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ABSTRACT

Several web sites deliver a large number of pages, each publishing
data about one instance of some real world entity, such as an athlete,
a stock quote, a book. Although it is easy for a human reader to
recognize these instances, current search engines are unaware of
them. Technologies for the Semantic Web aim at achieving this
goal; however, so far they have been of little help in this respect, as
semantic publishing is very limited.

We have developed a method to automatically search on the web
for pages that publish data representing an instance of a certain
conceptual entity. Our method takes as input a small set of sam-
ple pages: it automatically infers a description of the underlying
conceptual entity and then searches the web for other pages con-
taining data representing the same entity. We have implemented
our method in a system prototype, which has been used to conduct
several experiments that have produced interesting results.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Search process

General Terms
Algorithms

1. INTRODUCTION

There is an increasing number of web sites that deliver “data rich”
pages, where the published information is organized according to
an implicit schema. These pages usually contain high quality data
that represent instances of some conceptual entity. Consider web
sites that publish information about popular sport events, or web
sites that publish financial information: their pages embed data
that describe instances of conceptual entities such as athlete, match,
team, or stock quote, company, and so on. To give a concrete exam-
ple, observe the web pages in Figure 1. Each of them contains data
describing one instance of the BASKETBALLPLAYER conceptual
entity.

For the sake of scalability of the publishing process, the structure
of pages and navigation paths of these web sites are fairly regular.
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Within each site, pages containing the same intensional informa-
tion, i.e. instances of the same conceptual entity, offer the same
type of information, which is organized according to a common
template. In addition, the access paths (e.g. from the home page)
to these pages obey to a common pattern. Again from our basket-
ball example: in a given web site, the pages of two distinct players
contains data—such as name, date of birth, and so on—that are or-
ganized according to the same page template. Also, these pages
can be reached following similar navigation paths from the home
page.

Although it is easy for a human reader to recognize these in-
stances, as well as the access paths to the corresponding pages,
current search engines are unaware of them. Technologies for the
Semantic web aim at overcoming these limitations; however, so far
they have been of little help in this respect, as semantic publishing
is very limited.

To overcome this issue, search engine companies are providing
facilities to build personal search engines that can be specialized
over specific domains. A prominent example is Google Co-op, a
Google facility that allows users to indicate sets of pages to be in-
cluded in the personal search engine, and to assign a label (facet in
the Google terminology) to them. Labels aim at providing a seman-
tic meaning to the page contents, and are used to enhance the search
engine querying system. For data rich pages, labels typically repre-
sent a name for underlying conceptual entity. For example, a user
interested in building a personal search engine about the basketball
world can provide the system with web pages containing data about
players, such as those in Figure 1, and then she can associate them
with the label BASKETBALLPLAYER to indicate that they contain
data about instances of the basketball player conceptual entity. An
alternative approach with similar goals is based on mass labeling
facilities, such as del.icio.us or reddit .com, which allow
users to collaboratively annotate pages with labels.

We observe that although these approaches support users in the
definition of search engines that are somehow aware about the pres-
ence of instances of a given entity, the issue of gathering the rele-
vant pages must be performed manually by the user.

This paper proposes an original and effective domain indepen-
dent solution to tackle the issue of the page gathering task. We
believe that our method can help the above facilities scaling, as
it automatically discovers pages containing data that represent in-
stances of a given conceptual entity.

Our method takes as input a small set of sample pages from dis-
tinct web sites: it only requires that the sample pages contain data
about an instance of the conceptual entity of interest. Then, lever-
aging redundancies and structural regularities that locally occur on
the web, our method automatically discovers pages containing data
about other instances of the conceptual entity exemplified by the
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Figure 1: Web pages representing instances of the BASKETBALLPLAYER conceptual entity.

input samples, as follows.

e it crawls the web sites of the input sample pages to collect
pages with data about other instances of the conceptual entity
of interest;

from these pages, it automatically extracts a description of
the entity exemplified by the sample pages;

using the information computed in the previous steps, it laun-

ches web searches to discover new pages. The results of

these searches are analyzed using the entity description. Pages
representing valid instances of the target entity are stored,

and are used to recursively trigger the process.

