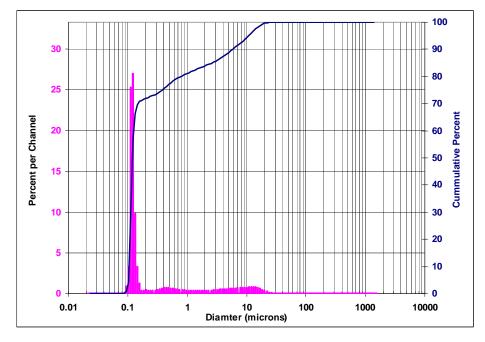


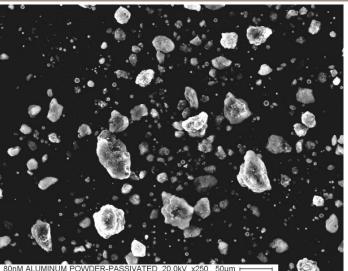
An advanced weapon and space systems company

Safety and Handling of Nano-aluminum

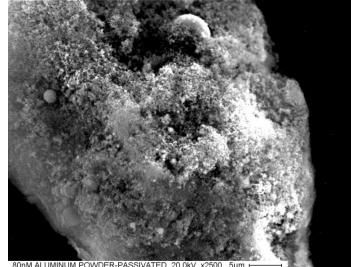
Ruth Schaefer Dave Dunaway Ryan Wilson



Characterization of Nano-aluminum



An advanced weapon and space systems company


- Comprised of agglomerated 80nm particles
- · SEM pictures show the agglomerates are in the micrometer size range
- Sonication prior to size analysis lowers average particle size (100-200nm)

Particle size analysis of 80nm Al

80nm Aluminum at x250 (above) and x2500 (below)

80nM ALUMINUM POWDER-PASSIVATED 20.0kV x2500 5µm

Safety Testing & Handling of Nano-aluminum

An advanced weapon and space systems company

- Nano-aluminum is not sensitive to impact, friction or heat
- Nano-aluminum is very sensitive to ESD
 - More sensitive than finely ground CL-20
- Material is handled in an argon purged glove-box whenever possible
- All tooling, equipment, and work area is well grounded

	Technanogy	NovaCentrix	Technanogy	NovaCentrix
	80nm Al	80nm Al	45nm Al	50nm Al
ABL Impact, cm	80	80	80	80
ABL Friction, lbs @ 8ft/s	800	800	800	800
ABL ESD, J	<0.025	0.0025		
TC ESD, J			0.05	0.05
SBAT onset T, F	No Reaction	No Reaction	No Reaction	No Reaction

- TC ESD is a Thiokol developed ESD test that typically returned higher values than the more standard ABL ESD test
- SBAT (Simulated Bulk Autoignition Test) is similar to DSC testing, but uses gram quantities and a slower temperature ramp rate
 - · We have found it to be a better predictor of bulk behavior than DSC

Burning of Nano-aluminum

An advanced weapon and space systems company

Burn video of 4µm aluminum:

4micAlmed.mov

Burn video of 80nm NovaCentrix Aluminum:

nanoAlmed.mov

- The Dust Explosive Hazard Test
 - Minimum concentration of a material required for a dust explosion
 - Minimum energy required for an ignition
- During a test, the 1.23L chamber is pressurized with gas
- The sample of material is dispersed in the chamber
- Ignition charge is released from a probe 2"-4" above the base
- If the diaphragm at the top is broken, the test is deemed a "go"

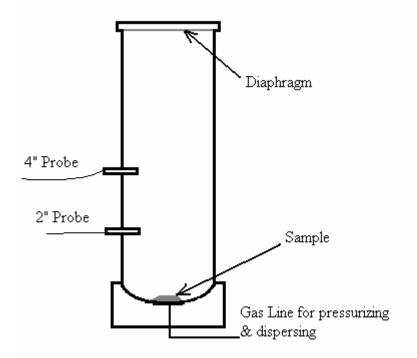


Diagram of dust explosibility test.

Dust Explosibility

An advanced weapon and space systems company

- Tests were conducted with 80nm
 Aluminum from NovaCentrix
- Tests were performed in air, 1%, 4% and 8% O₂ in Ar
- No explosion was observed in the 1%, 4% or 8% O₂ in Ar
- Only a small concentration and small amount of energy is needed for an explosion in air
- The concentration of air in argon may be as high as 40%, without having a dust explosibility hazard (~40% air corresponds to 8% oxygen).

