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cDipartimento di Matematica, Università di “Roma Tre”, Largo S.L. Murialdo 1,

00146 Rome, Italy

Abstract

Monte Carlo as well as quasi-Monte Carlo methods are used to generate only few in-
terfacial values in two-dimensional domains where boundary-value elliptic problems
are formulated. This allows for a domain decomposition of the domain. A continuous
approximation of the solution is obtained interpolating on such interfaces, and then
used as boundary data to split the original problem into fully decoupled subproblems.
The numerical treatment can then be continued, implementing any deterministic al-
gorithm on each subdomain. Both, Monte Carlo (or quasi-Monte Carlo) simulations
and the domain decomposition strategy allow for exploiting parallel architectures.
Scalability and natural fault tolerance are peculiarities of the present algorithm.
Examples concern Helmholtz and Poisson equations, whose probabilistic treatment
presents additional complications with respect to the case of homogeneous elliptic
problems without any potential term and source.

Key words: Monte Carlo methods, quasi-Monte Carlo methods, domain
decomposition, parallel computing, fault-tolerant algorithms
PACS: 65C05, 65C30, 65N55

Email addresses: juan.acebron@uah.es (Juan A. Acebrón),
MariaPia.Busico@caspur.it (Maria Pia Busico), lanucara@caspur.it (Piero
Lanucara), spigler@mat.uniroma3.it (Renato Spigler).

Preprint submitted to Elsevier Science 25 April 2005



1 Introduction

It is well known that the solution to boundary-value problems for certain
linear partial differential equations admits a probabilistic representation, and
that this can be taken, in principle, as a basis for computation. Consider the
elliptic boundary value problem

Lu− c(x)u = f(x) in Ω, u|∂Ω = g, (1)

where Ω ⊂ Rd, and L denotes a linear elliptic operator, say L = aij(x)∂i∂j +
bi(x)∂i (using the summation convention), with continuous bounded coeffi-
cients, c(x) ≥ 0 and bounded continuous, continuous boundary data g, source
term f in L2(Ω), and ∂Ω Lipschitz continuous. The probabilistic representa-
tion of the solution is given by

u(x) = EL
x



g(β(τ∂Ω))e
−
∫ τ∂Ω

0
c(β(s)) ds −

τ∂Ω
∫

0

f(β(t)) e−
∫ t

0
c(β(s)) ds dt



 , (2)

see [1,2], e.g., where τ∂Ω is the first exit (or hitting) time of the path β(·)
started at x when ∂Ω is crossed. β(·) is the stochastic process associated to
the operator L, and the expected values are taken with respect to the cor-
responding measure. When L is the Laplace operator, β(·) reduces to the
standard d-dimensional Brownian motion, and the measure reduces to the
Gaussian measure. In general, the process β(·) is the solution to a stochas-
tic differential equation (SDE) of the Ito type related to the elliptic partial
differential equation in (1), namely

dβ = b(x) dt+ σ(x) dW (t). (3)

Here W (t) represents d-dimensional standard Brownian motion (also called
Wiener process); see [2,3], e.g., for generalities, and [4–6] for the related nu-
merical treatment. As is known, the solution to (3) is a stochastic process,
β(t, ω), where ω, which usually is not indicated explicitly in probability the-
ory, denotes the “chance variable”, ranging on a suitable abstract probability
space. The drift, b, and the diffusion, σ, in (3), are related to the coefficients
of the elliptic operator in (1) by b = (bi)

T , and σσT = a, with σ = (σij),
a = (aij).

We shall confine ourselves to 2-dimensional problems, hence we shall write
(x, y) instead of the vector variable x in all examples in Section 4 below.

The Monte Carlo approach, based on the numerical computation of the solu-
tion to problem (1) through the representation formula in (2), is considered
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very inefficient, at least in low dimension. It can be viewed as the last resource
to be exploited, for instance when the boundary of the domain has a compli-
cated geometry, which fact rules out the adoption of any other deterministic
algorithm [7]. In fact, one of the advantages of Monte Carlo methods is that
they do not require any structured grid.

In the companion paper [8], we have proposed a domain decomposition ap-
proach for the numerical treatment of rather general linear elliptic boundary-
value problems. The idea was to compute only few interfacial values inside
the domain, Ω, from formula (2), and interpolate on the points where the val-
ues above have been obtained. These nodes are viewed as located on suitable
interfaces inside the domain, irrespective of the fact that such interfaces are
physical or not. Then, a continuous approximation of the trace of solutions
can be constructed, and this will be used as boundary data for the subdo-
mains. Full decoupling into as many subdomains as we wish can be realized
in this way. The key idea of using a probabilistic representation of solutions
to elliptic problems only to accomplish a preliminary domain decomposition,
was first proposed in [9], and later in [10].

In [8], however, only homogeneous elliptic equations without potential terms
and sources were considered in the numerical examples. In fact, the represen-
tation formula in (2) holds even in the more general case of equation (1). In
this paper, we cope with the new difficulties which may arise from the presence
of potential terms, like c(x)u, as well as of source terms, like f(x). While the
basic machinery developed here is the same as there, such new terms require
estimating first exit times besides computing first exit points, as well as using
the entire paths due to the quadrature.