It is important to notice that our technique has a different seman-

tics with respect to the “similar pages” facility offered by search
engines. Given as input two web pages from two different web
sites describing the basketball players “Kobe Bryant” and “Bill
Bradley”, our method aims at retrieving many web pages that are
similar at the intensional level, e.g. pages about other basketball
players, not necessarily the same two sample players.
The rest of the paper is organized as follows. Section 2 provides
a brief overview of our method that, after a discussion on related
work in Section 3, is detailed in Sections 4 and 5. Section 6 illus-
trates the result of the experiments we have conducted to evaluate
the effectiveness of the approach. Section 7 presents our conclud-
ing remarks and future work.

2. OVERVIEW

The ultimate goal of our method is to automatically discover web
pages that contain data describing instances of a given conceptual
entity. We assume that the user provides as input a few input sam-
ple pages. It is not important that the sample pages contain data
about the same instance; we only require they come from differ-
ent web sites, and they contain data that represent instances of the
same conceptual entity. Pages such as those in Figure 1 could be
used as input to collect pages with data about instances of the BAS-
KETBALLPLAYER conceptual entity.

Searching Entity Pages within One Site. The first step of
our method is to search the target pages within the web sites of
each sample page. This task is performed by INDESIT, a crawling
algorithm designed to drive a scan of a given web site toward pages
sharing the same structure of an input seed page [5].

INDESIT relies on the observation that, within a large web site,
pages offering a description of the same conceptual entity (e.g.,
BASKETBALLPLAYER) usually share a common template and sim-
ilar access paths.

INDESIT efficiently navigates the web site to collect pages con-
taining lists of links toward pages which are structurally similar to
the seed page. Following these links it gathers pages with the type
of information of the seed. With respect to our running example,
the output of INDESIT is the set of basketball player pages pub-
lished in the web sites of each sample page.

Learning a Description of the Conceptual Entity. As
a second step, our method computes a description for the target
conceptual entity. To this end, we rely on the observation that pages
containing data about instances of the same conceptual entity share
a common set of characterizing keywords that appear in the page
template.

In our approach, the description of a conceptual entity is then
composed by a set of keywords that are extracted from the set of
terms that lay on the templates of the input sample pages. Our
experiments show that these keywords effectively characterize the
overall conceptual domain of the entity with very promising results.

Given a set of structurally similar pages returned by INDESIT, the
entity description is generated by computing the terms that belong
to the corresponding template. This task is performed by analyzing
the set of terms that occur in the pages and by removing those ele-
ments that belong also to the “site template”, i.e. to that portion of
the template that is shared by every pages in the site. In this way,
from each sample page a set of terms is extracted. Terms that are
shared in the templates of different web sites are then selected as
keywords for the entity description.



Triggering new Searches on the Web. The results produced
by the initial INDESIT executions and the keywords in the entity
description are used to propagate the search on the web. This step
is done by the OUTDESIT algorithm, which issues a set of queries
against a search engine and elaborates the results in order to select
only those pages that can be considered as instances of the target
entity. Then, the selected pages are used as seeds to trigger again an
INDESIT scan, and the whole process is repeated until new pages
are found.

To correctly expand the search on the web, we need to address
two main issues. First, we have to feed the search engine with key-
words that are likely to produce new pages representing instances
of the input entity. Second, as these pages will be used to run a
new instance of INDESIT, we have to filter them in order to choose
those that really correspond to instances of the conceptual entity of
interest.

To generate the keywords to be submitted to the search engine
we adopt a simple yet effective solution. As we are searching for
instances of a given entity, we need values that work as identifiers
for the instances of the entity. We observe that, since pages are
designed for human consumption, the anchors associated with the
links to our instance pages usually satisfy these properties: they
are expressive, and they univocally identify the instance described
in the target page. In our example, the anchor to a player page
usually corresponds to the name of the athlete. Therefore, we issue
a number of queries against a search engine, where each query is
composed by the anchor of a link to one of the pages retrieved by
the previous INDESIT execution. Also, to focus the search engine
toward the right domain, each query is completed with keywords
from the entity description.

