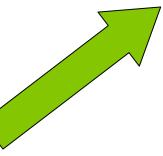


Seasonal predictability of European wind storms

Dominik Renggli
Gregor C. Leckebusch
Uwe Ulbrich

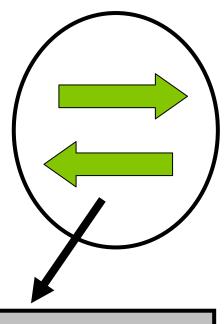
ECMWF Forecast Products Users Meeting 11-13 June 2008

Outlines


- Rationale
- "Wind storms" in DEMETER
 - Special definition and identification of wind storms related to model data
 - Intraseasonal cycle of wind storm frequency
- Wind storm frequency and hemispheric scale factors in ERA40
 - Eurasian snow cover extent
 - North Atlantic SST gradients
- Summary and Outlook

Rationale

Variability of wind storm frequency


seasonal timescale!

Hemispheric scale factors (>5000 km, weekly to seasonal

timescale), e.g.

- Snow cover (Qian and Saunders, 2003)
- SST gradients
- NAO (Palutikof et al. 2003)

Synoptic to mesoscale factors (100-5000 km, 2-8 day):

- Baroclinicity
- Upper tropospheric divergence
- Latent heat

(Ulbrich et al., 2001; Pinto et al., 2008)

physical mechanisms ↔ predictability?

Data used in the study

• ERA40:

6 hourly instantanous 10m wind speed (code 165/166), 2.5° spatial resolution

DEMETER:

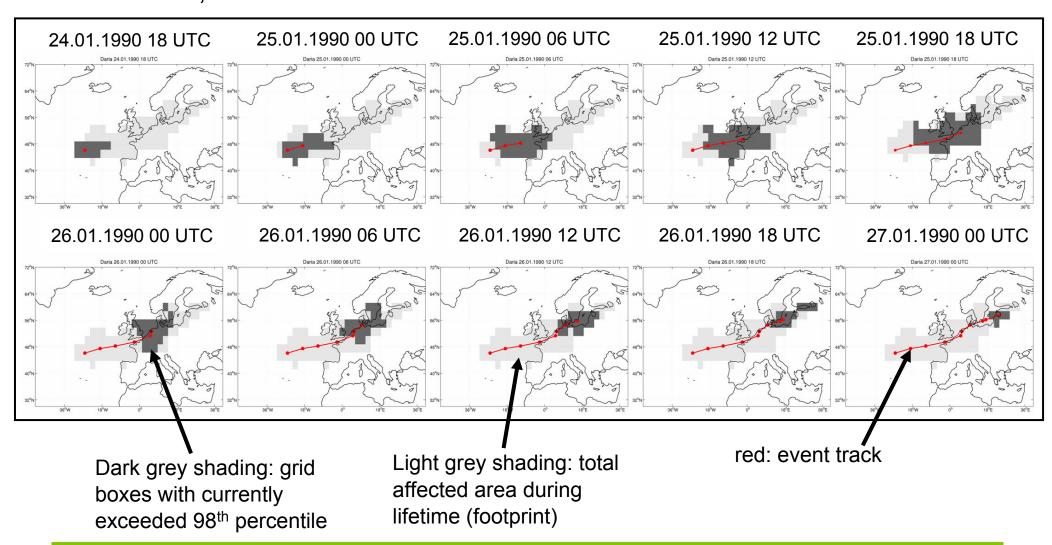
- Multi model ensemble, consisting of 7 coupled models with 9 ensemble members each
- Models considered so far (run from 1959-2001):
 - ECMWF (SCWF)
 - UK MetOffice (UKMO)
 - MeteoFrance (CNRM)
- November hindcasts, run from 1 November to 30 April (thus, winter defined as November to April, NDJFMA)
- · Wind speed data as for ERA40

"Wind storms" in model data: Definition

- Climate models systematically underestimate wind speeds, especially over land
- Considering model's local wind speed climatology
- Local 98th percentile of 10m wind speed (threshold for damage inducing wind speeds, cf. Klawa and Ulbrich, 2003; Leckebusch et al., 2007)
- Wind storm is a **spatially** and **temporally coherent exceedance** of the local 98th 10m wind speed **percentile**.

