The 16
plots of figure 20.4 show the averaged results of all sub-
jects for the four types of experiments and four different
elongations of Lambertian shaded ellipsoids.

The perceived elongation in the images with consistent
cue combinations depends on the amount of information
available. In figure 20.5 a measure of perceived elonga-
tion is derived from the depth map shown in figure 20.4
by a principle component analysis (see appendix C) and
plotted as a function of displayed elongation. As can be
seen from figure 20.5, the perceived elongation is almost
correct when shading, intensity-based and edge-based dis-
parity information are available (D*E*). This is not too
surprising because this condition involves basically a dis-
parity-to-disparity match (the probe is a disparity cued
probe). This disparity match should work perfectly as long
as the probe is not too distant from the grid intersections
(edges) of the polygonal ellipsoid. In the case of smooth-
shaded disparate images (D*E™), the edges are missing
and depth perception is reduced. When shading is the
only cue (D™E”), perceived elongation is much smaller
and almost independent of the displayed elongation.
Phong shading (highlights) instead of Lambertian shading
did not change perceived depth significantly (dashed
lines). A much stronger influence on the type of shading
can be measured with the shape probe (see below).

In experiment D™E*, two identical images (zero dis-
parity) of polyhedral ellipsoids (edges) were shown. Al-
though shading alone provided some depth information
as shown in experiment D™E~, the fact that edges oc-
curred at zero disparity was decisive. The perceived depth
did not vary with the elongation suggested by the shad-

1. In collaboration with Hanspeter Mallot, Ruhr Universitit Bochum.
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Perceived surfaces. Each plot shows the average of six to nine sessions
from three subjects. Perceived depth decreases with the following
sequence of cue-combinations: disparity, edges, and shading (D* E™);
disparity and shading but no edges (D* E7); shading only (D™ E7);
contradictory disparity and shading (D™ E*). The elongation of the
displayed objects is denated by ¢ (depth not drawn to scale).
(Redrawn from Biilthoff & Mallot, 1988.)
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Fig. 20.5

Perceived elongation. Depth perception decreases with fewer cues
available. The significant separation between the middle and lower
curves (smooth shading with and without disparity} illustrates the
influence of disparity information even in the absence of edges. Solid
lines: Lambertian shading: dashed lines: Phong shading, (Redrawn
from Biilthoff & Mallot, 1988.)

ing (and perspective) information and took slightly nega-
tive values which, however, were not significantly differ-
ent from zero. This veto type of relationship between
stereo and shading is probably due to the depth probe
technique, which enforces disparity-to-disparity match-
ing. A different type of integration between stereo and
shading or texture (see, for example, Buckley, Frisby &
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Mayhew, 1989) might go unnoticed with this technique
and therefore a more global shape probe was used in
other experiments.

Depth can still be perceived when no disparate edges
are present. This is not surprising, since shading informa-
tion was still available. A comparison of the results (figure
20.5) for smooth-shaded images with and without dis-
parity information, however, establishes a significant con-
tribution of shading disparities (intensity-based stereo).
The curves for D*E~ and D™E™ are sigpnificantly sepa-
rated for all elongations except 0.5.

Shape from Shading and Texture (Global
Measurements)

As discussed earlier, global shape cues like shape from
shading and texture cannot be assessed with the local
depth probe without interference with the shape-from-
stereo module. Therefore we measured all cues, which are
better viewed monocularly to eliminate zero disparity
cues, with our global shape comparison technique (appen-
dix B). All of our images with single monocular cues lead
to large errors in perceived shape. With shading and fex-
ture curvature is underestimated (figure 20.6A, B), with a
highlight it is overestimated (figure 20.6C). Note, that the
reference (“given elongation”) was displayed in stereo
and that the elongation of the shaded or textured ellip-
soid was chosen by the subject (“chosen elongation”).
Underestimation of elongation corresponds therefore to
chosen values above the dashed line and overestimation
to values below the line.

Shape from Shading

One remarkable result of the comparison technique is that
the shape-from-shading performance is much better with
this technique than with the local depth probe technique.
The adjusted shading scales with the displayed elonga-
tion of the stereoscopically displayed reference ellipsoid
and does not level off as in the case of the depth probe
measurements. There is still a strong underestimation of
the elongation of the shaded ellipsoid for a given stereo-
scopically displayed reference ellipsoid, but in conjunc-
tion with a texture cue (figure 20.6D) the slope of the
shape-from-texture-and-shading curve is close to 1.0
(veridical).

3D Shape
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Global shape. (A, B) Shape-from-shading and shape-from-texture lead
to an underestimation of shape (slope > 1). (C) If a highlight is added
to the shading (Phong shading model) the shape is overestimated in
the adjustment task. (D) If shading and texture are presented
simultanecusly the shape is adjusted almost correctly (slope = 1)
with a bias to adjust a larger elongation than necessary. (E) If a
highlight is added the slope stays the same but the bias changes
towards an overestimation of shape. (Redrawn from Biilthoff &

Mallot, 1990.)
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Shape from Texture

The performance of shape-from-texture and shape-from-
shading is very similar. Both curves have almost the same
offset and slope. This is not so surprising because the
computational problem of shape-from-texture and shape-
from-shading is very similar (Aliomonos & Swain, 1985).
This similarity in the computational structure could be the
reason for the strong cooperativity and almost veridical
perception if both cues are present (figure 20.6D).

Shape from Highlights

A highlight on the shaded surface also seems to have a
much larger influence with this technique and leads to an
overestimation of curvature (figure 20.6C). This overesti-
mation can be seen also if both texture and highlights are
used (figure 20.6E). Again, in this case the cooperativity
between modules shows up in the much more veridical
perception of shape than with single modules. But com-
pared to texture with shading (figure 20.6D), the texture
and highlight curve (figure 20.6E) signals an overestima-
tion of shape.

Shape from Disparate Shading (Intensity-Based
Stereo)

As mentioned earlier, a very surprising finding is the
strength of depth perception (70 percent) obtained from
disparate shading under various illuminant conditions and
reflectance functions. In computational theory, most stu-
dies have focused on edge-based stereo algorithms (for
review, see Poggio & Poggio, 1984). This is due to the
overall superiority of edge-based stereo, which is con-
firmed by the finding that edge-based stereo gives a bet-
ter depth estimate than disparate shading (Blake et al,
1985). However, in the absence of edges and for surface
interpolation, graylevel disparities appear to be more im-
portant than is usually appreciated.

Images Without Zero-crossings

One of the most important constraints in early vision
for recovering surface properties is that the physical pro-
cesses underlying image formation are typically smooth.
The smoothness property is captured well by standard
regularization (Poggio, Torre & Koch, 1985) and exploited
in its algorithms. On the other hand, changes of image
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intensity often convey information about physical edges
in the scene. The locations of sharp changes in image
intensity very often correspond to depth discontinuities
in the scene. Many stereo algorithms use dominant
changes in image intensity as features to compute dis-
parity between corresponding image points. In order to
localize these sharp changes in image intensity, zero-
crossings in Laplacian-filtered images are commonly used
(Marr & Hildreth, 1980).