As search results typically include pages that are not suitable
for our purposes, we filter the off-topic pages by requiring that the
keywords of the entity description are contained in their templates.

The three steps described above are repeated to collect new rele-
vant pages: the results that are selected from each search are used as
INDESIT seeds to gather further pages and to trigger new searches.

3. RELATED WORK

Our method is inspired to the pioneering DIPRE technique de-
veloped by Brin [7]. With respect to DIPRE, which infers patterns
that occur locally within single web pages to encode tuples, we
infer global access patterns offered by large web sites containing
pages of interest. DIPRE also inspired several web information
extraction techniques [1, 3]. Compared to our approach these ap-
praches are not able to exploit the information offered by data rich
pages. In fact, they concentrate on the extraction of facts: large
collections of named-entities (such as, for example, names of sci-
entists, politicians, cities), or simple binary predicates, e.g. born-
in(politician, city). Moreover, they are effective with facts that ap-
pear in well-phrased sentences, whereas they fail to elaborate data
that are implied by web page layout or mark-up practices, such as
those typically published in web sites containing data rich pages.

Our work is also related to researches on focused crawlers (or
topical crawlers) [9, 20, 19], which face the issue of efficiently
fetching web pages that are relevant to a specific topic. Focused
crawlers typically rely on text classifiers to determine the relevance
of the visited pages to the target topic. Page relevance and contex-
tual information—such as, the contents around the link, the lexical
content of ancestor pages—are used to estimate the benefit of fol-
lowing URLs contained in the most of relevant pages. Although
focused crawlers present some analogy with our work, our goal is
different as we aim at retrieving pages that publish the same type of

information, namely, pages containing data that represent instances
of the conceptual entity exemplified by means of an input set of
sample pages.

Vidal et al. present a system, called GOGETIT! that takes as
input a sample page and an entry point to a web site and generates
a sequence of URL patterns for the links a crawler has to follow to
reach pages that are structurally similar to the input sample [22],
therefore their approach is limited to address the issue tackled by
our INDESIT crawler.

The problem of retrieving documents that are “relevant” to a
user’s information need is the main objective of the information
retrieval field [18]. Although our problem is different in nature, in
our method we exploit state-of-the-art keyword extraction and term
weighting results from IR [18].

There are several recent research projects that address issues re-
lated to ours. The goal of CIMPLE is to develop a platform to sup-
port the information needs of the members of a virtual commu-
nity [13]. Compared to our method, CIMPLE requires an expert to
provide a set of relevant sources and to design an entity relationship
model describing the domain of interest. The MetaQuerier devel-
oped by Chang et al. has similar objectives to our proposal, as it
aims at supporting exploration and integration of databases on the
web [10]. However it concentrates on the deep-web.

A new data integration architecture for web data is the subject of
the PAYGO project [17]; the project focuses on the heterogeneity
of structured data on the web: it concentrates on explicit struc-
tured sources, such as Google Base and the schema annotations of
Google Co-op, while our approach aims at finding data rich pages
containing information of interest. Somehow, our approach can be
seen as a service for populating the data sources over which PAYGO
works.

Cafarella et al. are developing a system to populate a probabilis-
tic database with data extracted from the web [8]. Data extraction
is performed by TEXTRUNNER [3], an information extraction sys-
tem which is not suitable for working on data rich web pages that
are the target of our searches.

Other related projects are TAP and SEMTAG by Guha et al. [14,
12]. TAP involves knowledge extracted from structured web pages
and encoded as entities, attributes, and relations. SEMTAG provides
a semantic search capability driven by the TAP knowledge base.
Contrarily to our approach, TAP requires hand-crafted rules for
each site that it crawls, and when the formats of those sites change,
the rules need to be updated.

4. SEARCHING PAGES BY STRUCTURE:
INDESIT

Given a seed page po containing data of interest, the goal of the
INDESIT algorithm [5] is to pick out from its site the largest num-
ber of pages similar in structure to pg and the anchors pointing to
such pages. The underlying idea of INDESIT is that while crawling,
it is possible to acquire knowledge about the navigational paths the
site provides and to give higher priority to the most promising and
efficient paths, i.e. those leading to a large number of pages struc-
turally similar to the seed.

