

Invincible

A Stratego Bot

Vincent de Boer

November 2007

 2

 3

Invincible

A Stratego Bot

by

Vincent de Boer

A thesis submitted in partial satisfaction

of the requirements for the degree of

Master of Science

Presented at

Delft University of Technology,

Faculty of Electrical Engineering,

Mathematics and Computer Science,

Man-Machine Interaction Group.

November 2007

 4

Man-Machine Interaction Group

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

Mekelweg 4

2628 CD Delft

The Netherlands

E-mail: vdeboer_nl@yahoo.com

Student number: 1012975

Graduation Committee

drs. dr. L.J.M. Rothkrantz

dr. ir. C.A.P.G. van der Mast

dr. ir. R. Bidarra

ir. Pascal Wiggers

 5

Abstract

Stratego is a game that has proven to be a very difficult game for computers to master.

The incomplete information introduces the need to bluff and anticipate actions of the

opponent which can’t be solved by simple computations. Also the number of possibilities

for each move and the search depth required for basic game play are so large that brute

force searching techniques give no satisfactory level for even beginning Stratego players.

When posing the question whether computers can show intelligent behavior, one can not

only look at domains in which the computer is proven to be strong. If computers can

simulate human intelligence, then computers should be able to play the game of Stratego.

Since this seems not to be the case with the existing techniques, it is an interesting field to

test new ideas.

In this thesis I will describe the construction of a Stratego Bot called “Invincible” which

uses original approaches for creating setups, making guesses about the ranks of unknown

pieces and reasoning about the best move in a given situation.

Setups are created by a combination of statistical information of human-created setups

and heuristic evaluation of the results to select the best of a number of semi-random

setups. The number of setups out of which the best is selected can be used as a variable to

make setups stronger or more unpredictable.

The predictions about the opponent’s pieces are represented by a two-dimensional

probabilities array where the columns are the different pieces and the rows the different

ranks. Each piece is given a probability that it has each of the different ranks, where a

known piece has probability 1 to have its real rank and 0 for all the other ranks. The sum

of the probabilities of a piece is always kept 1 and the sum of the probabilities of a rank is

always kept equal to the number of pieces of that rank still in the game. After each update

to the probabilities the table is returned to normal form by iterating normalization over

the columns and then over the rows until a target accuracy is reached.

Reasoning about the next move is split up over different types of plans, where each plan

gives a value to each possible move. The move with the highest total value is selected as

the best move. Plans can for example be the capture of a known opponent’s piece or the

defense of the own flag. Plans with a higher importance should give higher values to

moves so that if there is a move they consider important this will dominate the values

given by the lesser important plans. If neither of the more important plans can find a

definite move, or they find several equal moves then the lower values given by lesser

important plans decide the outcome. These plans are computationally light, which is

possible because the problem is greatly simplified. Winning the game is a difficult

problem, whereas capturing a piece with 2 other pieces on a 10x10 board is not.

 6

These techniques result in a Stratego Bot that moves very fast at a decent level. It’s level

is limited by the amount of information it is given and not by the AI techniques used, but

it is already clearly better than average players.

 7

Preface

This thesis concludes a long and difficult, but also a very interesting and fun period in

which I was allowed to fool around with ideas that might or might not give some result. It

was a difficult journey, where the upcoming hills at first often seemed insurmountable,

but when approaching the summit it then seemed like no problem could be too large.

Unfortunately, the summit itself just reveals the other hills behind it and the inevitable

valleys in between. Somewhere in the middle I lost sight of both where I started and

where I still had to go, but there were always friends around to put me back on the right

path. At the moment I write this, the few rocks in front of me seem to be insignificant

compared to what has already been passed and I can look back with satisfaction to what

has been achieved.

I could not have fulfilled this journey without the help of my adviser Leon, the

everlasting support of my wife Lena, the wordless encouragement of my little daughter

Masja, the more eloquent encouragement of my parents and the help and advise of my

friends and lab colleagues whom I was allowed to bore with my problems and even

agreed to play Stratego to test my program. I owe them a lot of thanks and hope to have

been a source of inspiration to them as they have been to me.

Vincent de Boer

 8

 9

Table of contents
Abstract ... 5

Preface .. 7

Table of contents... 9

1. Introduction... 13

1.1 The Game of stratego.. 13

1.2 Practical use .. 13

1.3 Why Stratego?... 15

1.4 Existing programs ... 16

1.5 Personal experience .. 17

1.6 Division in sub problems .. 17

1.7 Goal... 19

2. Related Work .. 21

2.1 Min-max algorithm ... 21

2.1.1 Introduction.. 21

2.1.2 The Algorithm.. 21

2.1.3 Optimizations... 22

2.1.4 Successful applications .. 23

2.1.5 Min-Max for Stratego .. 24

2.2 Dijkstra algorithm ... 26

2.2.1 Introduction.. 26

2.2.2 The algorithm... 26

2.2.3 Dijkstra on the Stratego board ... 27

3. Basic concepts... 31

3.1 The value of pieces ... 31

3.1.1 Problem definition ... 31

3.1.2 Implementation .. 33

3.2 The value of information .. 34

3.2.1 Problem definition ... 34

3.2.2 Implementation .. 35

3.3 The game state .. 36

3.4 Strategic positions... 36

3.4.1 Lanes .. 36

3.4.2 High piece defense... 37

4. Creating a setup .. 39

4.1 Importance of the setup... 39

4.2 Setup theory .. 39

4.2.1 Flag placement ... 39

4.2.2 Bomb placement .. 40

4.2.3 High pieces... 41

4.2.4 Other pieces ... 41

4.2.5 Considerations for Invincible... 42

4.3 Implementation ... 42

4.3.1 The database... 42

4.3.2 Using the data .. 43

 10

4.3.3 Testing the semi-random setups... 44

4.3.4 Heuristic evaluation ... 45

4.3.5 Testing the heuristic evaluation ... 48

5. Move Planning.. 51

5.1 Introduction... 51

5.1.1 Advantage: “Unlimited” search depth ... 52

5.1.2 Advantage: Possibilities to bluff.. 52

5.1.3 Advantage: Possibilities to coordinate attacks with multiple pieces. 52

5.1.4 Advantage: Focus computation on interesting situations 52

5.1.5 Disadvantage: “Invincible” knows only what it is told 53

5.1.6 Disadvantage: Comparable information is calculated multiple times 53

5.1.7 Disadvantage: Game specific knowledge needed.. 53

5.2 Algorithm.. 53

5.2.1 Plans as black boxes... 53

5.2.2 The inside of plans ... 55

5.3 Plans used.. 57

5.4 Tactical plans .. 58

5.4.1 Immediate captures .. 58

5.4.2 Tactical defense ... 59

5.4.3 Tactical attack .. 62

5.4.4 Defense against gamblers .. 63

5.4.5 Defend marshal .. 64

5.5 Strategic plans... 64

5.5.1 Strategic attack... 64

5.5.2 Strategic defense .. 64

5.5.3 Trap pieces ... 65

5.6 General plans .. 66

5.6.1 Randomness ... 66

5.6.2 Move penalty ... 66

5.7 Other plans .. 67

6. Guessing ranks.. 69

6.1 Introduction... 69

6.2 The model ... 69

6.3 Heuristics .. 73

6.3.1 Starting position ... 73

6.3.2 Missed opportunities.. 74

6.3.3 Behavior towards known pieces .. 74

7. Implementation ... 77

7.1 The user interface.. 77

7.1.1 Requirements ... 77

7.1.2 Class diagram... 79

7.1.3 Class descriptions... 80

7.1.4 Sequence diagrams... 82

7.2 The artificial intelligence .. 84

7.2.1 Class diagram... 84

7.2.2 Class description .. 85

 11

7.2.3 Sequence diagrams... 88

7.2.4 Setup representation... 89

7.2.5 SetupCreatorV1.. 90

8. Testing .. 93

8.1 Introduction... 93

8.2 Test methods ... 93

8.3 Playing human opponents ... 95

8.3.1 Game 1: Mohannad defeats Invincible .. 95

8.3.2 Game 2: Invincible defeats Raymond.. 95

8.3.3 Game 3: Invincible defeats Mehdi ... 95

8.3.4 Game 4: Invincible defeats Lorena .. 96

8.3.5 Game 5: Sjoerd defeats Invincible... 96

8.3.6 Summary.. 96

9. Conclusions & Recommendations.. 97

9.1 Extended summary.. 97

9.1.1 User interface ... 97

9.1.2 Setup creation... 97

9.1.3 Guessing ranks ... 97

9.1.4 Move selection ... 98

9.1.5 Testing.. 99

9.1.6 Skill level ... 99

9.2 Conclusions... 100

9.3 Recommendations... 100

9.3.1 Adding more knowledge.. 100

9.3.2 Opponent modeling.. 101

9.3.3 Other applications .. 101

Bibliography ... 103

Appendix A: Stratego ... 105

A1 The game... 105

How to set up the game... 105

Game play ... 106

Rules for movement.. 106

Rules for attack ... 106

Rules of rank ... 106

Strategy hints .. 107

Winning the game... 107

A2 History... 107

A3 Repetition rules ... 109

The two-squares rule... 110

Implementation of the two-square rule ... 111

Game play effects of the 2-square rule ... 111

The more-square rule .. 112

Implementation of the more-square rule... 113

Game play effects of the more-square rule ... 114

Appendix B: The game client ... 117

The pieces ... 117

 12

Saving setups .. 118

Saving games .. 118

Replaying games... 118

Free setup .. 119

The menus... 119

Appendix C – testgames ... 121

Game 1: Mohannad vs. Invincible (1-0) – Mohannad wins in 313 moves............. 121

Game 2: Raymond vs. Invincible (0-1) – Invincible wins in 494 moves 123

Game 3: Mehdi vs. Invincible (0-1) – Invincible wins in 316 moves 125

Game 4: Lorena vs. Invincible (0-1) – Invincible wins in 328 moves 127

Game 5: Sjoerd vs. Invincible (1-0) – Sjoerd wins in 442 moves 128

Appendix D – Test setups... 131

 13

1. Introduction

1.1 The Game of stratego

Stratego is a game where at the start the players have incomplete information. The

players each have an opposing army and the goal of the game is to conquer the flag of the

opponent. The exact place of the different pieces is at the start only known to the player

who owns them. The players move in turns a piece to an empty square or a square that

contains an enemy piece. In the latter case, a battle takes place. The piece with the lower

rank is removed from the board and the winner has to reveal his identity. The further the

game progresses, the more is known about the pieces remaining on the board. The

amount of hidden information only decreases during the game until in the end the game

becomes deterministic rather than probabilistic.

A basic overview of the rules is included in appendix A, though some parts of the report

that deal with strategies might be easier understood by people who already know the

game.

Figure 1.1 – Stratego.

1.2 Practical use

When it comes to games, and in particular elements of games, like artificial intelligence,

one might wonder what the practical use of it is and how one can justify spending

research or development time on games. Games are after all just a pastime practiced by

kids who are neglecting school.

That previous statement is of course not completely honest towards games. Games are

indeed a major source of entertainment, but for far more people than just a few kids with

too much time on their hands. There are yearly billions or dollars earned in the gaming

industry, making games economically interesting.

But games are not only recreational. There are many useful aspects about playing games.

Not only do they entertain and relax the mind and so help fighting stress, they are also an

innocent outlet for competitive drift, teach social skills and can serve a variety of other

educational purposes. Where a book might be more efficient in transferring knowledge,

children enthusiastically spend far more time on games than they would on books.

 14

Someone once wrote in a “how do you know if you played too much” list on an internet

forum about a particular game: “If you get an A on topography without studying” which

is probably true because players of this game look at world maps possibly hundreds of

times a day, which is far more often than they would while studying topography.

This aspect of games leads to an increasing interest in so called “serious games” which

are meant mainly for education or training rather than purely entertainment. They are

however still games and have the competitive and entertaining quality to keep people

highly interested in spending time on them.

Examples can be found in the military where DARPA
[10]

, or first-person shooters like

Unreal tournament are used for military training, for learning languages (Tactical

Language & Culture Training System
[11]

), medical purposes (Simendo, Re-Mission) and

management training (Intel IT Management game)

Figure 1.2 – Unreal Tournament.

Finally, games have for many years been a test bed for artificial intelligence researchers

to get inspiration and test new ideas. For the last decades the main interest has gone to

Chess. Recently however, a computer program called “Deep Blue” was able to beat the

human world champion Kasparov in a series of games. Deep Blue uses a combination of

opening books, endgame databases and brute-force search on special powerful hardware.

One can argue whether this still falls under AI rather than under simulation so recently

interest has been shifting to other games like Go where the number of possible games

greatly exceeds the number of possible chess games or to games like poker, where human

aspects like bluffing and anticipating are more important than cold computation. These

games provide a new challenge for AI researchers that can’t be solved with the

techniques that were successful for chess.

 15

Games are relatively simple compared to real-life problems, but their competitive nature

challenges researchers to invent very good solutions that can be relatively easily

compared to other solutions by letting them play this game against each other. Solutions

found for games can then be used for similar sub-problems in the real world.

1.3 Why Stratego?

A lot of techniques are developed to play games like chess where the computer can

investigate all the different possibilities a number of moves ahead. Some games like Tic-

tac-toe, Connect-4, Go-moku or Awari are even simple enough to be completely solved
[4]

by the computer, meaning that for all situations it is known which move is best based on

evaluation of all the possible continuations till the end of the game. Even if a game can

not be solved, like chess, the techniques that simulate all the possible move sequences till

a certain depth can be used to make very strong computer opponents for these games.

Figure 1.3 - Tic-tac-toe, Connect-four, Go-moku and Awari.

However, there remain groups of games for which the existing techniques do not provide

a solution. This means that real-life problems that require the same aspects of reason

probably also have no good solution yet. Stratego is one of these games that remain a

challenge for the computer to compete in at the level with human players.

It is a game of incomplete information and therefore requires “human” skills like

bluffing, and analyzing the thoughts of the opponent. It combines this with tactical skills

and strategic maneuvers. The latter is especially difficult for computers because the effect

of strategic moves is usually long-term and thus difficult to see within a reasonable

search space. Players not only try to conceal information from someone else while trying

to look into their mind, they also need to use the gathered information by making a better

tactical or strategic plan. It is often hard to find the “best” move, because it depends not

only on the situation on the board but also on what the player and, more importantly, his

opponent think to know about the situation. Despite its appearance, there is almost no

randomness involved. There is uncertainty in the outcome of every battle, but with each

loss the uncertainty of the opponent’s pieces decreases giving an advantage in that

respect. Especially at top level, the better player nearly always wins.

Many real-life problems are not solvable, so the developments of AI techniques that aim

to solve a game are of limited use. In Stratego, the aim can’t be computationally perfect

play since incomplete information makes this impossible; the aim is instead to find a

good action in an uncertain environment. Especially the aspect of partial uncertainty is

 16

something that occurs in many every-day problems. One of the key elements of Stratego

is knowledge management. How to extract information that someone else knows and

doesn’t want to tell by examining the actions that he takes, but also how to use this

information to gain maximal profit without revealing too much own secret information.

The players must be alert to mistakes of the opponent and exploit them when they are

made. Taking calculated risks and having backup plans in case they go wrong. Many of

these properties are also required of managers and investors in real-life situations.

1.4 Existing programs

Invincible is not the first Stratego Bot, the

oldest program that I know of is

Probe
[21][28]

, which was created in 1983 and

required a supercomputer to run. This

program has recently been improved and is

now most likely the strongest available

program. It is based on a form of

exhaustive search, but also includes

pathfinding algorithms for deeper searches.

Probe is shareware and can be

downloaded
[28]

 for private use. It can also

be found playing online at Metaforge

Webstratego
[12]

.

Figure 1.4 – Probe.

The first program that was commercially released was Accolade Stratego, developed by

Ken McLeod in 1991. It was not very strong, but for a long time considered the strongest

commercial program. This program is now freeware and can also be downloaded.

Figure 1.5 – Hasbro Stratego.

Other commercial programs include Hasbro Stratego, a

game released by the company holding copyright on

Stratego in the United States. It has very detailed graphics

and animated battles but again not a very strong AI.

A more recent program is Sean O’Connor’s “The

General” which supports many different personalities for

the artificial opponent. Jumbo, the dutch game publisher

with copyright on Stratego has also taken an interest in

computer games of Stratego and recently released a

version to be played on mobile phone, and is currently

working on a version for the Nintendo.

Other programs include:

 17

• Raimonds Rudmanis “Reveal Your Rank!”

Can be downloaded at http://www.yellowgames.com/

• Sven Jug’s “Master of the Flag”

Can be played online at http://www.jayoogee.com/masteroftheflag/

• Karl Stengaard’s “Perspecto”
[15]

Made as a Master thesis project at Lund University. It beat the commercial

program “The General” but unfortunately the program itself is lost.

• Agent-based Stratego by Mohannad Ismail
[29]

A bachelor project at Delft University where the goal was primarily to make an

agent based system

• Erik ten Vergert’s Aaaweb

Can be played online at http://www.eriktenvergert.nl/stratego/Stratego.html

• Browserchess Stratego

Can be played online at http://www.browserchess.net/stratego/

At the higher level it cheats though.

I have tested all these programs, but none of them really know what they are doing. Probe

is by far the strongest of them all, but even this program ranks among the worst players at

the online site where it plays.

1.5 Personal experience

In this thesis I will often draw on my own experience as a Stratego player.

I started playing Stratego in may 1999, on an online site called Metaforge
[12]

. I liked the

game, played it often and soon became one of the better players on this site. I then got in

contact with someone who told me about real life Stratego tournaments that are being

organized regularly in the Netherlands by SBN
[13]

. The level here was far higher than it

was on internet and I got beaten in most of my games, but I learned a lot from these

beatings and won the 4
th

 tournament I played, despite being the lowest ranked participant.

From then on I gradually got better, winning several tournaments in 2000 and the Dutch

Championships in 2001. I played approximately 70 tournaments in 2000-2005 and was

the only player in this period who never ended a tournament lower than the 5
th

 place. I

reached the first position in the international Stratego ranking
[14]

 in 2002 and am still

holding it today. I “retired” from playing online in 2002 while holding nr 1 positions on

both large Stratego sites. My top year in live tournaments was 2003, in which I won all

but one of my tournaments (where was unbeaten but still ended 2
nd

 by a minimal margin).

In that year I won the dutch championships for the second time and later won the World

Championships for the first time. After that I started playing less. I prolonged my world

title in 2004, but didn’t win another tournament till august 2007 when I was working on

this report and went to the World Championships to refresh my knowledge and won the

world title for the 3
rd

 time.

1.6 Division in sub problems

 18

The game of Stratego can be divided in 3 major parts.

1. Creating a starting setup

2. Guessing the ranks of unknown pieces

3. Computing and executing moves

Figure 1.4 The three major subsystems of Stratego.

Each of these requires a different kind of logic. They will be the sub-parts of my program

and I will treat these problems separately in the following chapters.

For the setup module, a statistical approach is used. Information from thousands of

human-created setups is used in order to generate semi-random setups for the Stratego-

bot.

For guessing the ranks of pieces, a probability matrix is kept holding the probability for

each rank for each piece. The numbers are updated after each move of the opponent,

using heuristics to subtract as much information as possibly from the opponent’s actions.

At the same time, the algorithm keeps an eye on what the opponent is likely to be able to

conclude from its own past moves. The matrix is kept in normalized format by iterating

the normalizing process over two dimensions until a target accuracy is reached.

Move planning is done not by looking at a move and examining what it can lead to but by

looking at possible goals and checking how well each possible move contributes to that

specific goal. This is a much simpler problem that allows “Invincible” to see

opportunities that would be well beyond the search horizon of any exhaustive search

algorithm. This is possible because most of the moves in Stratego are not inter-related.

They might be performed in any order and always have the same result, and often

sequences of moves occur that end up back in more or less the same situation. A plan to

capture a certain piece might be interrupted by moving another piece out of danger, but

this doesn’t necessarily change the initial plan; it often only delays it. The moves that

 19

were calculated to be necessary for capturing the piece do not have to take into account

possible move-sequences on the other side of the board if they clearly don’t interfere.

1.7 Goal

The goal of this thesis is to build a basis of a Stratego-bot that can compete with the best

existing programs and have the potential to get to a much higher level so that it can

challenge experienced human players. Unlike its predecessors for Stratego, “Invincible”

will not make use of the established techniques from game AI, but develop a new

technique more suitable for a game that requires dealing with unknown information and

deep searches but where different actions do not always directly influence each other.

At the end of the project, there should be a working prototype of the program and a user

interface that lets human players play against the AI-bot.

 20

 21

2. Related Work

2.1 Min-max algorithm

2.1.1 Introduction

The min-max algorithm
[5]

 and its optimizations can be argued to be the most popular

technique in (board-) game AI’s. For many games it allows the programmer to create a

decent computer opponent while having little or no knowledge of the game itself. It

effectively performs an exhaustive search over the game tree. Because this algorithm is

exponential in the number of moves (or plies: a move by one player) the number of

moves one can look ahead is limited. The more different moves a player can choose from

a given position, the higher the branching factor of the tree and the less deep the

algorithm can search before running out of time. Generally, the game is far from over at

the point the search must be stopped, so an evaluation function is used to give a value for

the board position at that time. This is an estimation of how the game will evolve from

that point on. This is the only place where knowledge of the game is required from the

programmer, but in many games a simple check on the remaining pieces or temporary

score can give a reasonable approximation.

2.1.2 The Algorithm

The min-max algorithm is a depth-first search over the game-tree until a specified depth.

In short, it searches moves that lead to the best reachable position when one player makes

optimal moves leading to the highest value and the other makes optimal moves leading to

the lowest value, where the value of a position is either a high or low value for a win/loss

situation or a heuristic value defined by an evaluation function taking the board position

as input. The min-max algorithm got his name because the players are called min and

max, where min tries to find the minimal evaluation value it can reach and max the

maximal value. At each node where min has to make a move, the minimal evaluation

value of its children is the value of this node. When max has to make a move, he returns

the maximal value of the children.

This is illustrated in figure 2.1. The values on the second layer are found by taking the

maximum values of their children and the top value is found by taking the minimal value

of its children. This tree returns only the best reachable value, and not the path that needs

to be taken to reach it. Since the move that leads to the best score is only relevant in the

first step a min-max tree can be made after each possible move in the current board

position and compare the values to find which move led to the highest value.

 22

Figure 2.1 – Min-max search tree.

2.1.3 Optimizations

A lot of research has been done on ways to perform more efficient searches in this tree

without losing correctness. The most notable improvement is the alpha-beta pruning
[6]

.

Because the algorithm alternates between taking the minimum and maximum of different

values, the previous results create a window of useful future values. If a minimum value

is searched and a 2 is already found; only values lower than 2 can change the result.

Similarly if a maximum is searched and already have a -1 only values higher than -1 are

interesting. These requirements from all previous levels can be combined so if on level 1

a value lower than 2 is needed to change anything, and on level 2 a value higher than -1

then only values between -1 and 2 on the third level can change the eventual result. If this

is again a minimum search and a -2 is found the value of the node will never be higher

than that and thus never fall in the interesting window between -1 and 2. The search can

then be stopped without losing correctness.

Figure 2.2 – Alpha-beta pruning.

 23

Figure 2.2 shows the same tree as in figure 2.1. If the search goes from right to left it can

safely skip the grey nodes and the whole tree that comes after them. Whatever values are

given to those nodes can’t possibly affect the value of the root.

The exact value of the node marked with “2+” isn’t known but it is known that it is at

least 2. When looking for the minimum of -1, a number larger than 2 and some unknown

numbers, the number larger than 2 can be discarded so it’s not necessary to find more

information about this node.

Rather than searching all values, only values between alpha (lower bound) and beta

(upper bound) are searched. Alpha and beta are updated based on previous results and

any search path whose result is certain to fall outside the alpha-beta window is

terminated. In the example in figure 2.2 three of the seven leaves can be ignored. Since in

problem with a larger search depth each of these leaves is actually a whole sub tree then

cutting off 3 out of 7 of these sub trees is a very significant improvement.

Unfortunately it isn’t always that great. If in the tree from figure 2.1 the algorithm

searches from right to left rather than from left to right then it cannot ignore a single leaf.

For optimal performance the child nodes must be ordered based on how promising they

are and evaluated in that order. The best situation is when the best child nodes are

evaluated first, the worst (equal to normal min-max) happens when the algorithm starts

with the worst child nodes each time.