The disadvantage of these feature-based stereo algo-
rithms is that only sparse depth data (at image features)
can be computed. This forces an additional stage in which
sophisticated algorithms (Blake & Zisserman, 1987; Grim-
son, 1982) interpolate the surface between data points. In
order to test for the ability of human stereo vision to get
denser depth data by using features other than edges, or
even a completely featureless mechanism, we computed
images without sharp changes in image intensity. We
show that for an orthographically projected image of a
sphere with Lambertian reflection function and parallel
illumination, zero-crossings in the Laplacian are missing.
Consider a hemisphere given in cylindrical coordinates by
the parametric equation

z=1—1r? (1)

In the special case of a sphere, the surface normal simply
equals the radius, that is,

1—r?, (2)

For the illuminant direction I = (0, 0, 1) and the Lamber-
tian reflectance function, we obtain the luminance profile

In=Ln)=I/1-r? (3)

where [ is a suitable constant, i.e., the image luminance is
again a hemisphere. For the Laplacian of I, we obtain

n = (rcos g, rsineg,

rZ

" 1 ’ —
This is a nonpositive function of r, with V2I(0) = 0; i.e,
the Laplacian of I has no zero-crossings.
Unfortunately, this result does not hold for ellipsoids
with ¢ # 1. A similar computation for an ellipsoid with

elongation ¢ yields

1—r?

R

(5)
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which reduces to equation 3 for ¢ = 1. The luminance-
profiles for elongations ¢ > 2 are no longer convex. That
is to say that the second derivatives of these profiles in
fact have zero-crossings, and a similar result holds for
the Laplacians. However, when filtering with the Lapla-
cian of a Gaussian or with the difference of two Gaussians
(DOQG) is considered, it turns out that these zero-cross-
ings are insignificant for the elongations used here. Pixel-
based convolutions failed to show the “edges” unequi-
vocally, and even a Gaussian integration algorithm run on
the complete function rather than on the sampled array
produced no zero-crossings beyond the single-precision
truncation error. We therefore conclude that the slight
zero-crossings in the unfiltered Laplacian of our luminance
profiles do not correspond to significant edges. For obli-
que illumination we found numerically that the self sha-
dow boundary corresponds to a level rather than a zero-
crossing in the DOG-filtered image.

Independently of our own work, images of ellipsoids
may be useful in the study of the psychophysical re-
levance of Laplacian zero-crossings.

Local or Global Mechanisms?

Are there features other than zero-crossings that can ac-
count for the shape-from-disparate-shading performance
found in our experiments? Possible candidates include the
intensity peak as proposed by Mayhew and Frisby (1981)
and level-crossings in the DOG-filtered image which, ac-
cording to Hildreth (1983), might account for Mayhew
and Frisby's data as well.

In order to distinguish between a localized (feature-
based) and a distributed mechanism for shape-from-
disparate-shading we tested the effect of a small disparate
token displayed in front of a nondisparate background
with the depth probe (figure 20.7). Our data show that for
large elongations, a single stereo feature (ring) is not
sufficient to produce the same percept as full disparate
shading (compare part A of figure 20.7 with parts B to D).
For small elongations (0.5 to 2.0; not shown in figure
20.7) the differences were not pronounced. We therefore
conjecture that disparate shading does not rely on feature
matching and thus can be used for surface interpolation
when edges are sparse. This view is well in line with the

finding that edge information, whenever present, over-
rides shape-from-disparate-shading (figure 20.8).

Note, however, that we do not propose the naive idea
of pointwise intensity matching as a mechanism for shape-
from-disparate-shading because of its sensitivity to noise
in both the data and in neural processing. Even in the
absence of image noise, intensity-based algorithms (e.g.,
Gennert, 1987) can lead to severe matching errors when
run on our stimuli (see Psychophysical Support for the
Bayesian Framework). A window-based correlation mech-
anism like the one used for optical flow computation
(Biilthoff, Little & Poggio, 1989) might be more appropri-
ate for shape-from-disparate-shading. This type of algo-
rithm has been successfully used for stereo (D. Weinshall,
personal communication). For a comparison see also the
SWITCHER algorithm described in chapter 21. In the
next section we will look at one additional cue (high-
lights) that is used by the visual system in cases where
shape-from-shading or shape-from-texture does not pro-
vide unambiguous shape information.

Shape from Highlights®

Many images of artificial and natural scenes contain
“highlights” generated by mirrorlike reflections from
glossy surfaces. Computational models of visual processes
have tended to regard these highlights as obscuring under-
lying scene structure. Mathematical modeling shows that,
on the contrary, highlights are rich in local geometric
information. This section will demonstrate that the brain
can apply that information. Stereoscopically viewed high-
lights or “specularities” can serve as cues for 3D local
surface geometry. The human visual system seems to
employ a physical model of the interaction of light with
curved surfaces—a model firmly based on ray optics and
differential geometry. We develop such a model in the
next section.

The Computational Model

The basic principle of the “specular stereo” model is quite
simple (figure 20.9). According to ray optics, the image of
a light source—a specularity—appears behind a glossy,
convex surface and {generally) in front of a concave one,
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2. In collaboration with Andrew Blake, Oxford University.
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(a)

Consistent intensity - and edge-based stereo

Perceived depth: B4% Perceived depth: 54%

Stereo edge In front of uniformly grey disk

Stereo edges in front of shaded disk

Subjects ISA and HAM: 63%

Fig. 20.7

Surface interpolation. (a) Shape-from-disparate-shading plus disparate
edge information leads to an almost correct percept (1 = 6). (b) A
single edge token in front of a uniformly gray disk yields a cone-like
subjective surface (n = 6). (c, d) Shape-from-shading plus disparate
edge information leads to an ambiguous perception (n = 3 + 3).
Some subjects fused the edge-token and the surround into one
coherent surface (c) while others saw the edge-token floating in front
of a rather flat surface (d). Only data for elongation 4.0 are shown.
(Redrawn from Biilthoff & Mallot, 1988.)