This method can be called a “probabilistic domain decomposition”(PDD)
method. We stress that it can fully exploit parallel architectures. In fact, (i)
it implements a domain decomposition algorithm; (ii) every realization (or
path) of the stochastic process starting at every point can be simulated in-
dependently (if we generate N sample paths at m points, we can use up to
mN independent processors). Such a degree of parallelization is compatible
with the use of possibly different and even geographically distant processors
(grid computing, heterogeneous computing) and/or clusters of them. This al-
gorithm is also naturally fault tolerant, a property whose demand is becoming
increasingly important, in view of machines working in the petaflop regime,
equipped with hundreds of thousands or millions of processors [11].

A remarkable improvement of the the performance of the classical Monte Carlo
method [12], which is based on the so-called pseudorandom numbers (which
mimic the ideal random numbers), can be achieved using, instead, sequences
of quasi-random numbers [13–16]. The corresponding strategy is called quasi-
Monte Carlo, and when using such sequences in our approach, the method will
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be called a “quasi-probabilistic domain decomposition” (quasi-PDD) method.
Such sequences are actually deterministic and their elements are uniformly
distributed. Unfortunately, they are subject to a certain degree of correla-
tion. Sequences of quasi-random numbers have been applied in the past with
some success to the numerical evaluation of high-dimensional integrals [17], in
particular in problems of financial mathematics [18]. Other applications have
been made to the generation of quasi-random paths of stochastic processes in
[19,20], to the Boltzmann equation [21], and to a simple system of diffusion
equations in Rd [22]. A failure in applying them to the solution of stochastic
differential equations has been pointed out in [23], but it has been shown in
[24] that a careful implementation allows for a successful use of them. Indeed,
a kind of scrambling of the quasi-random numbers at each time step, namely
a suitable reordering strategy, has been proved to be effective.

In Section 2, some generalities are discussed, while in Section 3 various sources
of numerical error which affect the PDD and the quasi-PDD methods are
pointed out. Numerical examples are shown in Section 4, where the efficiency
of the PDD and of quasi-PDD algorithms is illustrated. In the final section we
summarize the high points of the paper.

2 Deterministic versus probabilistic domain decomposition

Solving a boundary-value problem, for instance a Dirichlet problem, for a
given elliptic partial differential equation on a given domain, Ω, by domain
decomposition, consists of dividing Ω into a number of subdomains and com-
puting then the solution on each of such subdomains on separate processors,
see [25,26], e.g. However, the boundary-value problems above are global in
nature, so that the solution on the interfaces internal to Ω, that one would
like to use as boundary data for the sub-problems, cannot be computed in
advance, before solving the full problem.

Approximations of interfacial values are constructed imposing continuity of
solutions and of certain derivatives across the interfaces. This requires solving
linear algebraic subsystems by iterative processes, typically characterized by
high condition numbers [26], especially in methods without overlap (iterative
substructuring methods).

It is claimed that using parallel computers with a few hundred processors and
with 106 − 107 variables, the global cost of the method is dominated by that
spent by local solvers. The future generation of parallel machines however are
designed with hundreds of thousands or even millions of processors, in which
case intercommunication across the numerous subdomains might dramatically
affect the overall performance. Full decoupling of the original problem into an
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arbitrary number of subdomains is therefore highly desirable, and this can be
achieved by a probabilistic domain decomposition method.

Ω
Ω Ω

Ω Ω

1 2

3 4

Ω Ω

Ω Ω

1 2

3 4

Fig. 1. Sketchy diagram illustrating the numerical method, splitting the initial do-
main Ω into four subdomains, Ω1,Ω2,Ω3,Ω4.

By means of a probabilistic representation of solutions, numerical approxima-
tions can be generated at every point inside Ω, without solving the full problem.
The basic idea is to compute only a few values of the solution on certain cho-
sen interfaces, and then interpolate to get continuous approximations. These
can be used as boundary values to decouple the problem into sub-problems,
see Fig. 1. Each of such sub-problems can then be solved independently on a
separate processor. Clearly, neither communication among the processors, nor
iteration across the interfaces is needed.

It should be noticed that even though a rather poor approximation can be
expected on the interfaces due to the Monte Carlo method, numerical errors
inside each subdomains become smaller due to the discrete maximum princi-
ple.

In closing this section, we stress that the PDD algorithm is characterized by
a high degree of parallelism, because it combines the main advantage of the
domain decomposition strategy with the inherent parallelism of the Monte
Carlo method. The PDD algorithm can be shown to be characterized by a
speed-up Sp = T1/Tp ≈ (T1/2kTMC)

√
p, as p → ∞. Here T1 is the time

spent for solving sequentially problem (1) on the entire domain, Tp is the time
required to solve it in parallel with p processors,

k is the number of points on each interfaces, and TMC is the time required for
computing by the Monte Carlo simulation a single interfacial value. This result
has been established in [8], where numerical examples simpler than here were
presented, but also holds in the present case. In addition, the PDD algorithm
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is scalable, and also enjoys the intriguing feature of being naturally “fault
tolerant” [11]. In fact, clearly, a failure of a small percentage of processors in
the course of the Monte Carlo computation of the nodes would not force the
entire code to stop, but only a modest additional error would be produced.
On the other hand, if some processors fail when the local solvers are being
runned to compute the solution on the various subdomains, the output will be
incomplete but correct. The only missing results will be those corresponding
to the processors which have failed.