2.1.4 Successful applications

Most of the artificial intelligence programs that can compete at very high level with

human players are based on this algorithm. Most notable examples are chess [1] and

Othello [2] where the best programs are better than the best humans. The advantage of

this method is that relatively little experience with the game is required from the

programmer, making it an ideal method to quickly create a decent AI-bot for lesser

known games. The success of the method however largely depends on the type of game.

Othello and Chess are:

• Games of complete information

• Games in which it is relatively complicated for human players to look ahead very

far

• Games with a decent evaluation function for a board position.

Complete information is important to build a search tree. In games of incomplete

information there will be many points in the tree where it is not known how to continue

without knowing some piece of hidden information. It is possible to overcome this by

making calculated guesses about the hidden information but this sacrifice some certainty

of the correctness of the answer. What is even more important is that these games

generally cannot be treated purely mathematically. Even if the optimal move is found this

is not guaranteed to be the best move since the optimal move is usually based on

information that is hidden from the opponent and should preferably stay hidden as long as

 24

possible. If a player consistently makes “optimal” moves he might tell his opponent a lot

of things he doesn’t want him to know. Also, such approach ignores bluffing: making

sub-optimal moves on purpose in order to let the opponent make a bigger mistake. Games

of this type are rarely won by a direct approach. Even the best poker player won’t beat a

beginner if he is playing with open cards.

It is also important for this method to work that the search depth needed to compete with

human players is relatively small. Human players generally play by selecting a few

interesting sequences and investigate them as deep as they can, with only a few variations

to the most likely responses. This means they need to do a lot fewer calculations than the

computer who explores all possible directions. The more the situation can change after a

single move, the harder it is for human players to imagine the new possibilities, while for

the computer this is relatively easy. In Go, where pieces put on the board never move,

even average human players can think a lot further than the computer can possibly

explore.

Finally it’s important that a simple evaluation function can be made for the value of a

given board position. Since it’s usually not possible to calculate the game all the way till

the end it is necessary to have a reliable measure to say whether one board position is

better than another. It doesn’t have to mean that a higher value always means a bigger

chance to win, because if such a function existed the game would be solved by a one

move look ahead to see which reachable position has the highest value. It should however

be a good indication whether a position is favorable or not. With a poor evaluation

function the AI-bot might pick moves leading to a poor position if the evaluation function

says it’s a very good one. Making an evaluation function is generally easier in games

where material advantage is important than in games that are mostly positional (for

example Go).

Most existing Stratego programs are based on the min-max algorithm. Even though this

may quickly give a superficial player, I will argue that it can’t possibly lead to a program

that can compete with experienced human players.

2.1.5 Min-Max for Stratego

Even though Stratego has incomplete information and it would be tolerably hard to make

a decent evaluation function, I will explain that the real reason why this algorithm won’t

work for Stratego is the search depth.

A simple example where a miner is 10 squares away from the opponent’s flag requires a

search depth of 20 plies. The branching factor of Stratego can be very high. A piece

standing on the middle of the board can do 4 moves, and a scout can do even up to 18

moves. It is therefore unlikely that a depth of 20 plies can be reached, but it gets even

worse because of repetitive situations. If the opponent can threaten a piece that the player

can’t afford to lose he will have to spend a move on moving it away from the danger.

Because of the repetition rules the other player will eventually have to stop threatening

his pieces, but even in simple situations he is allowed to spend 5 moves on it for every

 25

single other move. This effectively multiplies the needed search depth by 5. Two of these

situations would multiply it by 10 and worse situations are imaginable.

Figure 2.3 – Red wins in at most 100 moves: how?

Take for example the situation in figure 2.3: red is to move. If all the pieces are known

this is an easy win for red. He can trap the blue miner and then use his marshal to help his

miner get past the blue general to the flag. Without using heuristic values one can

calculate that blue does not stand a chance and red will capture the blue flag, regardless

of the actions of blue. The shortest path to do this however takes 28 moves (56 plies).

That is if blue moves only his scout and moves his general down one step when the

marshal comes close, after which the miner has to move up around the marshal and

general to the flag.

If blue however moves his general down earlier, red must move his miner away since it is

needed to reach the flag later. So the miner must move up, after which the general moves

up to. Now the miner should go back down instead of north because this leads to a

repetition of “only” 5 moves; going up again leads to a (much) longer chase. After 5

moves blue can’t move up again and has to move another piece so he moves his scout.

The red marshal takes one more step towards his goal and after this the blue general again

continues threatening the red miner. This multiplies the number of moves needed by 6

until the marshal is close enough to the general to limit his movement. In this case, the

first 18 moves are multiplied by 5, after which 10 more moves are needed to reach the

flag, making a total of 100 moves (200 plies). Considering the exponential complexity of

the min-max algorithm in the number of plies it seems very unlikely that a computer

using this algorithm will ever be able to state in this position that red wins this game.

 26

Apparently, the search depth that human players can reach in Stratego is a lot higher than

a computer can achieve. This is a big difference from chess, where the computer can

generally think further ahead and is less likely to overlook an important possible path

than human players. In this situation of complete information there is even no loss of

correctness. Even though there may be a miscalculation in the number of moves needed,

or a path may be overlooked that allows a quicker win, but it is certain that red will win,

given that neither side makes a mistake.

How is it possible that a human can “out-calculate” the computer in Stratego when he

can’t do so in chess? The reason for this seems to be that in Stratego people generally

think in plans. They don’t think about each move separately, but think in goals that must

be achieved. In the situation above there are just 3 goals. Capture the miner, chase the

general from his blocking position and finally go with the miner to the flag. The

importance of the first plan can be assured by counting that if this plan is omitted the blue

miner reaches the flag long before the red miner can. Therefore capturing the blue miner

should be a priority. How to do this is also simple. There is only 1 piece that can capture

him, so that piece will have to move there. It’s useless to consider what happens when the

red marshal moves upwards since that obviously won’t contribute to a winning plan. The

exact path that is taken is often not important either. It is easy to count that the miner

can’t escape his trap before the marshal blocks the exit so the miner can be captured.

Even though blue can do a lot of moves, for this calculation only the moves of the miner

need to be taken into account. Any move done by the scout can be safely ignored (which

is the large majority of blue’s possible moves!) Also the sequence of the blue general

chasing the red miner can be ignored since it doesn’t change the situation. It’s just a

sequence of forced moves resulting in essentially the same board position that was there

before.

Rather than taking a move and examining what this move can possibly lead to, human

players generally take a board position, decide on a plan and then find the move needed

to do to execute that plan.

2.2 Dijkstra algorithm

2.2.1 Introduction

The Dijkstra algorithm
[7]

 is an efficient way to find the shortest path from any given point

to any other in a directed graph with non-negative distances between nodes.

2.2.2 The algorithm

The algorithm takes each time the node with the shortest distance to the source

(beginning with the source itself) that has not been evaluated yet. It then updates all the

neighbors of this node if they can be reached with a lower cost than they could before.

 27

As soon as the destination node is found as having the shortest distance to the source the

algorithm terminates. Note that it can not stop the first time the destination node is

reached by another node since it may be possible to reach it by a lower cost in one of the

next iterations.

Because all vertexes have a non-negative weight, the node that is closest to the source of

all unevaluated nodes can never be reached for a lower cost by another route. Because

this distance is final, it can be used to update it’s neighbors with the correct cheapest cost

to that node from the source passing that node.

Figure 2.4 – The Dijkstra algorithm.

2.2.3 Dijkstra on the Stratego board

The Stratego board can be seen as a directed graph where each field is a node, with

vertexes of equal weight between every horizontal and vertical neighbor.

The algorithm is simplified because all vertexes have equal weights. This means the

distances can be updated in “runs” where in each run fields that are connected to fields

reachable in n steps but have not been reached in previous steps are given distance n+1.

For each node n

distances[n] := ∞

visited[n] := false

Distances[source] := 0;

While visited[destination]=false

 min_dist := ∞

min_node := -1

 for each node n

 if visited[n] = false and distances[n] < min_dist

 min_dist = distances[n]

 min_node = n

 if min_dist = ∞

 break

 visited[min_node] = true

 for each node n

 distances[n] = min(distances[n], min_dist+vertex[min_node][n]

return distances[destination]

 28

This also makes it easy to take moving enemies into account that may or may not block

the path of a piece. If in each run the distances from all enemies on the board are updated

first and the distances from all friends on the board second then it is easy to see whether

the enemy can reach block the path of the friendly piece.

It is also possible to define obstacles as inaccessible fields, such as enemy bombs or own

pieces. Usually both colors have different fields that block them. For example a low

known friendly piece would block his friends, but not a high opponent piece.

Figure 2.5 gives in pseudo code the algorithm that calculates the distance from any piece

defined as friend to any other reachable field on the board taking into account that pieces

defined as enemy must be avoided.

Figure 2.5 – adapted Dijkstra for multiple sources and targets with equal distances between nodes.

This is a simplification of the real situation because a single enemy is considered to be on

all the squares it could possible reach, which is a safe method when the enemy is

for each field f

if enemyAt(f) enemies[f] := 0

else enemies[f] := ∞

if friendAt(f) friends[f] := 0

else friends[f] := ∞

if isObstacle(f) obstacles[f] := true

else obstacles[f] := false

updated := true

run := 0

while updated

 updated = false

run++

for each field f

 if enemies[f] = run and not obstacles[f]

 updated := true

 for each neighbor n

 enemies[n] := min(run+1,enemies[n])

for each field f

 if friends[f] = run and enemies[f] > run and not obstacles[f]

 updated := true

 for each neighbor n

 friends[n] := min(run+1,friends[n])

 29

determined to stop a single attacker from reaching his goal. When there are multiple

attacking pieces however, they often can’t be stopped by a single enemy so this method

would erroneously state that the goal can’t be reached.

The computational gain however is huge. Each field is evaluated a constant number of

times so the order of this algorithm is O(n). In the case of Stratego, n is actually also a

constant since there are only 100 fields on the board, it is independent on the number of

moves that are needed to complete this plan!

Even though this method has its limitations, I found it can solve a variety of problems

that can occur during a Stratego game. Some examples are:

• Detection of an open path from a miner to a possible flag.

• Calculating the distance of an unbeatable piece to any unmovable target (may be a

clump of moving pieces that may theoretically move but are likely to provide a

capture possibility).

• Detection of the reachable area of a given or of all enemy pieces.

• Detection whether the own flag can be reached.

More complicated attacks like 2 miners approaching a flag with a single defender can not

be so easily seen. To detect this possibility in reasonable time one could use the heuristic

that 2 attackers cannot be stopped by 1 defender, nor can 3 attackers be stopped by 2

defenders if the target is not in the corner. The attackers should be as far apart as possible

(approaching from different sides). This would require more programming, but would not

add to the time complexity of the algorithm.

 30

 31

3. Basic concepts

This chapter will discuss some basic concepts about the game Stratego. This is a part of

my own knowledge of the game that I used to design some elements of “Invincible”. I

will discuss some background of the problems and the solutions that I implemented.

3.1 The value of pieces

3.1.1 Problem definition

It is often useful to be able to give a numeric value to a piece, for example to calculate the

profit of attacking a piece, or for determining whether preparing an attack on one piece is

better than on another piece. When attacking an unknown piece “Invincible” can then

take expected profit by taking a weighted sum of all the possible outcomes and their

probabilities. He multiplies all the values of the pieces he can capture by the probability

that the unknown piece has this rank and subtract his own rank multiplied by the

probability that he will lose the attack. It is not only necessary that a “better” piece has a

higher value, but also that a much better piece has a much higher value so that the small

probability of the loss of an important piece weighs stronger than the large probability of

the capture of an unimportant one.

The problem of giving a value to pieces is a very difficult one in Stratego. In general it is

of course true that a higher rank has a higher value, but what really matters is the abilities

they have. Higher pieces generally have more abilities than lower pieces because they can

capture more pieces, but there are also pieces with special abilities like the spy who can

capture the marshal or the miner who can capture bombs. Also the movements a piece

can make are important, a bomb that can beat all pieces clearly deserves a penalty in

value because of its immobility and the scout’s speed should also be reflected in the

piece’s value. It is hard to give an objective formula how the value of a special ability

relates to the value of having a higher rank.

There is another issue: A Colonel (rank 8) is more valuable than a Major (rank 7) because

the Colonel can capture Majors and the Major can not. If the opponent however doesn’t

have either Majors or Colonels then the Colonel has no advantage over the Major and has

an equal value. Also, a General is much more valuable than a sergeant because at the start

the general can capture 17 pieces that the sergeant can not. At the start of the game it

would be very profitable to get the enemy general in return for 2 sergeants. Figure 3.1

however shows an endgame position where blue has a general against red’s two sergeant

and blue should be very happy to get a draw. If the blue general is known and the other

pieces are not, which is not a very unrealistic situation in an endgame then red has an

almost certain win.

 32

Figure 3.1 – blue should be happy with a draw.

This shows that pieces don’t have absolute values, but one that changes depending on the

pieces of the opponent. It also shows that pieces of equal rank don’t have the same value,

because it is possible to get from the starting position with a red general and two blue

sergeants removed to the endgame position in figure 3.1 by only removing equal pairs of

pieces from the board, yet somehow the material advantage shifted from blue to red in the

meantime.

This seems strange, but can be explained by the loss of ability on the general’s part. If he

had captured only a single piece higher than sergeant blue would already have a won

position, but with all these pieces removed, blue no longer has this possibility.

Figure 3.2 shows a more obvious example in which pieces of equal strength have an

unequal value, and it also shows the importance for a player to recognize this. If both

colonels are removed from this position then red wins because his two majors can trap

blue’s major and blue will not have any pieces left. This means that the exchange of

colonels is favorable for red and unfavorable for blue, or in other words, the blue colonel

is worth more than the red colonel. Not recognizing this might result in a result-changing

mistake.

 33

Figure 3.2 – The blue colonel (8) is worth more than the red colonel (8).

A final consideration is that special abilities become more valuable when they are rarer.

The less scouts or miners “Invincible” has, the more careful he should be with his

remaining ones because when he loses this ability completely it makes his opponent’s

defense a lot easier.

3.1.2 Implementation

The piece values are recalculated after every move. As a general rule, a piece is only

worth more than a lower piece if the opponent has a piece that can be captured by this

piece, but not by the lower piece. The base values of the pieces are therefore decided by

iterating over the existing ranks, starting from the lowest, and multiplying the value for

the next rank by a constant factor if both players have at least one piece of the previous

rank or the new one. This is given in pseudo code in figure 3.3. The

rank_difference_factor is a heuristic value, set by trail and error on 1.45.

Figure 3.3- Pseudocode for determining the base value of a rank.

Basevalue[1] = 0.02

for(rank = 2 (scout)..9 (marshal))

 if((nr_red[rank-1]+nr_red[rank]>0) AND (nr_blue[rank-1]+nr_blue[rank]>0))

 basevalue[rank] = basevalue[rank-1]*rank_difference_factor

 else

 basevalue[rank] = basevalue[rank-1]

 34

The base value of a rank is the same for both colors, but as explained in chapter 3.1.1 this

is not always correct. As a rule, I used that of equal ranks, the piece that can capture more

opponent pieces has a higher value. This makes sense, because removing a high piece

from the game increases the value of the pieces lower than the captured piece. If two

equal pieces are removed then the side with more pieces lower than the removed pieces

profits most by this exchange. The pieces of this rank of the color that has less lower

pieces have their value increased by another constant factor, which should be lower than

the rank_difference_factor because this doesn’t make the piece more valuable than a

piece of higher rank. I chose this factor at 1.15.

The ranks are then scaled so that the highest piece always has value 1.0.

There are a few pieces that have additional rules:

• The flag is given a value higher than one to signify its importance

• The spy is given half the value of the marshal

• The marshal’s value is multiplied by 0.8 if the opponent still has a spy

• If there are less than 3 miners or scouts their value is multiplied by [4-nr_left]

• Bombs are given a value of 0.5 (half the value of the strongest piece)

• Each piece gets an added value of 1/[nr_own_pieces] to increase the value of

pieces when there are less pieces left.

The value of the flag is made dependent on the expected winning chances; in particular

the value is higher of the color that is ahead in pieces, increasing with an increasing lead.

This represents an increasing importance of defense in games that “Invincible” is

expecting to win and an increasing importance of guessing for the flag in games where

“Invincible” is expecting to lose. This value is typically around 3-5 for the side that is

ahead and 1 for the side that is not.

3.2 The value of information

3.2.1 Problem definition

Attacking a piece that is very likely much a higher rank than one’s own piece is a very

common move in Stratego games. A naïve artificial intelligence approach might find that

a stupid move, because he is likely to lose a piece which is in principle a bad thing. Yet

every Stratego player will be very happy with the result when his scout loses to the

opponent’s previously unknown marshal and thus finds its location.

Apparently, information has a value. Furthermore, it has a value that can be compared to

the value of a piece.

The higher the rank of the piece that loses the attack, the less happy that player will be

with the result, and the higher the rank of the winning piece, the happier he will be. Of

course this “happiness” must be translated to numbers. The negative effect of losing a

higher piece is already caused by the loss of a higher piece, so it’s only necessary to add a

 35

positive value for discovering the identity of an unknown piece that is relative to the

value of the unknown piece. I say “value” and not “rank” on purpose, because in the

same way that the values of a piece of a certain rank differs throughout the game, the

importance of finding its location also varies.

If one of the highest pieces on the board becomes known, this reveals that all other pieces

don’t have this highest rank and thus can be attacked safely by the second-highest rank.

This also makes it safer to attack on another part of the board, because it is known to the

opponent that the unknown pieces there are not higher than his second highest piece;

likewise, defending gets harder when there are fewer opportunities to bluff that a low

piece is actually high enough to stop the attacking pieces.

If one of the middle pieces becomes known this gives a different kind of disadvantage as

it does not directly influence the ability to bluff, but because these pieces are still too

valuable to lose they must be defended, which limits the attacking possibilities. If the

high pieces are revealed while attacking with them then these known middle pieces will

become a profitable target for the opponent.

Finally, one of the low pieces may become known. This has the least importance, because

low pieces can be sacrificed. However, once a low piece is known, the probability that its

sacrifice will reveal a high piece becomes much lower. It is far more likely that the

opponent will use a piece that is just one rank higher to take this piece, giving away as

little information as possible. This disadvantage is especially low against human players

because they generally don’t remember these pieces for a long time.

3.2.2 Implementation

To keep things simple, I decided to use a constant factor for the value of discovering the

identity of a piece. The profit of losing a piece to a higher piece is always given by

reveal_penalty*piece_value, where piece_value is the value of the revealed piece. If the

winning piece was already known then the profit is of course 0 because no new

information was found by this attack.

Initially, this constant value is set at 33%, which is again a heuristic value that gives good

results in the games “Invincible” played. One problem with this approach is that in the

end of the game Invincible was often unwilling to reveal his last pieces, which made him

more passive than he should have been.

The reason is that in the end there are fewer pieces and those that are still unknown are a

lot easier to guess. It therefore makes sense to reveal them easier and get some material

profit. The value of keeping Invincible’s pieces unknown is then lower. This is

implemented by letting the reveal penalty decrease when the opponent has less moving

pieces left. Specifically: when the opponent has exactly or less than 15 moving pieces,

the reveal penalty is 2%*[moving pieces].

 36

3.3 The game state

An important aspect in decision-making in Stratego is the state of the game. Depending

on whether a player has a strong, possibly winning, position or a likely loss he may take

different decisions in the same situation. Human players on tournaments often look at the

captured pieces to determine whether they have a good position or not.

It might for example be unwise to try a bluff when the game can easily be won by playing

careful. The opponent has little to lose when calling a bluff because he is losing anyway.

The same bluff in a lost position however might fool an opponent and turn the game

around.

Also, hitting unmoved pieces with high ranks is generally a bad idea since they can be

bombs and losing a high piece greatly reduces the chances of winning. In a losing

position however, doing this might be the only chance to win and it would be a mistake

not to try.

This is in fact a state machine where depending on the state, different strategies are

followed. For example when a player is far behind in pieces he might do risky attacks,

while if he is comfortably ahead he would rather play safe and pay more attention to

defense against such attacks. Also, having the highest piece, but less lower pieces

requires a different way of playing than having more pieces but not the highest piece.

To keep this simple I implemented the game state simply as a value that represents the

relative strength of both armies. A value higher than 1 means a good position for the

computer player and a value lower than 1 means the opponent is ahead.

This value is calculated by taking the weighted sum of the values of all “Invincible”’s

pieces and dividing that number by the weighted sum of his opponent’s pieces.

The weights are 2 for the highest piece each color has left after all the equal ranks are

removed and 1 for all the other pieces.

3.4 Strategic positions

3.4.1 Lanes

The goal of some strategies is not directly to capture pieces but rather to occupy

important positions on the board. Because of the lakes in the middle of the board, all

attacks must go through one of the three passages between the lakes, also called “lanes”.

This is the easiest place to defend because a single piece can block it. Even if the

opponent has higher pieces it helps to occupy such position because it can stop miners

from reaching the other side. It takes two higher pieces to remove a piece that is

determined to occupy a lane. In most situations elsewhere on the board it is possible to

 37

get past a single defender with a miner and one high piece, but not when the defender is

on one of the 4 squares forming a lane.

Figure 3.4 – Red is outnumbered and uses the lanes to defend to a draw.

In figure 3.4 red is seriously outnumbered and would lose the game if not for the

presence of the lakes on the board. If red keeps his pieces on the four squares between the

lakes then blue should not be able to get his miners to the flag, making this a draw.

In less extreme cases, keeping a high piece defending the lane in front of the flag can

greatly reduce the attacking options of the opponent because he will have to take a much

longer route to approach from the side, probably passing more unmoved and unknown

defending pieces.

In a situation where one player has the four highest pieces on the board, but the opponent

greatly outnumbers him in lower pieces, the lanes are also the key to achieve victory. The

winning strategy is then to put a high piece in all of the three lanes and use the fourth to

trap those pieces that get too close to one of the defenders so that it can be captured

without letting another pass by.

3.4.2 High piece defense

When a player has only a single highest piece against multiple lower, then defending at

the lanes may not be effective enough. The opponent can then come by another lane and

move freely towards the flag. If the flag is bombed in, then the opponent usually needs at

least two pieces near the flag to form a danger. One miner to take a bomb and a piece that

is high enough to beat the unmoved pieces protecting the bombs.

 38

Figure 3.5 – Reds pieces are all unknown, but blue’s miner should not be allowed to guess for the bomb in

front of the flag.

A situation like in figure 3.5 is a (part of a) very common endgame position. Red didn’t

move any of the shown pieces so any of them may be a bomb. Guessing with the blue

captain would be risky, but attacking the bomb in front of the flag with the miner is a

win-win position for blue. If it is the bomb he is virtually certain of the flag and can

always guess it when it becomes necessary to risk. If it is not a bomb but a piece higher

than miner then this piece is trapped with no way to escape from the blue captain.

Allowing a position like this is very dangerous for red. If red still has a piece that is

higher than a captain he would be advised to bring it closer to solve this situation.

In general, keeping a high piece behind to defend against attacks from multiple pieces is a

good idea when being ahead and losing the flag is the only way to lose the game. The

important fields are usually those on the third line in front of or one field next to the flag.

If there is an invincible piece on these fields it is very hard to plan a successful attack on

the flag. It’s not impossible, but significantly harder than if the high piece would be

somewhere else.

 39

4. Creating a setup

This chapter will first give some basic theory about making Stratego setups and explain

how the problem of creating a setup is solved for “Invincible”. The goal is to give the

reader understanding of the type of problems which are faced when creating a Stratego

setup.

4.1 Importance of the setup

At the beginning of the game, the players can choose how they arrange their pieces on the

40 squares that are assigned to them. A good setup is vital for a successful Stratego

player; however an unpredictable setup is even more important. For this reason there

can’t exist an optimal setup; if there were any it would be obvious or at least become

quickly known and therefore be a very bad setup. There must be a trade-off between

having pieces on the right places and being hard to read for the opponent.

The problem of creating setups could easily be solved by adding a list of manually

created setups and letting “Invincible” pick one of these at but this would very soon

become predictable. It is therefore important that the computer can generate its own

setups. They do not have to be perfect, as long as they are decent and unpredictable.