Shape-from-shading and zero-disparity edge
Perceived depth: 16%

Intensity-based stereo and zero-disparily edge
Perceived depth: 66%

Fig. 20.8

Veto. (A) A zero-disparity edge token vetoes shape-from-shading
(n = 7) and (B) shape-from-disparate-shading (n = 6). Only data for
elongation 4.0 are shown. (Redrawn from Biilthoff & Mallot, 1988.)
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virtual image convex surface light source

real image E

concave surface light source

Fig. 20.9

Specular stereo—the basic principle. Specularities appear behind a
convex mirror but in front of a concave one. (Redrawn from Blake &
Biilthoff, 1990.)
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convex surface

virtual image of light
source lying behind
surface

Fig. 20.10

Geometry of specular stereo. Ray optics establishes direct relationship
between surface shape and measured disparity. Stereoscopic relative
disparity 8 is a projection of the displacement vector x of the
specularity on the reflecting surface. Displacement x, in turn, is
related linearly to baseline vector d, the coefficients of the relation
being a function solely of surface geometry. Jf the visual system
knows the physics of specular reflection and the light source
position, then the relative disparity of a specularity would be
consistent only with certain values of local surface curvature.

provided both viewer and source are sufficiently distant
from the surface. But this simple idea must be expanded.
How, for example, does a specularity appear in a surface
that is hyperbolic? Whether it appears behind or in front
depends on the orientation of the surface. Even on an
elliptic surface, the apparent depth of the image varies if
the surface is rotated about the line of sight.

In fact we are forced to hesitate at the notion of appar-
ent “depth.” What we actually observe is determined by
horizontal and vertical relative disparities. Stereoscopic dis-
parity is a vector quantity, conventionally taken (May-
hew & Longuet-Higgins, 1982) to have a horizontal and
a vertical component equal to the differences in x, y co-
ordinates of corresponding image points in left and right
planar projections. Horizontal disparity is the component
of the disparity vector parallel to the stereoscopic base-
line (d in figure 20.10) and vertical disparity is the ortho-
gonal component. Relative disparity of a specularity is
(roughly) the difference between its disparity and that of
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a nearby point on the surface. Surface features (scratches,
for example) obey the “epipolar” constraint (Amold &
Binford, 1980; Mayhew & Frisby, 1981). Once the epi-
polar lines are known—a nontrivial problem of camera
calibration in computer vision (see chapter 21)—vertical
disparity of one surface point relative to another is zero.
Specularities, however, are not surface features (that is,
they are not stuck to a surface) so they do not obey the
epipolar constraint. They frequently have nonzero verti-
cal relative disparities. Both horizontal and vertical rela-
tive disparities of a specularity vary as the surface is
rotated about the line of sight. Now, the actual depth of
a surface feature is approximately proportional to hor-
izontal disparity, but perceived depth could be affected by
the introduction of vertical disparity (Koenderink & van
Doorn, 1976). Only in cases where vertical disparity is
negligible (e.g., on a spherical surface with slant less than
about 30°) can we confidently talk about the depth of a
specularity.

Ray optics establishes a direct relationship between
surface shape and measured disparity (Blake, 1985; Blake
& Brelstaff, 1988; Zisserman, Giblin & Blake, 1989). To a
good approximation, the relative disparity vector & de-
pends linearly on the stereo baseline d, and the coeffi-
cients of the linear relation are solely a function of surface
geometry (figure 20.10). Suppose this model were fully
utilized by the visual system, and light source position
were known, then the relative disparity of a specularity
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would be consistent only with certain values of local
surface curvature. Even if nothing is known about source
position, relative disparity still constrains curvature: No
convex surface can generate a negative horizontal relative
disparity; a concave surface hardly ever generates a posi-
tive one. The experiments described in this section aim
to test whether the human visual system exploits such
constraints.

The idea that human vision employs physical con-
straints is, of course, not new—it has been argued vigor-
ously by Marr (1982) and is exemplified by surface con-
tinuity and epipolar constraints in theories of stereo
vision (Julesz, 1971; Marr & Poggio, 1979; Mayhew &
Frisby, 1981). Continuity constraints also underly certain
theories of motion perception (Biilthoff et al, 1989; Hil-
dreth, 1984; Yuille & Grzywacz, 1988) that also have
some psychophysical support. While continuity is a ma-
thematically precise notion, its application to the physical
world is intrinsically imprecise—it is scale dependent.
However, the epipolar constraint is precise, and express-
ible in terms of the equations of projective geometry. But
it is “internal”—a consequence of the physics of the eye
itself rather than of the external world. In the case of the
analysis of specularities, however, it seems that the visual
system may have summarized an algebraic theory that
describes the physics of surfaces in the world. The theory
is both “external” and precise. The next two sections
describe two experiments aimed to test whether the hu-
man visual system exploits such constraints.

Surface Quality from Highlights

An adjustment task was devised in which the subject
interactively changes both horizontal and vertical dis-
parities of a highlight. Images of glossy, textured, curved
surfaces are generated with a computer graphics work-
station (Symbolics, Inc.) and displayed on a high-resolution
color monitor with a stereo viewing system (see appendix
A). The texture is of sufficient density to furnish strong
cues for curvature from edge-based stereo. Simulation of
surface gloss causes a specularity to appear superimposed
on the texture, as in figure 20.11A. As discussed earlier,
edge-based stereo cues can override cues such as monocu-
lar or disparate shading. We might therefore expect also
that specularity cues should be overridden; that is pre-
cisely what happens. When the specular relative dispar-
ities are veridical the whole surface appears glossy as in

316

figure 20.11A and not just in the vicinity of the spec-
ularity (Beck, 1972). However, when horizontal relative
disparity is nonveridical the surface ceases to look glossy.
For example, if the specularity is in front of the surface
with large convergent (—) relative disparity, surface qual-
ity is reported to be matte and opaque, with a puff of
cloud in front of the surface (figure 20.11B). The cloud
patch is not perceived as a specularity and therefore there
is no reason for the surface to look glossy. For excessively
divergent () relative disparity, subjects usually report
that the surface looks transparent, with a source of light
behind it (like a frosted glass light bulb). Again, an in-
correct position (relative disparity) of the specularity dis-
counts the bright patch as a specularity and the visual
system finds a different interpretation for the way in
which the patch was generated. The interpretation of
surface property changes from opaque to transparent.
When the relative disparity is zero the simulated spec-
ularity looks like a powdery patch on the surface and the
surface does not look glossy. Note, however, that in
nonstereo images (like any photograph) surfaces can look
glossy even with zero relative disparity. In this case a cue
conflict does not really exist because all surfaces are flat
and relative disparity does not have any meaning in these
images.

In an informal two-alternative, forced-choice (2AFC)
experiment, 11 out of 12 naive observers who were asked
which of two presented surfaces was the “polished” sur-
face chose the surface shown in figure 20.11A, in agree-
ment with the prediction of the model.

In an adjustment task naive subjects were asked to
achieve the most realistic looking glossy surface. They
repeatedly pressed buttons which (unknown to the naive
subjects) caused the relative disparity of a specularity to
vary. They were simply told that pressing the two but-
tons would make the surface appear more or less shiny.
Either vertical disparity was held constant (at the value
determined by the ray-optic model) while horizontal dis-
parity was varied or vice versa. Steps in specular disparity
for each button press were sufficiently small (2 pixels or
about 1.5 min arc) that most of the subjects did not
perceive the specularity to be moving in depth. Four test
surfaces were used in the adjustment task—a convex
sphere, two convex ellipsoids and one concave ellipsoid.