3 The PDD algorithm and the various sources of numerical error

The PDD algorithm that has been developed in [8] as well as in this paper, is
a hybrid numerical method in that, it consists of both, probabilistic and de-
terministic parts. Consequently it is affected by several kinds of errors, some
of which are statistical in nature. The core of the algorithm is given by nu-
merical approximation of a few internal values to be thought of as pivots for
interpolation. Interpolation and subsequent solution in the subdomains by de-
terministic solvers are standard ingredients, and we shall comment later on
such issues. Concentrating on the numerical evaluation of the nodal values, we
observe that a number of numerical errors can be singled out. First of all, ex-
pected values to be computed on the basis of the representation formula in Eq.
(2) have to be replaced by arithmetic averages. This yields the usually domi-
nating error made in Monte Carlo simulations, which is of a statistical nature
and of order N−1/2, N being the sample size. Using quasi-random number se-
quences, instead of pseudorandom sequences, this error is deterministic and of
order N−1 logd

∗−1N , d∗ denoting the “effective” space dimension. Concerning
the dependence of such an error on dimension, it is important to emphasize
that the effective space dimension, d∗, can be reduced dramatically in practice
[24]. A straightforward implementation requires that as many independent
quasi-random numbers as the number of steps needed to exit the boundary,
times the geometric dimension, is used, and this is d∗. Clearly, a large value of
d∗ appreciably increases the error, unless N is taken very large, destroying the
advantage of using quasi-random numbers instead of pseudorandom numbers.
However, a more favorable alternative does exist. In this paper, as well as,
e.g., in [8,20,22,24], the value d∗ can be replaced by the geometric dimension,
d. In fact, only d independent sequences of quasi-random numbers, one for
each coordinate, can be used, provided that a reordering strategy is adopted
to destroy the inherent correlations.

Moreover, approximating paths of the stochastic process, β(t), has to be ob-
tained solving numerically the SDE in Eq. (3). The truncation error involved
here depends on the method we choose, for instance the Euler scheme, Taylor-
based schemes, or the exponential timestepping scheme. Another source of
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errors that might dominate the overall error occurs in the evaluation of first
exit points and times. In fact, the first exit time, τ∂Ω, as well as the related
first exit point, β(τ∂Ω), appears explicitly in Eq. (2). It is worth noting that,
other than in the case of homogeneous equations without potential and sources
considered in [8], computing first exit times (in addition to first exit points)
is now required. Furthermore, numerical quadrature now enters Eq. (2) again
owing to the nonzero coefficients c(x) and f(x) in Eq. (1). Such novel aspects
encountered in the present paper needs special care, and we may expect that
they produce additional errors. In Fig. 2, the dependence of the numerical
error on N is given in a logarithmic scale. Such a plot provides evidence of
the possibility of controlling the dimensionaly issue.
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Fig. 2. Numerical error made solving Example A for several values of N at the point
(0.3, 0.5). The marked points denote the solution obtained by the quasi-Monte Carlo
method, while the dashed line is obtained fitting the data by a linear regression
method. The time step used is ∆t = 10−4.

3.1 The numerical errors in computing nodal values

The essential part of our method consists of obtaining numerical approxima-
tions of the solution to Eq. (1). In the numerical evaluation of the representa-
tion formula (2), set, for short, τ = τ∂Ω, and

u(x) = v(x) + w(x), (4)

f = −f, (5)

ψ(β(·), t) = e−
∫ t

0
c(β(s)) ds. (6)

Thus (2) becomes
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u(x) = v(x) + w(x) = EL
x [g(β(τ))ψ(β(·), τ)]

+EL
x





τ
∫

0

f(β(t))ψ(β(·), t) dt


 . (7)

Moreover, we assume that c(·) ≥ 0 and that c(·), g(·), and f(·) are bounded
and Lipschitz continuous, with Lipschitz constants Lc, Lg, and Lf , respec-
tively. Note that Lf = Lf .

Consider first the numerical approximation of v(x). We want to approximate

EL
x [g(β(τ))ψ(β(·), τ)],

but, in practice, we shall compute instead

1

N

N
∑

j=1

g(xj(tj))e
−I[xj(·);tj ],

where xj(·) is an approximation to the jth path βj(·), tj an approximation
to τ j, and e−I an approximation of the term ψ by means of a numerical
quadrature formula. In fact, in practice we can only simulate a finite number,
say N , of realizations of the paths β(t) ≡ β(t, ω), ω denoting the “chance
variable”, customarily omitted in all formulae. While the “label” ω runs on
some abstract probability space, taking infinitely many values, we can only
generate N paths, βj(t), j = 1, 2, . . . , N . The same can be said concerning
the first exit times, τ ≡ τ(ω), which we shall denote by τ j, j = 1, 2, . . . , N .
Besides, both, the paths βj(t) and τ j will be approximated numerically, and
xj(t) and tj, will denote, respectively, their approximations. The xj(t) are
obtained integrating numerically the underlying SDEs, hence the discrepancy
between βj(t) and xj(t) is the truncation error.