4.2 Setup theory

I will start with explaining a few guidelines about what is important when making a

Stratego setup. There are many heuristics human players think about when they are

making a setup. When a human player makes a setup, an important factor is the strategy

he wants to follow in the game against that particular opponent. The same setup may be

the key to victory with one playing style against a certain opponent but be the cause for

losing the game when using it with a different style. When the opponent is unknown and

the player is comfortable with different playing styles, this can be ignored so only general

heuristics are discussed here.

4.2.1 Flag placement

One of the first questions is what to do with the flag. After all this is the most important

piece in the game and its defense can’t be ignored. The safest place to put it is on the last

row surrounded by 3 bombs or in the corner surrounded by 2 bombs. The corner is much

more difficult to defend because defending pieces can come only from 1 side and can

thus be blocked by a single high piece from the opponent. In the middle defenders can

come from two sides and if the flag is behind one of the lakes the attacking miner needs

to make a longer path around the lake to get there. The flag on one of the 4 squares

behind the lakes on the last row surrounded by 3 bombs is therefore by far the most

popular place for the flag. The opponent needs to get an important lead in pieces before

he can attempt to attack the flag in this position.

 40

This is of course very predictable. It is a good defensive position at the cost of basically

telling the opponent where to go, so this should only be done when the opponent is not

expected to get a lead in pieces.

The alternative is to put it in an unexpected place. This is very strong in close endgames

because the opponent is more likely to lose some pieces trying to find the flag. Because a

different position requires a (sometimes very big) lead in pieces to properly defend it may

also cost a player the game when he has a comfortable lead but not big enough to defend

the flag in such position. The opponent may decide he has nothing to lose and luckily

stumble upon the flag. It is best not to do this against weaker opponents. Firstly because

such players usually fall behind in pieces, making it hard for them to reach the flag in a

safe position, and secondly because the power of surprise works best on experienced

players and not so well on players who don’t know what to expect anyway.

4.2.2 Bomb placement

Bombs are the best defense in Stratego. The high pieces are often needed to attack which

allows the opponent to do the same. The more of bombs are known the more profitable it

is to take risks by attacking unmoved pieces once the highest pieces are found.

Since bombs can’t be moved they can also be a huge hindrance to the player who owns

them when they stand in his way.

Both of these are reasons to put bombs more in the back of the setup. First of all this

gives the player the front 2 rows to maneuver, which is needed to let 2 pieces pass each

other behind the lake and secondly since they are needed mainly later in the game when

the high pieces are revealed. Many of the front pieces will have moved away by then,

making bombs there rather obvious because they haven’t moved yet.

The biggest reason not to put all bombs on the last 2 rows is the predictability. If a player

knows his opponent always puts all his bombs in the back then he can take a very high

piece (e.g. general) and just hit all the pieces on the first 2 rows once he discovers the

enemy marshal. This is risky because the game is usually lost if a bomb is hit but it can

be done it against too predictable opponents.

A common strategy is to have one side of the board with a lot of bombs and unmoved

low pieces and defend the middle and the other side of the board with high pieces.

Attacking the side with the bombs and low pieces is generally very costly and time

consuming while it gives little profit so it doesn’t need to be defended. It allows the

player to focus his defense on only two of the three entrances between the lakes.

This is good for the side that has the lead and bad for the one who is behind in pieces so it

is unwise to block one side completely. If the player who blocked one side of the board

gets behind in pieces he wants to be able to open it up and use it as a third attack route.

 41

As with everything concerning setups, it is best to vary with this. Even the best bomb

structure quickly becomes useless if the opponent recognizes it.

4.2.3 High pieces

The next thing to think about is the high pieces. They are often needed relatively early in

the game so they must be in easily available places. A player still wants to keep their

exact location unknown till he can make a profit by revealing them, which means they

shouldn’t be too exposed to attacks from scouts. This is why they are usually put on the

first or second row behind the lakes or on the second or third row behind a lane.

A marshal in the back of the field may work very well as a bluff, but it’s only a bluff

when it comes unexpected so that can’t be done too often.

4.2.4 Other pieces

A good setup has a plan for every single piece, so not even the least valuable piece is put

at random. Most games start with testing each other out by sending low pieces so some

low ranking pieces are needed in the front to use as cannon fodder and to protect the high

pieces from being found by the opponent’s initial attacks. In this phase of the game the

aim is to gather as much information as possible while giving away as little as possible.

After these initial encounters, this information is used to get a material advantage. The

high pieces are usually revealed to do so, so the character of the game changes. In the

beginning there is no piece that doesn’t have an unknown enemy that can beat him, but

once the high pieces start getting known the next highest pieces know where their enemy

is and can safely attack elsewhere. As long as the game is balanced, this usually results in

a lot of trade-offs when equal pieces attack each other and are both removed from the

game. This in turn leads to the “invulnerable” ranks getting lower and lower because they

higher ranks are removed from the game. In this phase a player should never attack with

a piece slightly lower than the highest unknown ranks because the risk to lose it to the

highest ranks is very big, while the chance that the opponent lets this piece capture

something even lower is very small. A good strategy here is to move a bluff piece to

pretend it is a high rank, but since these pieces tend to get captured a lot whether the bluff

works or not it’s best not to use an important piece, like the second highest rank, for this

purpose.

The result of this is that the middle pieces are nearly always used in descending order.

The majors are used before the captains and the captains are needed before the

lieutenants. It is important to think about this when making a setup. A major should not

be placed behind a captain because that means the captain will have to be moved in a

stage of the game where a major is needed and when the last piece a player would like to

move is a captain as this makes it a target for the opponent’s majors.

 42

4.2.5 Considerations for Invincible

One consideration to make is that the computer, unlike humans, doesn’t suffer from

“moods” that make him unable to resist the urge to attack with a defensive setup. A good

computer player should be able both to be a strong defender and a good attacker and

should be able to detect what suits best to the current board position and thus to the setup.

For the sake of unpredictability it is also a lot better to make the playing style dependent

on the setup rather than the setup dependent on the favorite playing style.

4.3 Implementation

The base of my setup generator is a semi-random generator based purely on statistics. I

used nearly 20,000 real setups to collect a probability distribution of the different ranks

over the 40 starting squares. I also collected stats of how often 2 ranks appear next to, in

front of or behind each other. I will explain how this is done in chapter 4.3.2.

These statistics contain not only good setups, but also a lot of mediocre or bad setups.

Still, a lot of the above principles seem to be so basic that they can still be recognized in

these general statistics.

4.3.1 The database

The database used to collect this data is downloaded from Gravon
[2]

. This is an internet

site where among other games Stratego can be played against players from all over the

world. All the games are stored and publicly available for download. The games contain

no names of the players and are published in random order several months after they

were played. Only the month in which the game was played is known. This is done to

prevent the database from being a way to get information on the style about a specific

player.

There are players of widely different strengths playing on this site and since the database

is anonymous there is no way to tell whether a setup was made by a weak or by a strong

player. It is possible to use only the setup from the winning player of each game but that

would leave out a lot of good setups of which the player lost to a stronger opponent while

it includes bad setups from games where two bad players played against each other.

The main goal of analyzing this data is to find general rules that apply to all Stratego

setups and not to pick specific good setups and use them completely. I make the

assumption that even bad players use general setup principles while the thing that

distinguishes really good setups is the specific combination of all the pieces which is lost

anyway when an average over thousands of setups is taken.

I therefore decided to simply use all the setups from the database and not try to make a

distinction between good and bad players.

 43

4.3.2 Using the data

Starting with the flag, then bombs, marshal, general, spy and then the lower pieces I now

one by one place the pieces on the board according to the probability distribution found

earlier. Whenever a piece is put on the board, the probabilities of adjacent fields are

multiplied with the relative frequency of the ranks being adjacent to the rank that was just

put on the board.

Flag distribution

Bomb distribution

General distribution

Colonel distribution

Legend
0%

1%

2%

3%

4-5%

6-8%

8%+

Figure 4.1 – The probability distribution of a selection of ranks.

Figure 4.1 shows the some examples of these probability distributions. It shows that the

flag is nearly always on the last row. In 66% of the setups, the flag was on any of the 8

purple squares. Bombs can be expected anywhere on the field, but with a very low

probability on the front 2 rows. The squares next to the back corners have the highest

probability. Possibly to protect a corner flag, or to fake a flag position by bombing in a

sergeant (both are common strategies). Not surprisingly, the higher pieces are usually

more to the front while the lower pieces appear more often in the back.

These statistics assume however that the position of a piece doesn’t depend on the other

pieces at all. This is assumption would be very hard to defend. In practice, there are

probably all kind of relations between the positions of pieces and in a well thought over

setup the position of each piece may depend on all the others. To model this, one would

need to store a relation for each field with each other field for each rank with each other

rank, resulting in 40x40x12x12= 230.400 numbers. Even though it would in principle be

possible to store that many numbers, they would have little statistical significance if they

were collected from a mere 20.000 setups. I therefore chose to simplify the model and

assume that the probabilities are only dependent on the pieces directly next to them. It

seemed obvious to discriminate between the different directions because a flag for

example would very often appear behind a bomb but rarely before one.

I counted the number of times a rank appears next to another rank and divided this by the

number of times this was expected to happen. This calculation results in a number larger

than 1 for pieces that are often put together and a number smaller than 1 for pieces that

appear next to each other less than the average number of times.

 44

I chose not to take more complicated relations into account like bomb patterns or the

combination of pieces on a side used for an attack because the number of possibilities for

suchlike patterns is endless and it’s not feasible to collect statistical data for this. The

next-to relations result in only 3 numbers for each combination of two ranks, so 3x12x12

= 431 numbers.

Table 4.1 – The next-to relation of a selection of ranks.

 M G C Sg Sp F B

Marshal 0 1.8 1.8 0.6 1.3 0.2 0.4

General 1.7 0 1.2 0.7 2.5 0.1 0.5

Colonel 1.6 1 0.2 0.5 2.8 0.3 0.8

Sergeant 0.8 0.9 0.8 0.6 0.6 0.9 1.8

Spy 1.1 2.3 2.7 0.4 0 0.3 0.9

Flag 0.4 0.2 0.5 1.1 0.5 0 5.6

Bomb 0.4 0.5 0.8 1.3 0.9 3.4 0.6

Table 4.1 shows a selection of the table of ranks appearing next to each other. A lot of the

middle pieces have numbers close to 1 because they are often placed without much

consideration, but the ranks in this table show some interesting (though expected)

deviations. It shows that bombs and flags have a very strong relation, and the spy and

general or colonel have too. Also the highest pieces seem often to appear next to each

other. Sergeants have far less extreme relations which suggests they are placed with less

care than the more important pieces. They do appear rather frequently next to bombs

though, which makes sense since they are the lowest pieces that can kill the only enemies

of bombs, making them a very tough defensive combination.

Even though the next-to relation is symmetrical, the table is not, as might be expected,

symmetrical on the main diagonal. This is because the expected number of occurrences is

not symmetrical. One reason is that there is a different number of the involved ranks and

another that one rank may have had more neighbors than the other in the investigated

setups.

4.3.3 Testing the semi-random setups

The semi-random generator creates setups that are a lot better than purely-random

generators and may occasionally result in a more than decent setup. Mostly however

there will still be some obvious flaws that are sure to cause trouble somewhere during the

game. To test these setups I printed 12 setups generated by my program and took them to

the World Championships. I asked the opinion of several expert players on them and

there were only one or two of them that they would possibly use on a tournament. Mostly

the reasons for discarding the others were easy, like important pieces being trapped by

bombs or a very weakly protected flag.

I played two practice games with my two favorite setups out of these 12. Sometimes the

unpredictability of the setup helped me, but at other times some minor flaw showed itself.

 45

I won both games, but didn’t consider the setups good enough to dare use them for any of

my official games.

Even though this method still generates a lot of very bad setups, the result of two decent

setups in 12 is still a lot better than for purely random setups where there probably isn’t

more than 1 setup of that quality among a million. Also, because human experts could

usually distinguish the worst setups by one or two simple aspects there is hope that the

computer can do this too.

4.3.4 Heuristic evaluation

The problem now comes down to generating a number of setups that is large enough to

have at least 1 good setup among them and then to find the best of these using a heuristic

function. The smaller the number of setups the more likely it is that neither of them is

acceptable, the larger the number the more predictable the result becomes. It does have to

be more than 12 because the previous test set wasn’t large enough to guarantee a very

good setup. I picked the arbitrary number of 50 setups for.

I used the following heuristic functions (H1 till H9) to give a value to a setup:

H1 - Distance to freedom

One value that is very important for many of these heuristics is the “distance to freedom”

or the number of pieces that have to be moved before this piece can be moved. Pieces on

the first row and not behind a lake have a value of 0; pieces behind them have a value of

1 and so on. Because bombs and the flag can’t be moved they function as obstacles so a

piece has to move around them to get out.

H2 - Pieces surrounded by bombs

Pieces that are completely surrounded by bombs can’t be used unless the opponent is

kind enough to free them. Because a player can’t count on this courtesy this often means

that these pieces can’t be used at all. Pieces that are trapped can be recognized because

they have an infinite distance to freedom. Any piece except the sergeant, lieutenant or of

course the flag that is trapped by bombs gives a value of -2. Pieces partially surrounded

give a value of -1 when their distance to freedom is larger than 5 (without obstacles no

piece has a distance larger than 4). Note that bombs are also included in this rule, even

though they can’t move even if they have the liberty. This is because a bomb that is

completely trapped by other bombs is rarely going to be useful. It can be a powerful

bluff, but it’s usually just bad. The lieutenant and sergeant are excluded from this rule to

have some variety, though even putting these pieces between bombs is usually not very

good.

H3 - Flag Bombed in

 46

A flag between bombs makes the defense significantly stronger. This might become very

predictable so it’s good to have it in the open sometimes, but not often. I therefore give a

bombed in flag a +5 value.

H4 -Flag defense

Another thing that often went wrong was a complete lack of strong pieces on the side of

the flag. This means that if he attacks on that side with even a low piece the flag will be

completely exposed. Based on the side where the flag stands “Invincible” checks which

pieces stand on fields that defend that side.

Table 4.2 – Defensive fields depending on the flag side.

Left Left Left Middle Middle Right Right Right

Left Left Left Middle Middle Middle Middle Right Right Right

If the flag is for example on the left side of the board it’s preferable to have some high

pieces on any of the fields marked “left” in table 4.2

The marshal gives a value of +3, if this piece isn’t there then the general gives a value of

+2. A major or colonel also gives an additional point. There shouldn’t be too many weak

pieces here, so if there are more than 2 scouts, this situation is worth -2 points and more

than one sergeant, miner or lieutenant gives -1.

H5 - Pieces blocked by the spy

The spy is a valuable, but at the same time very vulnerable piece. Usually it isn’t moved

before the marshals are removed from the game, which may happen only very late in the

game. Moving it earlier often arouses suspicion because it moved but is never used.

Using a not previously moved captain in this case pretty much gives away that the

previously moved pieces are not captains, so the longer a moved piece remains unused

the more suspicious it becomes.

A player doesn’t want to arouse any interest in his spy so he wants it to be in a place

where he doesn’t have to move it to free an important piece. Any piece higher or equal to

a major that stands next to the spy but has a higher distance to freedom might be blocked

by the spy and gives a 1 point penalty to the setup.

H6 - Pieces blocked by a slightly lower piece

Pieces in the back are usually used in decreasing order of rank, the higher pieces first.

When for example majors are needed because they are the highest pieces in the game,

then the captains are the best targets for the opponent and therefore most vulnerable when

they are moved and revealed not to be bombs. If a captain has to be moved to free a

major this is always going to be a problem.

 47

Each piece that stands next to another but is one or two ranks lower and has a lower

distance to freedom therefore gives 1 point penalty. Pieces with a distance to freedom of

0 or 1 are excluded because they are the pieces that are to be sacrificed for information at

the start and are not likely to block anything in the middle and endgame.

H7 - Miners on the front row

Miners are almost useless early in the game but become very valuable in the end. Any

piece becomes more valuable in the end when there are less higher pieces, but the miner

also wins in value because there will be relatively more bombs among the opponents

pieces. It’s therefore a waste to use them in the opening phase of the game. Apparantly

people do this because the statistical function gives a non-zero probability of a miner

being on one of the front row fields, but the database also contained many bad setups.

Each miner on the front row gives 1 point penalty.

H8 - Bomb protection

Another thing that often went wrong was a flag that was bombed in with only scouts

around it. This means that a lucky miner can just walk through everything to the flag.

Obviously, that’s a bad thing. People often mix bombs with low pieces like sergeants or

lieutenants. A high piece risks attacking a bomb and miners can be quickly disabled when

they take one of the bombs. Defending bombs with higher pieces leaves them vulnerable

when these higher pieces are needed elsewhere, which usually happens earlier in the

game than the moment the last sergeants and lieutenants are needed.

Any bomb that has at least one sergeant or lieutenant next to it gives +2 points. Each

scout or spy that stands next to a bomb gives -1 point. If the bomb stands next to the flag

its defense becomes especially important so if such bomb has no sergeant or lieutenant

nearby this gives an additional -3 points. It’s better not to have bombs near the flag than

to have weakly protected bombs.

H9 - Starting pieces

The pieces with a distance to freedom of 0 or 1 are those that will be used in the opening.

It’s good if they are varied and don’t contain too many vulnerable pieces. If there are

only scouts then this becomes a problem when the opponent opens with sergeants or

lieutenants. If there are 3 majors there then it will be a very uncomfortable position when

they all become known. A mix of low pieces to scout and higher pieces to capture the

opponent’s early attackers usually works best.

• More than 2 bombs gives -1 for each extra bomb

too many bombs block the attack paths and this probably means they will be

found too quickly.

• More than 1 miner gives -1 for each extra miner

miners are needed later.

• Both colonels give -1 point

two colonels usually can’t do more than 1.

 48

• The flag gives -10 points

flag in front row is possible but it requires a different playing style and much

knowledge of the opponent, neither of which the computer player has.

• More than 2 majors or colonels give -2

hard to defend when they become known.

• More than 3 sergeants, lieutenants or captains give -2

not diverse enough.

• More than 5 scouts give -1

not diverse enough.

Total evaluation value

The total value of the setup is now simply the sum of all the above heuristics. The setup

with the highest evaluation function is used for the game.

4.3.5 Testing the heuristic evaluation

To test whether this evaluation function actually gives higher values to “good” setups

than to fully random setups I evaluated several of my own setups from real life

tournaments. I chose some of the setups that gave me the best results. The setups I

selected can be found in appendix D.

In order of my personal preference the 6 setups get the scores: 18, 18, 20, 22, 19, 16.

My preference is of course a subjective measure, so it’s not surprising that my first two

setups don’t get the highest value. The last one is an old setup (about 7 years old) which I

would no longer use on tournaments while the others are more recent.

Next I compared the results of four different methods to generate setups

1. Fully random (each piece individually placed with equal chances on each empty

field)

2. Best of 50 random

3. Best of 500 random

4. Semi random (the method described in chapter 4.3.2)

5. Best of 20 semi random (the method described in chapter 4.3.4)

6. Best of 50 semi random (as 3, the value actually used for Invincible)

Table 4.3 shows the average, best and worst scores of a set of 200 automatically

generated setups. One would expect each next method to give better results than all the

previous, with fully random giving the worst result and best 50 the best.

Table 4.3 – Results of the scores of 200 setups created by the above mentioned generating methods.

 “worst” average “best” time

1 Fully random -30 -3 11 0 ms

2 Best of 50 random 5 9 16 31 ms

 49

3 Best of 1000 random 12 14 18 544 ms

4 Semi-random -8 5 17 1 ms

5 Best of 20 semi-random 9 15 22 41 ms

6 Best of 50 semi-random* 12 17 24 99 ms
*the method used for Invincible

Note that the absolute values have no meaning, only the relative values are important

with high scores being defined as better.

Method 2 and 3 are naturally improvements on method 1, as this is inherent to the way

they are generated (picking the best of n method 1-setups) and the same is true about 5

and 6 compared to 4 but their values are added as a reference to which values can be

reached by automatic setup creation.

Best of 50 random gives a result that is on average better than a single semi-random

setup, so it might seem I could have saved myself the trouble of making the semi-random

setup creation process, but the best setup found by the semi-random method is better than

the best of 50 random setups so it is a better starting point for the best-of method. Taking

the best 20x50 random setups already gives a lower average than taking 20 semi-random

setups while the latter takes far less time.

My own setups score a bit higher than Invincible, but these are my most decently built

setups; I often use more strange setups to confuse opponents so my own average would

probably be lower than 18 and most likely comparable to method 4, or slightly worse.

 50

 51

5. Move Planning

5.1 Introduction

Move planning in Stratego is significantly different from classical AI examples like

chess. In chess, all moves are inter-related and because of this complexity, human players

only make plans a couple of moves deep. In Stratego, pieces are a lot slower, the board is

larger and a lot of opponents move combinations do not affect a player’s plans at all.

Some may delay a plan by making some other moves more urgent, but not effectively

changing them. This difference is shown in chapter 2.1.5

Human Stratego players think in plans, not in moves. Stratego is not a game ever to be

solved, both because of the immense number of moves and game states compared to

solved games but also, because of the uncertainty because of the incomplete information.

The stress is therefore not to find the best move, but rather to find a good move. The

traditional approach is to find a good move by finding a move that leads to a good

position in the next limited number of moves. This is difficult for Stratego because many

strategic moves have only effect after a number of plies that is far beyond the horizon of

any exhaustive search technique. In my approach, a move is good when it contributes to a

good plan without neglecting urgent other plans (like moving a piece out of danger or

protecting the flag). Another move may be better when it contributes to a better plan.

The basis of “Invincible” is a collection of plans that give a value to every possible move.

The move with the highest total contribution to all the plans is selected. These plans

evaluate only a single ply, so no deeper searches are made. The algorithm will be further

explained in chapter 5.2. Because this collection can never be complete it is impossible to

claim that the best plan in every situation is among them and therefore it can’t be

expected that the best move is always found. It is however possible to find a good move,

and the better plans are added the better moves can be found find with them. Because

plans have a well-defined goal, the complexity of finding how well a move contributes to

a plan is usually constant, or at most dependent on the (constant) size of the board. This is

a huge improvement over the exponential complexity of the min-max algorithm. Since by

far most of the moves that are investigated by min-max are consumed by sequences that

don’t contribute to a plan that significantly changes the board position this huge

improvement in complexity is not necessarily an equally huge loss in correctness.

Advantages:

1. “Unlimited” search depth (5.1.1).

2. Possibilities to bluff (5.1.2).

3. Possibilities to coordinate attacks with multiple pieces. (5.1.3).

4. Focus computation on interesting situations. (5.1.4).

Disadvantages:

1. “Invincible” knows only what it’s told. (5.1.5).

2. Comparable information is calculated multiple times. (5.1.6).

3. Game specific knowledge needed (5.1.7).

 52

These advantages and disadvantages will be discussed in the following sections.

5.1.1 Advantage: “Unlimited” search depth

The search depth is unlimited because the depth is defined by the useful depth to detect

and complete a plan. Because of the directional rather than exhaustive search this depth

can easily be reached. To see whether a miner can reach the flag, one only needs to find a

path from one point to another on a 10x10 board which can be seen as a graph search on

a graph with 100 nodes. This is a relatively small search problem that can easily be

performed thousands of times without noticeable delay on modern hardware. As a

comparison, min-max for 20 plies with an average branching factor of 10 is a search

problem over 100.000.000.000.000.000.000 nodes and this is not an unreasonable

average scenario in Stratego: 20 plies is often not even enough for simple plans.

5.1.2 Advantage: Possibilities to bluff

Bluffing can be implemented by defining what makes moves good for bluffing. Usually

this means performing a normal plan with the wrong pieces. If “Invincible” can find a

piece of which the opponent may believe it is the right piece for a certain plan and he

uses it for that plan, then the opponents belief that this piece has a rank that in reality it

doesn’t have is strengthened. This behavior is easy to implement when moves are chosen

based on plans but very hard/impossible to include in a system that finds all the effects of

a limited sequence of moves.

5.1.3 Advantage: Possibilities to coordinate attacks with multiple
pieces.

There are not many things in Stratego that a single piece can do, but plans that require

multiple pieces generally also require many more moves. An exhaustive search of 12

plies allows to find plans that require 1 piece to move 6 fields, or 2 pieces to move 3

fields. That means both pieces must be already very close to where they are needed

before a combination that requires these pieces can be found. If this is defined as a plan,

then this plan can find the location of the required pieces and guide them where they have

to be also as a search over a 10x10 graph.