Results for the convex sphere (figure 20.11C) show
that, on average, subjects’ adjusted values were not
significantly different from veridical for horizontal
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Fig. 20.11

Surface property. The perception of surface properties can change by
moving a specular highlight relative to the surface. The surface of the
sphere (A) (stereo view) looks metallic because the highlight is in the
correct position behind the surface. If the highlight is in front of the
surface (B) the surface looks more dull and not metallic (mirrorlike) at
all. The human visual system seems to exploit the laws of reflection
in the 3D interpretation of 2D images. In the psychophysical
adjustment task most subjects put the specular highlight slightly (not
significantly) displaced from the correct position for the sphere (C).
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(P < 0.001, F = 2). Note that the sign of the horizontal
relative disparity after adjustment is always correct. This
corresponds to robust discrimination between convex and
concave surfaces as mentioned earlier. It is difficult to get
significant vertical disparity effects for this surface because
the veridical vertical disparity is close to zero (0.5 min arc).
Four naive subjects adjusted the circumpolar disparity
close to zero, but it is conceivable that there is some
regression toward zero. Therefore, we tested a situation
in which the correct vertical disparity of a specularity was
quite different from zero. This is the case for the oblique-
oriented ellipsoid. Five naive subjects and the two authors
made adjustments whose signs were as predicted by the
model. The visual system apparently has some dedicated
competence for analysis of specularities and apparently
“knows” enough about the physics of specularity to pre-
dict the sign of the vertical disparity correctly. Similar
results are obtained for the two convex ellipsoids; the
average adjusted disparities are close to veridical. Poorer
agreement is obtained in the case of the concave ellipsoid,
and the sign of the relative horizontal disparity after ad-
justment is inconsistent. Subjects reported that, for this
surface, the adjustment task was relatively difficult to
perform.

The conclusion of this experiment is that the human
visual system models the physics of specular reflection
well enough to predict relative disparity effects. Agree-
ment with predictions is good qualitatively (sign is pre-
served), and there even is a degree of quantitative agree-
ment. In particular, in the case of a convex sphere for
which we can associate horizontal disparity with depth,
the visual system “expects”—correctly—that a specular-
ity lies behind not on the surface.

Surface Curvature from Highlights

The second experiment is complementary to the first. Can
the visual system accommodate to variations in specular
relative disparities by changing its hypothesis about sur-
face curvature, rather than its hypothesis of glossiness?
We devised the stimulus of figure 20.12A—a stereo,
textured variant of an ambiguous (reversible) shaded
surface. The texture elements all have zero disparity, con-
sistent with a frontoparallel surface. Nonetheless, monoc-
ular shading/texture cues are not entirely overridden, so
that subjects can usually see both convex and concave
(like a dog bowl) interpretations. A superimposed spec-
ularity (figure 20.12B), with either convergent or diver-
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gent relative disparity (4 5’) biases the interpretation. As
the physics predicts, convergent relative disparity biases
subjects’ interpretation toward concave and divergent
toward convex (figure 20.12C). The effect develops gra-
dually with repeated exposures. Naive subjects made a
forced choice (2AFC) between a convex or a concave
interpretation. Time sequences (figure 20.12C) show that
while initially subjects may be locked into one or the
other interpretation, after around 20 exposures they reli-
ably pick the interpretation that is consistent with the
sign of horizontal relative disparity. Note that the change
in position of the specularity is contrary to that of the
surface—when the specularity is furthest away (diver-
gent horizontal disparity) the center of the surface is near-
est to the viewer (convex) and vice versa. Any explana-
tion in terms of a pulling effect exerted by the specularity
on the surface is thereby excluded.

How Important are Specularities?

It could be argued that specularity is a marginal visual
phenomenon since specularities are relatively sparse in
images compared with texture edges and other features.
Moreover, it is associated more with artifacts, relatively
recent on an evolutionary timescale, than with “natural”
objects. Is it really likely, as we claim, that we have
developed mechanisms to analyze specularities? In reply,
it is worth noting first that specularities do commonly
occur on (hairless) faces and that facial recognition is,
presumably, important for survival. More significant
though, it is not necessary to claim that the ability to deal
with specular motion and stereo developed via evolution.
The processing of specularities, therefore, could simply be
an extended usage of the parallax mechanism, learned in
a modern environment filled with specular artifacts.

Cognitive vs. Early Vision

Naive observers, asked where a specularity appears to be
in relation to the surface that generated it, usually reply
that it appears to lie on the surface. What we tried to
show with the first experiment is that the early visual
system “knows” better, choosing configurations that are
broadly consistent with the physics of specular reflection.
The second experiment demonstrates that the early visual
system can use the information about the 3D position of
the specularity to make some inference about the curva-
ture of the underlying surface. One reason that the more
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Fig. 20.12

Surface curvature. The perception of surface curvature can change
with the position of a specular highlight. In order to demonstrate that
the human visual system knows the physics of light reflection we
used an image of a surface whose three-dimensional interpretation
can flip easily between two states (convex/concave). If a highlight

is added to the image the 3D interpretation of the inner part of the
surface is biased more towards convex. A stereo pair was made

with zero disparity for the textured surface, and then a specularity
superimposed either in front of (A) or behind (B) the textured surface
(uncrassed view), flipping randomly between the two, with 5 or 10
sec exposures separated by a random-dot masking frame. Subjects
made a two-alternative forced choice (2AFC) between convex and
concave. After a short training period (20 exposures without
feedback) they made more choices that conform to the predictions of
the model (C). A control experiment with a white disk of about the
size of the specularity that did not look like a highlight at all, did not
show any consistent effect between subjects on the perceived
curvature. It might be difficult to experience the curvature effect if the
images are not displayed on a CRT monitor because of the limited
contrast range in the print. In order to get the best effect it is
essential that the highlight look like a real reflection of the light
source. (Redrawn from Blake & Biilthoff, 1990.)
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cognitive level ignores this position information might be
that it is better to ignore the virtual images of light
sources around us; otherwise, we would perceive them as
obstacles and we would be very busy trying to avoid all
those specularities around us.