INDESIT relies on a simple model that abstracts the structure of a
web page. The model adopted by INDESIT to abstract the structure
of a web page is based on the following observations: (i) pages
from large web sites usually contain a large number of links, and
(ii) the set of layout and presentation properties associated with the
links of a page can provide hints about the structure of the page
itself. Therefore, whenever a large majority of the links of two
pages share the same layout and presentation properties, then it is



likely that the two pages share the same structure. Based on these
observations, in INDESIT the structure of a web page is described
by means of the presentation and layout properties of the links that
it offers, and the structural similarity between pages is measured
with respect to these features.

The page model is used by a crawling algorithm that explores
a given Web site toward pages sharing the same structure of an
input seed page. The crawler navigates the Web site searching for
pages that contain lists of links leading to pages that are structurally
similar to the seed page. Since these lists of links work like indexes
to the searched pages, the crawler rely on them to reach the target
set of pages.

The experimental results of our evaluation are reported in Fig-
ure 2 and summarize the experiments in [5]. We report the average
recall (R), the average precision (P), and the average number of
downloaded pages (#dwnl) over 37 INDESIT executions.

R I #dwnl
95.31% | 96.56% | 3,389.22

Figure 2: INDESIT experimental results.

5. SEARCHING ENTITIES ON THE WEB:
OUTDESIT

INDESIT searches for entity pages within the same site of the in-
put samples. We now describe how the search of entity pages can
be extended on the web. The overall idea is to use the results ob-
tained by a first run of INDESIT on the sample pages in order to is-
sue a number of queries against a search engine, such as Google or
Yahoo!, with the objective of finding new sources offering other in-
stances of the same entity. This task is performed by the OUTDESIT
algorithm, which is described in Figure 3.

As we are interested in finding instances of the target entity, we
need to search the web by means of keywords that works as in-
stance identifiers. Our approach is to extract these identifiers from
the results of the previous INDESIT executions. Namely, we use
the anchors of links pointing to the pages collected by INDESIT as
keywords (lines 10-11 in Figure 3). The rationale is that as web
pages are produced for human consumption, the anchors of links
pointing to entity pages are likely to be values that univocally iden-
tify the target instance. E.g., in our basketball players scenario, the
anchor of the links to each player page is the name of the player.
Observe that, for the sake of usability, this feature has a general va-
lidity on the web. For example, the anchor to a book page usually
is the title of the book; the anchor to a stock quote is its name (or a
representative symbol), etc..

We leverage this property to run searches on the web (lines 9—
22). OUTDESIT launches one search for each new anchor found in
the previous INDESIT execution. To better focus the search engine,
each query is composed by an anchor plus a set of keywords, that
we call the entity description. Observe (line 14) that the query is
composed by a conjunction of three terms: (i) an anchor; (ii) a
domain keyword kg, which characterizes the overall conceptual
domain; (i) a disjunction of the keywords terms ¢1, . . ., t,,, which
describe the conceptual entity. All these keywords are extracted
automatically from the sample pages, as described in the following
of this section.

Each search produces a number of result pages,' which are an-
alyzed with the ¢sInstance function to check whether they repre-

"For each search, we take the first 30 result pages returned by the
search engine.

Algorithm OUTDESIT
Parameter: /N number of iterations
Input: a set of sample pages S = {po, ..., Dk}
containing data about instances of the same conceptual entity
Output: a set of pages about the input conceptual entity;
1. begin
Let R be a set of result pages;
Let R = INDESIT(p);
/ apply INDESIT to all input pages in S and
5. // insert the resulting pages into R
Letor = {t1,...,tn} be the entity intensional description
computed from R;
Let kr; be the domain entity description computed from R;
for (i=0; i<N, 1++) do begin
10. Let Abe the set of new anchors leading to
the pages returned by the last INDESIT invocations;
for all terms a € A do begin
Let W be the set of pages returned by a search
engine when looking fora A (t1 V...V t,) Akg;
15. for all pages p € W do begin
if the domain of p has been already visited continue
if (isInstance(p, o g)) begin
add INDESIT(p) to R
end
20. end
end
end
end