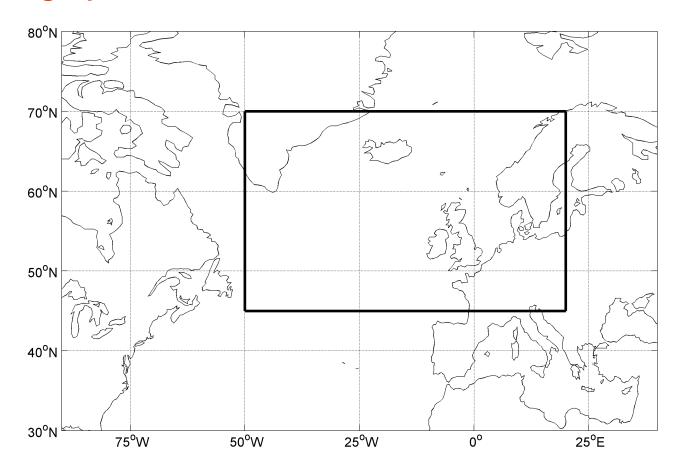
Wind storms in model data: Identification

- Identification of spatially coherent exceedances of the local 98th percentile:
 - Exceedances at adjacent gridboxes ("cluster")
 - Minimum area per time step: ~ 350 x 350 km²


which must be

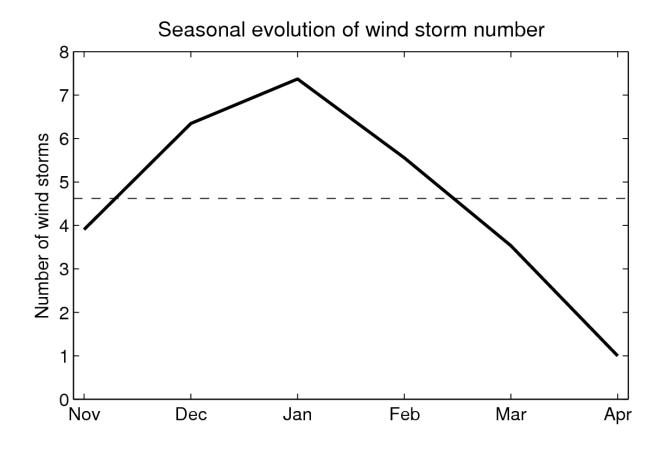
- 2) Temporally coherent:
 - "cluster" can be tracked in the next timestep via nearest neighbour tracking
 - minimum lifetime: 24h (4 time steps)
- Event based identification (date, lifetime, position etc. is known)
- Identification method applied on ERA40 and DEMETER data (Leckebusch et al., submitted)

Wind storms in model data


Illustrative example: Track and footprint of wind storm "Daria", 24.-27.01.1990, as identified in **ERA40**

Intraseasonal cycle of wind storm frequency

 Wind storm frequency defined as number of events per month crossing a predefined box over the North Atlantic and Western Europe