5.1.4 Advantage: Focus computation on interesting situations

The computational is used more specifically for computing interesting aspects of a board

position rather than for computing all the possible move sequences, out of which most are

not going to be interesting.

 53

5.1.5 Disadvantage: “Invincible” knows only what it is told

Because there is no exhaustive search, everything that is not formulated as a plan will be

completely ignored. If there is no plan telling “Invincible” to move a known low piece

away when a known higher piece is approaching it then it will not do so. There is

however only a limited number of useful things to pay attention to on short-term

planning, and since the long-term plans can’t be seen by exhaustive search anyway this is

only a disadvantage in terms of programming time and not in playing strength.

5.1.6 Disadvantage: Comparable information is calculated multiple
times

Many plans use similar information, but can’t use each others results if the calculation is

split in independent sub-problems. This means that sometimes the same calculation is

done multiple times. This is of course inefficient, but because time isn’t really an issue

this doesn’t prove to be a big problem.

5.1.7 Disadvantage: Game specific knowledge needed

This is of course the real catch. So much of the search can be ignored only because of

knowledge specific to the domain (in this case the game Stratego). A human expert in the

domain will have to decide which plans should be added. In my case this is simplified

because I myself spent 6 years of my life playing Stratego rather seriously and have 2

world championships titles and holding the nr 1 ranking position uninterrupted since

2001 to justify drawing on my own experience for this. This could of course also be done

by using someone else’s expert knowledge. For testing and evaluation I will use the

opinion of other Stratego experts. In either case, a lot of the development time will go

into formalizing human experience into computer-readable algorithms.

5.2 Algorithm

In this chapter I will discuss the algorithm for selecting moves in detail. First the plans

are introduced as black boxes in section 5.2.1 and in section 5.2.2 the inner working of a

typical plan is explained.

5.2.1 Plans as black boxes

In my implementation, a Plan is specified as an entity that can give a value to every legal

move in a legal position based on a clear goal. This goal must be a relatively small sub

problem of the game. This splits the complicated problem in several smaller that should

be easier to solve. Because there will be many plans, the complexity of each plan must be

low, in the order of the number of fields or the number of pieces, both of which can be

 54

seen as constants for the game of Stratego as neither value can be very high. This more

specifically excludes the use of an exhaustive search over all possibly move sequences.

Figure 5.1 – The interface Plan.

Figure 5.2 shows how the final value of a move is determined. The move is given to each

of the existing plans for evaluation and the values are added up to give the final value of

that move. The move that got the best total evaluation score is selected as the best move

and executed.

Figure 5.2 – Finding the best move.

public interface Plan

{

 /* gives a value to the given possible move

 * The range of the value should reflect the importance of the plan, with more

 * important plans giving higher values

 * This method is called once per move for each of the possible following moves

 */

 public double moveValue(Move m);

 /* updates the plan after a move is actually executed

 * This method is called once per actual move

 */

 public void recalc();

 /* determines whether the plan is useful on the given board position

 * if the plan is not active it should return values of 0, though moveValue is still

 * called in case the move activates the plan.

 */

 public boolean isActive();

 /* gives a name to the plan: only for display purposes */

 public String name();

}

 55

All the possible plans are generated at the start of a new game, so there is no procedure to

add or remove plans during the game. Plans that lose their function after a certain event

(the capture or loss of a piece for example) or plans that require a certain event (discovery

of a certain piece) to become useful can be in sleeping mode, in which case they give the

value 0 for every possible move.

At the beginning of the process of finding the best move in a given situation, the method

recalc is called for all plans. This allows the plans to make calculations depending on the

starting board position. If a plan is for example gives positive values for moving a miner

closer to a possible flag, then the starting distance is the same for all the possible moves

and can be calculated only once before the possible moves are being evaluated.

The plans do not communicate between each other, and as such have no knowledge of the

values given to the current move by other plans. The values given by plans should

therefore reflect the real importance of the move from the point of view of that plan.

Important plans should give higher values to moves that contribute to these plans than

unimportant plans. Moves that neither contribute nor counter a plan should receive the

value of 0. This ensures that if an important plan gives a non-zero value for a move this

will most likely dominate the outcome of the sum for all plans, while if no important plan

finds a useful move, the lesser important plans will determine the outcome. It is also

possible for a plan to give negative values for moves that should certainly not be made,

for example when the plan responsible for defending the flag finds that the flag is

adequately defended he might consider most moves neutral, except those that weaken the

defense. The latter will then be given a high negative value (because defending the flag is

very important) so that these moves will never be selected even if they support a lesser

important plan. All the other moves are equal for this plan and will receive a value of 0,

so that the selection from these moves will be made by other plans that can distinguish

them.

The selection is based not on plans but on the total value, so while the important plans

can’t find relevant moves the lesser important plans dominate the outcome, but as soon as

an urgent situation is detected the higher values of an important plan that has become

relevant will dominate the outcome and in this way temporarily take control of the

selected moves.

5.2.2 The inside of plans

To find the value for a move, plans are given access to all the useful information about

the current board situation. In particular, they can see:

• The current board, with the position of all the pieces.

• The graveyard, containing the captured pieces with their rank and color.

• The dynamically determine values of the pieces on the board.

• The history of all moves previously executed.

 56

They do not know whether other plans are active in this situation, or even whether or how

many other plans there are. Because of this, it is important that the values given by plans

are realistic in relation to all other plans in all imaginable situations. This seems like a

very big problem for the programmer but there are more or less fixed values to which the

plans can be related: the piece values.

Figure 5.3 – The class structure of plans.

Plans that are directly related to the capture or the loss of a piece can be given values

relative to the value of this piece; the relative factor should then be decided by the

success chance of the plan if the evaluated move would be executed. The more likely it is

that the move will actually result in the capture of an opponent’s piece; the higher

percentage of the piece’s value should be given as value to the move. For example,

directly attacking a piece will always result in a battle and should have the expected

average outcome as value, while approaching a piece that may be attacked should give

only a percentage of the expected outcome of the battle because it is not sure that the

battle will take place (the opponent may move away). If it is easy for the opponent to

move away then this might even be a very low percentage. If the opponent seems trapped

it might be a high percentage.

Plans that do not directly relate to the capture of pieces might be for example strategic

plans or plans dealing with defending the flag. These can be compared to the other plans

and given a relative value according to their relative importance. Flag defense plans are

more important than the loss of any piece and should be given a higher value so that the

loss of a piece is only prevented if this can be done without a large chance of losing the

own flag. Strategic plans are generally less important than plans that give direct results

because their goal and chance of success is often very vague. These plans should be given

low values. They can however be compared with other strategic plans and given higher

values than obviously inferior strategic plans.

 57

With piece values of approximately 10 to 100, strategic plans are generally given values

of 2-5 while flag defense plans get values of 200-300. These values can be positive if

something can be gained or negative if something can be lost.

The plans execute only a single move and then look whether the move contributed to the

goal, made it more difficult to reach the goal or didn’t affect it at all. The plans should

never execute more plies than the one they are given to evaluate. They do know the battle

logic and know how pieces can move so that they can calculate possible paths for pieces

from one location to another.

5.3 Plans used

A careful selection of these plans is needed. Too few plans will results in obvious

blunders but unfortunately it is not so that more plans are always better; if 2 plans both

give a positive score for the actual capturing move of a piece then this move will get a

score that is twice as high as it should have been. In general there shouldn’t be 2 plans

that award a score to the same goal. There can be 1 plan that brings a piece in position

and another that awards a value to the actual capture, but then the first plan should give a

score of 0 to the capture itself.

Plans should be added in order of importance. Basic plans that give positive values to

moves that move pieces out of danger when they are threatened by the opponent or that

capture pieces when a profitable opportunity is detected should always be added. Other

plans that for example formulate attack strategies are of lesser importance. There is no

need adding such plan when the program can’t even capture a piece that moves directly

towards it.

Different selections of advanced plans and/or different implementations of basic plans

can be easily used to create programs of variable playing strength or with a different

playing style.

To prevent overlapping responsibilities it is useful to define different types of plans. The

plans can be grouped in 3 groups with different tasks. There are tactical plans that define

tactical movement for encounters, strategic plans that regulate the large movements of

pieces over the board and general plans that implement general heuristics about the game.

Tactical plans should detect situations in which pieces are already close to each other.

They should not bother about how the pieces get to such situations. These plans are

generally hard to program, but easy to value. Hard to program because they are exact,

there is usually only 1 good move in such position, but easy to value because they often

lead to capturing or saving a piece and can thus be related to the value of the piece

involved. Problems like these could possibly be solved by exhaustive search on a local

position of the board, but as shown later, even tactical situations may arise when the

pieces are still many moves away from a confrontation.

 58

Strategic plans should move pieces to positions where they may be useful. They

shouldn’t bother about what happens when the pieces arrive to their destination. This type

of plans is usually easier to code, because only the general direction is important and the

order in which the moves are done is not. However it is much harder to give them a

proper value. Because they have no tactical value they do not necessarily imply a specific

result. Their task is to create situations in which a profit can be made and are thus one

step further away from the real profit than the tactical plans. They should generally have

lower values than tactical plans and their value should also depend on the amount of

profit that can possibly be gained from the situation they try to achieve.

Giving them values relative to the profit that can be gained is important to give priority to

strategies with potential over strategies that can at best lead to the capture of a low

ranking piece. Giving them values lower than the tactical plans is important to make sure

the tactical plans dominate the values as soon as they recognize the situation.

General plans should award even lower values. They are more like guidelines that take

effect only when no other plans give a decision. They may decide among equal moves

but shouldn’t disturb when good moves based on a specific plan are found.

5.4 Tactical plans

A lot of the tactics in Stratego are caused by the two-square rule. Because a piece can be

moved back and forth only a limited number of times between the same two squares

regardless of the situation it is in, there are countless situations in which a piece can be

lost because of inattentiveness to this rule. Likewise, a player can use this rule to his

advantage against careless opponents. Readers that are unaware of the effects of this rule

are advised to read appendix A2 on the two-square rule before reading this chapter.

5.4.1 Immediate captures

Name ImmediateCapturePlan

Value Value of a piece

Description This plan returns the “expected” profit of an attack on an enemy piece.

If the piece is not known it is of a pessimistic nature, weighing possible

negative results with a higher value than positive results. It also takes

into account a penalty for revealing the rank of the capturing piece, so

taking a scout with the unknown marshal is considered a negative

result.

It does not take into account where a piece will end up if he wins the

attack.

Initialized One per game (1).

 59

This is one of the most basic plans “Invincible” contains. It only gives non-zero values to

moves in which an opponent’s piece is attacked and should be the only plan that gives a

value to such moves. For each of the ranks the enemy piece can have it calculates the

profit of attacking it, given the rank of the attacking piece and multiplies this with the

probability of the piece having this rank.

The profit can either be the value of that piece minus the value of revealing the own piece

when the attack is won, the value of revealing the enemy minus the value of the own

piece when the attack is lost or the sum of those when the pieces have equal rank and are

both lost. The value of revealing a piece that was previously revealed is always zero.

It is possible that an attack that is certainly won still has a negative value because an

important piece will be revealed by this attack. Likewise it’s possible that a near certainly

lost attack is profitable if it can reveal a high rank for a low price. For more details about

this read chapter 3 on the value of pieces and the value of information.

This plans sole responsibility is capturing moves, so if it decides an attack is not

profitable it will not tell “Invincible” to move away from it, it only gives a negative value

for the attacking move.

5.4.2 Tactical defense

Name TacticalDefensePlan

Value Value of a piece, decreasing over distance

Description This plan looks after the safety of “Invincible”’s own pieces. It gives a

negative value to moving next to dangerous pieces but it also looks

ahead to dangerous situations from single-piece attacks. Given no

interference from other plans it can ensure that a piece is never lost on

the two-square rule, in some situations reacting when the attacking

piece is still 11 squares away. It is only active for pieces that have

already moved or are known.

Initialized Once for every friendly piece that can move, except marshal (32).

The safety of “Invincible”’s own weak pieces depends not only on seeing threats when

they are directly next to his piece. Because of the two-square rule it can often be too late

then to rescue a piece that could have been saved if the situation was detected earlier.

This plan calculates for every piece in its care which enemy pieces are potentially

dangerous. These are marked as enemies and their locations are compared with the piece

to be defended. There are 3 basic dangerous situations that are recognized by this

module:

 60

Figure 5.4 – The red 7 is threatened by the blue piece.

Of course if the blue piece is really hunting the red major he will try to stay in its

dangerous zone by also moving to the right. The only response for red is then to move

back to the left, after which blue will do the same. Now there occurs a repetition of

moves over 2 squares and the piece that started this repetition will also be the first to end

it. In this situation that means either the loss of the red major or its safety from the blue

piece. Apparently, the threat of the blue piece might have been detected too late because

the red piece still may be lost. The resulting move is still good whether the repetition is

won or lost, but this check alone is not enough to ensure the safety of pieces.

Figure 5.5 – The red 7 is threatened by the blue piece.

If an enemy is on a square from which it can go to a field from which it can see a lower

piece in a straight line and this can’t be answered by a symmetric move back to the row

or column this enemy came from then the piece also experiences a threat from this

enemy. If in figure 5.5 the blue piece is also on a dangerous field and the red piece should

react by moving to the right to move the blue piece out of its dangerous zone. This is a

move that many beginners would easily overlook and that most likely won’t be found by

The biggest danger comes from pieces on the same row or

column. In the situation in figure 5.4 the dangerous fields

for the red major (7) are marked with the red “D”. If any of

its potential enemies are on any of these squares then he

experiences a threat from that enemy. Moves that keep this

piece in suchlike position will be given a negative value. In

this position, moving up, down or not at all will not change

the situation so these moves all receive a penalty. Moving to

the right will move the blue dangerous zone away from the

blue piece and will thus be the best choice according to this

plan.

If the possible enemy came from the right, then the red

piece can move back in the direction where the blue piece

came from. If however he came from the left then red still

has to avoid the threat by going to the right, but now he

starts the repetition and is already lost.

This means that the squares marked with “d” are also

dangerous. Action should be taken as soon as a blue

possible enemy moves to one of these squares since red

can’t wait for the blue piece to move to a square marked

“D”. In general, squares on a row or column directly next to

the piece to be defended are dangerous if the piece can’t

move to this column or row.

 61

exhaustive search but that is absolutely necessary in this position if the red major is not to

be lost.

Figure 5.6 – The red 7 is threatened by the blue piece.

Therefore every field from which an enemy could move to a field marked with L is also

dangerous. This increased dangerous zone happens only when the piece to be defended

has only one adjacent square it can move to. If in the situation in figure 5.6 the red major

moves up it gets more than one empty adjacent square and gets a normal dangerous zone

around him. The blue piece is then not in the dangerous zone any more because if he

moves to the same row red can answer by going to the row blue just came from. In figure

5.6, moving the red major one square up is the necessary move to ensure its safety.

Note that the presence of higher friends can block the route of the possible enemy, in

which case the danger is relieved. Which pieces can act as higher friends can be different

for every potential enemy so every field on the path between an enemy and its prey must

be checked for possibly friends of the prey.

Note also that I do not check whether there are actually only 2 fields to move to and

whether the passage away from the potential enemy is blocked. If the repetition can go

over more than 2 fields, then this move will be found as a solution to move out of danger,

if there is really no other move then a move away from the potential enemy will be

selected because the danger from an enemy is considered slightly less when the enemy is

further away. Even though there might be a passage since this is never checked this

should always be the last resort. When this is done, the piece stays on the same row or

column as the enemy and will always lose the repetition later when it tries to get to off.

After such move, the only option is to keep running until there is enough space to get a

repetition over more than 2 fields.

Even though this might not lead to the loss of a piece, it is in principle a bad thing if the

opponent can force a piece to a move to a completely different location. If the piece

needs to be moved there it can be done without forcing, if it shouldn’t then it is not

preferable to be forced to do this . This is therefore not only important to prevent losing

pieces but also to ensure that they can keep the positions chosen for them.

All this assumes that if the enemy can’t be blocked, moving the piece away from danger

is the only option there is. This naturally means that using this plan to defend the flag or

bombs is senseless because they can’t move anyway. It also means it is not necessary to

The last situation is when the piece to be defended

has a forced move to make to have a chance to be

rescued. In figure 5.6 the red major can’t stay in

his trapped position because it will result in him

being captured when the blue piece comes closer.

If the enemy is on any of the squares marked with

“L” then the red major is already lost (provided it

can’t pretend to be a bomb).

 62

bother about pieces that still can pretend to be a bomb. If such piece would be moved at

the first hint of a possible threat a lot of information would be given away. Firstly, it

would tell it is not a bomb and the secondly that it is lower than the approaching piece. In

this case it’s much better to go on pretending that it is a bomb. It is also not entirely

accurate to use this plan for the defense of scouts since it assumes that the piece to be

defended can only move 1 step at a time but is used for this purpose anyway to prevent

revealing their identity by defending them differently.

Lastly, this plan is not used for the marshal since the only enemy of the marshal is of a

different nature than normal enemies. Normal enemies win both in defense and in attack,

but the spy only wins when he attacks. Therefore the defense of the marshal is also a bit

different.

5.4.3 Tactical attack

Name TacticalAttackPlan

Value Value of a piece, decreasing over distance

Description This plan is the reverse of the TacticalDefencePlan. It gives positive

values to moves that correspond to favorable approach lines in order to

capture pieces on the two-square rule. It is initialized on an enemy

piece and looks out whether this piece can be captured. Possible pieces

it can use to attack are pieces that are higher than all the ranks this

piece still could be or pieces that could have such a rank (bluff)

Initialized Once for each enemy piece (40).

The tactical attack plan uses the same techniques that were discussed for the tactical

defense the other way around in order to catch the opponent on a mistake. It tries to move

pieces into dangerous zones of pieces that are or are likely to be a good prey for the

attacking piece.

Unfortunately, because of the incomplete information it can’t be an exact opposite. Now

the rank of the attackers is known and the rank of the defenders can be uncertain. Also, if

in one case it would be wise to avoid moving next to an unknown piece it is not

reasonable to expect the opponent to be equally careful. The plans are therefore alike, but

not the same.

 63

5.4.4 Defense against gamblers

Name LottoDefensePlan

Value Fraction of value of a piece

Description It is possible that enemy pieces blindly hit unknown unmoved pieces.

Apparently the opponent thinks he can afford losing this piece and it’s

likely that he will go on after a successful capture. This leaves

unmoved pieces directly next to such a piece in bigger danger than if

this piece would be a careful piece. This plan checks for each piece

whether it borders such berserking piece that could capture him. This

gives a higher priority to capturing such pieces when they have the

possibility to make profitable captures and might make “Invincible”

decide to capture when he would normally prefer to keep the rank of a

higher bordering piece secret.

Initialized Once for every friendly piece (40).

The term Lotto Stratego is most commonly used to describe the action of hitting

unknown unmoved pieces with high ranks hoping that they are not bombs but valuable

pieces to get an easy lead. Unless a player has a very good intuition, a very predictable

opponent or a lot of luck this generally leads to losing the high piece and often the game

if this is done too often, but if applied within limits it can be the key to victory. The key

to doing this is to only use pieces that can be lost without losing the game. It is only true

lotto when the piece used for attacking is too valuable to lose, though this of course often

leads to arguments about whether or not the piece is important or not. In this context I use

the term for any attack on an unknown unmoved piece even if it is with a miner or a

clearly useless piece. This lets me tag pieces the opponent considers fodder. If such piece

wins an attack it is more likely that this piece will hit more unmoved pieces than can be

expected of a piece that didn’t “lotto” before.

The tactical defense plan assumes that a piece is safe as long as it can pretend to be a

bomb, so it does not see threats created by a “lotto-ing” piece. When such piece is

bordering several slightly lower pieces then taking out this lotto-ing piece should have a

higher priority than normal even if it means revealing a bit too much information on this

capture. If there is nothing profitable he can capture then it would be better not to reveal

information by capturing.

If no capture of the lotto piece is possible “Invincible” might have to consider moving a

previously unmoved piece out of danger, even though that reveals both that the piece is

not a bomb and that it is afraid of the attacker. This would be a bad move if the opponent

is not likely to risk an attack, but might be necessary when it is likely that he will.

This plan therefore gives a penalty for every unknown unmoved piece bordering a

previously “lotto-ing” enemy that should preferably not be attacked by this piece. This

can be either because it has a lower rank (a lotto piece is always already known) or

because a piece is still unknown and too valuable to be revealed by the lotto piece.

 64

This penalty is always lower than would be awarded by the tactical defense plan when

the piece already moved or is already known. In the latter case it is much more likely that

the piece will be attacked than in the case of the lotto piece that might decide to stop

“lotto-ing” or go on in another direction.

5.4.5 Defend marshal

Name DefMarshalFromSpyPlan

Value Value of marshal

Description Defending the marshal is different from defending any other piece

because the marshal can only be captured when the opponent attacks

with his spy while the other pieces can be lost both when attacking and

when attacking themselves. Therefore the way to keep the marshal in

safety is a little different from other pieces.

Initialized Only for the marshal (1).

Attacking the marshal is not as easy as attacking any other piece, since the only piece that

can capture him is the spy. It is therefore not necessary to do all the checks that are done

for other moving pieces in the tactical defense plan. There should be some checks though

to prevent the marshal from foolishly stepping next to a possible spy.

This plan only checks if after the move, the marshal is next to a piece that could possibly

be the enemy spy and if so awards a negative value depending on the likelihood of it

being the spy and the current value of the marshal.

5.5 Strategic plans

Strategic plans represent long-term strategies. They often have no clear result in mind,

but work towards improving the board position in a general way.

5.5.1 Strategic attack

Name StrategicAttackPlan

Value Low

Description Gives a low positive value for a move that brings an important piece

towards a good strategic attacking position.

Initialized One for each game (1).

This plan is responsible for bringing “Invincible”’s pieces in good strategic positions.

5.5.2 Strategic defense

 65

Name StrategicDefensePlan

Value Low

Description Gives a low positive value for a move that brings an important piece

towards a good strategic defensive position. Also checks whether

vulnerable pieces aren’t too close to each other in places reachable by

enemy pieces.

Initialized One for each game (1).

This plan is responsible for bringing pieces to good defensive positions. Where the

tactical defense plan only looks at single pieces, this plan looks for combinations of

pieces, trying to prevent situations in which the opponent can make moves that attack

multiple pieces at the same time.

5.5.3 Trap pieces

Name TrapPiecePlan

Value Fraction of value of piece.

Description Coordinates the cooperation between multiple pieces in order to capture

an enemy piece, viewed from the perspective of the enemy piece. It

first limits the mobility of the piece by looking how many squares it

can reach in less moves than one of his enemies and minimizing this.

When no move can be found that makes this area smaller, a second

piece is brought nearer. When it is close enough it assumes that the

TacticalAttackPlan and ImmediateCapturePlan take over for the actual

capture.

Initialized Once per enemy piece (40).

Trapping pieces is a strategic maneuver that requires a combination of two pieces to

capture one enemy. This plan only attempts to trap pieces for which there are two pieces

that are, or could likely be, pieces that can profitably capture the enemy piece.

An unknown marshal is not a good choice to capture a low sergeant and a known colonel

is obviously not a good choice to trap a (higher) general.

Trapping a piece is a two step plan, first its freedom must be limited since there is no use

in moving 2 pieces to the left side of the board if the target can still escape and move to

the right side of the board. Secondly, when the freedom can not be further limited with a

single piece, a second piece must be brought nearer. Once the 2 pieces are close enough

this plan assumes that a tactical plan completes the job. This happens automatically

because the values given by the tactical plan would be of a higher order than the values

for moves suggested by the strategic plan.

The trapping of a piece is always calculated from the point of view of the piece that is

attempted to be captured. The freedom of this piece is defined by the number of squares it

can reach sooner than any of his enemies.

 66

The pieces that Invincible uses to trap are not allowed to move next to pieces that could

be even higher than they are but in this calculation I assume that higher pieces don’t

move because otherwise the possibilities are endless since it is theoretically also

necessary to check for enemies of enemies of enemies and so on. This would practically

result in an exhaustive search, which was proven unfeasible.

A move that decreases the freedom of a piece that can be trapped is given a positive

score, and furthermore a move that brings the second-closest enemy closer to the piece to

be trapped is also given a positive score. The second value is always lower than the first

for the same plan so that the priority is first to decrease the freedom and then to approach

with the second piece. Also, the higher the likely rank of the piece that is to be trapped

the higher the values for moves that contribute to trapping them.