In order to estimate the overall error, say εN , made computing v(x), we can
write

εN = ε
(1)
N + ε

(2)
N + ε

(3)
N + ε

(4)
N , (8)

where

1. ε
(1)
N = EL

x [g(β(τ))ψ(β(·), τ)]−
1

N

N
∑

j=1

g(βj(τ
j))ψ(βj(·), τ j); (9)

2.

|ε(2)N | ≤
1

N

N
∑

j=1

|g(βj(τ
j))− g(xj(τ

j))| e−
∫ τj

0
c(βj(s)) ds

+
1

N

N
∑

j=1

|g(xj(τ
j))|

∣

∣

∣

∣

∣

e−
∫ τj

0
c(βj(s)) ds − e−

∫ τj

0
c(xj(s)) ds

∣

∣

∣

∣

∣
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≤ 1

N
Lg

∑

j

|βj(τ
j)− xj(τ

j)|+max |g|Lc
1

N

∑

j

τ j
∫

0

|βj(s)− xj(s)| ds

≡ 1

N
Lg

∑

j

|εjtrunc.(τ j)|+max |g|Lc
1

N

∑

j

τ j
∫

0

|εjtrunc.(s)| ds

≤ [Lg + Lc max |g| · 〈τ j〉] · εtrunc., (10)

where we set 〈τ j〉 = N−1∑

j τ
j, the average value of the exit times;

3.

|ε(3)N | ≤
1

N

N
∑

j=1

|g(xj(τ
j))− g(xj(tj))| e−

∫ τj

0
c(xj(s)) ds

+
1

N

N
∑

j=1

|g(xj(tj)|
∣

∣

∣

∣

∣

e−
∫ τj

0
c(xj(s)) ds − e−

∫ tj

0
c(xj(s)) ds

∣

∣

∣

∣

∣

≤ Lg
1

N

N
∑

j=1

Lxj |τ j − tj|+max |g| ·max |c| 1
N

N
∑

j=1

|τ j − tj|

≤ [Lg max
j
Lxj +max |g| ·max |c|] ·max

j
|τ j − tj|; (11)

4.

|ε(4)N | ≤
1

N

N
∑

j=1

|g(xj(tj))|
∣

∣

∣

∣

e−
∫ tj

0
c(xj(s)) ds − e−I[c(xj(·));tj ]

∣

∣

∣

∣

≤ max |g| 1
N

N
∑

j=1

∣

∣

∣

∣

∣

∣

∣

tj
∫

0

c(xj(s)) ds− I[c(xj(·)); tj]

∣

∣

∣

∣

∣

∣

∣

≤ max |g| · ε′quadr., (12)

where ε′quadr. denotes the maximum error with respect to j, made in the
numerical quadrature of c(xj(s)).

Note that ε
(1)
N = O(N−1/2) when classical Monte Carlo simulations are con-

ducted, while it is O(N−1 logd
∗−1N) when quasi-Monte Carlo methods are

implemented. It should be observed that no attempt of approximating contin-
uous paths of the underlying stochastic processes is made using quasi-random
numbers. In fact, the representation formula (2) can be interpreted, rather, as
taking an average of a certain random variable. Conceptually, there is no dif-
ference with respect to the case when high-dimensional integrals are computed
upon generation of quasi-random sequences, see [19], e.g. On the other hand,
some authors did use quasi-random sequences to obtain approximate solutions
to partial differential equations simulating quasi-random paths of continuous
stochastic processes, as it was done here, see for instance [19,22,27,28], to quote
just a few. In [27], it was shown that simulating quasi-random walks can be
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advantageous even to solve certain nonlinear quations. A serious problem can
be found, instead, in the potentially high value of the effective dimension, d∗.
In fact, in the present simulations, a (relatively) large number of discrete time-
steps to be used to exit the boundary implies a correpondingly high dimension.
On the one hand, this increases the exponent of the logarithmic factor in the
numerical error, and, on the other hand, it produces unwanted correlations.
A scrambling strategy, such as reordering, has been proven, however, to be
effective in destroying such correlations. This has been done succesfully in the
literature by a few authors, see [15,22,24], e.g. In [8,24], it was shown that a
careful use of only two strings of quasi-random numbers suffices, hence d∗ = 2
could be used there. No question like this arises obviously using pseudorandom
numbers.

