
Cascading - User Guide
Concurrent, Inc

V 1.2

Copyright © 2007-2010 Concurrent, Inc

Published December, 2010

CascadingV 1.2 Cascading - User Guide ii

Table of Contents
1. Cascading .. 1

1.1. What is Cascading? .. 1

1.2. Who should use Cascading? ... 1

1.3. What is Apache Hadoop .. 2

2. Diving In .. 3

3. Data Processing .. 6

3.1. Introduction ... 6

3.2. Pipe Assemblies ... 6

Assembling Pipe Assemblies .. 7

Each and Every Pipes ... 8

GroupBy and CoGroup Pipes .. 11

Sorting .. 15

3.3. Source and Sink Taps .. 16

3.4. Field Algebra ... 18

3.5. Flows ... 20

Creating Flows from Pipe Assemblies .. 21

Configuring Flows .. 22

Skipping Flows .. 22

Creating Flows from a JobConf ... 23

Creating Custom Flows .. 23

3.6. Cascades ... 23

4. Executing Processes ... 25

4.1. Introduction ... 25

4.2. Building .. 25

4.3. Configuring ... 27

4.4. Executing .. 28

5. Using and Developing Operations .. 29

5.1. Introduction ... 29

5.2. Functions .. 30

5.3. Filter .. 31

5.4. Aggregator .. 33

5.5. Buffer ... 37

5.6. Operation and BaseOperation .. 40

6. Advanced Processing ... 41

6.1. SubAssemblies ... 41

6.2. Stream Assertions ... 43

6.3. Failure Traps ... 45

6.4. Event Handling .. 46

6.5. Template Taps ... 47

6.6. Scripting ... 47

6.7. Custom Taps and Schemes ... 48

6.8. Custom Types and Serialization .. 48

6.9. Partial Aggregation instead of Combiners ... 49

7. Built-In Operations .. 51

Cascading - User Guide

CascadingV 1.2 Cascading - User Guide iii

7.1. Identity Function .. 51

7.2. Debug Function .. 53

7.3. Sample and Limit Functions ... 53

7.4. Insert Function ... 53

7.5. Text Functions ... 53

7.6. Regular Expression Operations .. 54

7.7. Java Expression Operations .. 56

7.8. XML Operations .. 57

7.9. Assertions .. 58

7.10. Logical Filter Operators ... 59

8. Best Practices ... 61

8.1. Unit Testing .. 61

8.2. Flow Granularity .. 61

8.3. SubAssemblies, not Factories .. 61

8.4. Give SubAssemblies Logical Responsibilities .. 61

8.5. Java Operators in Field Names .. 62

8.6. Debugging Planner Failures .. 62

8.7. Optimizing Joins .. 62

8.8. Debuging Streams ... 62

8.9. Handling Good and Bad Data ... 62

8.10. Maintaining State in Operations ... 63

8.11. Custom Types .. 63

8.12. Fields Constants .. 63

8.13. Look at the Source Code .. 63

9. CookBook .. 64

9.1. Tuples and Fields ... 64

9.2. Stream Shaping .. 64

9.3. Common Operations .. 66

9.4. Stream Ordering ... 66

9.5. API Usage ... 67

10. How It Works ... 69

10.1. MapReduce Job Planner ... 69

10.2. The Cascade Topological Scheduler ... 69

CascadingV 1.2 Cascading - User Guide 1

1. Cascading

1.1 What is Cascading?
Cascading is a Query API and Query Planner used for defining, sharing, and executing data processing workflows

on a distributed data grid or cluster.

Cascading relies on Apache Hadoop. To use Cascading, Hadoop must be installed locally for development and testing,

and a Hadoop cluster must be deployed for production applications.

Cascading greatly simplifies the complexities with Hadoop application development, job creation, and job scheduling.

1.2 Who should use Cascading?
Cascading was developed to allow organizations to rapidly develop complex data processing applications. These

applications come in two extremes.

On one hand, there is too much data for a single computing system to manage effectively. Developers have decided to

adopt Apache Hadoop as the base computing infrastructure, but realize that developing reasonably useful applications

on Hadoop is not trivial. Cascading eases the burden on developers by allowing them to rapidly create, refactor, test,

and execute complex applications that scale linearly across a cluster of computers.

On the other hand, managers and developers realize the complexity of the processes in their data center is getting

out of hand with one-off data-processing applications living wherever there is enough disk space or available CPU.

Subsequently they have decided to adopt Apache Hadoop to gain access to its "Global Namespace" file system which

allows for a single reliable storage framework. Cascading eases the learning curve for developers to convert their

existing applications for execution on a Hadoop cluster. It further allows for developers to create reusable libraries and

application for use by analysts who need to extract data from the Hadoop file system.

Cascading was designed to support three user roles. The application Executor, process Assembler, and the operation

Developer.

The application Executor is someone, a developer or analyst, or some system (like a cron job) which runs a data

processing application on a given cluster. This is typically done via the command line using a pre-packaged Java Jar file

compiled against the Apache Hadoop and Cascading libraries. This application may accept command line parameters

to customize it for an given execution and generally results in a set of data the user will export from the Hadoop file

system for some specific purpose.

The process Assembler is someone who assembles data processing workflows into unique applications. This is

generally a development task of chaining together operations that act on input data sets to produce one or more output

data sets. This task can be done using the raw Java Cascading API or via a scripting language like Cascalog/Clojure,

Groovy, JRuby, or Jython.

The operation Developer is someone who writes individual functions or operations, typically in Java, or reusable sub-

assemblies that act on the data that pass through the data processing workflow. A simple example would be a parser

that takes a string and converts it to an Integer. Operations are equivalent to Java functions in the sense that they take

Cascading

CascadingV 1.2 Cascading - User Guide 2

input arguments and return data. And they can execute at any granularity, simply parsing a string, or performing some

complex routine on the argument data using third-party libraries.

All three roles can be a developer, but the API allows for a clean separation of responsibilities for larger organizations

that need non-developers to run ad-hoc applications or build production processes on a Hadoop cluster.

1.3 What is Apache Hadoop
From the Hadoop website, it “is a software platform that lets one easily write and run applications that process vast

amounts of data”.

To be a little more specific, Hadoop provides a storage layer that holds vast amounts of data, and an execution layer

for running an application in parallel across the cluster against parts of the stored data.

The storage layer, the Hadoop File System (HDFS), looks like a single storage volume that has been optimized for

many concurrent serialized reads of large data files. Where "large" ranges from Gigabytes to Petabytes. But it only

supports a single writer. And random access to the data is not really possible in an efficient manner either. But this is

why it is so performant and reliable. Reliable in part because this restriction allows for the data to be replicated across

the cluster reducing the chance of data loss.

The execution layer relies on a "divide and conquer" strategy called MapReduce. MapReduce is beyond the scope of

this document, but suffice it to say, it can be so difficult to develop "real world" applications against that Cascading

was created to offset the complexity.

Apache Hadoop is an Open Source Apache project and is freely available. It can be downloaded from here the Hadoop

website, http://hadoop.apache.org/core/.

http://hadoop.apache.org/core/

CascadingV 1.2 Cascading - User Guide 3

2. Diving In
Counting words in a document is the most common example presented to new Hadoop (and MapReduce) developers,

it is the Hadoop equivalent to the "Hello World" application.

Word counting is where a document is parsed into individual words, and the frequency of those words are counted.

For example, if we counted the last paragraph "is" would be counted twice, and "document" counted once.

In the code example below, we will use Cascading to read each line of text from a file (our document), parse it into

words, then count the number of time the word is encountered.

Diving In

CascadingV 1.2 Cascading - User Guide 4

// define source and sink Taps.