Integration of Depth Modules

Before we get to the final section on a computational
model of cue integration, we summarize the interactions
of different depth cues (as derived from our depth probe
experiments) in figure 20.13. In some experiments we
presented conflicting information from stereo and shading
cues. Whenever visible, edge-based disparities were deci-
sive for the perceived depth (see figures 20.4, D"E*,
20.7, and 20.8). Edge-based stereo thus overrides both
shape-from-shading and shape-from-disparate-shading in
our experiments. It is possible, however, that this veto
relationship occurs only in the locally derived depth map
(disparity matching) because the global percept of the
polyhedral ellipsoid in experiment (D™E*) is not flat, but
rather convex. Stevens and Brookes (1988) also reported
that with conflicting monocular and stereo information
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Fig. 20.13

Integration of depth cues. The size of the boxes and interaction
channels reflects the contribution of the different depth cues to the
overall perceived depth (accumulation). In contradictory cases, shape
from both disparate and nondisparate shading is vetoed by
edge-based stereo. An inhibitory influence of shape-from-disparate-
shading on shape-from-shading is discussed in the text. {Redrawn
from Biilthoff & Mallot, 1988.)

the 3D percept was dominated by the monocular in-
formation and not by stereo. Their task involved compar-
ing the relative depth of two points on a planar surface
that had contradictory monocular and stereo information
and, in addition, surface orientation had to be estimated
—which is a difficult task (see Todd & Mingolla, 1983).
A conflicting cue combination of shape-from-shading and
shape-from-disparate-shading was presented in the exper-
iment with smooth-shaded nondisparate images (D™E™).
In this case, shape-from-shading is not vetoed by the lack
of shading disparities but leads to a reduced depth per-
ception of about 25 percent. An inhibitory interaction
between the two cues may account for this poor shape-
from-shading performance and the ceiling effect in figure
20.5.

Another summary of our data that includes both depth
probe and shape comparison techniques is shown in figure
20.14. This representation is based on the idea (sketched
in figure 20.3) that the integration of different 3D cues can
lead to the perception of different 3D descriptors (range,

Range

Texture
°

Stereo
®

Binocular shading
Binocular highhght

L) °
Shading  Texture + shading

L]
Texture + highlight

L]
Highlight

Shape Orientation

Fig. 20.14

Depth triangle. This representation of our depth probe and shape
comparison data shows the relative importance of depth cues (stereo,
shading, texture) for different 3D descriptors (range, shape,
orientation); see also figure 20.3. Shading has a stronger influence on
the perceived shape, while texture seems to be more important for
orientation (compare with figure 20.2). Stereo is of equal importance
for all 3D descriptors because the shape, orientation and distance to
an object (range) can be easily derived from a complete depth map.
(Redrawn from Biilthoff & Mallot, 1990.)

shape, orientation). The contribution of single monocular
cues is different for the 3D descriptors. Object orientation
is best recovered from texture cues (Biilthoff & Mallot,
1988) while surface curvature (shape) can be inferred more
easily from shading. With binocular shading (Lambertian
or Phong shading) range perception is rather strong (70
percent). It is even stronger for the perception of shape
(100 percent). The addition of a highlight to a shaded
surface has no effect in the range-matching task, while a
strong effect was found in the shape comparison task.
Highlights always led to an overestimation of shape,
while dull surfaces (Lambertian shading) were judged too
flat.

A Bayesian Framework for Cue Integration?®

In this section a theoretical formulation for cue integra-
tion is introduced. This formulation is based on the Baye-
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sian approach to vision, in particular in terms of coupled
Markov random fields. This formalism is rich enough to
contain most of the elements used in standard stereo
theories with the additional advantage that it allows inte-
gration of cues from different matching primitives. These
primitives can be weighted according to their robustness.
For example, depth estimates obtained by matching in-
tensity are unreliable, since small fluctuations in intensity
(due to illumination or detector noise) might lead to large
fluctuations in depth, hence they are less reliable than
estimates from matching edges. The formalism can also
be extended to incorporate information from other depth
modules (e.g., shading and texture) and provides a model
for sensor fusion (Clark & Yuille, 1990).

Unlike previous theories of stereo that first solved the
correspondence problem and then constructed a surface
by interpolation (Grimson, 1982), this framework pro-
poses combining the two stages. The correspondence
problem is solved to give the disparity field which best
satisfies the a priori constraints.

The model involves the interaction of several processes
and is introduced here in three stages at different levels of
complexity.

At the first level, features (such as edges) are matched
using a binary matching field V;, determining which fea-
tures correspond. In addition, smoothness is imposed on
the disparity field d(x), which represents the depth of the
surface from the fixation plane. In this case the corre-
spondence problem, determining the V,,, is solved to give
the smoothest possible disparity field. The theory is re-
lated to work by Yuille and Grzywacz (1988) on motion
measurement and correspondence and, in particular, to
work on long-range motion. It can be shown that the
cooperative stereo algorithms of Dev (1975) and of Marr
and Poggio (1976) are closely related to this theory (Biil-
thoff & Yuille, 1990; Yuille, Geiger & Biilthoff, 1989).

At the second level, line process fields /(x) (which rep-
resents depth discontinuities) (Geman & Geman, 1984)
are added to break the surfaces where the disparity gra-
dient becomes too high. For a different approach making
use of the disparity gradient constraint, see chapter 21.

The third level introduces additional terms correspond-
ing to matching image intensities. Such terms are used in
the theories of Gennert (1987) and Barnard (1986) which,
however, do not have line process fields or matching
fields. A psychophysical justification for intensity match-
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ing is given in the section Shape from Disparate Shading.
Thus the full theory is expressed in terms of energy
functions relating the disparity field d(x), the matching
field V,,, and the line process field I(x).

By using standard techniques from statistical physics,
particularly the mean field approximation, one can elimi-
nate certain fields and obtain effective energies for the
remaining fields (see Geiger & Girosi, 1989; Geiger &
Yuille, 1989). As discussed in Yuille (1989), this can be
interpreted as computing marginal probability distribu-
tions and allows us to show that several existing stereo
theories are closely related to versions of the proposed
framework. The three levels of this framework are pre-
sented in more detail in appendix D.

The Bayesian Formulation

Given an energy function model one can define a cor-
responding statistical theory. If the energy E(,V,C)
depends on three fields: d (the disparity field), V the
matching field, and C (the discontinuities), then (using the
Gibbs distribution; see Parisi, 1988) the probability of a
particular state of the system is defined by

e—ﬂE(d.V.C)
P, V,Clg) = =y (6)
where g is the data, § is the inverse of the temperature
parameter, and Z is the partition function (a normalization
constant).
Using the Gibbs distribution one can interpret the
results in terms of Bayes’ formula

P(g|d, V,C)Pd, V,C)
B(g)

where P(g|d, V, C) is the probability of the data g given a
scene d, V, C; P(d, V, C) is the a priori probability of the
scene; and P(g) is the a priori probability of the data. Note
that P(g) appears in the above formula as a normalization
constant, so its value can be determined if P(g|d, V, C)
and P(d, V, C) are assumed known.

This implies that every state of the system has a finite
probability of occurring. The more likely ones are those
with low energy. This statistical approach is attractive
because the f§ parameter gives us a measure of the un-
certainty of the model (some refer to the temperature
parameter T = 1/f8). At zero temperature (ff — o0) there
is no uncertainty. In this case the only state of the system

P, V,Clg) = ' (7)

Shape from X



that has nonzero probability, hence probability 1, is the
state that globally minimizes E(d, V,C). In some non-
generic situations there could be more than one global
minimum of E(d, V, C).