Function isInstance
Parameter: ¢ template similarity threshold
Input: a page p,
an intensional description o g of the conceptual entity

Output: true iff p is a page about the searched conceptual entity
begin

Let I = INDESIT(p);

if [I|]=1

return false
Let 7 be the set of tokens in the template of I;
Let D be the set of English terms in 7;

legND| .
lom] >t

return true iff
end

Figure 3: The OUTDESIT algorithm.

sent instances of the target entity (line 17). For each page that is
classified as an entity page, a new instance of INDESIT is run (line
18), and the whole process is iterated until new pages are found.

A fundamental issue in each iteration is to check whether a page
returned by the search engine can be considered as an instance of
the target conceptual entity. The search engine can in fact return
pages that, though containing the required keywords, are not suit-
able for our purposes. Typical examples are pages from forums,
blog, or news where the keywords occurs by chance, or because
they are in a free text description. To control this aspect OUTDESIT
requires that the keywords of the entity description appear in the
template of the retrieved page.

Then, for each page returned by the search engine, an instance
of INDESIT is run to obtain a set of structurally similar pages,” and
their template is computed. If the computed template contains the
keywords of the entity description, the page is considered valid;
otherwise it is discarded.

Valid pages are finally used as seeds for new INDESIT scans,
thus contributing to further discover new pages in the iterative step
performed by OUTDESIT.

*In this step, we run a “light” version of INDESIT, which quickly
returns a small set of pages.



5.1 Learning the Entity Description

The description of an entity E, is composed by an intensional de-
scription and by a domain keyword. The intensional description,
denoted o g, consists of a set of terms o = {t1,t2,...,t, } and is
extracted from the sample pages by analyzing the terms that occur
in their templates. The domain keyword, denoted kg, character-
izes general features of the entity and is generated by adapting in
our context standard keyword extraction techniques.

Extraction of the Intensional Description. Our approach
for generating the set of keywords to be associated with the con-
ceptual entity is based on the observation that pages from large
web sites are built over a template that usually contains labels de-
scribing the semantics of the data presented in the pages. Consider
again the three basketball player pages in Figure 1 and observe la-
bels such as weight, height, position, college: they are used by the
page designers to provide a meaning to the published data.

Our method for extracting a characterizing description of the en-
tity is based on the assumption that instances of the same concep-
tual entity have data that refer to a core set of common attributes,
even these from different sources. For example, it is likely that
most of the instances of the BASKETBALLPLAYER conceptual en-
tity present fields to describe height, weight and college data. This
is a strong yet realistic assumption; in their studies on web scale
data integration issues, Madhavan et al. observe that in the huge
repository of Google Base, a recent offering from Google that al-
lows users to upload structured data into Google, “there is a core
set of attributes that appear in a large number of items” [17].3
Also, in web pages, these data are usually accompanied by explica-
tive labels, and then they belong to the page template. For example,
in the three sample pages shown in Figure 1 (it is worth saying that
these pages have been randomly chosen from the web) there are
several labels that are present in all three pages. Our method aims
at catching these labels to characterize the description of the target
entity. To this end, we first compute terms that do belong to the
page templates of the sample pages. Then, we choose, as charac-
terizing keywords, those that appear in all the templates.

To illustrate our solution for extracting terms from the page tem-
plate it is convenient to consider a web page as a sequence of to-
kens, where each token is either a HTML tag or a term (typically an
English word). Each token ¢ is associated a path, denoted path(t),
which corresponds to the associated path in the DOM tree. Two
tokens are equal if they have the same path. In the following, for
the sake of readability, we may blur the distinction between token
and path associated with the token, assuming that different tokens
have different paths.

To detect tokens from the template of a given page we have
adapted in our context a technique proposed by Arasu and Garcia-
Molina [2]. They observe that given a set of pages P generated
by the same template, sets of tokens having the same path and fre-
quency of occurrence in every page in P are likely to belong to the
page template.