			Max Concentration	amperage of
Media	Ign. Position	Pressure	w/ no Reaction	ignition
	in from bottom	psi	g/L	A
air	4	10	0.146	23.5
air	2	6	0.098	23.5
1% O2 in Ar	4	10	>.976	23.5
1% O2 in Ar	2	6	>.976	23.5
4% O2 in Ar	4	10	>.976	23.5
4% O2 in Ar	2	6	>.976	23.5
8% O2 in Ar	4	10	>.976	23.5
8% O2 in Ar	2	6	>.976	23.5

The highest concentration of aluminum powder that will *not* explode when ignited by 23.5 Amps.

				Energy req'd
Media	Ign. Position	Pressure	Concentration	for ignition
	inches from bottom	psi	g/L	J
air	4	10	0.854	0.065
1% O2 in Ar	4	10	0.976	>9.56
4% O2 in Ar	4	10	0.976	>9.57
8% O2 in Ar	4	10	0.976	>9.57

The minimum energy required to cause an explosion of the nanoaluminum dust cloud.

- Pyrophorocity is the likelihood of the material to undergo spontaneous combustion
- In micron-sized or larger aluminum powders pyrophorocity is minimal
- Two reactions can lead to spontaneous combustion of aluminum:

 $2AI + 3H_2O \rightarrow AI_2O_3 + 3H_2 + heat$

 $4AI + 3O_2 \rightarrow 2AI_2O_3 + heat$

- The lower surface area of larger micron-sized aluminum restricts the reaction rate
 - Heat (and H₂) is able to dissipate quickly
- Nano-aluminum potentially has a high enough surface area that heat could build faster than it can dissipate
- A simple test was designed on a worst-case-scenario to try to force a spontaneous combustion

Pyrophorocity

- The test oven is an insulated 5-gal bucket wrapped with heat trace cable
- The cable was controlled to keep the temperature in the bucket at 37.8° C
- 2 liters of 80:20 glycerol:water solution was placed at the base of the bucket
 - Maintains 48% relative humidity
- 210g of 80nm aluminum was placed in a PPE bucket over the glycerol: water solution
- The aluminum was approximately 15cm in diameter and 6.5cm deep
- Temperature was measured at four areas

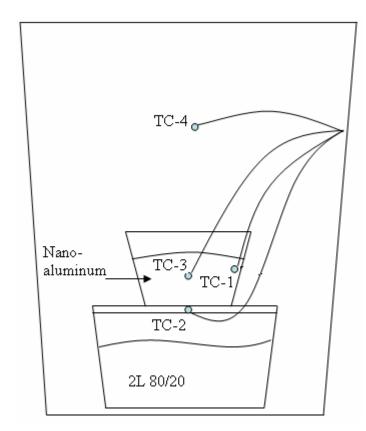
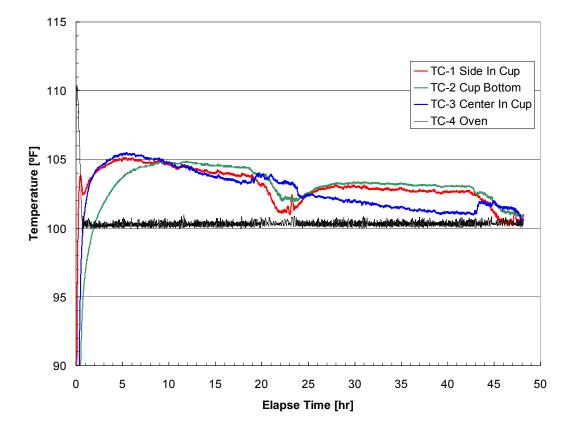



Figure 4: Diagram of test configuration for pyrophorocity testing.

An advanced weapon and space systems company

- Data was collected for 48hrs
- Slight exotherm (5° C)
- The temperature of aluminum tapers off, indicating that heat dispersing
- It is suspected that a weather event caused the fluctuation at 24 hrs
- Test was repeated with >300 sample and > 50° C exotherm was recorded
 - No self-ignition

Temperature gage results from pyrophoricity test.

- Nano-aluminum poses hazards not found with micron-sized aluminum powders
- Nano-aluminum is very sensitive to electrostatic discharge
- Dust clouds of nano-aluminum in air present an explosion hazard at even small concentrations of aluminum and small amounts of ignition energy
- Dust clouds of nano-aluminum in reduced oxygen atmospheres did not present explosion hazards, even at high concentrations of aluminum and large energy releases
- Nano-aluminum stored in a humid environment can experience an exothermic reactions
 - Samples of less than 210g nano-aluminum did not build up enough heat to selfignite, even in a hot, humid environment
 - >300g quantities have demonstrated extreme exotherms