The second error, ε
(2)
N , is due to the truncation error made approximating nu-

merically the path βj(t) by xj(t). It will be, e.g., of order of O(∆t) when using
a Euler scheme in the weak sense, see [5]. In Eq. (10), 〈τ j〉 is an approximation
of the mean exit time, Ex[τ ], whose value depends on the stochastic process
and on the domain. For instance, for the Brownian motion exiting from a
ball of radius r, Ex[τ ] is known to be of order r2 [2]. The third term, ε

(3)
N , is

due, clearly, to the error made approximating τ j with tj. This error, which
has been proven to be of order

√
∆t for the Euler scheme, might dominate,

[29,30]. Hence, a special care should be paid in the implementation to reduce
it to order ∆t.

The fourth term, ε
(4)
N , finally, is a new kind of error, which did not appear in

the previous paper [8]. In fact, it comes from the numerical evaluation of the
integrals in formula (2). Note that accomplishing the numerical quadrature
at the very beginning, one should consider the quadrature of the function
c(βj(t)). In this case, even for c smooth, the approximation would be of order√
∆t, due to the fact that the realizations βj(t) are merely Hölder continuous

(with exponent 1/2). In the present approach, we face instead the numerical
quadrature of c(xj(t)), which is Lipschitz continuous, xj(t) being piecewise
linear. Therefore, an accuracy of order ∆t can be achieved.

Concerning the evaluation of w(x), let write

EL
x





τ
∫

0

f(β(t))ψ(β(·), t) dt


− 1

N

N
∑

j=1

J [f(xj(·)), c(xj(·)); tj]

= η
(1)
N + η

(2)
N + η

(3)
N + η

(4)
N , (13)

where
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1. η
(1)
N = EL

x





τ
∫

0

f(β(t))ψ(β(·), t) dt


− 1

N

N
∑

j=1

τ j
∫

0

f(βj(t))ψ(βj(·), t) dt,(14)

which is of order of N−1/2 whenever classical Monte Carlo simulations are
conducted, and of order of N−1 logd

∗−1N using quasi-Monte Carlo methods;
2.

|η(2)N | ≤
1

N

N
∑

j=1

τ j
∫

0

∣

∣

∣f(βj(t))ψ(βj(·), t)− f(xj(t))ψ(xj(·), t)
∣

∣

∣ dt

≤ 1

N

N
∑

j=1

τ j
∫

0

|f(βj(t))− f(xj(t))| · |ψ(βj(·), t)| dt

+
1

N

N
∑

j=1

τ j
∫

0

|f(xj(t))| · |ψ(βj(·), t)− ψ(xj(·), t)| dt

≤ Lf
1

N

N
∑

j=1

τ j
∫

0

|βj(t)− xj(t)| dt

+max |f | 1
N

N
∑

j=1

τ j
∫

0

dt

t
∫

0

|βj(s)− xj(s)| ds

≤ [Lf +max |f |]〈τ j〉 ·max
j,s
|βj(s)− xj(s)|, (15)

which is of the order of the truncation error, say εtrunc.; note that above
0 ≤ ψ(·, ·) ≤ 1 for c(·) ≥ 0, and that Lf = Lf and f may replace f
everywhere;

3.

|η(3)N | ≤
1

N

N
∑

j=1

∣

∣

∣

∣

∣

∣

∣

τ j
∫

tj

|f(xj(t))| e−
∫ t

0
c(xj(s)) ds dt

∣

∣

∣

∣

∣

∣

∣

≤ max |f | ·max
j
|τ j − tj|, (16)

which is of the order of ετ , the error made approximating the first exit times;
4.

|η(4)N | ≤
1

N

N
∑

j=1

tj
∫

0

|f(xj(t))| ·
∣

∣

∣

∣

e−
∫ t

0
c(xj(s)) ds − e−I[c(xj(·));t]

∣

∣

∣

∣

dt

+
1

N

N
∑

j=1

∣

∣

∣

∣

∣

∣

∣

tj
∫

0

f(xj(t)) e
−I[c(xj(·)),t] dt− J [f(xj(·)), c(xj(·)); tj]

∣

∣

∣

∣

∣

∣

∣

≤ max |f | ·max
j
|tj| · ε′quadr. + ε′′quadr., (17)

where ε′′quadr. denotes the maximum error with respect to j made in the

numerical quadrature of f(xj(t)) e
−J [f(xj(·)),c(xj(·));tj ].
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Here the same comments hold regarding the order of each type of error. The
importance of all such errors will be illustrated within the numerical examples
presented in section 4.

Other Monte Carlo-based numerical methods to solve elliptic boundary-value
problems, which do not imply solving SDEs, thus avoiding all kinds of errors
described above, exist. For instance, the so-called “walking on the spheres”
approach [34,35] belongs to this category. This method, however, which essen-
tially requires evaluating Green’s functions seems to be difficult to apply at
least when a variable diffusion coefficient enters the elliptic equation. More-
over, other sources of numerical error beset this type of algorithms, e.g. the
approximation of the boundary by the so-called ε-strip, and the fact that con-
stant diffusions allow for using merely random walks instead of continuous
stochastic processes.