Scheme sourceScheme = new TextLine(new Fields("line"));

Tap source = new Hfs(sourceScheme, inputPath);

Scheme sinkScheme = new TextLine(new Fields("word", "count"));

Tap sink = new Hfs(sinkScheme, outputPath, SinkMode.REPLACE);

// the 'head' of the pipe assembly

Pipe assembly = new Pipe("wordcount");

// For each input Tuple

// parse out each word into a new Tuple with the field name "word"

// regular expressions are optional in Cascading

String regex = "(?<!\\pL)(?=\\pL)[^]*(?<=\\pL)(?!\\pL)";

Function function = new RegexGenerator(new Fields("word"), regex);

assembly = new Each(assembly, new Fields("line"), function);

// group the Tuple stream by the "word" value

assembly = new GroupBy(assembly, new Fields("word"));

// For every Tuple group

// count the number of occurrences of "word" and store result in

// a field named "count"

Aggregator count = new Count(new Fields("count"));

assembly = new Every(assembly, count);

// initialize app properties, tell Hadoop which jar file to use

Properties properties = new Properties();

FlowConnector.setApplicationJarClass(properties, Main.class);

// plan a new Flow from the assembly using the source and sink Taps

// with the above properties

FlowConnector flowConnector = new FlowConnector(properties);

Flow flow = flowConnector.connect("word-count", source, sink, assembly);

// execute the flow, block until complete

flow.complete();

Example 2.1 Word Counting

There are a couple things to take away from this example.

First, the pipe assembly is not coupled to the data (the Tap instances) until the last moment before execution. That

is, file paths or references are not embedded in the pipe assembly. The pipe assembly remains independent of which

data it processes until execution. The only dependency is what the data looks like, its "scheme", or the field names

that make it up.

Diving In

CascadingV 1.2 Cascading - User Guide 5

That brings up fields. Every input and output file has field names associated with it, and every processing element of

the pipe assembly either expects certain fields, or creates new fields. This allows the developer to self document their

code, and allows the Cascading planner to "fail fast" during planning if a dependency between elements isn't satisfied

(used a missing or wrong field name).

It is also important to point out that pipe assemblies are assembled through constructor chaining. This may seem odd

but is done for two reasons. It keeps the code more concise. And it prevents developers from creating "cycles" in

the resulting pipe assembly. Pipe assemblies are Directed Acyclic Graphs (or DAGs). The Cascading planner cannot

handle processes that feed themselves, that have cycles (not to say there are ways around this that are much safer).

Notice the very first Pipe instance has a name. That instance is the "head" of this particular pipe assembly. Pipe

assemblies can have any number of heads, and any number of tails. This example does not name the tail assembly, but

for complex assemblies, tails must be named for reasons described below.

Heads and tails of pipe assemblies generally need names, this is how sources and sinks are "bound" to them during

planning. In our example above, there is only one head and one tail, and subsequently only one source and one

sink, respectively. So naming in this case is optional, it's obvious what goes where. Naming is also useful for self

documenting pipe assemblies, especially where there are splits, joins, and merges in the assembly.

To paraphrase, our example will:

• read each line of text from a file and give it the field name "line",

• parse each "line" into words by the RegexGenerator object which in turn returns each word in the field named

"word",

• groups on the field named "word" using the GroupBy object,

• then counts the number of elements in each grouping using the Count() object and stores this value in the "count"

field,

• finally the "word" and "count" fields are written out.

CascadingV 1.2 Cascading - User Guide 6

3. Data Processing

3.1 Introduction
The Cascading processing model is based on a "pipes and filters" metaphor. The developer uses the Cascading API

to assemble pipelines that split, merge, group, or join streams of data while applying operations to each data record

or groups of records.

In Cascading, we call a data record a Tuple, a pipeline a pipe assembly, and a series of Tuples passing through a pipe

assembly is called a tuple stream.

Pipe assemblies are assembled independently from what data they will process. Before a pipe assembly can be

executed, it must be bound to data sources and data sinks, called Taps. The process of binding pipe assemblies to

sources and sinks results in a Flow. Flows can be executed on a data cluster like Hadoop.

Finally, many Flows can be grouped together and executed as a single process. If one Flow depends on the output of

another Flow, it will not be executed until all its data dependencies are satisfied. This collection of Flows is called

a Cascade.

3.2 Pipe Assemblies
Pipe assemblies define what work should be done against a tuple stream, where during runtime tuple streams are read

from Tap sources and are written to Tap sinks. Pipe assemblies may have multiple sources and multiple sinks and they

can define splits, merges, and joins to manipulate how the tuple streams interact.

CoGroupGroupBy

Pipe

Each Every
Sub

Assembly

There are only five Pipe types: Pipe, Each, GroupBy, CoGroup, Every, and SubAssembly.

Pipe

The cascading.pipe.Pipe class is used to name branches of pipe assemblies. These names are used during

planning to bind Taps as either sources or sinks (or as traps, an advanced topic). It is also the base class for all

other pipes described below.

Each

The cascading.pipe.Each pipe applies a Function or Filter Operation to each Tuple that passes

through it.

Data Processing

CascadingV 1.2 Cascading - User Guide 7

GroupBy

cascading.pipe.GroupBy manages one input Tuple stream and does exactly as it sounds, that is, groups

the stream on selected fields in the tuple stream. GroupBy also allows for "merging" of two or more tuple stream

that share the same field names.

CoGroup

cascading.pipe.CoGroup allows for "joins" on a common set of values, just like a SQL join. The output

tuple stream of CoGroup is the joined input tuple streams, where a join can be an Inner, Outer, Left, or Right join.

Every

The cascading.pipe.Every pipe applies an Aggregator (like count, or sum) or Buffer (a sliding

window) Operation to every group of Tuples that pass through it.

SubAssembly

The cascading.pipe.SubAssembly pipe allows for nesting reusable pipe assemblies into a Pipe class for

inclusion in a larger pipe assembly. See the section onSubAssemblies.

Assembling Pipe Assemblies
Pipe assemblies are created by chaining cascading.pipe.Pipe classes and Pipe subclasses together. Chaining

is accomplished by passing previous Pipe instances to the constructor of the next Pipe instance.

// the "left hand side" assembly head

Pipe lhs = new Pipe("lhs");

lhs = new Each(lhs, new SomeFunction());

lhs = new Each(lhs, new SomeFilter());

// the "right hand side" assembly head

Pipe rhs = new Pipe("rhs");

rhs = new Each(rhs, new SomeFunction());

// joins the lhs and rhs

Pipe join = new CoGroup(lhs, rhs);

join = new Every(join, new SomeAggregator());

join = new GroupBy(join);

join = new Every(join, new SomeAggregator());

// the tail of the assembly

join = new Each(join, new SomeFunction());

Example 3.1 Chaining Pipes

The above example, if visualized, would look like the diagram below.

Data Processing

CascadingV 1.2 Cascading - User Guide 8

P i p e Assembly

CoGroupEach Every GroupBy

Each

Every

Each

Each

Here are some common stream patterns.

Split

A split takes a single stream and sends it down one or more paths. This is simply achieved by passing a given

Pipe instance to two or more subsequent Pipe instances. Note you can use the Pipe class and name the branch

(branch names are useful for bindingFailure Traps), or with a Each class.

Merge

A merge is where two or more streams with the exact same Fields (and types) are treated as a single stream. This

is achieved by passing two or more Pipe instances to a GroupBy Pipe instance.

Join

A join is where two or more streams are connected by one or more common values. See the previous diagram

for an example.

Besides defining the paths tuple streams take through splits, merges, grouping, and joining, pipe assemblies also

transform and/or filter the stored values in each Tuple. This is accomplished by applying an Operation to each Tuple

or group of Tuples as the tuple stream passes through the pipe assembly. To do that, the values in the Tuple typically

are given field names, in the same fashion columns are named in a database so that they may be referenced or selected.

Operation

Operations (cascading.operation.Operation) accept an input argument Tuple, and output zero or

more result Tuples. There are a few sub-types of operations defined below. Cascading has a number of generic

Operations that can be reused, or developers can create their own custom Operations.

Tuple

In Cascading, we call each record of data a Tuple (cascading.tuple.Tuple), and a series of Tuples are a

tuple stream. Think of a Tuple as an Array of values where each value can be any java.lang.Object Java

type (or byte[] array). See the section on Custom Types for supporting non-primitive values.

Fields

Fields (cascading.tuple.Fields) either declare the field names in a Tuple. Or reference values in a Tuple

as a selector. Fields can either be string names ("first_name"), integer positions (-1 for the last value), or a

substitution (Fields.ALL to select all values in the Tuple, like an asterisk (*) in SQL, seeField Algebra).

Each and Every Pipes

The Each and Every pipe types are the only pipes that can be used to apply Operations to the tuple stream.