Let us introduce an example to show how we use these sets to in-
fer a conceptual entity description. Figure 4 shows the sequence of
tokens corresponding to three pages in Figure 1. The set of tokens
whose paths occur exactly once is given by: Weight, Profile,
<TR>, <TABLE>, <B>. It is reasonable to assume that they be-
longs to the template that originated the three pages.

The above condition allows us to discover template elements, but
it might not hold if a token belonging to the template coincides (by

3In the Google Base terminology, an item corresponds to a set of
attribute-value pairs.

chance) with some other token appearing in some page; for exam-
ple with an instantiated value embedded in the template. However,
observe that if the tokens that occur once in all the pages can be
considered template’s elements, it is reasonable that they indicate
delimiters of homogeneous page segments, i.e. segments generated
by the same piece of the underlying template. Then it is possible to
inspect each segment, in order to further discover new template to-
kens. Occurrences of tokens that are not unique on the original set
of pages could become unique within the more focused context of
a segment. To illustrate this point, let us continue with the previous
example: observe that the token Height, which is likely to belong
to the page template, cannot be included in the computed set, be-
cause it occurs twice in the second page (it appears in the profile
of the player described in that page). But consider the segments
of pages delimited by the tokens detected in the previous step: the
token Height occurs once in the second segment of every page,
which delimited by the tokens Weight and <TABLE>.

Algorithm TEMPLATETOKENS
Input: a set of token sequences S = {s1,...,Sn}
Output: a set of tokens
begin
Let 7 be an empty set of tokens;
Let & = {e1,. .., ex} be the list of tokens
that occur exactly once in every element of S;
for each token e; € £y do begin

Let S? = {si,..., s} be a set of sequences such
that s; = subSequence(s;,E,e;)Vj=1,...,n;
add TemplateTokens(S?) to T,
end
return 7 ;

end

Function subSequence(s, &, e;)
Input: s a sequence of tokens s =tg - ... tp
Ealistof tokens eg,...,ex, e, € sVi=1,...,k
e; atoken, e € £
Output: a subsequence of s
begin
Let i be the index of e; in s;
if (i==0) begin
start = 0;
end = index — 1;
end
if (i==k) begin
start =1+ 1;
end = n;
end
else begin
start =1+ 1;
Let end be the index of e; 1 in s;
end = end — 1;
end
return tsiart - ... - tends
end

Figure 5: The TEMPLATETOKENS algorithm to detect tokens
belonging to the template of a set of pages.

Given a set of pages, the set of tokens that are likely to belong to
the template are computed using the TEMPLATETOKENS algorithm
in Figure 5. The algorithm extracts tokens occurring once and uses
them to segment the input pages. Segments are then recursively
processed to discover other template tokens. The English terms
contained in the set of tokens returned by TEMPLATETOKENS are
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<HTML><DIV><SPAN>Weight</SPAN><|>97.... </DIV><DIV><SPAN>Height</SPAN><|>180.... </DIV><TABLE>

Page p,

<TR>...<ITR></TABLE> <DIV> <B>Profile</B><SPAN>The career ... height ...</SPAN></DIV> <UL><L|>...</LI></UL></HTML>

s3 s4 s5
sl s2
<HTML><DIV><SPAN>Weight</SPAN><|>90.... </DIV><DIV><SPAN>Height</SPAN><[>182.... </DIV><TABLE> Page p,
<TR>...<ITR></TABLE> <DIV> <B>Profile</B><SPAN>A giant...</SPAN></DIV><UL><L|>.. </LI></UL></HTML>
3 4 s5
sl s2
<HTML><DIV><SPAN>Weight</SPAN><|>91.... </DIV><DIV><SPAN>Height</SPAN><[>184.... </DIV><TABLE> Page p;

<TR>...</[TR></TABLE> <DIV> <B>Profile</B><SPAN>His coach...</SPAN></DIV><P> .. .</P></HTML>

s3 s4

s5

Figure 4: Pages as sequences of tokens.

likely to belong to the template of the input page. However some
of them could be originated also by that portion of the template
that is usually shared by every page in a site (comprehending page
portions such as headers, footers, navigational bars, and so on). To
eliminate these terms, we apply the TEMPLATETOKENS algorithm
over a broader set of pages, which includes the home page of the
sample page site. The terms returned by this execution are then sub-
tracted from the set of terms found in the template of the instance
pages. This procedure is performed for each sample page. Finally,
in order to obtain the core of terms that is shared by instance pages
from different sources, we compute the intersection among the sets
of terms computed from each sample.* We report in Figure 6 some
examples of the entity description generated using our tool.