3.2 Interpolation on the internal nodes

The next step of the algorithm is interpolation on the nodes computed in
the previous subsection. Such nodes can be thought of as laying on certain
interfaces internal to the domain, Ω. Chebyshev interpolation has been chosen
in view of its global quasi-optimality [31]. Moreover, interpolating a given Ck

function by the nth degree Chebyshev polynomial of the first kind, the error
is of order of n−k. In addition, the errors affecting the nodal values themselves
should be taken into account, because such values have been obtained by the
Monte Carlo or quasi-Monte Carlo simulations. Due to the stability properties
of the Chebyshev interpolation, such an error turns out to be under control.
In particular the Lebesgue constant involved grows only logarithmically with
n. In our algorithm, we only need, usually, n = 2 or 3 nodes on each interface.
The numerical error made in the interpolation part of the algorithm will be
plotted in one example in section 4 below.

3.3 Local solvers

The final step of the algorithm consists of solving a number of independent
subproblems, one in each subdomain. In fact, the previous procedure allows
for fully decoupling, and thus any deterministic algorithm can be implemented
to solve such subproblems. Since the focus of the algorithm is not on the local
solvers, we used the simplest method, i.e., finite differences (FDs). Jacobi iter-
ations have then been conducted to solve the ensuing linear algebraic systems.
The termination criterion was chosen according to the specific model example
and to the number of subdomains.
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4 Numerical examples

In this section, we present a few numerical examples to illustrate the probabil-
istically-induced domain decomposition algorithm developed in this paper.
While the inherently high degree of parallelism allows for implementing an
MPI code, we used the standard parallelization library called OpenMP, which
is designed for shared memory parallel architectures. The numerical tests have
been conducted using a 16 processor parallel machine, the IBM Power 3, with
a peak performance of 24 GFLOPS. A comparison is made in all examples
below with a parallel version of a standard finite difference solver (PFD).

As a general remark, note that both the Monte Carlo simulation based on
pseudorandom numbers in the PDD method, and the solution based upon
domain decomposition, allows for massively parallel computation. Unfortu-
nately, one cannot exploit independently these two ingredients, the Monte
Carlo simulations and the domain decomposition strategy, both well suited to
parallel computing, to further increase the overall degree of parallization. In
fact, an interpolation process must take place after the Monte Carlo gener-
ation of the pivotal values, before the computation on separate subdomains
can start. In the quasi-PDD method, however, the first part of the algorithm,
mentioned above, does not allow for a full parallel implementation. This is
due to the fact that correlations among the quasi-random numbers within
each sequence do exist, which destroy one of the key properties required for
truly random number sequences. The way out from such a drawback is to
scramble the quasi-random sequences at each time step, which can be realized
by means of a suitable reordering strategy. Reordering consists in relabeling
all realizations according to their radial distances from the starting point, at
each time step. While this mechanism has been shown to be effective in many
instances [8,20,22,24], it contrasts with the possibility of computing in parallel
all realizations.

In the following examples, the global error reduction observed passing from
PDD to quasi-PDD is depicted in contour plots, and the efficiency of PDD is
compared with that achieved with PFD.

Example A. A contour plot showing the pointwise numerical error made
solving the elliptic boundary value problems

uxx + uyy − 5u = 0 in Ω = (0, 1)× (0, 1), (18)

with the boundary condition

u(x, y)|∂Ω =
(

e2x+y
)

∂Ω
, (19)
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by PDD and quasi-PDD appears in [8]. We include it also here, however, for
the purpose of illustration, see Fig. 3.
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Fig. 3. Example A. Pointwise numerical error in: (a) the PDD algorithm, (b)
the quasi-PDD algorithm with two nodal points on each interface, evaluated by
quasi-Monte Carlo, and (c) the quasi-PDD algorithm with three nodal points on
each interface. Parameters are N = 104, ∆x = ∆y = 2× 10−3, λ = 103.

Here we also show the effect of a suitable boundary treatment, aimed at ap-
proximating accurately the first exit times, see Fig. 4. The convergence of
the numerical method as a function of the number of realizations, N , is il-
lustrated in Fig. 2. The numerical error has been computed at the points
(x, 0.5), for several values of equally spaced abscissae. In addition to using
the Euler method with a constant time step, we solved the underlying SDEs
by an exponential timestepping method [32,33]. The latter method is based
on generating random time steps, picked up from an exponential distribution
characterized by a parameter λ, with 〈∆t〉 = 1/λ. A major advantage of such
a procedure rests in the availability of an explicit analytic formula for the
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hitting probability. Knowing this, allows for an accurate computation of the
first exit times. Note that this would be impossible for general problems if
constant time step schemes are adopted. In Fig. 4, the numerical errors at
points (x, 0.5), obtained using the Euler method, the exponential timestep-
ping method, and the exponential timestepping method along with a suitable
boundary check, are shown. The stochastic process associated to Eq. (18) is
actually a 2D standard Brownian motion, for which the Euler scheme yields
the exact solution for every ∆t. Therefore, the truncation error related to
the Euler method applied to the corresponding SDEs vanishes. In addition,
adopting quasi-random number sequences with N = 104 realizations, the error
inherent to the Monte Carlo simulations is of order 10−4, and thus the overall
dominating error is due to the error made approximating exit times. Note that
in Fig. 4, the results obtained using exponential timestepping are (slightly)
worse than those obtained by the Euler method because the latter is the exact
solution of the discrete problem while the former is not. When, however, a
boundary check is made by virtue of explicit knowledge of the hitting proba-
bility, the corresponding results are by far better. Here, the value λ = 103 has
been used.