Data Processing

CascadingV 1.2 Cascading - User Guide 9

The Each pipe applies an Operation to "each" Tuple as it passes through the pipe assembly. The Every pipe applies

an Operation to "every" group of Tuples as they pass through the pipe assembly, on the tail end of a GroupBy or

CoGroup pipe.

new Each(previousPipe, argumentSelector, operation, outputSelector)

new Every(previousPipe, argumentSelector, operation, outputSelector)

Both the Each and Every pipe take a Pipe instance, an argument selector, Operation instance, and a output selector

on the constructor. Where each selector is a Fields instance.

The Each pipe may only apply Functions and Filters to the tuple stream as these operations may only operate

on one Tuple at a time.

The Every pipe may only apply Aggregators and Buffers to the tuple stream as these operations may only

operate on groups of tuples, one grouping at a time.

Pipe

Operation
argument
Selector

Pipe

output
Selector

result
Tuple

Tuple

Fields

argument
Tuple

declared
Fields

argument
Fields

input
Fields

declared
Fields

+

input
Tuple

result
Tuple

+

input
Fields

output
Fields

Pipe Pipe
output
Tuple

input
Tuple

The "argument selector" selects values from the input Tuple to be passed to the Operation as argument values. Most

Operations declare result fields, "declared fields" in the diagram. The "output selector" selects the output Tuple from

an "appended" version of the input Tuple and the Operation result Tuple. This new output Tuple becomes the input

Tuple to the next pipe in the pipe assembly.

Note that if a Function or Aggregator emits more than one Tuple, this process will be repeated for each result

Tuple against the original input Tuple, depending on the output selector, input Tuple values could be duplicated across

each output Tuple.

Data Processing

CascadingV 1.2 Cascading - User Guide 10

Pipe

Operation
argument
Selector

Pipe

output
Selector

result
Tuple

Tuple

Fields

argument
Tuple

declared
Fields

argument
Fields

input
Fields

declared
Fields

+

input
Tuple

result
Tuple

+

input
Fields

output
Fields

Pipe Pipe
output
Tuple

input
Tuple

Each

default:
Fields.RESULTS

Function

value
Fields

declared
Fields

+

value
Tuple

result
Tuple

+

default:
Fields.ALL

If the argument selector is not given, the whole input Tuple (Fields.ALL) is passed to the Operation as

argument values. If the result selector is not given on an Each pipe, the Operation results are returned by default

(Fields.RESULTS), replacing the input Tuple values in the tuple stream. This really only applies to Functions,

as Filters either discard the input Tuple, or return the input Tuple intact. There is no opportunity to provide an

output selector.

Pipe

Operation
argument
Selector

Pipe

output
Selector

result
Tuple

Tuple

Fields

argument
Tuple

declared
Fields

argument
Fields

input
Fields

declared
Fields

+

input
Tuple

result
Tuple

+

input
Fields

output
Fields

Pipe Pipe
output
Tuple

input
Tuple

Every

default:
Fields.ALL

Aggregator

group
Fields

declared
Fields

+

group
Tuple

result
Tuple

+

default:
Fields.ALL

For the Every pipe, the Aggregator results are appended to the input Tuple (Fields.ALL) by default.

It is important to note that the Every pipe associates Aggregator results with the current group Tuple. For example, if

you are grouping on the field "department" and counting the number of "names" grouped by that department, the output

Fields would be ["department","num_employees"]. This is true for both Aggregator, seen above, and Buffer.

If you were also adding up the salaries associated with each "name" in each "department", the output Fields would

be ["department","num_employees","total_salaries"]. This is only true for chains of Aggregator Operations, you

may not chain Buffer Operations.

Data Processing

CascadingV 1.2 Cascading - User Guide 11

Pipe

Operation
argument
Selector

Pipe

output
Selector

result
Tuple

Tuple

Fields

argument
Tuple

declared
Fields

argument
Fields

input
Fields

declared
Fields

+

input
Tuple

result
Tuple

+

input
Fields

output
Fields

Pipe Pipe
output
Tuple

input
Tuple

Every

default:
Fields.ALL

Buffer

group
Fields

declared
Fields

+
default:

Fields.ALL

value
Tuple

result
Tuple

+

For the Every pipe when used with a Buffer the behavior is slightly different. Instead of associating the Buffer

results with the current grouing Tuple, they are associated with the current values Tuple, just like an Each pipe does

with a Function. This might be slightly more confusing, but provides much more flexibility.

GroupBy and CoGroup Pipes
The GroupBy and CoGroup pipes serve two roles. First, they emit sorted grouped tuple streams allowing for

Operations to be applied to sets of related Tuple instances. Where "sorted" means the tuple groups are emitted from

the GroupBy and CoGroup pipes in sort order of the field values the groups were grouped on.

Second, they allow for two streams to be either merged or joined. Where merging allows for two or more tuple streams

originating from different sources to be treated as a single stream. And joining allows two or more streams to be

"joined" (in the SQL sense) on a common key or set of Tuple values in a Tuple.

It is not required that an Every follow either GroupBy or CoGroup, an Each may follow immediately after. But

an Every many not follow an Each.

It is important to note, for both GroupBy andCoGroup, the values being grouped on must be the same type. If your

application attempts to GroupBy on the field "size", but the value alternates between a String and a Long, Hadoop

will fail internally attempting to apply a Java Comparator to them. This also holds true for the secondary sorting

sort-by fields in GroupBy.

GroupBy accepts one or more tuple streams. If two or more, they must all have the same field names (this is also

called a merge, see below).

Pipe groupBy = new GroupBy(assembly, new Fields("group1", "group2"));

Example 3.2 Grouping a Tuple Stream

The example above simply creates a new tuple stream where Tuples with the same values in "group1" and "group2"

can be processed as a set by an Aggregator or Buffer Operation. The resulting stream of tuples will be sorted

by the values in "group1" and "group2".

Data Processing

CascadingV 1.2 Cascading - User Guide 12

Pipe[] pipes = Pipe.pipes(lhs, rhs);

Pipe merge = new GroupBy(pipes, new Fields("group1", "group2"));

Example 3.3 Merging a Tuple Stream

This example merges two streams ("lhs" and "rhs") into one tuple stream and groups the resulting stream on the fields

"group1" and "group2", in the same fashion as the previous example.

CoGroup accepts two or more tuple streams and does not require any common field names. The grouping fields must

be provided for each tuple stream.

Fields lhsFields = new Fields("fieldA", "fieldB");

Fields rhsFields = new Fields("fieldC", "fieldD");

Pipe join = new CoGroup(lhs, lhsFields, rhs, rhsFields, new InnerJoin());

Example 3.4 Joining a Tuple Stream

This example joins two streams ("lhs" and "rhs") on common values. Note that common field names are not required

here. Actually, if there were any common field names, the Cascading planner would throw an error as duplicate field

names are not allowed.

This is significant because of the nature of joining streams.

The first stage of joining has to do with identifying field names that represent the grouping key for a given stream. The

second stage is emitting a new Tuple with the joined values, this includes the grouping values, and the other values.

"word" "count""url" "sentence" "count""url"

CoGroup

"word" "count""url" "sentence" "count""url"

In the above example, we see what "logically" happens during a join. Here we join two streams on the "url" field which

happens to be common to both streams. The result is simply two Tuple instances with the same "url" appended together

into a new Tuple. In practice this would fail since the result Tuple has duplicate field names. The CoGroup pipe has

the declaredFields argument allowing the developer to declare new unique field names for the resulting tuple.

Fields common = new Fields("url");

Fields declared = new Fields("url1", "word", "wd_count", "url2", "sentence", "snt_count");

Pipe join = new CoGroup(lhs, common, rhs, common, declared, new InnerJoin());

Example 3.5 Joining a Tuple Stream with Duplicate Fields

Data Processing

CascadingV 1.2 Cascading - User Guide 13

"word" "count""url" "sentence" "count""url"

CoGroup

"word" "count""url" "sentence" "count""url""word" "wd_count""url1" "sentence" "snt_count""url2"

Here we see an example of what the developer could have named the fields so the planner would not fail.

It is important to note that Cascading could just magically create a new Tuple by removing the duplicate grouping fields

names so the user isn't left renaming them. In the above example, the duplicate "url" columns could be collapsed into

one, as they are the same value. This is not done because field names are a user convenience, the primary mechanism to

manipulate Tuples is through positions, not field names. So the result of every Pipe (Each, Every, CoGroup, GroupBy)

needs to be deterministic. This gives Cascading a big performance boost, provides a means for sub-assemblies to

be built without coupling to any "domain level" concepts (like "first_name", or "url), and allows for higher level

abstractions to be built on-top of Cascading simply.