[ DOMAIN |
BASKETBALL pts, height, weight, min, ast
GOLF college, events, height, season, weight
HOCKEY born, height, log, round, shoots, weight
SOCCER club, height, nationality, weight

attributes |

Figure 6: Generated descriptions for four conceptual entities.

Domain Keyword Extraction. Our approach for extracting
a keyword characterizing the conceptual domain of the entity rep-
resented by the sample pages is rather standard. We compute the
intersection among the terms that appear in all the sample pages
and in the home pages of their sites. The goal is to extract the key-
words that most frequently occur in the web sites of the samples.
The resulting set of terms are then weighted with the standard TF-
IDF scheme [18]. In particular, we consider the term frequency of
each term ¢ as the occurrences of the term in the whole set of pages
including the samples and the home pages of their sites. To com-
pute the IDF factor, we consider the estimated occurrence of the ¢
on the web, as reported in the web Term Document Frequency and
Rank service of the UC Berkeley Digital Library Project. The term
with the highest weight is then associated to the entity description.
In our example, the term “basketball” is associated to the BASKET-
BALLPLAYER conceptual entity.

6. EXPERIMENTS

We have developed a prototype that implements OUTDESIT and
we have used it to perform some experiments to validate our tech-
niques.

*The resulting set is also polished by removing terms that do not
correspond to English nouns.

We have focused our experiments on the sport domain. The
motivation of our choice is that it is easy to interpret the pub-
lished information, and then to evaluate the precision of the re-
sults produced by our method. The goal of our experiments was to
search for a set of pages, each one containing data about one ath-
lete (player) of a given sportive discipline. We have concentrated
on four disciplines: basketball, soccer, hockey, and golf. There-
fore, we may say that our experiments aimed at discovering pages
publishing data about instances of the following conceptual enti-
ties: BASKETBALLPLAYER, SOCCERPLAYER, HOCKEYPLAYER,
and GOLFPLAYER.

For each discipline we have taken three sample pages, from three
different web sites, each one publishing data about one player of
that discipline. Then, for each sample set we have run OUTDESIT.
In the following we presents the results of this activity.

6.1 Conceptual Entity Description

Extracted Intensional Descriptions. The results of the en-
tity descriptions generation are reported in Figure 6. A first ob-
servation is that all the terms may actually represent reasonable
attribute names for the corresponding player entity. Also, we no-
tice that there is a core set of terms which is shared by athletes
from different disciplines (namely, height and weight). Since our
experiments involve a taxonomy of the athlete category, it is rea-
sonable that athletes of different sports are described by a core set
of attributes.

Extracted Domain Keywords. Figure 7 presents the keywords
extracted from each set of sample pages.” Observe that the key-
words with the greatest weight correctly characterize the domain
(they actually correspond to the sport discipline). The domain key-
word plays a fundamental role in the OUTDESIT iterations. First,
as it is used to generate a more constrained query for the search
engine, it allows the system to elaborate a smaller (and more per-
tinent) set of pages. Second, in case of homonymous athletes in-
volved in different disciplines, the presence of the domain keyword
in the query can constrain the search towards the right discipline.

Using Entity Descriptions. We have manually analyzed the
behavior of the isInstance() function, which uses the entity de-
scription to check whether a given page is valid for our purposes.
We have run a single iteration of OUTDESIT with a set of anchors

>We only show terms for which the TF-IDF weight is at least 30%
of the maximum.