In Fig. 2, the numerical error made solving Example A at the point (0.3, 0.5) by
quasi-Monte Carlo is shown as function of the number of realizations, N . The
numerical method used to solve the associated SDE is the Euler method with a
rather small time step, ∆t = 10−4, in order to keep negligeable the truncation
error as well as the the error made in approximating exit times. Here the
curve obtained fitting the data is also plotted, to display the dependence on
the number of realizations. The fitted curve, obtained by a linear regression
method, turns out to be y = −0.9698x− 0.1808.

This example can also to exploited to illustrate the effect of the interpola-
tion process on the (absolute value of the) numerical error. In Fig. 5, such
an error is plotted versus x, keeping y = 0.5 fixed, using two, three, and four
nodal points to interpolate by Chebyshev polynomials. The solution at both
endpoints is known from the boundary conditions. For this problem, the maxi-
mum interpolation error made using three internal nodes reduces to about one
third of that obtained with two nodes. Using four nodes, it drops to the same
order of that on the quasi-Monte Carlo computed nodal values themselves.
Increasing further the number of nodes would be therefore useless.

Example B. Consider the 2D elliptic equation

uxx + uyy = 2 in Ω = (0, 1)× (0, 1), (20)

subject to the boundary data

u(x, y)|∂Ω = g(x, y), (21)
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Fig. 4. Numerical error made solving Example A. The quasi-Monte Carlo method
was used at the points (x, 0.5). Parameters are N = 104, ∆t = 10−2, and λ = 103.
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Fig. 5. Numerical error made solving the elliptic problem in Example A by
quasi-Monte Carlo, computing two, three and four nodal points (marked by cir-
cle, square, and diamond symbols, respectively), and then interpolating on such
points. The parameters here are N = 104, λ = 103.

where g(x, y) = (3x2 + x y − 2y2)∂Ω. The analytical solution of this problem
is u(x, y) = 3x2 + x y − 2y2 in Ω.

In Fig. 6, a contour plot of the pointwise numerical error made using PDD
and the quasi-PDD algorithms is shown. Note that the maximum error on
the entire domain Ω is achieved on the interfaces, and more precisely on the
interpolation nodes. This agrees with the observation made in section 2 about
the maximum principle. It should be remarked that the quasi-PDD algorithm
outperforms the PDD algorithm. As parameters here we used N = 104 real-
izations, ∆x = ∆y = 2× 10−3 grid size, λ = 103 timestepping parameter (and
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Fig. 6. Example B. Pointwise numerical error in: (a) the PDD algorithm, and (b)
the quasi-PDD algorithm. Parameters are N = 104, ∆x = ∆y = 2× 10−3, λ = 103.

thus an average time-step 〈∆t〉 = 10−3) to integrate the SDEs in Eq. (3).

Numerical experiments show that two nodes (that is four nodal points includ-
ing the end points) suffice on each of the two interfaces. The local solver is
based on Jacobi iteration, where the termination criterion has been chosen
experimentally equal to 10−7.

Table 1
Overall CPU time in seconds for example B

Processors PFD PDDTotal PDDMonteCarlo PDDFD

4 435.273 104.039 3.602 100.097

9 215.420 28.996 4.004 24.722

16 204.365 11.776 3.160 8.362

The second column (PFD) in Table 1 shows the total computational time (in
seconds) spent by the parallel finite difference algorithm using p = 4, 9, and 16
processors, which corresponds to 4, 9, and 16 subdomains. The corresponding
time spent by the PDD algorithm is shown in the third column. In the last two
columns, this quantity is split into two parts, i.e, that required by the Monte
Carlo simulation, and that needed by the local solvers. The two methods have
been compared for about the same maximum error, 10−3. In both algorithms
the CPU time decreases as p increases, and this trend is more dramatic in the
PDD algorithm. Moreover, the CPU time decreases for each given number of
processors, passing from PFD to PDD, and this behavior is more pronounced,
when the number of processors is higher.

Example C. Consider the elliptic equation with constant diffusion and a
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variable source,

∆u = (5x2 + 5y − 4x− 2) e−(x+2y) in Ω = (0, 1)× (0, 1), (22)

with the boundary data

u(x, y)|∂Ω =
[

(x2 + y) e−(x+2y)
]

∂Ω
, (23)

the solution being given by u(x, y) = (x2 + y) e−(x+2y).

In Fig. 7 similar results to those of Example B are shown. The parameters
used here are the same as there.
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Fig. 7. Example C. Pointwise numerical error in: (a) the PDD algorithm, and (b)
the quasi-PDD algorithm. Parameter values are the same as in Example A.