5.6 General plans

It proved that several plans were needed that don’t really depend on a specific situation.

They use no positional information and thus can’t be grouped as a tactical or a strategic

plan. These plans fall in the last category of general plans.

5.6.1 Randomness

Name RandomPlan

Value Very low

Description Each move is given a low random value to make a random selection

between equal moves.

Initialized One for each game (1).

In the beginning all moves are equal. Invincible knows nothing about the opponent so

there is no real reason to find any of the 6 opening moves better than another. In this case

“Invincible” will make a random selection from all the equal moves. This can easily be

achieved by adding a very low random value to every move. By setting this value

between 0 and 1 all moves with less than 1 difference in total value are considered more

or less equal and can all be selected by the move planning module.

5.6.2 Move penalty

Name MovePenaltyPlan

Value Low

Description Gives a penalty to giving away information by moving (for example

moving a piece that could have been a bomb before it was moved, or

moving an unknown scout more than 1 square and thus revealing its

identity). The more moved pieces “Invincible” has on the board, the

higher the penalty for moving another.

Initialized One for each game (1).

 67

Sometimes simply moving a piece gives away information. If before the move it could

have been a bomb, then moving this piece equals telling the opponent that this is not a

bomb. If the piece is unknown and it is moved more than one step the opponent can make

the conclusion that it is a scout, so this move reveals the identity of the unknown piece

and should be recognized as such.

This penalty should be low, because it is impossible to play well by moving around just a

single piece until it dies. Moving a lot of pieces however seriously limits the ability to

attack because those pieces that can no longer play bomb have to be defended. The

penalty for moving an unmoved unknown piece therefore increases when there are more

pieces on the board that have already moved. This seems even more logical since there

are more moves that can be done which don’t give away new information to the

opponent.

It effectively limits the number of pieces that are active at the same time while not

limiting “Invincible” to playing with just a single piece.

Of course, moves that attack an enemy piece should not be given this penalty since their

identity would be revealed anyway and the penalty for this is already taken into account

by another plan.

5.7 Other plans

There are more plans that are not described in this chapter, but they work similar to those

that are described. In the current version of Invincible there are 18 different types of plans

and 173 instances of plans (some plans are instantiated for all 40 friendly or opponent

pieces, or for a selection of them).

 68

 69

6. Guessing ranks

6.1 Introduction

An important aspect of the game Stratego is the uncertainty of the ranks of the

opponent’s pieces. At the start of the game each player has 40 pieces of 12 different

ranks. Which piece has which rank is hidden from the opponent. When a piece ends up in

the same square with an opponent piece a battle takes place and the highest rank wins.

The rank of the winning piece is revealed to the opponent and the losing piece is removed

from the board and returned to the box where it is visible to both players so that at any

time they can check which pieces are still left on the board. When pieces of equal rank

meet, they are both removed from the board.

In Stratego, information is very important. Having more knowledge about the enemy

army often compensates for having fewer pieces. Initially there are no invulnerable

pieces and thus every attack can fail. The players have to find out where the opponent’s

high pieces are in order to plan their attacks. Also it helps to know vulnerable targets that

can be attacked.

A naive approach would be to assume that only the pieces revealed in a battle are known

and all others have equal probabilities to all remaining unknown ranks. Pieces can

revealed by attacking them with expandable low pieces but when a player does that he

wants to maximize his profit by only attacking pieces that he suspects to be interesting.

Also, if a player is afraid of all unknown pieces his opponent will be able to guide all his

moves and dominate the game, but if he doesn't fear any he will lose a lot of pieces. A

human player can usually estimate which pieces might be dangerous and which probably

are not, so there must be a way to teach this to the computer.

6.2 The model

Programs using exhaustive search are usually limited to making a single guess about the

most likely rank of a piece. This is however often insufficient to model the knowledge

that might be collected during the game. If a bluff is called by moving a general next to

an unknown approaching piece and it isn’t captured, this doesn’t reveal the rank of the

unknown piece, but this piece can be marked as probably not being the marshal. There

must be a way to store that information so that if the same piece is involved in a situation

later in the game somewhere else on the board this information can be used.

I chose to use a probabilistic model where pieces have 12 probabilities: the probability

for each of the 12 different ranks that this piece has this rank. Since they are probabilities

they all must be between 0 and 1 and the total must always equal 1. Once the piece is

revealed the probability for his real rank is set to 1 and for all others to 0. Heuristics are

used to gather information from every move the opponent makes. This is represented by

updating the probabilities of all pieces. The same heuristics are also applied to

“Invincible”’s own pieces based on the moves “Invincible” makes to be able to guess

 70

what the opponent can probably guess about his ranks. Even though “Invincible” knows

what rank his own pieces has he tries to derive what his opponent would think about

them, not using his own secret knowledge. This is important because if a piece has

behaved very obviously it shouldn't be considered unknown. Also if a piece has behaved

like a different rank before it can be used very well for bluffing by continuing as if this

piece has the credible other rank. The same bluff would not be believed if it is unlikely

the bluffing piece has this rank.

Because the algorithm must be applicable to both sides, the heuristics can use neither

side’s hidden information. Only the common knowledge that is known from previous

moves can be used. This makes sense because if piece X runs away from a piece of which

his opponent knows it is a captain it doesn’t mean that X is afraid of a captain. Only if

both players know the rank of this piece such conclusion can be made.

This model represents an interesting normalizing problem. As the numbers represent

probabilities they are only meaningful if the probabilities for a single piece add up to 1

and if the total probability of a rank on the entire board adds up to the number of pieces

of that rank still on the board. A piece can't have a 50% probability for 12 different ranks,

nor can each piece have a 40% probability of being the flag when it's known there is only

1 flag among for example 20 pieces. Normalizing in 1 direction is easy enough, but when

the probabilities are right for the number of ranks on the board and the pieces are

normalized, this invalidates the probabilities over the board.

However since at each step some volume is taken from the high areas and distributed

over the low areas the changes that are made get smaller after each iteration until a target-

accuracy is reached. This means that the algorithm always converges to a model in which

the probabilities are approximately normalized. It is therefore freely possible to update

one probability on a piece and later normalize the whole board to calculate the effect this

has on other pieces. If piece A has a higher probability for rank R that means the

probability of piece A having any other rank necessarily decreases. It also means that the

probability of any other piece having rank R decreases, even if there are multiple pieces

of that rank. Reasoning one step further, it also means that the probability of a piece other

than piece A having a rank other than rank R increases. Once a piece has only 1 non-zero

probability left it will stay 1 and the other probabilities 0, if only x pieces have a non-zero

probability for a certain rank and there are x pieces of that rank left they all have a

probability of 1 to have that rank and thus 0 for any other rank. If there are no unknown

pieces left of a certain rank, all probabilities for this rank lower than 1 should be 0. All

these effects follow automatically from the chosen model so no special rules are needed

to ensure logical conclusions from the available unknown ranks.

 71

The pseudo code for normalizing the matrix is as follows:

Figure 6.1 – pseudocode for normalizing the probability matrix.

Example

Suppose there are 3 pieces that can have either one of 3 possible ranks. At the start of this

example their probabilities are given by:

 Piece 1 Piece 2 Piece 3 Total

Marshal 0.3 0.4 0.3 1.0

Captain 0.6 0.2 0.2 1.0

Miner 0.1 0.4 0.5 1.0

Total 1.0 1.0 1.0

Each piece has a total probability of 1 and the probability of each rank appearing on the

board is also 1. Now this player makes a move that gives arouses a strong suspicion that

piece 2 is the marshal. The heuristics say that it multiplies the probability of piece 2 being

the marshal by 2.

 Piece 1 Piece 2 Piece 3 Total

Marshal 0.3 0.8 0.3 1.4

updated := true

while updated

 updated := false

for each rank r

 sum := 0

 for each piece p

 sum += p.prob(r)

 if sum > 1+e or sum < 1-e

 updated := true

 for each piece p

 p.prob(r) /= sum

for each piece p

 sum := 0

 for each rank r

 sum += p.prob(r)

 if sum > 1+e or sum < 1-e

 updated := true

 for each rank r

 p.prob(r) /= sum

 72

Captain 0.6 0.2 0.2 1.0

Miner 0.1 0.4 0.5 1.0

Total 1.0 1.4 1.0

This naturally invalidates the probabilities of piece 2 and those of the marshal on the

board so the matrix effects of this change must be distributed over the whole matrix.

First, the probabilities of piece 2 are normalized. Each element in the column belonging

to piece 2 is divided by the total volume of that column (1.4)

 Piece 1 Piece 2 Piece 3 Total

Marshal 0.3 0.57 0.3 1.17

Captain 0.6 0.14 0.2 0.94

Miner 0.1 0.29 0.5 0.89

Total 1.0 1.0 1.0

This looks even worse, now all the horizontal totals are wrong. All totals have an error

less than 40% though, which was the worst error in the previous table. The next step is to

normalize the rows. Each element is divided by the total of the row it is in.

 Piece 1 Piece 2 Piece 3 Total

Marshal 0.26 0.48 0.26 1.0

Captain 0.64 0.15 0.21 1.0

Miner 0.11 0.33 0.56 1.0

Total 1.01 0.96 1.03

The totals of the columns are now not equal to 1, but again the errors are smaller than

after the previous step. One more normalization over the rows results in

 Piece 1 Piece 2 Piece 3 Total

Marshal 0.26 0.5 0.25 1.01

Captain 0.63 0.16 0.20 0.99

Miner 0.11 0.34 0.55 1.0

Total 1.0 1.0 1.0

Now all errors are less than 1% which is a nice target accuracy for a manual calculation.

Comparing this table with the starting situation:

old Piece 1 Piece 2 Piece 3 Total

Marshal 0.3 0.4 0.3 1.0

Captain 0.6 0.2 0.2 1.0

Miner 0.1 0.4 0.5 1.0

Total 1.0 1.0 1.0

new Piece 1 Piece 2 Piece 3 Total

Marshal 0.26 0.5 0.25 1.01

 73

Captain 0.63 0.16 0.20 0.99

Miner 0.11 0.34 0.55 1.0

Total 1.0 1.0 1.0

We see that the probability of piece 2 is increased only from 0.4 to 0.5, while we initially

multiplied it by 2. This is normal, because I only added more volume in one field after

which the total volume had to be decreased again. The eventual increase in one field must

come from an equal decrease in other fields. Eventual effects are therefore never as big as

the initial change. This is something to take into account when defining the heuristics.

We also see that the probabilities on the same row and column as the entry that was

increased all decreased, and that all other entries increased. These are logical conclusions

from the change to a single field, as explained before.

6.3 Heuristics

6.3.1 Starting position

A very important heuristic in guessing the ranks of opponent’s pieces is to look at the

starting position of his pieces. The spy is often on the side where the general was

discovered, and a back row piece is rarely the marshal.

A player using completely random setups will not win many games, so it is usually safe

to assume the opponent thought about where he put his pieces initially. This means his

flag is probably in an easily defendable place in the back of the field, often surrounded by

bombs. His high pieces are usually more near the front and his spy is often near the

general. Sergeants are often found near bombs to stop miners. These are only some of the

many heuristics people use to make a good setup, and that therefore can be used to

analyze the likely ranks of unknown pieces.

I have already collected setup statistics for the setup creation module (section 4.3.2), and

these same statistics are used to guess the ranks of the opponent’s pieces.

The statitics show clearly that pieces on different positions in the setups have very

different rank probabilities. Most of the figures aren't very surprising for an experienced

player, these are numbers he knows from experience. “Invincible” can now easily use

these numbers as initial probabilities. Of course these values are very unreliable since

they are averages over thousands of games. The most likely setup using these values may

never have been played at all. They are only initial guesses that must be confirmed by

later events.

The second statistic I collected from the setup data was the probability of ranks being put

next to each other. I distinguished between a rank standing in front of another, behind

another or next to it. Right or left seemed to be symmetrical, but behind or in front of

certainly not: there often is a bomb in front of the flag, but rarely behind it, the spy often

stands behind the general, but almost never in front of it.

 74

Since the initial ranks are unknown this information can’t be used at the start, but

Invincible keeps track of which pieces were standing next to each other in the initial

setup. Every time an enemy piece is revealed this also tells something about its

neighbors. Once the general is discovered, the pieces that started next to or behind it

become automatically suspected of being a spy. When a bomb is discovered somewhere

the piece behind it gets a higher probability of being the flag.

This is done by multiplying the probabilities for each rank for its initial neighbors with

the relative likelihood of the pieces being neighbors: number of times they were

neighbors divided by the expected number of times.

6.3.2 Missed opportunities

An obvious give-away of a piece’s rank is if he had a certain chance to capture a known

piece but didn’t do it. If a known general is trapped by 2 unknown pieces, one of them

probably being the marshal and the other a bluff he will be forced to choose. If

“Invincible” guesses right and move next to the bluff and he doesn’t capture him but runs

away, the conclusion should be made that that piece is lower than a general and

remember that for possible future situations in which the same piece is involved.

It is important to add here that conclusions can only be drawn from unforced moves. If

the opponent has to bring his own general in safety he wouldn’t capture a major in that

move even though he could. It would then be a mistake to think that he couldn’t.

6.3.3 Behavior towards known pieces

As said before, the initial probabilities are necessarily unreliable since they do not use

any information about this particular game. To make a better prediction, the moves of the

opponent have to be analyzed. One way to do this is to look at how they behave towards

the pieces that are known to him. If a piece moves towards a known general, the

probability of it being the marshal becomes larger. He may be bluffing, or just

accidentally moving there so the probability should never become 1, but the action does

justify increasing the probability.

Generally speaking, a piece moving away from a known piece is expected to fear it and a

piece moving towards it is expected to want a battle with that piece.

To calculate this I calculate for every field on the board for every rank of the opponent

how “happy” this rank would feel on that field. This is based on the profit (or loss) of that

rank against any known piece and the distance to it. The further away, the less important

its effect, but there always is some effect. In addition, the type of approach is also taken

into account. An attacking piece likes to be in one line with his target (because of the

two-square rule) whereas a evasive piece would prefer to approach over adjacent lines,

the first having a much higher chance to lead to an encounter.

 75

This may seem like a rather bold assumption, since the opponent may be bluffing and he

certainly doesn't take all these relations into account especially on longer distances.

However it's very hard for a player to consistently bluff. Pieces that move without system

will alternate between having certain probabilities increased and decreased and thus not

be affected as much as pieces that consistently move further away or closer to pieces of

certain ranks. If the general is on the same side as the opponent’s revealed marshal it

can’t be useful on that side and if he wants to use it for attack he will necessarily have to

move away from the marshal. The result of this is that all pieces fleeing from the side

where a marshal is known become possible suspects for the opponent general.

 76

 77

7. Implementation

This chapter will discuss technical details of the implementation.

7.1 The user interface

This section focuses on the design and implementation of the user interface that allows

human players to play Stratego against “Invincible”. This is a technical description of the

system and not a user manual. The manual can be found in appendix B.

Figure 7.1 – Screenshot of the game client (manual in appendix B).

7.1.1 Requirements

After looking at other Stratego programs, and combining my experience with them with

that of other Stratego players, I came to the following list of requirements for the user

interface:

• It should be possible to see the board and execute moves against “Invincible”

• The last move of the player and the opponent should be clearly visible

• The captured pieces should be clearly visible at any point in the game

• The rank of a piece that won a battle should remain visible during the move of the

player, but not longer than one move.

• The player should be able to save and load setups

 78

For development and testing, the following extra requirements were made:

• It should be possible to save finished games and replay them later

• It should be possible to play with all opponent pieces visible

• It should be possible to play with a custom starting position

All these requirements have been met. Figure 7.1 gives a screenshot of the user interface.

On the left there is the board and on the right the captured pieces. The last move is

indicated by giving the piece that was moved a darker color and drawing a border around

the starting field of the move. If a piece was captured, it shows up in dark color in the box

on the right, pieces captured in earlier moves are shown in light color. Setups can be

saved and loaded through the setup menu.

The options menu allows the tester to reveal all Invincible’s pieces, or during setup phase

select that he wants to make a custom starting position, which allows him to put both his

and “Invincible”’s pieces on the board and not be limited only to the normal setup area.

Games can be saved in the file menu after they are completed. When a saved game is

loaded, a forward and a back button allow the evaluator to do and undo moves of the

completed game.

 79

7.1.2 Class diagram

The class diagram of the game client has been displayed in figure 7.2.

Figure 7.2 – Class diagram of the game client.

The StrategoFrame class deals with everything that is shown on the screen and handles

user events. The StrategoController contains the functional code. All events from the user

are passed to the controller, which executes them. The state of the controller also defines

the behavior of the user interface. The abstract StrategoAI class contains the code to

determine the legal moves, which is also used by the StrategoController class.

 80

7.1.3 Class descriptions

This is an overview of the classes. Only the important features are described. Get and set

methods, methods to save and load data from files or give string representations of items

are not mentioned.

Class: StrategoController

Description: This class controls the behaviour of the program. It contains a state

machine with 4 states: SETUP, PLAYING, GAMEOVER and

REPLAY.

In the setup state the player can make his setup. This is the only state in

which the setup menu is enabled.

In the playing state, the players alternately make moves. After the

player makes a move this move is given to “Invincible” and he is asked

for his move. The result of the move is then returned to “Invincible” so

that he knows the result of a possible battle. This goes on until either

side wins the game or a technical or declared draw occurs.

When the game is decided the controller goes to the gameover state. No

more moves can be done, but the game can be saved now so that it can

be reviewed later. From this state the program can be closed without

resulting in a loss, a new game can be started, or a game can be loaded

for review.

When a game is loaded, the controller goes to the review state. In the

review state no moves can be made, but the loaded game can be played

move by move forward or backward. From this state a new game can

be started or another review game can be loaded.

Class: StrategoFrame

Description: This class takes care of the interaction with the user. It creates the

graphical user interface and handles user actions. All requests from the

user and then sent to the StrategoController to be processed.

Class: StrategoAI

Description: This is an abstract class that contains some standard methods for the

AI-bot. The StrategoAI has no information about the enemy pieces.

The only information it gets from the controller are the enemy moves

and the results of battles.

Abstract

methods
public abstract Move getMove()

This method should return the next move of the AI-bot, and gives the

opponents previous move. If the move was a battle, the opponents rank

 81

is also included in the move

public abstract void opponentMove(Move oppMove);

This method is called to submit the opponents move to the AI-bot.

public abstract void myMoveResult(Move myMove);

This is the callback method that is used to return the result of the AI-

bot’s move back to the bot. If the move was a battle, the opponent rank

is included in the move.

public abstract String getSetup();

Gives a setup for the AI-bot. Setups are represented as 40-character

Strings.

public abstract boolean acceptDraw();

This method is called when the user offers a draw. Iff true is returned, a

draw is agreed on and the game ends.

public abstract void setBoard(String b);

This method is used to submit a user defined board position that the AI-

bot should start with.

Class: Move

Description: Internal representation of a move. Used to pass to the AI-bot and store

in history lists.

Fields fromX: x-coordinate of origin

fromY: y-coordinate of origin

toX: x-coordinate of destination

toY: y-coordinate of destination

isBattle: true if a battle took place in this move

result: WIN,LOSS or TIE ->the result of the attack

defender: StrategoPiece on the destination field before the move

attacker: StrategoPiece on the origin field before the move

Class: StrategoBoard

Description: Internal representation of the stratego board.

Methods isSetupArea(color)

isOccupied(y,x)

isAccessibleField(y,x): returns true if x,y is a moveable field on the

board

Fields lakes: 10x10 array locating the lakes on the board

board: 10x10 array holding the pieces on the board

Class: StrategoPiece

Description: Internal representation of a stratego piece.

Methods getSpeed(): returns the number of squares this piece can move

 82

Fields rank: intvalue of the rank of the piece. The higher the value, the

stronger the piece.

color: RED or BLUE

hasMoved: not currently used

isKnown: not currently used

Class: Graveyard

Description: This is the Stratego box, used to store pieces that are not on the board.

During setup, all pieces start here and can be put on the board, and

during the game, the captured pieces go to back here.

Fields dead: a 2x40 array to hold both sets of pieces

rank_positions: a 40 element array with information about which piece

belongs on each position of the dead array.

Class: SavedGame

Description: A datastructure for saved games. Makes it easier to load and save

games.

Fields initBoard: the initial board position

history: the list of moves

result: the result of the game

Class: Statistics

Description: A class to load and store the win/loss statistics. They are stored in a file

to keep the statistics every time the program is started.

Fields wins

ties

losses

7.1.4 Sequence diagrams

In figure 7.3, a sequence diagram is given for the usecase where the user makes a move.

The move is passed from the GUI to the StrategoController, which executes the move on

its own board and passes it to the AI-bot, which also executes the move. The AI-bot then

returns its own move, which is passed then shown in the GUI.

 83

Figure 7.3 – Diagram for the case when the user makes a move.

 84

7.2 The artificial intelligence

This section focuses on the design and implementation of the Artificial Intelligence bot

“Invincible”.

7.2.1 Class diagram

In figure 7.4, the class diagram of Invincible is given.

Figure 7.4 – Class diagram of the Stratego Bot.

 85

The main class, MyStrategoAI is an implementation of the abstract StrategoAI class,

supplied by the user interface. It consists further of the three sub-parts for making setups,

guessing opponent pieces and reasoning about moves.

7.2.2 Class description

This section gives class descriptions, with important methods and fields. Get and set

methods are omitted and so are small helper methods.

Class: MyStrategoAI

Description: The main class of my AI bot. Implementation of the abstract class

StrategoAI from the user interface.

Methods: public Move getMove() //abstract method in StrategoAI

public void opponentMove(Move oppMove) //abstract method in

StrategoAI

publicvoid myMoveResult(Move myMove) //abstract method in

StrategoAI

public String getSetup() //abstract method in StrategoAI

public boolean acceptDraw() //abstract method in StrategoAI

Fields: private StrategoBoard board; //own representation of the board,

shared by all modules

private Guesser guesser; //module that guesses pieces

private SetupCreator setupcreator; //module to create setups

private Planner planner; //module that decides the next move

Interface: SetupCreator

Description: Interface for classes that can create Stratego setups. This makes it easy

to make different implementations and plug them in to the bot without

changing a lot of code.

Methods: public String createSetup(int color); //returns a setup in String

format

Interface: Guesser

Description: Interface for the Guesser module. This makes it easy to make different

implementations and plug them in to the bot without changing a lot of

code.

Methods: public void doMove(Move m); //updates the probabilities after this

move

public double[] getProbabilities(int x, int y); //returns the

probabilities for the piece on position (x,y)

 86

Interface: Planner

Description: Interface for the Planner module. This makes it easy to make different

implementations and plug them in to the bot without changing a lot of

code.

Methods: public void checkPlans(); //recalculates all plans. Is called once at the

beginning of every move

public Move getBestMove(Vector possibleMoves); //returns the

move this class considers best

Class: SetupCreatorV1

Description: Implemenation of the SetupCreator interface

Methods: public String createSetup(int color);

Fields: private double[][] setup_prob; //setup_prob[field][rank] is the

probability that field field contains a piece of rank rank. Field is a

number between 0 and 39 that represents one of the 40 setups fields

private double[][][] neighbour_prob;

//neighbour_prob[rank1][NEXTTO][rank2] is the probability that

rank1 appears next to rank2

public static final int BEFORE = 0; //used as index for

neighbour_prob

public static final int NEXTTO = 1; //used as index for

neighbour_prob

public static final int BEHIND = 2; //used as index for

neighbour_prob

Class: GuesserV1

Description: Implemenation of the Guesser interface. This class updates the

expected probabilities of each piece for each rank. It also updates the

shared instance of StrategoBoard that is used by the Planner

implementation. The initial probabilities are the setup-probabilities as

used by the setup creator class.

Methods: public void doMove(Move m); //updates the probabilities after this

move

public double[] getProbabilities(int x, int y); //returns the

probabilities for the piece on position (x,y)

Fields: private StrategoBoard board; //shared board

private Graveyard graveyard; //shared graveyard, containing the

pieces that are not on the board

private Move lastmove=null; //stores the previous move

private double[][][] influencematrix; //used to calculate the influence

of known enemy pieces on all fields to see how the moving piece

behaves towards them

private double[][] piecevalues; //contains the values of the different

ranks for both players

private double[][] setup_prob; //setup_prob[field][rank] is the

 87

probability that field field contains a piece of rank rank. Field is a

number between 0 and 39 that represents one of the 40 setups fields

private double[][][] neighbour_prob;

//neighbour_prob[rank1][NEXTTO][rank2] is the probability that

rank1 appears next to rank2

public static final int BEFORE = 0; //used as index for

neighbour_prob

public static final int NEXTTO = 1; //used as index for

neighbour_prob

public static final int BEHIND = 2; //used as index for

neighbour_prob

Class: PlannerV1

Description: Implemenation of the Planner interface. It keeps a collection of “Plans”

that give a value to each of the legal moves in this position. The move

with the highest total value is selected.