In the example above, we explicitly set a Joiner class to join our data. The reason CoGroup is named "CoGroup"

and not "Join" is because joining data is done after all the parallel streams are co-grouped by their common keys. The

details are not terribly important, but note that a "bag" of data for every input tuple stream must be created before an

join operation can be performed. Each bag consists of all the Tuple instances associated with a given grouping Tuple.

lhs rhs

"word" "count""url" "sentence" "count""url"
"word" "count""url"

"word" "count""url"
"word" "count""url"

"word" "count""url"
"word" "count""url"

"sentence" "count""url"
"sentence" "count""url"

"sentence" "count""url"
"sentence" "count""url"

"sentence" "count""url"

Above we see two bags, one for each tuple stream ("lhs" and "rhs"). Each Tuple in bag is independent but all Tuples in

both bags have the same "url" value since we are grouping on "url", from the previous example. A Joiner will match

up every Tuple on the "lhs" with a Tuple on the "rhs". An InnerJoin is the most common. This is where each Tuple on

the "lhs" is matched with every Tuple on the "rhs". This is the default behaviour one would see in SQL when doing a

join. If one of the bags was empty, no Tuples would be joined. An OuterJoin allows for either bag to be empty, and

if that is the case, a Tuple full of null values would be substituted.

Data Processing

CascadingV 1.2 Cascading - User Guide 14

CoGroup

InnerJoin OuterJoin LeftJoin RightJoin

Joiner

MixedJoin

Above we see all supported Joiner types.

LHS = [0,a] [1,b] [2,c]

 RHS = [0,A] [2,C] [3,D]

Using the above simple data sets, we will define each join type where the values are joined on the first position,

a numeric value. Note when Cascading joins Tuples, the resulting Tuple will contain all the incoming values. The

duplicate common key(s) is not discarded if given. And on outer joins, where there is no equivalent key in the alternate

stream, null values are used as placeholders.

InnerJoin

An Inner join will only return a joined Tuple if neither bag has is empty.

[0,a,0,A] [2,c,2,C]

OuterJoin

An Outer join will join if either the left or right bag is empty.

[0,a,0,A] [1,b,null,null] [2,c,2,C] [null,null,3,D]

LeftJoin

A Left join can also be stated as a Left Inner and Right Outer join, where it is fine if the right bag is empty.

[0,a,0,A] [1,b,null,null] [2,c,2,C]

RightJoin

A Right join can also be stated as a Left Outer and Right Inner join, where it is fine if the left bag is empty.

[0,a,0,A] [2,c,2,C] [null,null,3,D]

MixedJoin

A Mixed join is where 3 or more tuple streams are joined, and each pair must be joined differently. See the

cascading.pipe.cogroup.MixedJoin class for more details.

Data Processing

CascadingV 1.2 Cascading - User Guide 15

Custom

A custom join is where the developer subclasses the cascading.pipe.cogroup.Joiner class.

Sorting

By virtue of the Reduce method, in the MapReduce model encapsulated by GroupBy and CoGroup, all groups of

Tuples will be locally sorted by their grouping values. That is, both the Aggregator and Buffer Operations will

receive groups in their natural sort order. But the values associated within those groups are not sorted.

That is, if we sort on 'lastname' with the tuples [john, doe] and[jane, doe], the 'firstname' values will arrive

in an arbitrary order to the Aggregator.aggregate() method.

In the below example we provide sorting fields to the GroupBy instance. Now value1 and value2 will arrive in

their natural sort order (assuming value1 and value2 are java.lang.Comparable).

Fields groupFields = new Fields("group1", "group2");

Fields sortFields = new Fields("value1", "value2");

Pipe groupBy = new GroupBy(assembly, groupFields, sortFields);

Example 3.6 Secondary Sorting

If we didn't care about the order ofvalue2, would could have left it out of the sortFields Fields constructor.

In this example, we reverse the order of value1 while keeping the natural order ofvalue2.

Fields groupFields = new Fields("group1", "group2");

Fields sortFields = new Fields("value1", "value2");

sortFields.setComparator("value1", Collections.reverseOrder());

Pipe groupBy = new GroupBy(assembly, groupFields, sortFields);

Example 3.7 Reversing Secondary Sort Order

Whenever there is an implied sort, during grouping or secondary sorting, a custom java.util.Comparator

can be supplied to the grouping Fields or secondary sort Fields to influence the sorting through the

Fields.setComparator() call.

Creating a custom Comparator also allows for non- Comparable classes to be sorted and/or grouped on.

Here is a more practical example were we group by the 'day of the year', but want to reverse the order of the Tuples

within that grouping by 'time of day'.

Data Processing

CascadingV 1.2 Cascading - User Guide 16

Fields groupFields = new Fields("year", "month", "day");

Fields sortFields = new Fields("hour", "minute", "second");

sortFields.setComparators(

 Collections.reverseOrder(), // hour

 Collections.reverseOrder(), // minute

 Collections.reverseOrder()); // second

Pipe groupBy = new GroupBy(assembly, groupFields, sortFields);

Example 3.8 Reverse Order by Time

3.3 Source and Sink Taps
All input data comes from, and all output data feeds to, a cascading.tap.Tap instance.

A Tap represents a resource like a data file on the local file system, on a Hadoop distributed file system, or even

on Amazon S3. Taps can be read from, which makes it a "source", or written to, which makes it a "sink". Or, more

commonly, Taps can act as both sinks and sources when shared between Flows.

All Taps must have a Scheme associated with them. If the Tap is about where the data is, and how to get it, the Scheme is

about what the data is. Cascading provides three Scheme classes, TextLine,TextDelimited, SequenceFile,

and WritableSequenceFile.

TextLine

TextLine reads and writes raw text files and returns Tuples with two field names by default, "offset" and "line".

These values are inherited from Hadoop. When written to, all Tuple values are converted to Strings and joined

with the TAB character (\t).

TextDelimited

TextDelimited reads and writes character delimited files (csv, tsv, etc). When written to, all Tuple values are

converted to Strings and joined with the given character delimiter. This Scheme can optionally handle quoted

values with custom quote characters. Further, TextDelimited can coerce each value to a primitive type.

SequenceFile

SequenceFile is based on the Hadoop Sequence file, which is a binary format. When written or read from, all

Tuple values are saved in their native binary form. This is the most efficient file format, but being binary, the

result files can only be read by Hadoop applications.

WritableSequenceFile

WritableSequenceFile is based on the Hadoop Sequence file, like the SequenceFile Scheme, except it was designed

to read and write key and/or value Hadoop Writable objects directly. This is very useful if you have sequence

files created by other applications. During writing (sinking) specified key and/or value fields will be serialized

directly into the sequence file. During reading (sourcing) the key and/or value objects will be deserialized and

wrapped in a Cascading Tuple and passed to the downstream pipe assembly.

The fundamental difference behind TextLine and SequenceFile schemes is that tuples stored in the

SequenceFile remain tuples, so when read, they do not need to be parsed. So a typical Cascading application

Data Processing

CascadingV 1.2 Cascading - User Guide 17

will read raw text files, and parse each line into a Tuple for processing. The final Tuples are saved via the

SequenceFile scheme so future applications can just read the file directly into Tuple instances without the parsing

step.

It is advised for performance reasons, sequence file compression be enabled via the Hadoop properties. Either block or

record based compression can be enabled. See the Hadoop documentation for the available properties and compression

types available.

Tap tap = new Hfs(new TextLine(new Fields("line")), path);

Example 3.9 Creating a new Tap

The above example creates a new Hadoop FileSystem Tap that can read/write raw text files. Since only one field name

was provided, the "offset" field is discarded, resulting in an input tuple stream with only "line" values.

The three most common Tap classes used are, Hfs, Dfs, and Lfs. The MultiSourceTap, MultiSinkTap, and TemplateTap

are utility Taps.

Lfs

The cascading.tap.Lfs Tap is used to reference local files. Local files are files on the same machine your

Cascading application is started. Even if a remote Hadoop cluster is configured, if a Lfs Tap is used as either a

source or sink in a Flow, Cascading will be forced to run in "local mode" and not on the cluster. This is useful

when creating applications to read local files and import them into the Hadoop distributed file system.

Dfs

The cascading.tap.Dfs Tap is used to reference files on the Hadoop distributed file system.