Table 2
Overall CPU time in seconds for example C

Processors PFD PDDTotal PDDMonteCarlo PDDFD

4 4654.939 1061.623 3.586 1057.493

9 2106.996 252.618 3.900 248.331

16 1368.333 93.689 3.104 90.246

We only comment the results of Table 2. Even though the problem is now
more complex that the previous one, which is reflected by the longer CPU
time appearing in Table 2, the PDD method still wins over the PFD. Again,
the quasi-PDD algorithm outperforms the PDD algorithm, see Fig. 7
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Example D. This example illustrates the performance of the numerical method
in solving a general elliptic equation with variable diffusion, variable drift,
variable potential, and variable source term,

y2 + 1

2
uxx +

x2 + 1

2
uyy + xux + y2 uy − (x3 + y2)u =

P cos(2x+ y) +Q sin(2x+ y) in Ω = (0, 1)× (0, 1), (24)

P = 1 + x(4 + x+ 2x2) + 2x y + x(4 + x)y2 + y3,

Q = −1

2
[−2 + x4 + 2x5 + 2x3 y + y(5− 4y + 6y2) + x2(1 + y + 6y2)] (25)

with the boundary data

u(x, y)|∂Ω =
[

(x2 + y) sin(2x+ y)
]

∂Ω
, (26)

the solution being u(x, y) = (x2 + y) sin(2x+ y).

Figure 8 is analog to the previous ones, and the parameter values used are the
same as in Example B. Also in this case, we show in Fig. 8 contour plots for
the pointwise numerical errors. General comments can be made as in the two
previous example and, again, the same parameters have been used. As for the
CPU times in Table 8, note that all values are greater than in Example C,
due to the higher complexity of the present case.
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Fig. 8. Example D. Pointwise numerical error in: (a) the PDD algorithm, and (b)
the quasi-PDD algorithm. Parameters are the same as in Example B.

Example E. In this example, the performance of the numerical method is
tested in solving a general elliptic equation of the Poisson type, having an
analytically unkown solution. Consider the Dirichlet problem
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Table 3
Overall CPU time in seconds for example D

Processors PFD PDDTotal PDDMonteCarlo PDDFD

4 9200.107 2087.947 3.492 2084.015

9 4098.381 489.684 3.872 485.484

16 2638.937 175.168 3.365 171.508

uxx + uyy = esin(x
2+y) in Ω = (0, 1)× (0, 1), (27)

with the boundary data

u(x, y)|∂Ω = 0. (28)

To quantify the numerical error, an accurate numerical solution was obtained
solving problem (27)-(28) by a multigrid method, instead of using an analytical
form of the solution, as in all the previous examples. Such analytical expression
seems not to be available. The solution has been computed discretizing and
solving the second-order difference approximation by multigrid iterations, for
a grid of size 769 × 769. To compare it with the solution obtained by the
PDD method, the solution above has been regrided to 500×500 using a cubic
interpolation scheme. Both, the NAG routine d03edf and the free software
MUDPACK [36], have been used.

As in the previous examples, in Fig. 9 the contour plots are shown for the
pointwise numerical error. In Fig. 9 (a) and (b), only two nodes on each
interface have been used in the PDD as well as in the quasi-PDD method,
respectively. Figure 9 (c) shows the same quantity, obtained with three nodes
on each interface (that is, using six nodal points in total). Note that increasing
the number of nodal points yields an overall reduction of the numerical error
on the whole domain.

Table 4
Overall CPU time in seconds for example E

Processors PFD PDDTotal PDDMonteCarlo PDDFD

4 3381.015 628.936 5.443 623.178

9 2184.664 167.103 13.638 153.208

16 2879.030 83.374 24.213 58.915

In Table 4, the CPU times required to solve the problem by the PFD and
PDD method, are shown as a function of the number of processors. As in
the previous examples, the PDD method wins over the PFD scheme, and the
advantage in the CPU time is now even more striking.
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Fig. 9. Example E. Pointwise numerical error made with: (a) the PDD algorithm,
(b) the quasi-PDD algorithm with two nodal points on each interface, evaluated by
quasi-Monte Carlo, and (c) the quasi-PDD algorithm with three nodal points on
each interface. Parameters are the same as in Example B.

5 Summary

Monte Carlo methods for solving Dirichlet problems for general linear ellip-
tic equations have been rarely considered so far, mostly due to their poor
performance. In this paper we have shown that such a performance can be
dramatically improved by a variety of new techniques. One of these consists of
accomplishing a domain decomposition based on computing by Monte Carlo
only few interfacial values. Thus, the degree of parallelism which characterizes
the algorithm is increased. Another winning strategy comes from adopting se-
quences of quasi-random numbers (instead of pseudorandom numbers), where
special care has to be paid, such as “reordering” at each time step. Finally,
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a suitable boundary treatment has been shown to be essential, since the nu-
merical error might otherwise dominate. An excellent way to accomplish the
latter task turns out to be adopting an exponential timestepping method. Ex-
amples given here concerned boundary value problems for elliptic equations
with variable coefficients, including a potential term and sources, and thus for
instance Helmholtz and Poisson equations. The algorithm developed here is
also characterized by scalability as the number of processors increases, and by
being naturally fault tolerant.
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