DOMAIN
keyword TF IDF | TF-IDF
BASKETBALL
basketball 29.0 | 5.61 162.89
season 27.0 | 5.08 137.39
team 24.0 | 4.07 97.86
players 14.0 | 5.30 74.26
GOLF
golf 64.0 | 5.29 338.63
leaderboard | 17.0 | 10.29 | 175.07
stats 26.0 | 5.65 147.06
players 25.0 | 5.30 132.62
HOCKEY
hockey 22.0 | 6.30 138.68
teams 11.0 | 5.26 57.90
SOCCER
soccer | 280 [ 559 | 156.62

Figure 7: Extracted keywords.

pointing to 500 SOCCERPLAYER pages, selected randomly from
10 soccer web sites. The search engine returned about 15000 pages
distributed over about 4000 distinct web sites. We have then manu-
ally evaluated the web sites to measure the precision and the recall
of the tsInstance() function over the pages returned by the search
engine. In particular, we studied how precision and recall behave
varying the value for the threshold ¢ in the OUTDESIT algorithm.

As expected, we can see In Figure 8 how raising the threshold the
precision increases and the recall decreases. The system achieves a
100% precision when the number of keywords from the description
required to be in the template of the page under evaluation is at
least 75%. When only 50% of the keywords are required, the pages
marked as valid are 74% of the total valid pages returned by the
search engine, and the precision is still high at 72%.

It is interesting to notice that only 20% of the web pages returned
by the search engine were pages whose data describe instances of
the same conceptual entity exemplified by the sample pages. An
example of non valid pages that frequently occurred in results re-
turned by the search engine are personal pages (blog), news or
forum pages: they are pertinent with the keywords passed to the
search engine, but they are not instances of the conceptual entity
as in our definition. It is worth saying that some of these pages
also contained terms of the intensional description. However, these
terms did not appear in the page template as required by our func-
tion, and then these pages were correctly discarded.

100% T
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

0% 25% 50% 75% 100%

—precision recall

Figure 8: Performance of the is/nstance() function varying
the threshold t.

6.2 Quantitative Evaluation

The number of pages discovered by OUTDESIT for our four target
entities are depicted in Figure 9. Each graph plots the number of

new instance pages against the number of new web sites discovered
by OUTDESIT. In order to have comparable results, we have run
two iterations for each discipline.

Starting from three sample pages, for each conceptual entity our
method automatically discovered several thousands of pages. By a
manual inspection, conducted on a representative subset of the re-
sults, we can conclude that all the retrieved pages can be considered
as instances of the entity exemplified by the input sample pages.

The graphs also plot the number of distinct anchors that are
found in each step. Somehow they can approximate the number
of distinct players. As expected, it is evident that they increase less
than the number of pages.

7. CONCLUSIONS AND FUTURE WORK

We have presented a method to automatically discover pages pub-
lishing data about a certain conceptual entity, given as input only a
small set of sample pages.

The set of pages retrieved by our method can be used to build a
custom, entity aware search engine. As a proof of concept, we are
building entity aware search engines for sport fans.® To this end
we are populating a Google Co-op search engine with the pages re-
trieved by OUTDESIT in our experiments. Each page is associated
with an annotation (facet in the Google Co-op terminology) corre-
sponding to the name of the entity exploited by OUTDESIT. Users
can use these annotations to semantically refine the query results by
restricting the search towards pages associated with the annotation.

The results of the experimental activity suggest improvements
that need to be developed, as well as new intriguing research direc-
tions. The current method for learning the entity description is a
bit simplistic. In particular, we have observed that computing the
keywords in the bootstrapping phase is too rigid. We are there-
fore developing a novel method, based on a probabilistic model,
to dynamically compute a weight for the terms of the templates
of the pages that OUTDESIT retrieves. Another issue that need to
be addressed to improve our approach deals with the development
of methods to consider also pages from the hidden web: techniques
such as those proposed for building focused crawlers for the hidden
web could be profitably adapted in our context [15, 4].

An important research direction that we are investigating is the
extension of automatic wrapping techniques (such as those pro-
posed in [11] and [2]) to extract, mine and integrate data from the
sources OUTDESIT retrieves, as we have recently demonstrated [6].
Another interesting study deals with the development of record
linkage techniques for the instances retrieved by our system. We
believe that our method, which progressively discovers new in-
stances from previously achieved results, can provide an interesting
basis for new approaches. Finally, we believe that a challenging is-
sue is to study extensions of our framework in order to take into
account also relationships among different entities.
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