Hfs

The cascading.tap.Hfs Tap uses the current Hadoop default file system. If Hadoop is configured for "local

mode" its default file system will be the local file system. If configured as a cluster, the default file system is likely

the Hadoop distributed file system. The Hfs is convenient when writing Cascading applications that may or may

not be run on a cluster. Lhs and Dfs subclass the Hfs Tap.

MultiSourceTap

The cascading.tap.MultiSourceTap is used to tie multiple Tap instances into a single Tap for use as

an input source. The only restriction is that all the Tap instances passed to a new MultiSourceTap share the same

Scheme classes (not necessarily the same Scheme instance).

MultiSinkTap

The cascading.tap.MultiSinkTap is used to tie multiple Tap instances into a single Tap for use as an

output sink. During runtime, for every Tuple output by the pipe assembly each child tap to the MultiSinkTap will

sink the Tuple.

TemplateTap

The cascading.tap.TemplateTap is used to sink tuples into directory paths based on the values in the

Tuple. More can be read below inTemplate Taps.

GlobHfs

The cascading.tap.GlobHfs Tap accepts Hadoop style 'file globbing' expression patterns. This allows for

multiple paths to be used as a single source, where all paths match the given pattern.

Data Processing

CascadingV 1.2 Cascading - User Guide 18

Keep in mind Hadoop cannot source data from directories with nested sub-directories, and it cannot write to directories

that already exist. But you can simply point the Hfs Tap to a directory of data files and they all will be used as input,

no need to enumate each individual file into a MultiSourceTap.

To get around existing directories, the Hadoop related Taps allow for a SinkMode value to be set when constructed.

Tap tap = new Hfs(new TextLine(new Fields("line")), path, SinkMode.REPLACE);

Example 3.10 Overwriting An Existing Resource

Here are all the modes available by the built-in Tap types.

SinkMode.KEEP

This is the default behavior. If the resource exists, attempting to write to it will fail.

SinkMode.REPLACE

This allows Cascading to delete the file immediately after the Flow is started.

SinkMode.UPDATE

Allows for new Tap types that have the concept of update or append. For example, updating records in a database.

It is up to the Tap to decide how to implement its "update" semantics. When Cascading sees the update mode, it

knows not to attempt to delete the resource first or to not fail because it already exists.

3.4 Field Algebra
As can be seen above, the Each and Every Pipe classes provide a means to merge input Tuple values with Operation

result Tuple values to create a final output Tuple, which are used as the input to the next Pipe instance. This merging

is created through a type of "field algebra", and can get rather complicated when factoring in Fields sets, a kind of

wildcard for specifying certain field values.

Fields sets are constant values on the Fields class and can be used in many places the Fields class is expected.

They are:

Fields.ALL

The cascading.tuple.Fields.ALL constant is a "wildcard" that represents all the current available fields.

Fields.RESULTS

The cascading.tuple.Fields.RESULTS constant set is used to represent the field names of the current

Operations return values. This Fields set may only be used as an output selector on a Pipe where it replaces in the

input Tuple with the Operation result Tuple in the stream.

Fields.REPLACE

The cascading.tuple.Fields.REPLACE constant is used as an output selector to inline-replace values

in the incoming Tuple with the results of an Operation. This is a convenience Fields set that allows subsequent

Operations to 'step' on the value with a given field name. The current Operation must always use the exact same

field names, or the ARGS Fields set.

Fields.SWAP

The cascading.tuple.Fields.SWAP constant is used as an output selector to swap out Operation

arguments with its results. Neither the argument and result field names or size need to be the same. This is useful

Data Processing

CascadingV 1.2 Cascading - User Guide 19

for when the Operation arguments are no longer necessary and the result Fields and values should be appended

to the remainder of the input field names and Tuple.

Fields.ARGS

The cascading.tuple.Fields.ARGS constant is used to let a given Operation inherit the field names of its

argument Tuple. This Fields set is a convenience and is typically used when the Pipe output selector is RESULTS

or REPLACE. It is specifically used by the Identity Function when coercing values from Strings to primitive types.

Fields.GROUP

The cascading.tuple.Fields.GROUP constant represents all the fields used as grouping values in a

previous Group. If there is no previous Group in the pipe assembly, the GROUP represents all the current field

names.

Fields.VALUES

The cascading.tuple.Fields.VALUES constant represent all the fields not used as grouping fields in a

previous Group.

Fields.UNKNOWN

The cascading.tuple.Fields.UNKNOWN constant is used when Fields must be declared, but how many

and their names is unknown. This allows for arbitrarily length Tuples from an input source or some Operation.

Use this Fields set with caution.

Below is a reference chart showing common ways to merge input and result fields for the desired output fields. See the

section on Each and Every Pipes for details on the different columns and their relationships to the Each and Every

Pipes and Functions, Aggregators, and Buffers.

Data Processing

CascadingV 1.2 Cascading - User Guide 20

Result FieldsInput Fields CommentsArgument Selector Output SelectorDeclared Fields Output Fields

"line" "ip" "time" "line" "ip" "time"

"line"

ALL

"line" "ip" "time" "ip" "time"RESULTS

"line" "ip" "time" "line" "time""line"

"ip" "time"

"ip" "time"

"ip" "time" "line" "time"

ARGS"status""status""ip" "time" "status" REPLACE "status""ip" "time"

"status""date" "time" "ts" SWAP "ts""status""ts""time""date"

"line" "ip" "time" "line" "ip" "time"ALL"ip" "time"

ALL

"line" "ip" "time" "ip" "time""line" RESULTS"ip" "time"

ALL

ARGS"status""status""ip" "time" "status" "status"RESULTS

ARGS"status""ip" "time" RESULTSALL "status""ip" "time" "status""ip" "time"

ARGS"status""ip" "time" ALL "status""ip" "time" ALL FAIL
O u tp u t s e le c to r ALL w i l l

cause duplicate fie l d
names.

ARGS"status""status""ip" "time" "status" ALL FAIL
O u tp u t s e le c to r ALL w i l l

cause duplicate fie l d
names.

"line" RESULTSALL UNKNOWN UNKNOWN UNKNOWN

"line" ALL UNKNOWN UNKNOWN UNKNOWNALL

3.5 Flows
When pipe assemblies are bound to source and sink Taps, a Flow is created. Flows are executable in the sense that

once created they can be "started" and will begin execution on a configured Hadoop cluster.

Think of a Flow as a data processing workflow that reads data from sources, processes the data as defined by the pipe

assembly, and writes data to the sinks. Input source data does not need to exist when the Flow is created, but it must

exist when the Flow is executed (unless executed as part of a Cascade, seeCascades).

The most common pattern is to create a Flow from an existing pipe assembly. But there are cases where a MapReduce

job has already been created and it makes sense to encapsulate it in a Flow class so that it may participate in a Cascade

and be scheduled with other Flow instances. Alternatively, via the Riffle [http://github.com/cwensel/riffle] annotations,

third party applications can participate in a Cascade, or complex algorithms that result in iterative Flow executions

can be encapsulated as a single Flow. All patterns are covered here.

http://github.com/cwensel/riffle
http://github.com/cwensel/riffle

Data Processing

CascadingV 1.2 Cascading - User Guide 21

Creating Flows from Pipe Assemblies

Flow flow = new FlowConnector().connect("flow-name", source, sink, pipe);

Example 3.11 Creating a new Flow

To create a Flow, it must be planned though the FlowConnector object. The connect() method is used to create

new Flow instances based on a set of sink Taps, source Taps, and a pipe assembly. The example above is quite trivial.

// the "left hand side" assembly head

Pipe lhs = new Pipe("lhs");

lhs = new Each(lhs, new SomeFunction());

lhs = new Each(lhs, new SomeFilter());

// the "right hand side" assembly head

Pipe rhs = new Pipe("rhs");

rhs = new Each(rhs, new SomeFunction());

// joins the lhs and rhs

Pipe join = new CoGroup(lhs, rhs);

join = new Every(join, new SomeAggregator());

Pipe groupBy = new GroupBy(join);

groupBy = new Every(groupBy, new SomeAggregator());

// the tail of the assembly

groupBy = new Each(groupBy, new SomeFunction());

Tap lhsSource = new Hfs(new TextLine(), "lhs.txt");

Tap rhsSource = new Hfs(new TextLine(), "rhs.txt");

Tap sink = new Hfs(new TextLine(), "output");

Map<String, Tap> sources = new HashMap<String, Tap>();

sources.put("lhs", lhsSource);

sources.put("rhs", rhsSource);

Flow flow = new FlowConnector().connect("flow-name", sources, sink, groupBy);

Example 3.12 Binding Taps in a Flow

Data Processing

CascadingV 1.2 Cascading - User Guide 22

The example above expands on our previous pipe assembly example by creating source and sink Taps and planning

a Flow. Note there are two branches in the pipe assembly, one named "lhs" and the other "rhs". Cascading uses those

names to bind the source Taps to the pipe assembly. A HashMap of names and taps must be passed to FlowConnector

in order to bind Taps to branches.

