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Derivatives Dependent on a Single Underlying Variable
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Consider a variable, θ, (not necessarily the price of a traded security) that
follows the process

Imagine two derivates dpendent on θ withprices f1 and f2. Suppose



Folie 4

Forming a Riskless Portfolio
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Market Price of Risk

This shows that (μ – r )/σ is the same for all derivatives 
dependent on the same underlying variable, θ
We refer to (μ – r )/σ as the market price of risk for θ and denote 
it by λ
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Martingales

A martingale is a stochastic process with zero drift
A variable following a martingale has the property that its 
expected future value equals its value today
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Alternative Worlds
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A Key Result

If we set λ equal to the volatility of a security g, then Ito’s lemma 
shows that f/g is a martingale for all derivative security prices f
(f and g are assumed to provide no income during the period under 
consideration).
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Forward Risk Neutrality

We refer to a world where the market price of risk is the 
volatility of g as a world that is forward risk neutral with 
respect to g.
If Eg denotes a world that is FRN wrt g
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Alternative Choices for the Numeraire Security g

Money Market Account
Zero-coupon bond price
Annuity factor
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Money Market Account as the Numeraire

The money market account is an account that starts at $1 and is 
always invested at the short-term risk-free interest rate
The process for the value of the account is

dg=rg dt
This has zero volatility. Using the money market account as the 
numeraire leads to the traditional risk-neutral world

Since g0 = 1 and , the equation 

becomes

where Ê denotes expectations in the traditional risk-neutral world.  
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Zero-Coupon Bond Maturing at time T as Numeraire
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where P(0,T) is the zero-coupon bond price and ET denotes expectations
in a world that is forward risk neutral with respect to the bond price.

In a world that is FRN  wrt P(0,T), the expected value of a security at 
time T is its forward price
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Annuity Factor as the Numeraire
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Suppose that s(t) is the swap rate corresponding to the annuity factor A.
Then:

s(t)=EA[s(T)]
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Black’s Model & Its Extensions

Main Approaches to Pricing Interest Rate Options:
– Use a variant  of Black’s model 
– Use a no-arbitrage (yield curve based) model

Black’s model is similar  to the Black-Scholes model used for valuing 
stock options.
It assumes that the value of an interest rate, a bond price, or some other 
variable at a particular time T in the future has a lognormal distribution.
No assumptions about the stochastic behavior of interest rates and 
bond prices.
Valuation of 
– European bond options
– Caps/floors
– European swaptions. 

The model cannot be used for 
– American options, 
– callable bonds
– Structured notes
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Black’s Model & its Extensions

The mean of the probability distribution is the forward value of the 
variable.
The standard deviation of the probability distribution of the log of 
the variable is 
where σ is the volatility.
The expected payoff is discounted at the T-maturity rate observed 
today.

 σ T
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Black’s Model
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• K : strike price
• F0 : forward value  of variable 
• T : option maturity
• σ : volatility 
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The Black’s Model: Payoff Later Than Variable Being Observed
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• K : strike price
• F0 : forward value  of variable 
• σ : volatility 
• T : time when variable is observed
• T* : time of payoff
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Validity of Black’s Model

Black’s model appears to make two approximations:

1. The expected value of the underlying variable is assumed to 
be its forward price. 

2. Interest rates are assumed to be constant for discounting.

We will see that these assumptions offset each other
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European Bond Options

When valuing European bond options it is usual to assume  
that the future bond price is lognormal
We can then use Black’s model 
Both the bond price and the strike price should be cash prices 
not quoted prices
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Yield Vols vs. Price Vols

The change in forward bond price is related to the change in forward 
bond yield by

where D is the (modified) duration of the forward bond at option 
maturity.

This relationship implies the following approximation
where σy is the yield volatility and σ is the price volatility, y0 is today’s 
forward yield

Often σy is quoted with the understanding that this relationship will be 
used to calculate σ.
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Theoretical Justification for Bond Option Model
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Working in a world that is FRN with respect to a zero-coupon bond
maturing at time T, the option price is

Also

This leads to Black‘s model.
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Caps

A cap is a portfolio of caplets.
Each caplet can be regarded as a call option on a future 
interest rate with the payoff occurring in arrears.
When using Black’s model we assume that the interest rate 
underlying each caplet is lognormal.
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Black’s Model for Caps

The value  of a caplet, for period [tk, tk+1] is

• Fk : forward interest rate for (tk, tk+1)
• σk :  interest rate volatility
• L :  principal
• RK :  cap rate

• δk=tk+1-tk
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When applying Black’s Model to Caps we must ...

EITHER
– Use forward volatilities
– Volatility different for each caplet

OR
– Use flat volatilities
– Volatility same for each caplet within a particular cap but 

varies according to life of cap
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Theoretical Justification for Cap Model
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European Swaptions

When valuing  European swap options it is usual to assume  that the 
swap rate is lognormal
Consider a swaption which gives the right to pay sK on an n -year swap 
starting at time T .  The payoff on each swap payment date is

where L is principal, m is  payment frequency and sT is market swap rate 
at time T

          max )0,( KT ss
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European Swaptions

The value  of the swaption is

s0 is the forward swap rate;  σ is the swap rate volatility;  ti is the time  
from today until the i th swap payment; and
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Theoretical Justification for Swap Option Model
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Relationship Between Swaptions and Bond Options

An interest rate swap can be regarded as the exchange of a fixed-
rate bond for a floating-rate bond
A swaption or swap option is therefore an option to exchange a 
fixed-rate bond for a floating-rate bond

At the start of the swap the floating-rate bond is worth par so that 
the swaption can be viewed as an option to exchange a fixed-rate 
bond for par
An option on a swap where fixed is paid and floating is received is 
a put option on the bond with a strike price of par
When floating is paid and fixed is received, it is a call option on the 
bond with a strike price of par
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Convexity Adjustments

We define the forward yield on a bond as the yield calculated from the 
forward bond price
There is a non-linear relation between bond yields and bond prices
It follows that when the forward bond price equals the expected future bond 
price, the forward yield does not  necessarily equal the expected future 
yield
What is known as a convexity adjustment may be necessary to convert a 
forward yield to the appropriate expected future yield
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Relationship Between Bond Yields and Prices

Bond
Price

YieldY3
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Y1Y2
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Analytic Approximation for Convexity Adjustment

Suppose a derivative depends on a bond yield, yT observed at time T .  
Define:  
G(yT)  :  price of the bond as a function of its yield
y0 :   forward bond yield at time zero
σy :   forward yield volatility
The convexity adjustment that should be made to the forward bond yield 
is
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When is a Convexity Adjustment Necessary

A convexity or timing adjustment is necessary when the payoff 
from a derivative does not  incorporate the natural time lags  
between an interest rate being set and the interest payments 
being made
They are not necessary for a vanilla swap, a cap or a swap 
option
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