Minimizing the energy function will correspond to
finding the most probable state, independent of the value
of . The mean field solution,

d= Y dPd V.Cl|g), (8)
d.v.Cc

is more general and reduces to the most probable solution
as T — 0. It corresponds to defining the solution to be the
mean fields, the averages of the f and ! fields over the
probability distribution. This allows one to obtain differ-
ent solutions depending on the uncertainty. A justifica-
tion for using the mean field as a measure of the fields
resides in the fact that it represents the minimum variance
Bayes estimator (Gelb, 1974). More precisely, the var-
iance of the field d is given by
Var{d : d) = Y d— d)*P(d, V,C|g). 9
4vic
where d is the center of the variance and the ),y ¢
represents the sum over all possible configurations of 4,
V, C. Minimizing Var(d:d) with respect to all possible
values of d we obtain
9 Vard:d) = 0+ = Y dP@,V,C). (10)
od 4v.c
This implies that the minimum variance estimator is given
by the mean field value.

Statistical Mechanics and Mean Field Theory

One can estimate the most probable states of the prob-
ability distribution (equation 7) by, for example, using
Monte Carlo techniques (Metropolis, Rosenbluth, Rosen-
bluth, Teller & Teller, 1953) and the simulated annealing
(Kirkpatrick, Gelatt & Vecchi, 1983) approach. The draw-
back of these methods is the amount of computer time
needed for the implementation.

There are, however, a number of other techniques from
statistical physics that can be applied. They have recently
been used to show (Geiger & Girosi, 1989; Geiger &
Yuille, 1989) that a number of seemingly different ap-
proaches to image segmentation are closely related.

There are two main uses of these techniques: (1) we can
eliminate (or average out) different fields from the energy
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function to obtain effective energies depending on only
some of the fields (hence relating this framework to pre-
vious theories), and (2) one can obtain methods for
finding deterministic solutions.

There is an additional important advantage in elimina-
ting fields—one can impose constraints on the possible
fields by only averaging over fields that satisfy these
constraints. For example, Geiger and Yuille (1989) de-
scribe two possible energy function formulations of a
winner-take-all network in which binary decision units
determine the “winner” from a set of inputs. The con-
straint that there is only one winner can be expressed by
(1) introducing a term in the energy function to penalize
configurations with more than one winner, or (2) comput-
ing the mean fields by averaging only over configurations
with a unique winner. The second method is definitely
preferable in general because it enforces the constraint
more strongly. Moreover, it leads to a very simple solu-
tion of the winner-take-all problem.

For the first level theory it is possible to eliminate the
disparity field to obtain an effective energy E,;((V};) de-
pending only on the binary matching field Vj;, which is
related to cooperative stereo theories (Dev, 1975; Marr
& Poggio, 1976). Alternatively, one can eliminate the
matching fields to obtain an effective energy E,, (d) de-
pending only on the disparity. The second approach
seems to be better since it incorporates the constraints on
the set of possible matches implicitly rather than impos-
ing them explicitly in the energy function (as the first
method does).

One can also average out the line process fields or the
matching fields or both for the second and third level
theories. This leaves us again with a theory depending
only on the disparity field.

Alternatively, one can use mean field theory methods
to obtain deterministic algorithms for minimizing the first
level theory E,(V;;). These differ from the standard co-
operative stereo algorithms and should be more effective
(though not as effective as using E, ;,(d)) since they can be
interpreted as performing the cooperative algorithm at
finite temperature, thereby smoothing local minima in the
energy function.

Psychophysical Support for the Bayesian Framework

The experiments discussed earlier show that depth can be
derived from images with disparate shading even in the
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absence of disparate edges. The perceived depth, how-
ever, was weaker for shading disparities (70 percent of the
true depth). Putting in edges or features helped improve
the accuracy of the depth perception. But in some cases
these additional features appeared to decouple from the
intensity and were perceived to lie above the depth sur-
face generated from the intensity disparities.

These results are in general agreement with the Baye-
sian framework. The edges give good estimates of dis-
parity and so little a priori smoothness is required and an
accurate perception results. The disparity estimates from
the intensity, however, are far less reliable (small fluctua-
tions of intensity might yield large fluctuations in the
disparity). Therefore, more a priori smoothness is required
to obtain a stable result. This gives rise to a weaker
perception of depth.

The use of the peak as a matching feature is vital
(at least for the edgeless case) since it ensures that the
image intensity is accurately matched (some stereo theo-
ries based purely on intensity give an incorrect match for
these stimuli [M. Gennert, personal communication; see
figure 20.15)). For these images, however, the peak is
difficult to localize and depth estimates based on it are not
very reliable. Thus the peak is not able to pull the rest of
the surface to the true depth.

Pulling up did occur for the edgeless case if a feature
(ring) was added at the peaks of the images (figure 20.16).
This is consistent with our theory since, unlike the peaks,
features are easily localized, and matching them would
give a good depth estimate. Our present theory, how-
ever, is not consistent with a perception that sometimes
occurred for this stimulus. In some cases the dots were
perceived as lying above the surface rather than being
part of it. This may be explained by the extension of our
theory to transparent surfaces (Yuille, Yang & Geiger,
1990).

Additional support for this framework comes from the
experiment of Biilthoff and Fahle (1989; see also Biilthoff,
Fahle & Wegman, 1990) in which perceived depth for
different matching primitives and disparity gradients was
precisely measured. The results of these experiments sug-
gest that several types of primitives are used for corre-
spondence, but that some primitives are better than others.
Perceived depth decreased as a function of the disparity
gradient. This effect was strongest for horizontal lines,
strong for pairs of dots or similar features, and weak for
dissimilar features and nonhorizontal lines. An explana-
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False matching. The upper figure superimposes the left and right
image and shows how the midpoints of the images (which have
idientical intensity) are incorrectly matched by some intensity-based
stereo theories, giving rise to the disparity profile shown in the lower
figure with a dip in the center.

tion in terms of the Bayesian framework assumes that
these effects are due to the matching strategy and are
based on the second level theory. The idea is that the
smoothness term is required to give unique matching but
that its importance, measured by 4, increases as the fea-
ture become more similar. If the features are sufficiently
similar, then smoothness (or some other a priori assump-
tion) must be used to obtain a unique match, leading
to biases towards the frontoparallel plane. The greater
the similarity between features, the more the need for
smoothness and hence the stronger the bias toward the
frontoparallel plane. The fall-off of perceived depth with
increasing disparity gradient is modeled in detail by
means of the second level theory in Yuille et al. (1989).