Methods: public void checkPlans(); //recalculates all plans. Is called once at the

beginning of every move

public Move getBestMove(Vector possibleMoves); //returns the

move this class considers best

Fields: private int myColor; //the color of the player for which this planner

needs to select a move.

private StrategoBoard board; //the shared board

private Guesser guesser; //the guesser. This is not really because the

planner can access the information supplied by the guesser through the

board

private Graveyard graveyard; //the graveyard

private Vector history; //the previous moves made in this game

private Vector<Plan> plans = new Vector<Plan>(); //the collection

of plans

Interface: Plan

Description: Interface of a plan. The planner keeps a collection of classes

implementing this interface and uses them to determine the next move.

Methods: public double moveValue(Move m); //awards a value to Move m

public void recalc(); //recalculates the plan based on the current

board position. This method is called once for each board position,

rather than once for each position for each possible move like

moveValue

public boolean isActive(); //returns true iff the plan is active. If it is

not active, moveValue is still called for every possible move because

the move may activate the plan. This method is mainly to filter

interesting plans when showing a (debug) overview of the reasoning of

the planne.

public String name(); //returns a name for this plan. Also used only

for giving overviews

 88

7.2.3 Sequence diagrams

Figure 7.5 gives the sequence diagram for the case when Invincible is given his

opponent’s move and asked for his own move.

Figure 7.5 - The sequence diagram for determining and processing a move.

 89

Figure 7.6 gives the usecase for starting a game. Invincible is asked for a setup and then

given his opponent’s setup. There is no explicit start of the game, Invincible assumes the

game has started when he is asked for a move.

Figure 7.6 - Sequence diagram for starting a game.

7.2.4 Setup representation

For passing setups to the game controller and saving them for re-use, setups are

represented as 40-character Strings. Each character represents a single piece. Depending

on the side, pieces are put on the board in the following order:

Table 7.1 – String indexes of setup positions.

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

39 38 37 36 35 34 33 32 31 30

29 28 27 26 25 24 23 22 21 20

19 18 17 16 15 14 13 12 11 10

9 8 7 6 5 4 3 2 1 0

 90

The piece characters are taken from the gravon
[2]

 database. They use the StraDoS
[3]

notation, which is the only standard for annotating Stratego positions.

A: empty field

B: red bomb

C: red spy

D: red scout

E: red miner

F: red sergeant

G: red lieutenant

H: red captain

I: red major

J: red colonel

K: red general

L: red marshal

M: red flag

N: blue bomb

O: blue spy

P: blue scout

Q: blue miner

R: blue sergeant

S: blue lieutenant

T: blue captain

U: blue major

V: blue colonel

W: blue general

X: blue marshal

Y: blue flag

The distinction between red and blue pieces isn’t really necessary for setups when the

color of the player who supplies the setup is known, nor is the empty field needed when

40 pieces have to be distributed over 40 squares, but I still chose to use the standard

rather than inventing something new. The color distinction and the empty field can

become useful for defining partial setups as test cases for “Invincible”.

7.2.5 SetupCreatorV1

The setup creator uses statistical data about human-made setups to generate semi-random

setups. First of all it uses the probability that a certain rank appears on a certain position

and secondly it uses the probability that a certain rank appears as neighbor of another

rank. It makes 3 distinctions in the neighbor relation namely: “next to”, “in front of” and

“behind”. The pseudo code for generating pseudo-random setups from these data is as

follows:
for each piece p with rank r

 rand := random double between 0 and 1

for each empty square s

if(prob[s][r]>rand)

 put piece p on square s

 for each neighbour n next to s

 for each rank r2

 prob[n][r2] *= probability that r2 is next to r

 n := square behind s

 for each rank r2

 prob[n][r2] *= probability that r2 is behind r

n := square in front of s

 for each rank r2

 prob[n][r2] *= probability that r2 is in front of r

else

 rand -= prob[s][r]

 normalize probs
Figure 7.7 – Pseudo code for generating pseudo-random setups.

 91

Because the probability matrix is updated after placing a piece it makes a difference in

which order the pieces are put on the board. To have the biggest effect of the neighbor

relation statistics the ranks that have the biggest impact on their neighbors should be put

on the board first. If they are placed later, a lot of their neighboring fields may already

contain a piece so the update of the probabilities of that field has no effect. If the ranks

whose relations to neighboring fields deviate the most from 1.0 are placed first and those

whose relations are closest to 1.0 are placed last then the expectation of updates to fields

which already contain a piece will be minimal.

 92

 93

8. Testing

8.1 Introduction

Testing a knowledge-based system like Invincible is a complicated thing to do. Even

though the world in which it has to take decisions is greatly simplified because it is a

game with relatively simple rules, the number of different situations is still vast. The best

move in a situation depends not only on the positions of the pieces and the information

available to the program, but also on what Invincible assumes about the information he

doesn’t yet have. A move that seems strange may be caused by wrong reasoning or by

wrong assumptions about the hidden information. The latter may again occur because of

wrong reasoning or because of the skill of the opponent. Human players also frequently

make mistakes against bluffing opponents. Furthermore, whether a specific move is good

or not can only be judged by a human expert. It is possible to measure performance by

playing games, but unless the opponent is of a known, constant strength which is also

comparable to the level of the program, even this measure is not very reliable. And if

such opponent is found, the win/loss record will not give hints about how to improve the

program.

8.2 Test methods

The bulk of the testing is done by playing games against the program or by watching

other people play games. When the program makes a weak move I try to establish the

reason and find a pattern in the most common mistakes so that this can be improved by

adding a new plan to solve the situations the program can’t yet handle, or by fixing a bug

in one of the existing plans.

To find the cause of mistakes it is necessary to know what the program knows or guesses

about the enemy pieces at that moment, and to know which plans caused to erroneous

move to be selected.

The expectations about all pieces can be checked during the game in the AI debug frame

shown in figure 8.1. It is possible to select a rank and color of a piece and it will show

with colors the expectation that each piece of that color has this rank. The pieces that are

known to be that rank have a probability of 100% and black color. The pieces that are

known to be a different rank have a probability of 0% and are thus colored white.

On the right it shows the values of all ranks at that point in the game. Since this is

determined dynamically depending on the pieces left, and the values of pieces for a large

part decide which actions are worth making it is useful to be able to see these.

The number below the ranks is the game state. If this is larger than 1 then the program

considers himself to be ahead in pieces. This is another value that determines the

behavior of the program.

 94

Figure 8.1 – a window into the programs “mind”.

To find the values of each of the separate plans for each of the possible moves, a table is

printed, where each row is a move and each column represents a plan. To make the table

easier to read, only the active plans are showed. In table 8.1 a selection from such table at

the start of the game is given. There are more plans but for readability they are removed

in this table.

Table 8.1 – The values of the active plans contributing to the selected move.

Move Rand MPen dMfS ICap SDef Intel SAtt Se.bS Se.bX

Move from A4 to A5 0.291 -11 0 0 0 0 0.562 0 0

Move from B4 to B5 0.299 -1 0 0 0 0 0.547 0 0

Move from B4 to B6 0.23 -4.14 0 0 0 0 0.547 0 0

Move from B4 to B7 0.893 0 0 0.667 0 0 0 0 0

Move from E4 to E5 0.586 -1 0 0 0 0 0.657 0 0

Move from F4 to F5 0.135 -1 0 0 0 0 0.613 0 0

Move from I4 to I5 0.544 -1 0 0 0 0 0.547 0 0

Move from I4 to I6 0.577 -4.14 0 0 0 0 0.547 0 0

Move from I4 to I7 0.801 0 0 0.612 0 0 0 0 0

Move from J4 to J5 0.714 -1 0 0 0 0 0.547 0 0

Move from J4 to J6 0.113 -4.14 0 0 0 0 0.547 0 0

Move from J4 to J7 0.624 0 0 0.902 0 0 0 0 0

Selected Move from B4 to B7 (1.5615150943916754)

When the program makes a weak move it is easy to see which plan(s) contributed most to

giving this move a high value and they can be adapted to give a more appropriate value in

a situation like the one where it went wrong.

 95

When a new plan is added that should find the solution in specific situations it is possible

to make a custom starting position where the user can select the positions of all the pieces

on the board and is not restricted to putting them in the normal setup areas. This makes it

possible to quickly create an interesting situation to see how the program responds in this

situation.

It is also possible to replay saved games and scroll back and forth through the moves to

analyze games that have already been played.

8.3 Playing human opponents

Eventually, the strength of the program can only be tested by seeing how it performs in

real games. Invincible played a number of fellow master students. There is a move-by-

move analysis of these games in appendix C. These are players with varying experience

with Stratego.

8.3.1 Game 1: Mohannad defeats Invincible

In this game, Invincible still has no idea how to find high ranks if the opponent doesn’t

attack with them and this costs him the game. Mohannad keeps his marshal and spy

behind and Invincible has no idea how to attack. He therefore gives Mohannad all the

time to roll up his defenses and get the flag without ever posing a serious threat.

8.3.2 Game 2: Invincible defeats Raymond

Invincible plays much more aggressively now. He knows how to collect information and

is therefore able to launch some attacks. He still misses a few positions where he could

have gotten an easy advantage, but is leading throughout the game. He does make it

unnecessary exciting towards the end because he fails to withdraw his highest pieces for

defense when there is nothing left to win in the attack. He lets Raymond get dangerously

close to getting the flag, but eventually manages to get himself out of danger.

8.3.3 Game 3: Invincible defeats Mehdi

This game started very even, but halfway through the game Mehdi started to take risks.

They eventually gave him a lead, but it cost him a few high pieces. Invincible used his

lead well and won the game without making the defensive mistakes which he made in

game 2.

 96

8.3.4 Game 4: Invincible defeats Lorena

Lorena was another aggressive opponent. Invincible was lucky to have his pieces at the

right places and got an early lead. He never gave away this lead, and was strong both in

defending against Lorena’s attacks and attacking her in return.

8.3.5 Game 5: Sjoerd defeats Invincible

Sjoerd is the most experienced Stratego player from all the opponents; He used an

unexpected setup with bombs blocking two of the three lanes between the lakes and all

his high pieces on the last side. This is something Invincible isn’t taught to recognize and

which he handled wrong. Invincible immediately got a lot of pieces behind, but in return

got Sjoerd’s marshal. He later also got a colonel so he had the highest two pieces. The

marshal was blocking Sjoerd’s only exit so it looked very good for Invincible. He didn’t

know how to finish this however as Sjoerd still had a spy and he kept his colonel on the

other side to defend against an attack which couldn’t happen because Sjoerd had blocked

these paths with bombs. This stayed so for a long time with both players moving back

and forth, but eventually Sjoerd managed to get a miner past the marshal, with the help of

an unknown spy and get to the flag. Especially this last feat was something Invincible

didn’t have to allow but he considered himself to be down in pieces because Sjoerd had

about 10 low pieces in return for only the marshal and the colonel. Since Sjoerd still had

a spy this was a game he could win, if not for his strange setup. Invincible might have

considered himself to be on the losing side so he didn’t bother defending the flag too

hard.

8.3.6 Summary

Invincible held his own against a varied set of opponents, winning 3 of 5 games. He lacks

the ability to detect the weakness of unusual approaches like the one Sjoerd used in the

fifth game. This is a weakness of non-learning expert based systems that can’t be

overcome. It can never be told everything so there will always be situations that it can’t

handle correctly. On a positive note, he did have winning chances in all but the first game

and converted these chances to wins in three games, which is not a bad score for a

computer in such a human game as Stratego.

 97

9. Conclusions & Recommendations

9.1 Extended summary

This chapter starts with a summary about the results of the different sub-parts discussed

in this thesis.

9.1.1 User interface

To test my program and let human players play against Invincible, I created a simple user

interface that allows the user to play a game against the computer. There are options to

create a manual setup and possibly store it or let the computer generate one. The player

can also use the generated setup as basis and make some changes before confirming.

Finished games can be saved and replayed later for analysis and it’s possible to make a

custom position and play starting from that position. This was particularly useful for

testing specific situations.

9.1.2 Setup creation

Unlike any other Stratego program, Invincible creates his own setups piece by piece

without using any pre-defined structures. He can do this by using statistical data collected

from human-made setups and using this to build his own semi-random setups. To

improve the quality of these setups he is given a number of heuristic rules to give values

to such semi-random setup. He then makes several setups and picks the one with the

highest heuristic value.

When creating a setup the trade-off between putting everything in the right places and

being unpredictable has to be made. It often depends on the opponent whether a setup

should be more secure or more unpredictable. Because Invincible doesn’t use opponent

modeling it can not take this into account, but otherwise the setups he creates are pretty

good. They are not much different from human-created setups.

Human players are also given the option to play with an automatically generated setup

and usually agree to the first semi-random setup they get. There are some strange

exceptions. They could be removed by increasing the number of setups created from

which the best is selected but that would make them more predictable. Having an

occasional strange element in setups is therefore not necessarily a bad thing.

9.1.3 Guessing ranks

The program uses probabilities per piece per rank. For each piece it keeps a list of

probabilities that the piece has that rank. The probabilities for each piece always add up

to one and the probabilities that pieces have rank “a” always adds up to the number of

 98

pieces of this rank that the opponent still has (the number of each rank the opponent still

has is always known).

Because of the normalization, this architecture automatically distributes changes to one

piece over all the other pieces. This takes care of inference like that when a piece is

revealed to be a marshal, all other pieces have a 0% probability to be the marshal (since

there is only one marshal), but also that this makes it more likely that this piece has any

of the other ranks. If all but one rank is found, then the remaining unknown pieces

automatically get a 100% probability to have this rank.

This means that heuristics only have to focus about changes to one piece, which greatly

reduces the number of rules needed to give a reasonable estimation of the enemy pieces.

There are only several general rules that update the pieces after each move, but the

conclusions made this way are often remarkably accurate. If a player doesn’t bluff then

the program usually knows which pieces the player is moving. If he does bluff then he

makes mistakes, but so would human players. He frequently does guess right, hitting

some unknown pieces and then retreating from the real high rank.

9.1.4 Move selection

The move selection is done using a new approach, where a set of plans each give a value

to all the available moves which are then added to give a total value for each move. The

move with the highest total value is selected. The plans are simple sub-problems of the

relatively complex game, like capturing a known piece or preventing pieces from getting

captured. These plans can be solved by path finding and profit formulas rather than by

making a tree of all the possible moves until a certain search depth. This greatly

simplifies the computational complexity of the game while it still allows directional

searches for with clearly defined aim. The drawback is that something which is not

specifically searched for will not be detected.

In spite of it often being hard to make general plans out of knowledge that are specific

enough not to overlap yet general enough to be useful, I did not encounter a problem that

could not be solved by this architecture. Even tactical close-distance encounters of one or

two known pieces, the one thing that brute-force search could possible solve perfectly,

could be solved by looking at relative positions of pieces rather than by looking at all the

possible moves they could make. More complex things like bluffing or trapping a distant

piece with two of own pieces could also easily be solved by defining them as plans telling

whether a move contributes to this plan or not. More vague strategic notions like

retreating high pieces when the program is ahead and should defend from desperate

attacks can be easily formulated as a plan while it’s something that can’t realistically be

seen by brute-force search.

Some plans turned out to be cancelling each other out, for example when one plan

encouraged “Invincible” to bluff by moving a low unknown piece next to a higher known

enemy but another plan discouraged him to move a low piece next to a higher one. This

was usually caused by plans being applied to more situations than they should. Making

 99

the plans more specific always solved these issues. In the above example, there should be

no penalty for moving next to a higher piece when there is a reasonable chance that the

opponent will believe the low piece is even higher than the known piece it moves next to.

This was often pretty easy to see when a new plan was cancelled out by an old plan

because it is easy to make a situation in which the new plan should find the right move,

but if a new plan cancels out one of the existing plans this is more easily overlooked.

Another problem was to find appropriate relative values for all the plans. If a value is too

high then the program might pursue this plan while ignoring more urgent things causing

him to make stupid mistakes. If the value is too low it might not act on this plan when it

should but rather follow an inferior plan. Some of these things can be captured in

formulas, like it being better to move away a colonel from danger than to capture a

captain. It is not so easy to calculate how this relates to the penalty of moving a piece for

the first time and thus revealing it is not a bomb or the value of trying to capture a piece

when the attack is not guaranteed to succeed (as is often the case because of incomplete

information). Most of these values are heuristic and tweaked by looking how they relate

in different testing situations.

9.1.5 Testing

Testing the system turned out to be difficult. The more plans were added, the less clear it

was why certain moves were made in certain positions. Also each new plan could disrupt

the working of any of the existing plans.

Because of the incomplete information, a realistic test situation is hard to create. A

situation is defined not only by the position of the pieces, but also by knowledge each

player has about the opponents pieces and by what they can suspect about the pieces

based on the previous moves they made. It is further complicated because of the dynamic

values of pieces, so setting up just a part of the board and leaving out the bulk of the

pieces affects the values of the remaining pieces and thus altering the situation.

It is possible to quickly create a simplified test situation to see whether the plan is in

principle working as it should, but this gives no guarantees for how the plan works in a

real game. Most mistakes found in manually setup positions were caused by the guesses

of piece ranks or the values of the remaining pieces not being realistic. Fortunately, if

there was a clear bug then it usually would be found this way, so this way of testing was

still useful.

The final effect of a new plan can only be found by playing a real game, which made

testing rather time-consuming.

9.1.6 Skill level

The level of the program seems promising. It can beat average human players without

taking risks, and though it still falls short to experienced human players, there is still

much room for improvement by adding more knowledge to the system. The current

 100

implementation is by far not the limit of what can be done with the chosen architecture,

but making it significantly stronger would require a lot more time.

9.2 Conclusions

A working prototype of Invincible has been created and tested that plays at a level that is

well above that of a beginning human player. The new algorithms used are a big reason

for this success.

Invincible makes his own setups, which are good enough to be used by human players. It

is the first program ever that can generate decent Stratego setups. This makes the player

more unpredictable than its rivals which use hand-made setups.

The probabilistic representation of piece ranks makes the process of guessing opponents

ranks and managing and using this information very easy. Only three general heuristics

are used to evaluate the moves of the opponent, which gives surprisingly accurate guesses

of the opponent ranks. This could be improved by adding more heuristics, but in none of

the tests Invincible made unreasonable guesses about piece ranks. He is often wrong or

indecisive about pieces, but so are human players. He is also often sure of pieces that I

personally would not have suspected, which shows that the perfect memory and

computing power have its merits in something as vague as bluffing.

The plan based reasoning about the best move also turned out to be a very convenient

way to formulate knowledge. Even tactical close-distance encounters could be

implemented in this system with a strength that is equal to what can be done with

exhaustive search and a depth in plies that is much larger. Strategic long-term notions

that are impossible to implement by exhaustive search were very easily formulated as

plans. The knowledge is stored in only 17 different plans, which makes it much easier to

maintain than a rule-based system that might need thousands of rules to reach this level.

To reach a higher level, Invincible will need more plans. There is certainly room for this.

The current implementation is by no means the limit of what can be reached by these

algorithms but it will take time to make a considerable improvement. Because of the

relatively low amount of plans and the strict division in responsibilities it should be

relatively easy to increase the knowledge base, though the programmer should pay

careful attention not to let plans overlap.

9.3 Recommendations

In this chapter I will give a few recommendations for future work.

9.3.1 Adding more knowledge

 101

To improve the level of Invincible, more knowledge should be added in the form of new

plans to cover situations in which Invincible currently makes mistakes. It is particularly

weak in defending against aggressive players so it could use some sort of plan trying to

trick aggressive attackers in making wrong guesses. There are many ways to do this and

catching this in a generally useful plan might be difficult, but it should certainly be

possible. Another aspect on which it could be improved is to attack against a partially

unknown defense early in the game. He can do this, but usually not very effective. This is

difficult for human players as well, but it should be possible to fit it in Invincible’s

architecture.

9.3.2 Opponent modeling

No program can reach a really high level in Stratego without using opponent modeling.

Since human players do remember things about the style and setups of the computer he

gets better results with every next game. It is vital for the computer program to learn

something about the player’s style and adapt to that to stay competitive over a number of

games. Things that could be changed depending on the opponent’s style could include the

setups (solid setups against aggressive gamblers and surprising setups against careful

players) or the value given to bluffing moves (bluff more against people who often

believe bluffs and bluff less against people who often call bluffs). It would also be

possible to store information about the setups the player uses, but this might make the

advantage of the computers perfect memory too large if the player accidentally uses the

same setup twice.

9.3.3 Other applications

The plan-based architecture can be used for different problems that are too complex for

exact computation. It supplies a simple framework for defining sub problems. It holds the

middle between exact computation and a rule-based system, having less and more

complicated “rules” than the latter. The plans allow relatively simple calculations of one

aspect of the whole problem, dividing the complex problem into as many simple

problems as necessary.

In games, this might be used for the Asian game of “Go” which has complete

information, but an immense search space, having hundreds of possible moves in one ply.

Human players in go use a lot of patterns and local directional searches in combination

with a general strategy on the whole board. This would very well fit into the architectural

structure that I made for selecting moves, but would again require a lot of heuristic

knowledge from go-experts.

It also might be used for computer strategy games, where plans are often long-term and

only weakly inter-related.

 102

 103

Bibliography

[1] Ed’s Stratego site: http://www.edcollins.com/stratego/

[2] Gravon – gamers paradise: http://www.gravon.net/

[3] StraDoS2: Stratego Documentation System:

http://www.gravon.de/english/stratego/strados2.php

[4] M.Heule, R.J.M. Rothkrantz. Solving games. Dependence of applicable solving

procedures. Science of computer Programming No 67,p105-124 2007

[5] Min-max algorithm: http://en.wikipedia.org/wiki/Minimax

[6] Alpha-beta pruning: http://en.wikipedia.org/wiki/Alpha_beta_pruning

[7] Dijkstra algorithm: http://en.wikipedia.org/wiki/Dijkstra_algorithm

[8] Deep Blue Chess: http://en.wikipedia.org/wiki/IBM_Deep_Blue

[9] Othello AI: http://en.wikipedia.org/wiki/Reversi

[10] Darpa: http://www.darpa.mil/

[11] Tactical Language & Culture Training System: http://www.tacticallanguage.com/

[12] Metaforge Webstratego: http://www.metaforge.net

[13] Stratego Bond Nederland (SBN): http://www.strategobond.nl

[14] International Stratego Rating: http://www.kleier.net/rating/index.php5

[15] Karl Stengaard, Utveckling av minimax-baserad agent för strategispelet Stratego.

2006 Lund University, Sweden

[16] Jörg Bewersdorff, Luck, Logic and White Lies, 2005

[17] Jean-Paul van Waveren, Léon J. M. Rothkrantz: Artificial Player for Quake III

Arena. Int. J. Intell. Games & Simulation 1(1). 2002.

Jean-Paul van Waveren, Léon J. M. Rothkrantz: Automated path and route finding

through arbitrary complex polygonal worlds, robotics and autonomous systems. Robotics

Journal vol 54, p 442-452, 2006

[18] John W. Romein, Henri E. Bal, Solving Awari with Parallel Retrograde Analysis

2003, Vrije Universiteit Amsterdam.

[19] James Edward Davis and Graham Kendall, An Investigation, using Co-Evolution, to

Evolve an Awari Player, University of Nottingham, United Kingdom. 2005.

[20] Mohammed Daoud, Nawwaf Khannal, Ali Haidar and Julius Popoola, Ayo, the

Awari Player, or How Better Representation Trumps Deeper Search

Concordia University, Montreal, Canada.

[21] 2007 Computer Stratego World Championships:

http://www.strategousa.org/wiki/index.php/2007_Computer_Stratego_World_Champions

hip

[22] Stefan J. Johansson, On using Multiagent Systems in Playing Board Games

[23] Caspar Treijtel. Multi-agent stratego. Master's thesis, Delft University of

Technology, 2000.