Since there is only one tail, the "join" pipe, we don't need to bind the sink to a branch name. Nor do we need to pass

the heads of the assembly to the FlowConnector, it can determine the heads of the pipe assembly on the fly. When

creating more complex Flows with multiple heads and tails, all Taps will need to be explicitly named, and the proper

connect() method will need be called.

Configuring Flows

The FlowConnector constructor accepts the java.util.Property object so that default Cascading and Hadoop

properties can be passed down through the planner to the Hadoop runtime. Subsequently any relevant Hadoop

hadoop-default.xml properties may be added (mapred.map.tasks.speculative.execution,

mapred.reduce.tasks.speculative.execution, or mapred.child.java.opts would be very

common).

One property that must be set for production applications is the application Jar class or Jar path.

Properties properties = new Properties();

// pass in the class name of your application

// this will find the parent jar at runtime

FlowConnector.setApplicationJarClass(properties, Main.class);

// or pass in the path to the parent jar

FlowConnector.setApplicationJarPath(properties, pathToJar);

FlowConnector flowConnector = new FlowConnector(properties);

Example 3.13 Configuring the Application Jar

More information on packaging production applications can be found inExecuting Processes.

Note the pattern of using a static property setter method

(cascading.flow.FlowConnector.setApplicationJarPath), other classes that can be used to set

properties are cascading.flow.MultiMapReducePlanner and cascading.flow.Flow.

Since the FlowConnector can be reused, any properties passed on the constructor will be handed to all the Flows

it is used to create. If Flows need to be created with different default properties, a new FlowConnector will need to

be instantiated with those properties.

Skipping Flows

When a Flow participates in a Cascade, the Flow#isSkip() method is consulted before calling Flow#start()

on the flow. By default isSkip() returns true if any of the sinks are stale in relation to the Flow sources. Where

stale is if they don't exist or the resources are older than the sources.

Data Processing

CascadingV 1.2 Cascading - User Guide 23

This behavior is pluggable through the cascading.flow.FlowSkipStrategy interface. A new strategy can

be set on a Flow instance after its created.

FlowSkipIfSinkStale

The cascading.flow.FlowSkipIfSinkStale strategy is the default strategy. Sinks are stale if they don't

exist or the resources are older than the sources. If the SinkMode for the sink Tap is REPLACE, then the Tap

will be treated as stale.

FlowSkipIfSinkExists

The cascading.flow.FlowSkipIfSinkExists strategy will skip a Flow if the sink Tap exists,

regardless of age. If the SinkMode for the sink Tap is REPLACE, then the Tap will be treated as stale.

Note Flow#start() and Flow#complete() will not consult the isSkip() method and subsequently will

always try to start the Flow if called. It is up to user code to call isSkip() to decide if the current strategy suggests

the Flow should be skipped.

Creating Flows from a JobConf

If a MapReduce job already exists and needs to be managed by a Cascade, then the

cascading.flow.MapReduceFlow class should be used. After creating a Hadoop JobConf instance, just pass

it into the MapReduceFlow constructor. The resulting Flow instance can be used like any other Flow.

Creating Custom Flows

Any custom Class can be treated as a Flow if given the correct Riffle [http://github.com/cwensel/riffle] annotations.

Riffle is an Apache licensed set of Java Annotations that identify specific methods on a Class as providing specific

life-cycle and dependency functionality. See the Riffle documentation and examples. To use with Cascading, a Riffle

annotated instance must be passed to the cascading.flow.FlowProcess constructor method. The resulting

FlowProcess instance can be used like any other Flow instance.

Since many algorithms need to have multiple passes over a given data set, a Riffle annotated Class can be written that

internally creates Cascading Flows and executes them until no more passes are needed. This is like nesting a Flows

and Cascades in a parent Flow which in turn can participate in a Cascade.

3.6 Cascades
Flow

FlowFlow

Flow

Cascade

A Cascade allows multiple Flow instances to be executed as a single logical unit. If there are dependencies between

the Flows, they will be executed in the correct order. Further, Cascades act like ant build or Unix "make" files. When

run, a Cascade will only execute Flows that have stale sinks (output data that is older than the input data), by default.

CascadeConnector connector = new CascadeConnector();

Cascade cascade = connector.connect(flowFirst, flowSecond, flowThird);

Example 3.14 Creating a new Cascade

When passing Flows to the CascadeConnector, order is not important. The CascadeConnector will automatically

determine what the dependencies are between the given Flows and create a scheduler that will start each flow as its

http://github.com/cwensel/riffle
http://github.com/cwensel/riffle

Data Processing

CascadingV 1.2 Cascading - User Guide 24

data sources become available. If two or more Flow instances have no dependencies, they will be submitted together

so they can execute in parallel.

For more information, see the section onTopological Scheduling.

If an instance of cascading.flow.FlowSkipStrategy is given to an Cascade instance via the

Cascade#setFlowSkipStrategy() method, it will be consulted for every Flow instance managed by the

Cascade, all skip strategies on the Flow instances will be ignored. For more information on skip strategies, seeSkipping

Flows.

CascadingV 1.2 Cascading - User Guide 25

4. Executing Processes

4.1 Introduction
Cascading requires Hadoop to be installed and correctly configured. Apache Hadoop is an Open Source Apache project

and is freely available. It can be downloaded from the Hadoop website,http://hadoop.apache.org/core/.

4.2 Building
Cascading ships with a handful of jars.

cascading-1.2.x.jar

all relevant Cascading class files and libraries, with a Hadoop friendly lib folder containing all third-party

dependencies

cascading-core-1.2.x.jar

all Cascading Core class files, should be packaged with lib/*.jar

cascading-xml-1.2.x.jar

all Cascading XML module class files, should be packaged with lib/xml/*.jar

cascading-test-1.2.x.jar

all Cascading unit tests. If writing custom modules for cascading, sub-classing

cascading.CascadingTestCase might be helpful

Cascading will run with Hadoop in its default 'local' or 'stand alone' mode, or configured as a distributed cluster.

When used on a cluster, a Hadoop job Jar must be created with Cascading jars and dependent thrid-party jars in the

job jar lib directory, per the Hadoop documentation.

http://hadoop.apache.org/core/

Executing Processes

CascadingV 1.2 Cascading - User Guide 26

<!-- Common ant build properties, included here for completeness -->

<property name="build.dir" location="${basedir}/build"/>

<property name="build.classes" location="${build.dir}/classes"/>

<!-- Cascading specific properties -->

<property name="cascading.home" location="${basedir}/../cascading"/>

<property file="${cascading.home}/version.properties"/>

<property name="cascading.release.version" value="x.y.z"/>

<property name="cascading.filename.core"

 value="cascading-core-${cascading.release.version}.jar"/>

<property name="cascading.filename.xml"

 value="cascading-xml-${cascading.release.version}.jar"/>

<property name="cascading.libs" value="${cascading.home}/lib"/>

<property name="cascading.libs.core" value="${cascading.libs}"/>

<property name="cascading.libs.xml" value="${cascading.libs}/xml"/>

<condition property="cascading.path" value="${cascading.home}/"

 else="${cascading.home}/build">

 <available file="${cascading.home}/${cascading.filename.core}"/>

</condition>

<property name="cascading.lib.core"

 value="${cascading.path}/${cascading.filename.core}"/>

<property name="cascading.lib.xml"

 value="${cascading.path}/${cascading.filename.xml}"/>

Example 4.1 Sample Ant Build - Properties

Executing Processes

CascadingV 1.2 Cascading - User Guide 27

<!--

 A sample target to jar project classes and Cascading

 libraries into a single Hadoop compatible jar file.