Final Remarks

In this chapter we discussed different modules for shape
perception and their interaction. One can categorize these
interactions in two broad classes. In one, the cues are
consonant (noncontradictory). For example, consider view-
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Dense edge-bosed and intensily-based stereo
Perceived depth: 100%

Intensity-based stereo
Perceived depth: 70%

Consistent intensity - and edge-bosed stereo
Perceived depth: 84%

Stereo edges in front of shaded disk (without disparity)
Subjects ISA and HAM: 63%

Shape from shading
Perceived depth: 23%

Fig. 20.16

Surface interpolation. The upper three figures show surface
interpolation for: (1) dense edges and intensity-based stereo, (2)
intensity-based stereo, and (3) sparse edges and consistent shading.
The next two figures illustrate pulling: an edge token in front of
intensity pattems with no relative disparity (no intensity-based stereo)
pulls the surface up (left) but can sometimes cause a transparency
percept (right) of the token lying in front of the intensity surface. The
final figure shows the perceived depth without the edge token.
(Redrawn from Biilthoff & Mallot, 1990.)
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ing a golf ball with both eyes. There will be consistent
depth information from stereo, shading, and texture cues.
Viewing an image of the same golf ball in a photograph,
however, puts the stereo cue into conflict with shading
and texture.

Psychophysicists have attempted to deal with the first
case by taking weighted linear combinations with some
success (Bruno & Cutting, 1988; Dosher, Sperling &
Wurst, 1986). Some experiments discussed in this chapter,
however, do not seem consistent with such a model.

The case of conflicting cues seems to require significant
nonlinearity and usually requires a different, and inde-
pendent, mechanism. For example, this case is explicitly
excluded in the statistical framework for fusion of depth
information proposed by Maloney and Landy (1989).

Workers in computer vision have tended to use an
alternative viewpoint. A recent book on sensor fusion
(Clark & Yuille, 1990) proposed a distinction between
weak methods in which modules compute depth inde-
pendently and combine their results (perhaps by linear
combination) and strong methods in which two modules
interact during computation, usually in a very nonlinear
way. They argue that strong methods are preferable since
individual modules may be using conflicting assumptions.
These theories also seem rich enough to encompass both
the categories defined by psychophysicists.

These theories are expressed in a Bayesian framework
that can be used both for describing the individual mod-
ules and for their integration. Although there are many
other methods for dealing with individual modules, the
Bayesian approach subsumes a number of these methods
by isolating the key assumptions used by these theories.
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Appendices
A. Computer Graphic Psychophysics

Images of smooth- and flat-shaded (polyhedral) ellipsoids
of revolution were generated by either ray-tracing tech-
niques or with a solid modeling software package (S-
Geometry, Symbolics Inc; figure 20.17). The polyhedral
objects were derived from quadrangular tessellations of
the sphere along meridian and latitude circles. The objects
were elongated along an axis in the equatorial plane of
the tessellated sphere. Thus the two types of objects
differed mainly in the absence or presence of edges. As
compared to spheres, the objects were elongated by the
factors 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0. With an original
radius of 6.7 cm, this corresponds to depth values be-
tween 3.3 and 33.3 cm. In the following, all semidiame-

ters (elongations) are given as multiples of 6.7 cm. In most
experiments objects were viewed end-on, that is, the axis
of rotational symmetry was orthogonal to the display
screen. In an additional experiment, objects could be ro-
tated around a diagonal axis in the display plane. As an
example, the objects displayed in figure 20.2 are rotated
around that axis by plus and minus 45°, respectively.

For the computation of the smooth-shaded ellipsoids, a
ray-tracing operation was performed (Biilthoff & Mallot,
1988). The illuminant was modeled as a point source at
infinity (parallel illumination) centrally behind the abser-
ver. For some control experiments, oblique directions
of illumination (upper left and lower right) were used.
Surface shading was computed according to the Phong
model (Phong, 1975), consisting of an ambient, a diffuse
(Lambertian), and a specular component. For Lambertian
shading, the ambient and specular components were zero,
while for specular shading (highlight), a combination of
30 percent ambient, 10 percent diffuse, and 60 percent
specular reflectance (specular exponent 7.0) was chosen.
Since our objects were convex, no cast shadows or re-
peated reflections had to be considered.

B. Experimental Procedure

We displayed either a pair of disparate images (stereo
pair) or a nondisparate view of the object as seen from be-

Fig. 20.17

Flat- and smooth-shaded surfaces. (a, b) Discontinuous and smooth
intensity variations in images of polyhedra and ellipsoids provide
cues for edge-based stereo, shape-from-disparate-shading, and
shape-from-shading. (c) Smooth ellipsoids with sparse edge
information have been used in experiments on the interaction of
edge-based stereo and shape-from-shading. All images could be
displayed as stereograms or as pairs of identical images. In image (c),
the disparities of shading and the edge token (ring) could be varied
independently. (Redrawn from Biilthoff & Mallot, 1988.)
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tween the two eyes on a CRT Color Monitor (Mitsubishi
UC-6912 High-Resolution Color-Display Monitor, Re-
solution (H x V) 1024 by 874 pixels; bandwidth +3 dB
between 50 Hz and 50 MHz, short persistence phosphor).
The disparate images were interlaced (even lines for the
left image and odd lines for the right image) with a frame
rate of 30 Hz. This technique allows one to display the
left and right view at about the same location on the
monitor and therefore treats any geometric distortion of
the monitor equally for both eyes. Errors in displayed
disparities due to geometric distortions of the monitor
are therefore avoided. Both disparate and nondisparate
images were viewed binocularly through shutter glasses
(Stereo-Optic Systems, Inc.) which were triggered by the
interlace signal to present the appropriate images only to
the left and right eye. The objects were shown in black
and white with a true resolution of 254 graylevels using
a 10-bit D/A-Converter. The background was uniformly
colored in half-saturated blue. The screen was viewed in
complete darkness.

Local Depth Probe Technique

Perceived depth was measured by adjusting a small, red,
square (4 by 4 pixel) depth probe to match the perceived
depth of the surface interactively (with the computer
mouse). This probe was displayed in interlaced mode
together with the disparate images. This is a computer
graphics version of a binocular rangefinder developed
by Gregory (1966) called “Gregory’s Pandora’s Box" by
some investigators with the additional advantage that the
accommodation cue is eliminated. Measurements were
performed at 45 vertices of a Cartesian grid in the image
plane in random order. The initial disparity of the depth
probe was randomized for each measurement to avoid
hysteresis effects. Subjects were asked to move the cursor
back and forth in depth until it finally seemed to lie
directly on top of the displayed test surface. After some
training sessions, subjects felt comfortable with this pro-
cedure and achieved reproducible depth measurements.
Subjects included the authors (corrected vision) and one
naive observer, all with normal stereo vision as tested
with natural and random dot stereograms.