[24] J. Schaeffer. Solving checkers: First result. International Computer Games

Association (ICGA), 2005.

[25] Jeffrey Hargrave, Flora Basinger and Mark Zarqawi, Investigation of Expert Systems

[26] Adam Conner-Simons What games can humans still win?

http://www.gelfmagazine.com/gelflog/archives/what_games_can_humans_still_win.php

[27] David M. Bourg; Glenn Seeman, AI for Game Developers.

 104

 ISBN: 0-596-00555-5. 2004

[28] Stratego AI-bot “Probe”: http://www.imersatz.com/probe/index.htm

[29] Mohannad Ismael Multi-Agent Stratego

University of Rotterdam, Delft University 2004

 105

Appendix A: Stratego

A1 The game

The rules of the game are taken from

http://files.boardgamegeek.com/viewfile.php3?fileid=14131

The object of the game is to capture your opponent's flag.

Each army consists of:

--- These moveable pieces, (#) = indicates quantity

10 Marshal (1)

9 General (1)

8 Colonel (2)

7 Major (3)

6 Captain (4)

5 Lieutenant (4)

4 Sergeant (4)

3 Miner (5)

2 Scout (8)

1 Spy (1)

Note: Higher number indicates higher rank

--- These immobile pieces

Bomb (6)

Flag (1)

How to set up the game

1. Place the game board between you and your opponent with the name Stratego

facing each of you.

2. Hide a red piece in one hand and a blue piece in the other. Your opponent chooses

a hand and plays with the color army the selected piece designates. The other

color army is yours.

3. Set up your armies using the strategy hints and rules for movement and attacking

that are discussed below.

4. Place your pieces on the game board with the notched end up. The printed side

faces you so your opponent cannot see the rank of your pieces. Your opponent

does the same.

5. Only one piece can occupy a square. Place them anywhere in the last four rows on

your half of the game board. The two middle rows are left unoccupied at the start

of the game.

 106

Game play

You and your opponent alternate turns. The red player moves first.

On your turn you can do one of the following:

Move -- one of your playing pieces to an open adjacent space.

Or Attack -- one of your opponents playing pieces.

Rules for movement

1. Pieces move one square at a time, forward, backward or sideways. (Exception:

see Special Scout Privilege, Rule 6).

2. Pieces cannot move diagonally. They cannot jump over another piece. They

cannot move onto a square already occupied by another piece (unless when they

are attacking).

3. Pieces cannot jump over or move onto the two areas in the center of the game

board that are indicated by the dotted lines.

4. A piece cannot move back and forth between the same two squares in three

consecutive turns.

5. Only one piece can be moved on a turn.

6. Special Scout Privilege: A Scout can move any number of open squares forward,

backward, or sideways. But remember, this movement will let your opponent

know the value of that piece. You may wish to move your Scouts one space at a

time to confuse your opponent. Scouts are the only pieces allowed to move and

attack on the same turn. See “Rules for Attack”, below.

Remember, the Bomb and Flag pieces cannot be moved and must remain on the squares

where they were originally placed throughout the game.

Rules for attack

1. Attack Position: When a red and a blue piece occupy adjacent spaces either back

to back, side to side, or face to face, they are in a position to attack.

2. How to Attack: To attack on your turn, take your attacking piece and lightly tap

your opponent's piece. Then, declare the rank of your attacking piece. Your

opponent then declares the rank of his/her defending piece.

3. The piece with the lower rank is captured and removed from the board. If your

piece (the attacking piece) is the remaining and winning piece, it moves into the

space formerly occupied by the defending piece. If the remaining and winning

piece is the defending piece, it stays on the square it was in when it was attacked.

4. When pieces of the same rank battle, both pieces are removed from the game.

5. Attacking is always optional.

Rules of rank

 107

1. A Marshal (Number 10) outranks a General (Number 9) and any other lower-

ranking piece. A General (Number 9) outranks a Colonel (Number 8) and any

lower-ranking piece. A Colonel (Number 8) outranks a Major (Number 7) and so

on down to the Spy which is the lowest-ranking piece. Refer to the illustration of

moveable pieces on page 2 for remaining ranks.

2. Special Miner Privilege. When any piece (except a Miner - ranked 3) strikes a

Bomb, that piece is lost and removed from the board. When a Miner strikes a

Bomb, the Bomb is defused and removed from the game board. The Miner then

moves into the Bomb's space on the board. Bombs remain on the same square

throughout the game unless they are defused. Bombs cannot attack or move.

3. Special Spy Privilege. If any piece attacks the spy, it is captured and removed

from the board. But the Spy has a unique attacking privilege. It is the only piece

that can outrank a Marshal providing the Spy attacks the Marshal first. If the

Marshal attacks first then the Spy is removed.

Strategy hints

1. Place Bombs around the Flag to protect it. But place a Bomb or two elsewhere to

confuse your opponent.

2. Put a few high-ranking pieces in the front line, but be careful! If you lose them

early in the game you're in a weak position.

3. Scouts should be in the front lines to help you discover the strength of opposing

pieces.

4. Place some Miners in the rear for the end of the game, where they will be needed

to defuse Bombs.

Winning the game

The first player to attack an opponent's Flag captures it and wins the game.

If all of your moveable pieces have been removed and you cannot move or attack on a

turn, you must give up and declare your opponent the winner.

A2 History

This text was taken literally from wikipedia: http://en.wikipedia.org/wiki/Stratego

The origins of Stratego can be traced back to traditional Chinese board game "Jungle"

also known as "Game of the Fighting Animals" (Dou Shou Qi) or "Animal Chess". The

game Jungle also has pieces (but of animals rather than soldiers) with different ranks and

pieces with higher rank capture the pieces with lower rank. The board, with two lakes in

the middle, is also remarkably similar to that in Stratego. The major differences between

the two games is that in Jungle, the pieces are not hidden from the opponent, and the

initial setup is fixed.

 108

A modern, more elaborate, Chinese game known as Land Battle Chess (Te Zhi Lu Zhan

Qi) or Army Chess (Lu Zhan Jun Qi) is a descendant of Jungle, and a cousin of Stratego -

the initial setup is not fixed, one's opponent's pieces are hidden, and the basic game play

is similar (differences include "missile" pieces and a Chinese Chess style board layout

with railroads and defensive "camps"; a third player is also typically used as a neutral

referee to decide battles between pieces without revealing their identities). An expanded

version of the Land Battle Chess game also exists - this adds naval and aircraft pieces and

is known as Sea-Land-Air Battle Chess (Hai Lu Kong Zhan Qi).

In its present form Stratego appeared in Europe before World War I as a game called

L'attaque. Thierry Depaulis writes on "Ed's Stratego Site":
[1]

"It was in fact designed by a lady, Mademoiselle Hermance Edan, who filed a patent for

a 'jeu de bataille avec pieces mobiles sur damier' (a battle game with mobile pieces on a

gameboard) on 11-26-1908. The patent was released by the French Patent Office in 1909

(patent #396.795). Hermance Edan had given no name to her game but a French

manufacturer named "Au Jeu Retrouvé" was selling the game as L'Attaque as early as

1910... "

Depaulis further notes that the 1910 version divided the armies into red and blue colors.

The rules of L'attaque were basically the same as the game we know as Stratego. It

featured standing cardboard rectangular pieces, color printed with soldiers who wore

contemporary (to 1900), not Napoleonic uniforms.

The modern game, with its Napoleonic imagery, was originally published in the

Netherlands by Jumbo, and was licensed by the Milton Bradley Company for American

distribution, and first published in the United States in 1961 (although it was trademarked

in 1960). The Jumbo Company continues to release European editions, including a three-

and four-player version, and a new Cannon piece (which jumps two squares to capture

any piece, but loses to any attack against it). It also included some alternate rules such as

Barrage (a quicker two-player game with fewer pieces) and Reserves (reinforcements in

the three- and four-player games). The four-player version appeared in America in the

1990s.

Other themed variants appeared first in North America: a Star Wars version, a The Lord

of the Rings variant, and a "Legends" variant with fantasy pieces arguably inspired by

Magic: The Gathering. The Legends variant added more rules and complexity, giving the

players choices of pieces with special attributes, collectible "armies" from more than a

hundred individual pieces offered in six sets, and varied boards with terrain features.

Pieces were originally made of printed cardboard. After World War II, painted wood

pieces became standard, but starting in the late 1960s all versions had plastic pieces. The

change from wood to plastic was not made so much for economy, but because the

wooden pieces tended to fall over and the plastic pieces could be designed not to.

European versions introduced cylindrical castle-shaped pieces that proved to be popular.

 109

American variants later introduced new rectangular pieces with a more stable base and

colorful stickers, not images directly imprinted on the plastic.

The game is particularly popular in the Netherlands, Germany and Belgium, where

regular national and world championships are organized. The international Stratego scene

has, in recent years, been dominated by players from the Netherlands.

European versions of the game show the Marshal rank with the numerically-highest

number (10), while American versions give the Marshal the lowest number (1) to show

the highest value (i.e. it is the #1 or most powerful tile). Recent American versions of the

game which adopted the European system caused considerable complaint among

American players who grew up in the 1960s and 1970s. This may have been a factor in

the release of a Nostalgic edition, in a wooden box, reproducing the Classic edition of the

early 1970s.

Electronic Stratego was published by Milton Bradley in 1982. It has features that make

many aspects of the game strikingly different from those of classic Stratego. Each type of

playing piece in Electronic Stratego has a unique series of bumps on its bottom that are

read by the game's battery-operated touch-sensitive "board". When attacking another

piece a player hits his Strike button, presses his own piece and then the piece he is

targeting: the game either rewards a successful attack or punishes a failed strike with an

appropriate bit of music. In this way the players never know for certain the rank of the

piece that wins the attack, only whether the attack wins, fails, or ties. Instead of choosing

to move a piece, a player can opt to "probe" an opposing piece by hitting the Probe button

and pressing down on the enemy piece: the game then beeps out a rough approximation

of the strength of that piece. There are no bomb pieces: bombs are set using pegs placed

on a touch-sensitive "peg board" that is closed from view prior to the start of the game.

Hence, it is possible for a player to have his own piece occupying a square on which a

bomb has been placed. If an opposing piece lands on the seemingly-empty square, the

game plays the sound of an explosion and that piece is removed from play. As in classic

Stratego, only a Miner can remove a bomb from play. A player who successfully captures

the opposing Flag is rewarded with a triumphant bit of music from the 1812 Overture.

A3 Repetition rules

In Stratego, there are 2 rules to prevent endless repetition of moves. Their exact definition

is quite complicated, which is probably the reason most existing programs have either no

notion of them, or have not implemented them completely or incorrectly. It has to be said

that for leisurely play these rules have no real significance since you normally don’t get

into an endless repetition if you play just for fun. And even in real-life official games,

they are only guidelines about when approximately you are supposed to end the chase.

Since the games are not annotated it’s impossible to say the exact moment when a

repetition of moves becomes illegal.

 110

There are several reasons why I find it necessary to implement the official rules in

“Invincible” and in the game client. First of all, it’s impossible to play a serious game

without repetition rules at all. If both sides are determined to win, there are countless

situations in Stratego that can lead to a stalemate if neither is forced to do a different

move. Where the human player might decide to do a sub-optimal move when he gets

bored with the situation, the computer would never do that if not restricted. Also, since

it’s impossible to argue with the computer, I find it important to make sure the computer

is always right in which moves are allowed. In possible future Stratego AI competitions,

it will be important that both AI-bots use the same set of rules so they must agree in all

the details of these repetition rules as well.

The two-squares rule

The first of these rules is the two-square rule, also called 5-moves rule, though I prefer to

use the first term because the essence of this rule is that the repetition of moves is over 2

squares and the actual number of moves is not important (in tournaments they are hardly

ever counted).

Taken from the official Stratego rules [1] this reads literally

10 Five Moves on Two Squares: Two-Squares Rule

10.1
It is not allowed to move a piece more than 5 times non-stop
between the same two squares, regardless of what the opponent
is doing. It does not matter whether a piece is moving and
thereby attacking an opponent’s piece, or just moving to an
empty square.

10.2
When a scout is involved in the Two Squares Rule, a scout is
considered to start on the starting position of his move plus all
the squares he steps over, and he ends on the final position of
his move plus all the squares he steps over.

10.1 seems easy enough, though of all the repetition rules this has the biggest impact on

the game, which I will explain later. Most other Stratego sites and AI-bots have

implemented this rule, but none of the AI-bots I’ve come across seemed to know its

consequence to the game. This rule is very common and restricts moves several times in

each game. It often results in the capture of a piece, not only because of mistakes of the

opponent, but also because of tactical combinations of moves making use of this rule.

10.2 makes this rule a little more complicated to program, but is very important when

trying to capture a scout or defending your flag against scouts. Without this rule (only

taking 10.1 literally) you need about 6 pieces to capture a scout, with this rule it can be

done with 4. There are not so many situations in which this rule really makes a

difference; only in very close endgames it’s important to understand this rule, so I will

not go into detail here. To understand the rule, you must look at the lines between the

 111

squares, if a line is crossed 5 times on row by the same piece then this piece is not

allowed to cross it in the next move.

Implementation of the two-square rule

Because of the 10.2 clause this is not a simple check on the last 5 moves to see if they

went back and forth between the same 2 squares. The problem can be reduced to finding

the overlapping squares in the last 5 moves. If all 5 moves started, ended or passed over

at least 2 of the same squares, then the current move is not allowed to start end or pass

over these 2 or more squares. This can be implemented by finding the maximum of the

lowest y-coordinate of the last 5 moves and the current move, and the minimum of the

highest y-coordinates if they all started and ended in the same row. If the minimal highest

y-coordinate is higher than the maximal lowest y-coordinate there are at least 2 squares

overlapping in these moves so the current move is not allowed.

If they all started and ended in the same column, the same check has to be applied to the

x-coordinates. If the moves don’t all take place in the same row or column, the move

can’t break this rule.

If the last 5 moves were not all done by the same piece, then this rule can never be

broken. It is important to check this, since in theory it’s possible to cross the same 2

squares with 2 scouts and then move back with the last one. This would cross the same 2

squares for the 6
th

 time on row, while the move is allowed.

Game play effects of the 2-square rule

Figure A1 – The major (7) lost?

If however the blue colonel would start in this situation (after moves elsewhere on the

board) on the square marked with a triangle and would from there move to the left, the

colonel would start the repetitive moves earlier than the major and won’t succeed in the

capture. These are two seemingly alike situations, but with a very different result. Even

though in the first situation the blue colonel seems to initiate the sequence, he is not the

one that starts the repetition, since he doesn’t start on one of the squares between which

the moves are repeated.

Illustration of the 2-square rule

If the blue colonel moves to the right, there inevitably follow 2

repetitions over 2 squares. The red major will try to evade on

the first row, and the blue colonel follows on the 2nd row. Since

the red major must do the first repetitive move he also has to

end it first and thus will be lost!

 112

Figure A2 – The major (7) lost?

Since a single mistake with this rule can easily cost you an important piece and decide the

game, it is important that the artificial intelligence has a good understanding of this rule

and its consequences.

The more-square rule

The second repetition rule is the more-square rule. This rule is a lot more vague and

impossible to apply precisely in a real non-annotated game so it’s usually known as “You

can’t endlessly chase enemy pieces without giving him at least one free move in which he

doesn’t have to run away from you”. A seemingly innocent rule that makes the attacker

stop a chase that doesn’t lead to the capture of a piece. The rule can’t force a player to let

his piece be captured like the two-square rule could since it’s always the attacking player

that has to stop the repetitive moves. Like the two-square rule though, this rule also has

its side-effects that are of no less consequence to the result of the game, though its

importance becomes clear only in close endgames, and is thus less often decisive than the

two-square rule, but when it is, it always decides the result of the game.

The less common occurrence and the vague nature of this rule are most likely the reason

that of all the Stratego rules this one is least commonly known. Even experienced

tournament players do not always know precisely its consequences to the endgame. Only

one Stratego site that I know of implements this rule [2], and no Stratego AI-bot that I

came across does. The reason for this is most likely that the commonly known vague

version of the rule is not clear enough to be implemented (actually it would take an

extraordinary effort from a player to be able to tell when exactly a move becomes illegal

during a live game, so this is not expected of players, only that the attacker “eventually”

stops) and the official description is very formal and can be hard to read if it’s not

explained to you.

From the ISF game rules [1]:
11 Repetition of Threatening Moves: More-Squares Rule

11.1

It is not allowed to continuously chase one or more pieces of the

opponent endlessly. The continuous chaser may not play a

chasing move again more which would lead to a position on the

The key is that the first piece that crosses the line between the 2 squares

of the repetition is at a disadvantage

The attacker should approach from above or (in this situation) from the

left, and the defender can anticipate by moving to the right before the

colonel moves into his column, to make sure he can move to the

attackers column as soon as the attacker moves to his column. As soon

as both pieces are in the same column for a move and there is no escape

from the two squares the piece has to move back and forth between, the

piece is lost. In the situation in figure 2, the red piece is already lost. If

he moves to the right, the attacker does the same. After 5 times, red

must do another move, and blue can move down, eventually capturing

the red piece.

 113

board which has already taken place.

11.2

Exception: chasing moves back to the square where the chasing

piece came from in the directly preceding turn are always

allowed as long as this does not violate the Two-Squares Rule

(Five-Moves-on-Two-Squares).

11.3

Definitions:

• continuous chase: the same player is non-stop threatening one or more pieces of his

opponent that is/are evading th threatening moves.

• chasing move: a move in a continuous chase that threatens an opponent’s piece that was

evading during the continuous chase.

 Hereby

• a/to move: a/to move plus attacking or a/to move to an empty square.

• to threaten: to move a piece next (before, behind or besides) a piece of the opponent.

• to evade: to move a piece away promptly after it has been threatened.

In short that means you are not allowed to do a move that would lead to a situation on the

board that has already taken place during an uninterrupted sequence of threatening

moves. After a single non-threatening move, all history is thrown away and all moves are

allowed again.

Implementation of the more-square rule

To implement this rule, I keep 2 lists of hashed board positions. After every move of red,

the board position goes into list A, and after every move of blue, the board position goes

into list B. If a blue move does not start on a square next to the previous red move, the

red move is not considered a chasing move, so reds list (A) is emptied. A similar check is

applied to see when list B must be emptied.

Any move to that would lead to a board position that is already in the list is not allowed.

The exception that you can move back to the square you came from must be taken into

account separately. A move going back to the field this piece came from in the previous

move can always be allowed by this rule (and then possibly forbidden by in the other

check you do for the two-square rule).

A simplification may be that a capturing move can never be part of a repetitive sequence,

so you can omit this check on moves that attack an enemy piece.

One thing where I found the rule unclear is whether a board situation is the same if all the

pieces are in the same place and have the same ranks, but different pieces of the same

rank have exchanged places.

Because of the secretive nature of the game, it must be possible however to tell which

moves are allowed without knowing the ranks of the opponents pieces, so the only 2

options would be to treat all pieces equally and thus consider a board situation the same

when there are pieces of the same color on the same fields, or to treat them all differently

and consider a board position the same only if each individual piece is in the same

 114

location. The first seems clearly wrong because if a marshal and scout have exchanged

places there are different possibilities and it’s thus a different position so I interpret this

rule to read that every individual pieces must be on the same field before a board position

is considered the same. To implement this, all pieces are given a unique id that is used in

the hash function for the board. The hash function simply puts all these codes for the 100

squares in sequence, resulting in a String that is unique for every different board position.

Game play effects of the more-square rule

Though it seems that this rule can’t affect the result of the game, since it can’t lead to the

unnecessary capture of a piece, there is a side-effect. In close endgames it’s possible to

create a situation where the move you have to do to defend your flag is not allowed by

this rule, forcing you to do another and give your opponent free access to your flag.

Figure A3 – Blue wins.

This can go on forever, without the marshal ever moving too far from the flag to allow

blue to capture it. However, if the blue pieces stay in these positions and only move to

one of the triangle fields when the marshal comes next to them on the other triangle field,

then each move of red is seen as a threatening move! Even though the blue pieces stay

there on purpose and might be seen as the attacking pieces, and red can’t capture either of

them because then the other will go to the flag. What counts is the action of red moving

next to a blue piece, and blue to move this piece away in the following move.

Since this situation is thus by the definition a continuous chase, red will be forced

eventually to make a move that doesn’t end next to a blue piece. In the situation above

that means red will instantly lose because he has no valid moves, and if red would be on

one of the triangles he would be forced to move outward, letting blue capture his flag.

Note that if red would have another piece, for example a scout, this would not work for

blue, since red would not be forced to move the marshal.

Figure 3 shows a situation in which the more-square

rule decides the result of the game. Suppose that the

red marshal (10) is the only piece red has left and blue

has no miners left to capture the red bombs. It’s reds

turn to move. Normally, the marshal would move back

and forth between any of the squares marked with a

triangle. As soon as the 2-square rule would forbid

that, red can move back and forth between any of the

other squares.

 115

Figure A4 – Blue wins.

There are many different situations imaginable in which one player can force the other

player out of a defensive position using this rule. The effect of this rule on the game is

that as soon as you have so few pieces left that you can be forced to move an important

piece you lose, regardless of how high the pieces you have left are.

If you have the 2 highest pieces on the board, but the opponent has more pieces, you have

a losing endgame. With 3 highest pieces it can go either way depending on the situation,

only if you have the 4 highest pieces it’s enough to guarantee the win.

This rule also applies when more chasing and

running pieces are involved. See figure 4:

Without other pieces, the red marshal and

general can’t defend the flag against 2 miners

and a scout (the scout is to make moves,

since blue would lose if his miners were

forced to move in this position). Red can’t

defend endlessly by going back and forth to

the marked fields.

 116

 117

Appendix B: The game client

In order to be able to show and test the artificial intelligence, a user interface is needed

that allows people to play a game against the computer. I therefore started with making a

simple program that allows you to play games, save setups and replay previously saved

games to see where, on hindsight, the mistakes were made. This also makes it easy to let

other Stratego players test the artificial intelligence and send me the save files so that I

can analyze the game later.

Figure B1 – Screenshot of the game client.

On the left is the game board, you can click on pieces and then on the square you want to

move to to make moves. Captured pieces go to the right of the screen. The grey pieces

are still in the game, and the colored pieces are already captured. During setup phase, all

the pieces are initially there and can be moved to the board by clicking on them and on a

field on the board. To speed up the setup process, the next highest piece is automatically

selected when you place a piece on the board.

The pieces

To avoid any possible copyright issues I decided to make my own set of images for the

pieces. The idea was to make them easily distinguishable symbols with as few “useless”

details as possible.

Marshal The cross is often associated with the marshal in different versions

of Stratego. In annotations, the letter X is usually used to refer to

the marshal.

General The 4-star rank ensign used for the general in the classic Stratego

 118

pieces.

Colonel The 3-star rank ensign used for the colonels in the classic Stratego

pieces.

Major The 1-star rank ensign used for the majors in the classic Stratego

pieces.

Captain

Lieutenant

Sergeant

Miner The bomb icon is added to show that this is a special piece that can

capture bombs.

Scout The arrow icon is added to show that this is a special piece that can

move faster than normal pieces.

Spy The spy can capture the marshal, so also has a sign in the upper left

corner to show it’s a special piece.

Bomb Bomb is special because it can’t move, but beats every attacker

except the miner.

Flag The flag can’t move and if lost you lose the game.

Saving setups

To save a setup you should click “save” in the setup menu after completing your whole

setup and before starting the game. It is then automatically saved on the first empty slot

(you have 6 slots for setups) and called setup #n. To delete a setup, you must load it and

then select delete from the setup menu.

Saving games

You can only save finished games. To save a game, go to the file menu and click “save”.

The game is automatically saved as “[result] in [n] moves”. Only 10 games can be saved,

after this the oldest saved game is automatically deleted. To manually delete a savegame

you must load it and then select delete from the file menu. You may want to do this to

prevent an older game to be auto-deleted.

Replaying games

To replay a game you must first save them. You can load a saved game by selecting it in

the file menu. You then get a “forward” and “backward” button under the board with

which you can scroll through the moves. You can select “open pieces” from the options

menu to see the ranks of the computer so you can see where all his pieces were standing

during the game.

 119

Free setup

If you select free setup from the options menu you can manually insert any position on

the board. You can (and have to) setup both the blue and the red pieces. It is not

necessary to put all the pieces on the board and it’s not necessary to put them only in their

setup area. When you have finished setting up, you can start the game by selecting “start”

from the game menu. Free setup games don’t count for your win/loss statistics and they

can be played with open pieces (which is normally only available during replay of a

game).