Intraseasonal cycle of wind storm frequency

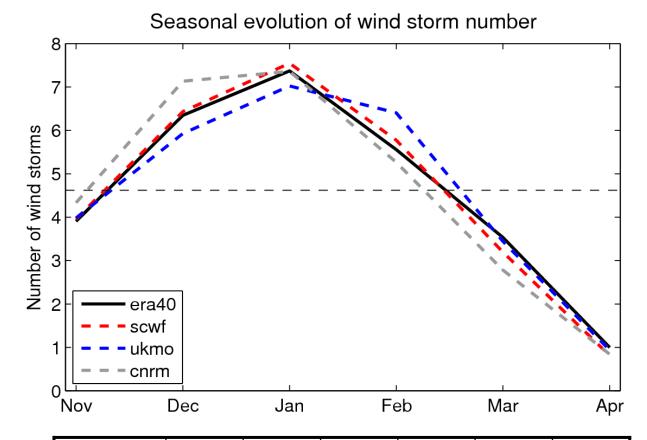
- Monthly mean wind storm frequency:
 - ERA40: 4.6
 - SCWF: 3.8 (83%)
 - UKMO: 5.5 (119%)
 - CNRM: 5.2 (113%)
- DEMETER data scaled by the relative difference to ERA monthly mean frequency (intraseasonal cycle: only relative performance relevant!)
- Note: DEMETER results based on mean of all 9 ensemble members

Intraseasonal Cycle in ERA40:

- Increase from November to January
- Decrease from January to very few in April
- Seasonal mean: 4.6

Intraseasonal Cycle in DEMETER:

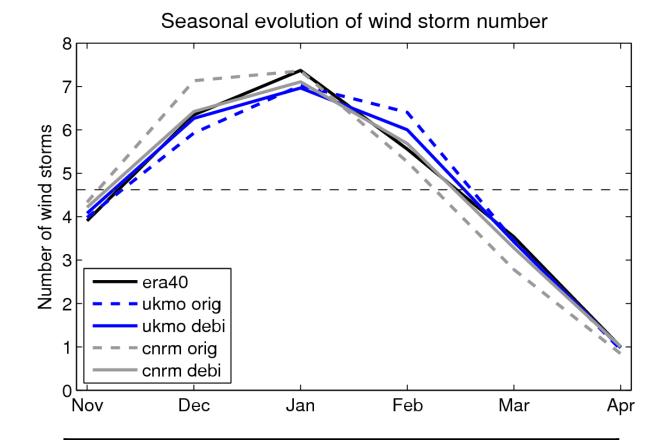
- Overall good representation of the intraseasonal cycle
- Deviations in the order of 10%
- RMSE:


SCWF: 4.3%

UKMO: 9.0%

CNRM: 10.7%

 Significant deviations exist (Student's t-test)



Sig (%)	Nov	Dec	Jan	Feb	Mar	Apr
SCWF	10.7	15.9	21.2	34.0	50.0	75.7
UKMO	15.6	68.9	41.6	91.5	14.4	31.3
CNRM	74.1	93.6	1.7	45.4	86.5	68.1

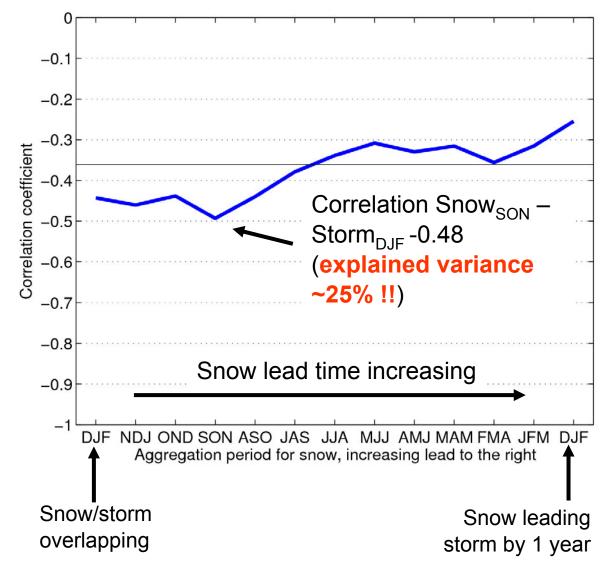
Intraseasonal Cycle in DEMETER: debiased

- Overall cycle fits better to ERA40
- RMSE markedly reduced for all models
- Remaining deviations not significant

	RMSE original	RMSE debiased	Difference
SCWF	4.3%	3.4%	-21.5%
UKMO	9.0%	5.7%	-36.7%
CNRM	10.7%	4.4%	-58.7%