Global Shape Comparison Technique

The global shape comparison technique was used mainly
for those cues that required monocular viewing. It is also
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useful for cues that are processed more globally and
would be hindered by focussed attention on the local
probe. Depending on the task, this technique was used in
two different ways. To measure shape from shading and/
or texture with the global probe we displayed a stereo-
scopically viewed reference object in the same orientation
as the probe. The task of the subject was to change the
shading or the texture (or both together) in order to
match the shape with the reference object. This could be
done almost in real-time by fast recall from computer
memory of precomputed images of different shapes and/
or orientations. The reference object did not contain any
shading or texture cue beside the disparate rings on its
surface to avoid any cross-comparison with the depth
cues to be tested.

C. Data Evaluation
Depth Probe Technique

The depth probe technique leads to a depth map mea-
sured locally at 45 positions in the image plane. In order
to derive a global measure of perceived depth we per-
formed a principal component analysis on all data sets,
treating each one as a point in 45-space. Variance of the
perceived shapes was found mainly (94 percent) along the
first principal axis, whose corresponding loading was very
close to an ideal ellipsoid (or sphere). The second compo-
nent accounted for only 1.4 percent of the total variance.
We therefore chose the overall elongation, namely, the
coefficient associated with the first principal component,
as a measure of perceived depth for a given cue combina-
tion (see figure 20.5).

Global Shape Comparison Technique

The depth comparison data were averaged over different
runs and over two to four subjects. The mean number of
runs was about 180 and the average correlation between
displayed and estimated shape was 0.83. In order to dis-
tinguish easily between over or underestimation of depth
we give the mean slope for each depth cue. A slope of 1.0
is naturally the veridical perception and a slope >1 is an
underestimation of curvature (see figure 20.6).
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D. A Bayesian Framework for Stereo
The First Level: Matching Field and Disparity Field

The basic idea is that there are a number of possible
primitives that could be used for matching and that these
all contribute to a disparity field d(x). This disparity field
exists even where there is no source of data. The primi-
tives considered here are features such as edges in image
brightness. Edges typically correspond to object bound-
aries, and other significant events in the image. Other
primitives, such as peaks in the image brightness or tex-
ture features, can also be added. In the following, the
theory is described for the one-dimensional case.

One can assume that the edges and other features have
already been extracted from the image in a preprocessing
stage. The matching elements in the left eye consist of
features at positions x; , for iy = 1,..., N,. The right eye
contains features at positions x,, for ag = 1,...,N,. A
matching field is defined as a set of binary matching ele-
ments V; .. such that V;, = 1 if point iy in the left eye
corresponds to point ag in the right eye, and V;, =0
otherwise. A compatibility field A;,, is defined over the
range [0, 1]. For example, it is 1 if i, and ay are compatible
(i.e., features of the same type), 0 if they are incompatible
(an edge cannot match a peak),

One can now define a cost function E(d(x), V,,,) of the
disparity field and the matching elements. There are sev-
eral methods to estimate the fields d(x), V;,, given the
data. A standard estimator is to minimize E(d(x), V;,,)
with respect to d(x), V, ..

EM), Viad) = 2 Aoy Vigarlri,) — (o, — 2,,))’

L@

rifp (g )

i, \ag

+ 3 e

+-7j (5d)? dx. (11)
M

The first term gives a contribution to the disparity
obtained from matching i, to agz. The fourth term imposes
a smoothness constraint on the disparity field imposed
by a smoothness operator S.

The second and third term encourage features to have
a single match, they can be avoided by requiring that each
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column and row of the matrix V,,, contains only one 1.
Minimizing the energy function with respect to d(x) and
V;,a, Will cause the matching that results in the smoothest
disparity field. The coefficient y determines the amount of
a priori knowledge required. If all the features in the left
eye have only one compatible feature in the right eye
then little a priori knowledge is needed and 7 may be
small. If all the features are compatible then there is match-
ing ambiguity which the a priori knowledge is needed to
resolve, requiring a larger value of y and hence more
smoothing. This gives a possible explanation for the depth
reduction effects discussed in Biilthoff, Fahle & Wegman
(1990).

The theory can be extended to two dimensions in a
straightforward way. The matching elements Via, must
be constrained to only allow for matches that use the
epipolar line constraint. The disparity field will have an
additional smoothness constraint perpendicular to the
epipolar line which will enforce figural continuity.

Finally, and perhaps most importantly, a form for the
smoothness operator S has to be chosen. Marr (1982)
proposed that, to make stereo correspondence unambig-
uous, the human visual system assumes that the world
consists of smooth surfaces. This suggests that one should
choose a smoothness operator that encourages the dispar-
ity to vary smoothly spatially. In practice the assump-
tions used in Marr’s two theories of stereo are somewhat
stronger. Marr and Poggio I (1976) encourages matches
with constant disparity, thereby enforcing a bias to the
frontoparallel plane. Marr and Poggio II (1979) uses a
coarse to fine strategy to match nearby points, hence
encouraging matches with minimal disparity and thereby
giving a bias towards the fixation plane.

An alternative approach is to introduce discontinuity
fields that break the smoothness constraint. For these
theories the experiments described in Bilthoff et al. (1989,
1990) are consistent with S being a first order derivative
operator. This is also roughly consistent with Marr and
Poggio 1 (1976). A default choice is therefore 5 = 8/dx.

The Second Level: Adding Discontinuity Fields

The first level theory is easy to analyze but makes the a
priori assumption that the disparity field is smooth every-
where, which is false at object boundaries. There are sev-
eral standard ways to allow smoothness constraints to
break (Blake, 1983; Geman & Geman, 1984; Mumford &
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Shah, 1985). Here, a discontinuity field /(x) is introduced
which is represented by a set of curves C.

Introducing the discontinuity fields C gives an energy
function
E@(), Vi ©) = T, Ao Vien dlty) — (52 — 33,0

frL.dg

+ 22 (3 1)

3]

+ 7y J (Sd)* dx + M(C), (12)
M-C

where smoothness is not enforced across the curves C,
and M(C) is the cost for enforcing breaks.

The Third Level: Adding Intensity Terms

The final version of the theory couples intensity based
and feature based stereo. The psychophysical results sug-
gest that this is necessary. The energy function becomes
E(d(x), Vo, C) = z > Vi,,a.(d(l'th) — (5, = I:L))z

ip.ag

2
+ u J.{I-(I) — R(x + d(x))} dx

e 1 (g1
+ (T 1) §

+ yj (Sd)* dx + M(C). (13)
M-C

If certain terms are set to zero in equation 13, it reduces
to previous theories of stereo. If the second and fourth
terms are kept, without allowing discontinuities, it is simi-
lar to work by Gennert (1987) and Barnard (1986).

Thus the cost function (13) reduces to well-known
stereo theories in certain limits. It also shows how it is
possible to combine feature and brightness data in a na-
tural manner. In addition it can be modified to include
monocular cues (Clark & Yuille, 1990).

A similar theory for integrating different cues for mo-
tion perception was proposed by Yuille and Grzywacz
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(1988), although this theory did not involve discontinuity
fields.
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