The menus

File

• New game – starts a new game against “Invincible”.

• Save – saves a finished game for replay later.

• Delete – deletes the loaded savegame

• List of saved games – The last 10 saved games can be loaded for replay,

optionally with open pieces. Moves can be played and taken back to see what

went good or bad in the analysed game.

• Quit – quits the program.

Game

• Start – starts the game. Only possible when all your pieces are setup.

• Offer draw – offers a draw to “Invincible”. If accepted, the game ends in a tie.

• Surrender – resigns from the game. This results in a loss.

Setup

• Random setup – makes a random setup

• Clear setup – removes all the pieces already on the board and puts them back in

the box

• Save setup – saves the current setup. This is only possible when all pieces are

placed and the game hasn’t started yet. The game is saved on the first empty of

the 6 available slots. If there are no empty slots, the setup can’t be saved.

• Delete setup – deletes the currently loaded setup. To delete a setup it must first be

loaded.

• List of setups – clicking on any of the setup slots loads the setup saved in that slot.

It can be modified or deleted before the game starts.

Options

• Statistics – shows your win/loss record against “Invincible”.

• Free setup – allows the user to put any position on the board to start the game

with. If the game is in this mode, the win/loss record is not affected.

 120

• Open pieces – only available during replay or free setup games. Shows the ranks

of all enemy pieces.

 121

Appendix C – testgames

Game 1: Mohannad vs. Invincible (1-0) – Mohannad wins in 313
moves

• Move 3-4: Invincible moved his marshal early and Mohannad attacked it with a

scout. This is bad for Invincible because playing with a known marshal is very

hard. Given his inability to dominate the game aggressively, he cannot afford to

let his high pieces get known so easily.

• Move 16-22: Invincible advances his marshal and Mohannad moves his spy in

defense. Invincible is careful and doesn’t come near the spy.

• Move 25-29: Invincible takes a few unmoved pieces in an attack with a lieutenant.

The attack ends when he attacks Mohannad’s lieutenant.

• Move 31: Invincible scouts Mohannad’s unmoved general. This is good, because

with a known marshal an unknown enemy general is very dangerous. The game is

still approximately even.

• Move 32-57: there’s a skirmish between Mohannad’s known captain and

Invincible’s unknown major. There is no confrontation between the pieces

because Mohannad suspects it is a major and approaches with his general. The

captain hits an unmoved captain from Invincible and the majors are later

exchanged too.

• Move 59: Invincible scouts Mohannad’s colonel. Invincible is getting more

information, while the pieces are still approximately even. Invincible’s problem is

that he doesn’t know the marshal and spy so none of his high pieces dares to

attack.

• Move 73-78: Mohannad takes a few unmoved pieces in an attack with a

lieutenant. The attack ends when the lieutenant hits a bomb.

• Move 87-91: Mohannad takes a few unmoved pieces in an attack with a sergeant.

The attack ends when the sergeant hits another sergeant. Invincible remains

passive because he sees no good attack.

• Move 103: Invincible scouts a backrow miner.

• Move 103-117: Both Mohannad and Invincible stay passive, neither eager to

attack.

• Move 118-136: Invincible had more patience, so Mohannad started an attack with

a major attacking Invincible’s back lines. This works very well, the major takes

two captains and a few more pieces but eventually hits a bomb. This makes

Mohannad suspect where Invincible’s flag is. Mohannad is now behind a major,

but this is more than compensated in the lower ranks. Also Invincible still has too

little information to attack.

• Move 145-177: Mohannad attacks with a colonel and miner trying to get to the

flag. Invincible knows the colonel and approaches it with 2 pieces. He succeeds in

taking it with his general. Things look a bit better for Invincible now, but he still

has dangerously few low pieces and Mohannad still suspects his flag.

 122

• Move 180-213: Mohannad suspects the spy and tries to capture it with a scout.

Invincible defends well with the general and marshal and Mohannad gives up,

scouting a major instead.

• Move 214-236: Mohannad attacks with his unknown marshal and known general.

Invincible defends with known marshal and known general. Invincible is carefull

of the unknown piece, not attacking it with his general, but not giving him a

chance to scout the spy either. It ends when Mohannad attacks the general with

his marshal and loses his marshal. This is a fair trade, but now Invincible knows

Mohannad’s highest piece (the general) so he is finally able to attack.

• Move 249-260: Mohannad attacks on the flag side with a major. Invincible’s

defenses are too thin there because the marshal was drawn to the fight in the

middle of the board. He pushes back the remaining defender and hits an unmoved

piece in front of the flag, weakening this side even further. He then hits a bomb in

front of the suspected flag, making it even more likely that the flag is actually

there. Invincible is leading by a colonel and two majors, but has few low pieces

and a weak flag side. He doesn’t consider himself up enough to close his defense.

He underestimates both his lead and how obvious his flag has become.

• Move 260-274: Invincible instead attacks with a marshal and colonel, pushing the

general back in defense. He takes a strong position in the centre. His path to the

flag-side is blocked by the spy and general though, so his flag defenses are

dangerously weak.

• Move 279: Invincible takes the miner that he scouted in move 102 with his

colonel.

• Move 288-303: Invincible moves his second colonel to attack too and traps a

moved piece in the centre. Mohannad moves with a miner to the suspected flag.

He takes the bomb and Invincible hits his miner with his own.

• Move 303-313: Both Invincible and Mohannad attack. Invincible advances his

spy to use it for more information; Mohannad advances a sergeant to the flag.

Invincible makes no move to defend, still considering his lead insufficient and

preferring attack.

• Move 314: Mohannad captures the flag and wins the game.

Summary Mohannad vs. Invincible (1-0):

Invincible played a very careful game, but put too little pressure on his opponent. His

first mistake was to move his marshal too early. He didn’t really have anything he could

do with it so it only gave away important information. He also doesn’t really know how

to find the information he needs and this limits his ability to attack. He gave Mohannad

too much freedom to dominate the game and this was not in his advantage. His second

mistake was that he didn’t recognize he had to defend the flag. He only gives much value

to defense when he has a very clear lead, but should also do so when his flag is

vulnerable in games that are even or where he has a small lead.

To improve, the program needs to get a plan to find the location of the highest enemy

piece and the spy and the strategic defense plan must be activated when the flag becomes

vulnerable. He also should not move his marshal as early as he did this game.

 123

Game 2: Raymond vs. Invincible (0-1) – Invincible wins in 494 moves

• Move 1-22: Both players attack with a couple of low pieces to test out the

opponent. Both lose some and by move 22 Raymond knows a bomb and

Invincible knows a captain.

• Move 23-24: Invincible captures the known captain with his major, and loses his

major to a marshal. This is not a bad exchange for either player because Raymond

get’s a small material lead while Invincible gets to know the marshals location.

• Move 25-43: Raymond moves a couple of low pieces to defensive positions and

Invincible moves his unknown general forward through the center. He gets know

for a scout and blocked by the marshal.

• Move 44-59: The marshal let the general pass and this costs Raymond a sergeant

and miner that he moved earlier. He also had to move his spy out in the center to

get it out of the way.

• Move 50: Raymonds captures an attacking captain with his major on the right side

of the board.

• Move 63: The generals get exchanged. This stops Invincible’s attack, but

Raymonds general was not known yet, so Invincible gains more from this swap.

The game is still about even, with Raymond leading by a major, and Invincible

being ahead two low pieces and having more information.

• Move 64-68: Raymond attacks with his known major and takes 2 scouts. Even

though these are low ranking pieces it didn’t seem necessary to sacrifice both to a

known major.

• Move 68-77: Invincible pushes the major back with an unknown piece and

captures it, revealing the piece to be a colonel.

• Move 93-98: Invincible does a wild attack with a captain, takes a lieutenant and

then loses to a colonel.

• Move 108-109: Raymond takes a known front-row bomb with a miner and loses

his miner to a lieutenant.

• Move 110-120: Both Raymond and Invincible attack on opposite sides. Raymond

loses his captain to a major after taking the known lieutenant and Invincible takes

an unknown bomb with a miner (!) and then get’s captured by Raymond’s last

unknown colonel.

• Move 123: Two known colonels get exchanged.

• Move 124-139: Invincible does a very weak bluffing attack on the left with a

scout on Raymond’s colonel. The colonel is not impressed and the scout retreats

(unknown) when Raymond moves his marshal to the left as well.

• Move 140-145: With the marshal out of the center, Invincible takes his chance to

attack there with his unknown colonel. Raymond meets him with a major, but

Invincible thinks this is a low piece and avoids confrontation. He takes a captain

instead.

• Move 147: Invincible is given the chance to move his colonel in between a major

and the spy, both unknown, but he knows both can be captured by a colonel but

he lets the moment pass.

 124

• Move 153: Invincible hits an unknown major with his known major.

• Move 158-174: Raymond attacks 3 of Invincible’s pieces in the back of the field

with scouts. He hits another scout a bomb and unexpectedly also the spy.

Invincible still has a slight advantage in the game, it’s even in high pieces but

Invincible is leading both in small pieces and in information. The only difficulty

might be the loss of his spy.

• Move 193-227: Raymond attacks on the right with a major, lieutenant and miner.

It leads to nothing because an unknown piece approaches in defense. Invincible

also unexpectedly approaches with his marshal though the center and captures the

unknown major. Now Invincible has a serious lead in pieces.

• Move 240-285: Invincible is indecisive now. He leaves his highest two pieces in

an attacking position on the right side, but there is hardly anything left there to

attack. This gives Raymond a lot of options on the rest of the board. Invincible

should have moved his marshal to a more active position.

• Move 290-333: Raymond takes advantage by attacking with a miner and colonel

to the suspected flag. Invincible defends with too many pieces and Raymond

misses a few chances to capture some with his colonel. Invincible eventually

manages to capture the miner and remove the danger.

• Move 353: Invincible attacked with a lieutenant and captures a sergeant.

• Move 369: Invincible finally decides to simplify the game by exchanging

colonels. This is a big step towards victory because he is leading in all ranks

lower than colonel.

• Move 400-427: Invincible attacks with a major, taking a sergeant and following

two pieces that are running towards Raymonds marshal. He misses all chances to

catch up and capture one of them. This is again the same mistake that he

previously made where he didn’t see the opportunity to step between 2 pieces that

are known to be lower.

• Move 428-434: Raymonds gets trapped which costs him his second-last miner

and his spy. He does manage to drive the major on a bomb. This is no problem for

invincible because he has enough pieces.

• Move 449: Invincible takes a guess with his lieutenant and finds a bomb.

• Move 455: The marshals are exchanged. This means an easy victory for

Invincible who can now easily trap the remaining pieces.

• Move 455-495: Invincible does this fairly efficient without giving Raymond a

chance to get one of his last pieces near the flag. Invincible wins.

Summary Raymond vs. Invincible (0-1):

After a few changes to the program, Invincible now played a lot better. He played much

more active, punishing most mistakes of his opponent. He did several times make the

mistake were that he doesn’t recognize the situation where he can move a high piece

between two lower pieces and capture one of them. It should be easy to teach him to

recognize this. He also played too passively with his known marshal, leaving it in a

useless position. This may be harder to improve because it’s not easy to define what

exactly he should have done instead.

 125

Game 3: Mehdi vs. Invincible (0-1) – Invincible wins in 316 moves

• Move 1-12: Both players scout a few front-row pieces.

• Move 13: Invincible takes a known captain with a colonel.

• Move 17: Invincible “accidentally” takes Mehdi’s spy with his scout. This is a

lucky start for Invincible.

• Move 18-27: Invincible attacks with a lieutenant, taking a scout and finding a

major.

• Move 28-37: Invincible attacks with a captain, taking a scout and finding a bomb.

Mehdi moves forward with his known major.

• Move 38-63: Mehdi moves a lot of pieces forward, putting pressure on Invincible.

Invincible awaits the attack.

• Move 68-75: Invincible attacks with a captain. He is revealed by a scout and

retreats because a known colonel is defending on that side.

• Move 75-84: Mehdi continues moving forward with several pieces, finding a

colonel with his lieutenant.

• Move 85-113: The known colonel wreaks havoc among Mehdi’s attacking pieces.

He takes the known major, a lieutenant and a captain. He retreats when the

(unknown) marshal comes his way.

• Move 114-122: The marshal pushes the colonel back to his own side. Invincible

then leaves it next to an unknown piece bluffing that this is his spy. Mehdi is

unafraid and takes the colonel with his marshal. This makes the game

approximately even, with Mehdi leading by a colonel and Invincible having an

extra major and captain. Invincible has more information though, having taken the

spy and now knowing the marshal. Also Mehdi moved more pieces.

• Move 136: Mehdi takes a scout with his general. Invincible now knows both the

marshal and the general.

• Move 140: Mehdi takes a risk with his colonel by taking an unmoved piece deep

in Invincible’s setup. It turns out to be a sergeant, and neither the general nor the

marshal seems to be nearby to retaliate.

• Move 140-147: Invincible attacks with a known captain, taking unmoved pieces.

He gets a lieutenant, miner and then hits another captain. A very good result for

such attack.

• Move 140-164: Mehdi attacks with a miner and his marshal. The miner gets

captured by a major.

• Move 170-178: Mehdi takes more risks with his colonel, taking a lieutenant,

captain and finally running into a bomb.

• Move 184: Mehdi’s attacking marshal takes a known major that got trapped on

the back row. In pieces it is almost even now, with Invincible having three more

miners and Mehdi three more sergeants. Still, it looks good for Invincible because

he has far more information. His marshal and general are still both unknown.

• Move 189: Mehdi’s attacking general gets captured by Invincible’s marshal.

• Move 190-196: With the general captured and the marshal out of the way,

Invincible uses his known colonel to attack. He goes for a trapped (unknown)

 126

major. Mehdi can only avoid its capture by exchanging his unknown colonel for

Mehdi’s known one.

• Move 197-209: Invincible now uses his marshal for the same purpose and

captures the major.

• Move 214: Mehdi attacks a bomb with his marshal

• Move 215: Invincible attacks a bomb with his marshal (!) This is a strange move

and even stranger timing, but Invincible can afford to lose his marshal in this

position and the bomb was not a very likely one. Invincible still has a comfortable

lead. His general is the highest piece on the board and it’s still unknown. He also

has one more major, which is the second highest rank on the board and Mehdi has

only 1 miner left. This is a situation Invincible should win without having to be

very creative or taking risks.

• Move 220-234: Both Invincible and Mehdi use a major to attack in the centre.

They walk past each other, with Invincible taking a sergeant.

• Move 235: Mehdi risks too much with his major and gets captured by the general.

Mehdi’s highest piece is now a captain, while Invincible has a general and two

majors left.

• Move 236-266: Invincible attacks with general and major, taking all pieces that

Mehdi moved.

• Move 270-278: Mehdi attacks with a miner, takes a front row bomb and gets

exchanged by a miner of Invincible. This seems a bit too good for Mehdi, given

the advantage of Invincible, but it wasn’t dangerous either. The bomb wasn’t

important and the exchange of Invincible’s first miner against Mehdi’s last miner

was good too.

• Move 278-314: Mehdi get’s a last chance to attack with his captain but hits a

bomb. He could not have reached the flag. It turned out Invincible had one major

trapped by bombs, so he was ahead a little less than it seemed. Still he took no

unreasonable risks and secured the win fairly efficient.

Summary Mehdi vs. Invincible (0-1):

Mehdi played risky and unexpected, having his marshal on the last row in the initial

setup. This is something Invincible won’t expect, but he didn’t fall for it either when this

piece approached his colonel. He safely retreated instead. Mehdi initially got some

advantage when he started taking unmoved pieces but it eventually cost him his high

pieces after which Invincible secured his win without giving Mehdi a chance to take his

flag. In this game Invincible could probably have won quicker Mehdi moved a lot of

pieces which he couldn’t defend given that his spy was killed early and his marshal and

general were known. Invincible didn’t attack because he preferred to keep his own

marshal and general unknown a bit longer. Eventually this paid off because he took two

important pieces with them, which is probably more than he would have gotten if he

attacked earlier.

 127

Game 4: Lorena vs. Invincible (0-1) – Invincible wins in 328 moves

• Move 1-40: Lorena get’s the better deal in the opening confrontations. After 40

moves she is leading with three low pieces.

• Move 54: Lorena attacks with a captain and finds a bomb

• Move 57: Lorena moved her marshal forward, which immediately is attacked by a

scout.

• Move 58-82: Lorena continues attacking with her marshal in search of the flag.

She captures a few low pieces but then hits a bomb.

• Move 84-89: Lorena attacks with her general. Because the general is unknown

she actually chases Invincible’s marshal away. Invincible thinks the general is a

low piece and doesn’t want to reveal the rank of his marshal by attacking. It still

turns bad for Lorena when she takes a lieutenant next to Invincible’s marshal.

Invincible, who now finds out the rank of the attacking piece, captures it with his

marshal. Invincible is now leading by a marshal and general. Even though this is

certainly not a safe win against an aggressive player, it’s something Invincible

should be able to convert in a win.

• Move 90-100: Lorena attacks with a captain and attacks a colonel. Invincible

could have attacked the captain the move before, but he doesn’t. He knows that

Lorena has no pieces higher than a colonel, but she still has two unknown

colonels and while leading a general and marshal it is better to try and capture

these than exchange them with his own colonel.

• Move 101-111: Invincible attacks with an unknown piece. It is a scout,

deliberately looking for Lorena’s spy, it never moved, but was in a place where

people often put their spy. Invincible is right and captures the spy.

• Move 120-128: Lorena attacks with a colonel but hits a bomb

• Move 130-147: Invincible attacks with his known colonel and clear up a few

pieces that had previously been moved. He also traps one in the center, using his

marshal and colonel. Lorena attacked with another captain and again hit a colonel.

Invincible again didn’t want to attack the captain himself with the colonel but

rather waited for Lorena to attack something.

• Move 150-180: Lorena attacks with her last colonel. She is attacked by the spy,

which was now useless so Invincible used it for getting information. She goes on

attacking and eventually hits a bomb. Invincible continues using his marshal and

colonel to trap pieces that moved.

• Move 181-328: Invincible now has a huge lead and can’t lose. He spends the rest

of the game trapping and capturing pieces with his marshal and colonel, while

keeping the rest of his high pieces in defense to wait for attacking pieces. Lorena

does manage to capture a few low pieces, but can never create a dangerous

situation. Invincible had too much to do and sometimes moves back and forth, it

might have been possible to finish this game faster, but the way Invincible did it

was safe and eventually effective.

• Move 329: Lorena’s last piece is a scout, which can move fast, but Invincible

used his last scout to unexpectedly attack it from a distance and win the game.

 128

Summary Lorena vs. Invincible (0-1):

Lorena played very aggressively, but Invincible had his defending pieces in the right

places. The game was therefore decided relatively quickly, but it was interesting to see

the techniques Invincible used to finish a won game. He kept enough pieces in defense to

prevent Lorena from getting to the flag in a last attempt, leaving her only the side with

bombs to attack on. He used two high pieces to trap the pieces she moved so that she

would have to move other pieces, eventually causing her to lose all her pieces. He never

attempted to get the flag, but in this situation that wasn’t necessary. It is often easier just

to capture all moving pieces than to try and find the flag. Invincible knows a few more

tricks to force a won game, but capturing moved pieces with two high ranks was in this

situation the easiest and most effective.

Game 5: Sjoerd vs. Invincible (1-0) – Sjoerd wins in 442 moves

• Move 1-13: Sjoerd blocked two of the passages with bombs so he could only play

from the remaining side where he had his marshal and general in the front. He

made a wild attack with his marshal and lost it to the spy.

• Move 14-34: Sjoerd next attacks with his general and takes a lot of unmoved

pieces, eventually hitting the unknown and unmoved general of Invincible.

Invincible now has both Sjoerd’s marshal and general, but only those two pieces

while he lost his own general and 9 more pieces. This would be in Sjoerd’s

advantage, but now his bombs could turn against him if Invincible would realize

they are there. Invincible scouted only two of them and makes no attempt to find

out anything about the other two front-row pieces.

• Move 48: Sjoerd loses a captain to a front row bomb. Both his marshal and

general just missed this bomb, so a captain is a small price for finding it.

• Move 64-65: Sjoerd takes a major with his colonel and finds the marshal.

• Move 66-83: Invincible moves his marshal to block Sjoerd’s only entrance. This

should be a won position for Invincible, in spite of the fact that he is down so

many small pieces because two his pieces are enough to block Sjoerd’s only way

out and attack. The only problem is that Sjoerd still has a spy.

• Move 99: A miner got through and gets captured by a colonel when he gets too

close to the flag.

• Move 100-123: Invincible attacks with his known colonel and chases away the

spy. Sjoerd is forced to exchange it for his last (unknown) colonel.

• Move 124-150: Sjoerd moves three pieces including the spy and a major forward.

Invincible blocks him with his marshal but is unable to attack because of the

unknown spy. If he would get his last unknown colonel he could kill all these

pieces and win the game, but he keeps it behind.

• Move 150-320: In the next 170 moves both Sjoerd and Invincible move back and

forth. This is understandable from Sjoerd’s side as he has a problem getting out,

but Invincible should have taken action to secure his win.

 129

• Move 320-370: Sjoerd gets through with his major and hits a few pieces and finds

a bomb. This again cost Invincible low pieces, but by now he has enough high

pieces to win.

• Move 370-420: Sjoerd again moves back and forth and so does Invincible, when

all he has to do is reveal his unknown colonel.

• Move 430-440: Sjoerd got a miner through and is allowed to get to the known

bomb, even though Invincible has a couple of high pieces just one move away. He

seems to take it for granted that the approaching piece is not a miner and gives

him a free path to the flag. This is a huge mistake.

• Move 442: Sjoerd captures the flag.

Summary Sjoerd vs. Invincible (1-0)

This game nicely demonstrated a few weaknesses Invincible still has. He is presented an

unusual, but nevertheless for human players easy, win and is unable to convert it. He then

blunders and lets Sjoerd capture the flag. In response to the blunder I lowered the

minimal chance for a piece to be a miner before Invincible bothers to defend. The other

mistake was that Invincible was unwilling to reveal his colonel even though he could

have put so much pressure with it that he would almost certainly win. This is logical from

his point of view because his formulas tell him that he shouldn’t reveal it just for the first

piece he could capture with it. They don’t take this specific situation into account.

Invincible also never gets tired of moving back and forth when he has no profitable plan.

This works more often against than in favor of him so maybe this should be solved by

giving him an artificial impatience, letting him do less favorable attacks when nothing is

happening while he should be winning.

 130

 131

Appendix D – Test setups

In this appendix you can find my own manually created setups that I used to test the

heuristic evaluation function of my setup creator. These setups are not used by

“Invincible” but are used as a measure of good setups. Some of these setups I have used

countless of times on real life tournaments, others are newly created.

Setup 1 – score: 18

This is one of my most “famous” setups, which is a dubious quality for a Stratego setup.

I’ve not used any other setup as often on tournaments and several other players have

successfully used this setup as well. I lost track of who already knows it so I can’t use it

any more. It was once used against me in a practice game by someone who didn’t know it

was my setup. It is a bit predictable, but all pieces are at hand when you need them and it

works well for both attack and defense.

Setup 2 – score: 18

This is another setup I have apparently used too often on tournaments. I used it far less

than the previous because it’s outspoken aggressive and not very suitable for careful slow

games, but it’s less predictable and works better against stronger players. It has a funny

story attached to it because I used this setup on the last tournament against a player who

somehow had this exact setup written down and memorized (I don’t even write my setups

down myself) and used it twice in that same tournament himself. On that one occasion I

decided to swap the miner in the lower right corner with the bomb next to it. When he hit

that bomb with a high piece he explained why he did that and to my amazement could tell

the rank of every one of my 25 remaining pieces.

 132

Setup 3 – score: 20

Another setup I used often. Harder It’s harder to defend the flag in the corner, but

otherwise works very well.

Setup 4 – score: 22

This is a setup I didn’t use often, but which I still considered a good all-round setup.

Setup 5 – score: 19

The last one is a new invention. The flag on this position is something I often use against

stronger opponents, but the rest of the pieces I usually change every time in such games.

Setup 6 – score: 16

 133

This is an old setup that I invented on my first world championships and which turned my

losing streak then. It’s rather weak defensively though, it worked well when setups of this

style were still unexpected but later it got too weak.