Hemispheric scale factors and wind storms

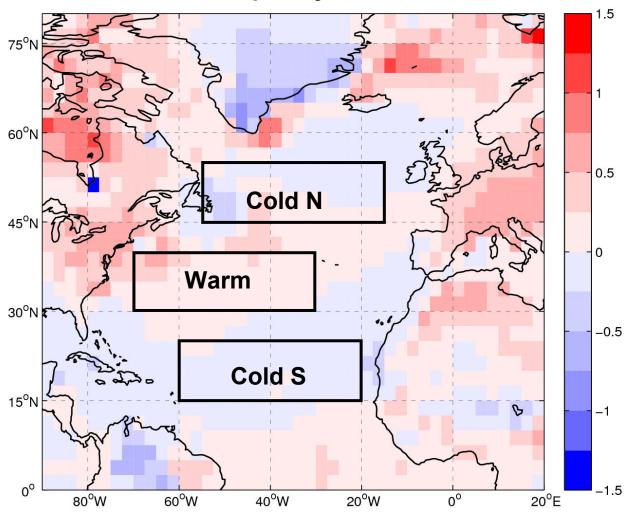
 Analysis of relations between hemispheric scale factors and wind storm frequency in ERA40


- lead/lag correlation between factor and wind storm frequency (factor leading by up to 1 year)
- Eurasian snow cover extent
- North Atlantic SST gradient

Snow cover extent

- Observed snow cover extent over Eurasian continent 1972-2001 (Robinson et al., 1993)
- Generally negative correlation
- Highest correlation for preceding autumn snow cover
- 95% confidence level indicated by horizontal black line (-0.36)

Correlation wind storm frequency DJF ERA40 with 3 monthly mean Eurasian snow cover extent

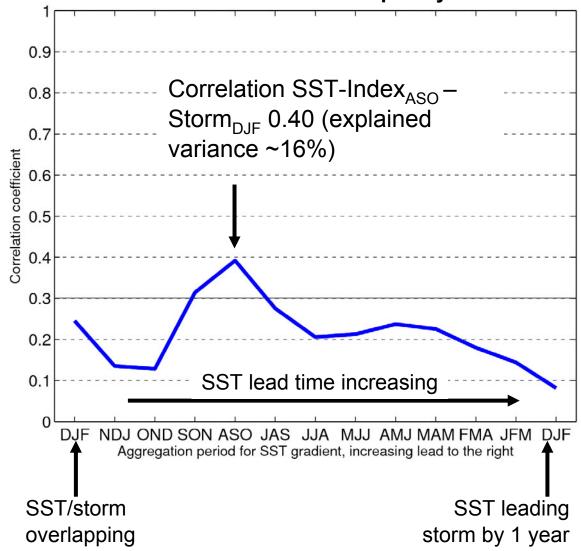


SST: Composite

- ERA40 SST (code 139) 1959-2001
- Horseshoe-like pattern in high/low frequency composite difference

 SST gradient index defined accordingly, based on monthly and spatial means over the 3 boxes:

Difference SST composite for 20 high/low wind storm frequency seasons


 $Grad = Warm - 0.5 \times (Cold N + Cold S)$

SST gradient index

- Generally positive correlation
- Highest correlation for SST gradient index in the preceding summer/autumn
- 95% confidence level indicated by horizontal black line (0.30)

Correlation 3 monthly mean NA SST gradient index with DJF wind storm frequency

Summary and Outlook

- Identification of wind storms in model data
- DEMETER models reproduce intraseasonal cycle of wind storm frequency reasonably well.
- Significant correlations of wind storm frequency with Eurasian snow cover extent and North Atlantic SST gradient
- → Analysis of relation of other hemispheric scale factors (e.g. NAO, sea ice, Stratosphere) and synoptic to mesoscale factors
- → Analysis of the representation of these relations in DEMETER
- → Skill scores (dynamical predictability) of the DEMETER single and multi model ensembles