 -->

<target name="jar" description="creates a Hadoop ready jar w/dependencies">

 <!-- copy Cascading classes and libraries -->

 <copy todir="${build.classes}/lib" file="${cascading.lib.core}"/>

 <copy todir="${build.classes}/lib" file="${cascading.lib.xml}"/>

 <copy todir="${build.classes}/lib">

 <fileset dir="${cascading.libs.core}" includes="*.jar"/>

 <fileset dir="${cascading.libs.xml}" includes="*.jar"/>

 </copy>

 <jar jarfile="${build.dir}/${ant.project.name}.jar">

 <fileset dir="${build.classes}"/>

 <fileset dir="${basedir}" includes="lib/"/>

 <manifest>

 <!-- the project Main class, by default assumes Main -->

 <attribute name="Main-Class" value="${ant.project.name}/Main"/>

 </manifest>

 </jar>

</target>

Example 4.2 Sample Ant Build - Target

The above Ant snippets can be used in your project to create a Hadoop jar for submission on your cluster. Again,

all Hadoop applications that are intended to be run in a cluster must be packaged with all third-party libraries in a

directory named lib in the final application Jar file, regardless if they are Cascading applications or raw Hadoop

MapReduce applications.

Note, the snippets above is only intended to show how to include Cascading libraries, you still need to compile your

project into the build.classes path.

4.3 Configuring
During runtime, Hadoop must be "told" which application jar file should be pushed to the cluster. Typically this is

done via the Hadoop API JobConf object.

Cascading offers a shorthand for configuring this parameter.

Properties properties = new Properties();

// pass in the class name of your application

Executing Processes

CascadingV 1.2 Cascading - User Guide 28

// this will find the parent jar at runtime

FlowConnector.setApplicationJarClass(properties, Main.class);

// or pass in the path to the parent jar

FlowConnector.setApplicationJarPath(properties, pathToJar);

FlowConnector flowConnector = new FlowConnector(properties);

Above we see how to set the same property two ways. First via the setApplicationJarClass() method, and

via the setApplicationJarPath() method. The first method takes a Class object that owns the 'main' function

for this application. The assumption here is that Main.class is not located in a Java Jar that is stored in the lib

folder of the application Jar. If it is, that Jar will be pushed to the cluster, not the parent application jar.

In your application, only one of these methods needs to be called, but one of them must be called to properly configure

Hadoop.

4.4 Executing
Running a Cascading application is exactly the same as running any Hadoop application. After packaging your

application into a single jar (seeBuilding Cascading Applications), you must use bin/hadoop to submit the

application to the cluster.

For example, to execute an application stuffed into your-application.jar, call the Hadoop shell script:

$HADOOP_HOME/bin/hadoop jar your-application.jar [some params]

Example 4.3 Running a Cascading Application

If the configuration scripts in $HADOOP_CONF_DIR are configured to use a cluster, the Jar will be pushed into the

cluster for execution.

Cascading does not rely on any environment variables like $HADOOP_HOME or$HADOOP_CONF_DIR, only bin/

hadoop does.

It should be noted that even though your-application.jar is passed on the command line to bin/hadoop this

in no way configures Hadoop to push this jar into the cluster. You must still call one of the property setters mentioned

above to set the proper path to the application jar. If misconfigured, likely one of the internal libraries (found in the

lib folder) will be pushed to the cluster instead and ClassNotFoundExceptions will be thrown.

CascadingV 1.2 Cascading - User Guide 29

5. Using and Developing Operations

5.1 Introduction
To use Cascading, it is not strictly necessary to create custom Operations. There are a number of Operations in the

Cascading library that can be combined into very robust applications. In the same way you can chain sed, grep, sort,
uniq, awk, etc in Unix, you can chain existing Cascading operations. But developing customs Operations is very

simple in Cascading.

There are four kinds of Operations: Function,Filter, Aggregator, and Buffer.

Function

Operation

Filter Aggregator Buffer

All Operations operate on an input argument Tuple and all Operations other than Filter may return zero or more

Tuple object results. That is, a Function can parse a string and return a new Tuple for every value parsed out (one

Tuple for each 'word'), or it may create a single Tuple with every parsed value as an element in the Tuple object (one

Tuple with "first-name" and "last-name" fields).

In practice, a Function that returns no results is aFilter, but the Filter type has been optimized and can be

combined with "logical" filter Operations like Not, And, Or, etc.

During runtime, Operations actually receive arguments as an instance of the TupleEntry object. The TupleEntry object

holds both an instance of Fields and the current Tuple the Fields object defines fields for.

All Operations, other thanFilter, must declare result Fields. For example, if a Function was written to parse words

out of a String and return a new Tuple for each word, this Function must declare that it intends to return a Tuple with

one field named "word". If the Function mistakenly returns more values in the Tuple other than a 'word', the process

will fail. Operations that do return arbitrary numbers of values in a result Tuple may declare Fields.UNKNOWN.

The Cascading planner always attempts to "fail fast" where possible by checking the field name dependencies between

Pipes and Operations, but some cases the planner can't account for.

All Operations must be wrapped by either an Each or an Every pipe instance. The pipe is responsible for passing

in an argument Tuple and accepting the result Tuple.

Operations, by default, are "safe". Safe Operations can execute safely multiple times on the same Tuple multiple

times, that is, it has no side-effects, it is idempotent. If an Operation is not idempotent, the method isSafe() must

returnfalse. This value influences how the Cascading planner renders the Flow under certain circumstances.

Using and Developing Operations

CascadingV 1.2 Cascading - User Guide 30

5.2 Functions
A Function expects a single argument Tuple, and may return zero or more result Tuples.

A Function may only be used with a Each pipe which may follow any other pipe type.

To create a customFunction, subclass the class cascading.operation.BaseOperation and implement the

interfacecascading.operation.Function. Because BaseOperation has been subclassed, the operate

method, as defined on the Function interface, is the only method that must be implemented.

public class SomeFunction extends BaseOperation implements Function

 {

 public void operate(FlowProcess flowProcess, FunctionCall functionCall)

 {

 // get the arguments TupleEntry

 TupleEntry arguments = functionCall.getArguments();

 // create a Tuple to hold our result values

 Tuple result = new Tuple();

 // insert some values into the result Tuple

 // return the result Tuple

 functionCall.getOutputCollector().add(result);

 }

 }

Example 5.1 Custom Function

Functions should declare both the number of argument values they expect, and the field names of the Tuple they will

return.

Functions must accept 1 or more values in a Tuple as arguments, by default they will accept any number

(Operation.ANY) of values. Cascading will verify that the number of arguments selected match the number of

arguments expected during the planning phase.

Functions may optionally declare the field names they return, by default Functions declare Fields.UNKNOWN.

Both declarations must be done on the constructor, either by passing default values to the super constructor, or by

accepting the values from the user via a constructor implementation.

Using and Developing Operations

CascadingV 1.2 Cascading - User Guide 31

public class AddValuesFunction extends BaseOperation implements Function

 {

 public AddValuesFunction()

 {

 // expects 2 arguments, fail otherwise

 super(2, new Fields("sum"));

 }

 public AddValuesFunction(Fields fieldDeclaration)

 {

 // expects 2 arguments, fail otherwise

 super(2, fieldDeclaration);

 }

 public void operate(FlowProcess flowProcess, FunctionCall functionCall)

 {

 // get the arguments TupleEntry

 TupleEntry arguments = functionCall.getArguments();

 // create a Tuple to hold our result values

 Tuple result = new Tuple();

 // sum the two arguments

 int sum = arguments.getInteger(0) + arguments.getInteger(1);

 // add the sum value to the result Tuple

 result.add(sum);

 // return the result Tuple

 functionCall.getOutputCollector().add(result);

 }

 }

Example 5.2 Add Values Function

The example above implements a fully functional Function that accepts two values in the argument Tuple, adds

them together, and returns the result in a new Tuple.

The first constructor assumes a default field name this function will return, but it is a best practice to always give

the user the option to override the declared field names to prevent any field name collisions that would cause the

planner to fail.

5.3 Filter
A Filter expects a single argument Tuple and returns a boolean value stating whether or not the current Tuple in

the tuple stream should be discarded.

Using and Developing Operations

CascadingV 1.2 Cascading - User Guide 32

A Filter may only be used with a Each pipe, and it may follow any other pipe type.

To create a customFilter, subclass the class cascading.operation.BaseOperation and implement the

interfacecascading.operation.Filter. Because BaseOperation has been subclassed, the isRemove

method, as defined on the Filter interface, is the only method that must be implemented.

public class SomeFilter extends BaseOperation implements Filter

 {

 public boolean isRemove(FlowProcess flowProcess, FilterCall filterCall)

 {

 // get the arguments TupleEntry

 TupleEntry arguments = filterCall.getArguments();

 // initialize the return result

 boolean isRemove = false;

 // test the argument values and set isRemove accordingly

 return isRemove;

 }

 }

Example 5.3 Custom Filter

Filters should declare the number of argument values they expect.

Filters must accept 1 or more values in a Tuple as arguments, by default they will accept any number

(Operation.ANY) of values. Cascading will verify the number of arguments selected match the number of

arguments expected.

The number of arguments declarations must be done on the constructor, either by passing a default value to the super

constructor, or by accepting the value from the user via a constructor implementation.

Using and Developing Operations

CascadingV 1.2 Cascading - User Guide 33

public class StringLengthFilter extends BaseOperation implements Filter

 {

 public StringLengthFilter()

 {

 // expects 2 arguments, fail otherwise

 super(2);

 }

 public boolean isRemove(FlowProcess flowProcess, FilterCall filterCall)

 {

 // get the arguments TupleEntry

 TupleEntry arguments = filterCall.getArguments();

 // filter out the current Tuple if the first argument length is greater

 // than the second argument integer value

 return arguments.getString(0).length() > arguments.getInteger(1);

 }

 }

Example 5.4 String Length Filter

The example above implements a fully functional Filter that accepts two arguments and filters out the current Tuple

if the first argument String length is greater than the integer value of the second argument.

5.4 Aggregator
An Aggregator expects set of argument Tuples in the same grouping, and may return zero or more result Tuples.

An Aggregator may only be used with an Every pipe, and it may only follow a GroupBy,CoGroup, or another

Every pipe type.

To create a customAggregator, subclass the class cascading.operation.BaseOperation and implement

the interfacecascading.operation.Aggregator. Because BaseOperation has been subclassed,

thestart, aggregate, and complete methods, as defined on the Aggregator interface, are the only methods

that must be implemented.

Using and Developing Operations

CascadingV 1.2 Cascading - User Guide 34

public class SomeAggregator extends BaseOperation<SomeAggregator.Context>

 implements Aggregator<SomeAggregator.Context>

 {

 public static class Context

 {

 Object value;

 }

 public void start(FlowProcess flowProcess,

 AggregatorCall<Context> aggregatorCall)

 {

 // get the group values for the current grouping

 TupleEntry group = aggregatorCall.getGroup();

 // create a new custom context object

 Context context = new Context();

 // optionally, populate the context object

 // set the context object

 aggregatorCall.setContext(context);

 }

 public void aggregate(FlowProcess flowProcess,

 AggregatorCall<Context> aggregatorCall)

 {

 // get the current argument values

 TupleEntry arguments = aggregatorCall.getArguments();

 // get the context for this grouping

 Context context = aggregatorCall.getContext();

 // update the context object

 }

 public void complete(FlowProcess flowProcess,

 AggregatorCall<Context> aggregatorCall)

 {

 Context context = aggregatorCall.getContext();

 // create a Tuple to hold our result values

 Tuple result = new Tuple();

 // insert some values into the result Tuple based on the context

 // return the result Tuple

 aggregatorCall.getOutputCollector().add(result);

 }

 }

Example 5.5 Custom Aggregator

Using and Developing Operations

CascadingV 1.2 Cascading - User Guide 35

Aggregators should declare both the number of argument values they expect, and the field names of the Tuple they

will return.

Aggregators must accept 1 or more values in a Tuple as arguments, by default they will accept any number

(Operation.ANY) of values. Cascading will verify the number of arguments selected match the number of

arguments expected.

Aggregators may optionally declare the field names they return, by default Aggregators declare

Fields.UNKNOWN.

Both declarations must be done on the constructor, either by passing default values to the super constructor, or by

accepting the values from the user via a constructor implementation.

Using and Developing Operations

CascadingV 1.2 Cascading - User Guide 36

public class AddTuplesAggregator

 extends BaseOperation<AddTuplesAggregator.Context>

 implements Aggregator<AddTuplesAggregator.Context>

 {

 public static class Context

 {

 long value = 0;

 }

 public AddTuplesAggregator()

 {

 // expects 1 argument, fail otherwise

 super(1, new Fields("sum"));

 }

 public AddTuplesAggregator(Fields fieldDeclaration)

 {

 // expects 1 argument, fail otherwise

 super(1, fieldDeclaration);

 }

 public void start(FlowProcess flowProcess,

 AggregatorCall<Context> aggregatorCall)

 {

 // set the context object, starting at zero

 aggregatorCall.setContext(new Context());

 }

 public void aggregate(FlowProcess flowProcess,

 AggregatorCall<Context> aggregatorCall)

 {

 TupleEntry arguments = aggregatorCall.getArguments();

 Context context = aggregatorCall.getContext();

 // add the current argument value to the current sum

 context.value += arguments.getInteger(0);

 }

 public void complete(FlowProcess flowProcess,

 AggregatorCall<Context> aggregatorCall)

 {

 Context context = aggregatorCall.getContext();

 // create a Tuple to hold our result values

 Tuple result = new Tuple();

 // set the sum

 result.add(context.value);

 // return the result Tuple

 aggregatorCall.getOutputCollector().add(result);

 }

 }

Example 5.6 Add Tuples Aggregator

Using and Developing Operations

CascadingV 1.2 Cascading - User Guide 37

The example above implements a fully functional Aggregator that accepts one value in the argument Tuple, adds

all these argument Tuples in the current grouping, and returns the result as a new Tuple.

The first constructor assumes a default field name this Aggregator will return, but it is a best practice to always

give the user the option to override the declared field names to prevent any field name collisions that would cause

the planner to fail.

5.5 Buffer
A Buffer expects set of argument Tuples in the same grouping, and may return zero or more result Tuples.

The Buffer is very similar to an Aggregator except it receives the current Grouping Tuple and an iterator of all

the arguments it expects for every value Tuple in the current grouping, all on the same method call. This is very similar

to the typical Reducer interface, and is best used for operations that need greater visibility to the previous and next

elements in the stream. For example, smoothing a series of time-stamps where there are missing values.

An Buffer may only be used with an Every pipe, and it may only follow a GroupBy or CoGroup pipe type.

To create a customBuffer, subclass the class cascading.operation.BaseOperation and implement the

interfacecascading.operation.Buffer. Because BaseOperation has been subclassed, the operate

method, as defined on the Buffer interface, is the only method that must be implemented.

Using and Developing Operations

CascadingV 1.2 Cascading - User Guide 38

public class SomeBuffer extends BaseOperation implements Buffer

 {

 public void operate(FlowProcess flowProcess, BufferCall bufferCall)

 {

 // get the group values for the current grouping

 TupleEntry group = bufferCall.getGroup();

 // get all the current argument values for this grouping

 Iterator<TupleEntry> arguments = bufferCall.getArgumentsIterator();

 // create a Tuple to hold our result values

 Tuple result = new Tuple();

 while(arguments.hasNext())

 {

 TupleEntry argument = arguments.next();

 // insert some values into the result Tuple based on the arguemnts

 }

 // return the result Tuple

 bufferCall.getOutputCollector().add(result);

 }

 }

Example 5.7 Custom Buffer

Buffer should declare both the number of argument values they expect, and the field names of the Tuple they will return.

Buffers must accept 1 or more values in a Tuple as arguments, by default they will accept any number

(Operation.ANY) of values. Cascading will verify the number of arguments selected match the number of

arguments expected.

Buffers may optionally declare the field names they return, by default Buffers declare Fields.UNKNOWN.

Both declarations must be done on the constructor, either by passing default values to the super constructor, or by

accepting the values from the user via a constructor implementation.

Using and Developing Operations

CascadingV 1.2 Cascading - User Guide 39

public class AverageBuffer extends BaseOperation implements Buffer

 {

 public AverageBuffer()

 {

 super(1, new Fields("average"));

 }

 public AverageBuffer(Fields fieldDeclaration)

 {

 super(1, fieldDeclaration);

 }

 public void operate(FlowProcess flowProcess, BufferCall bufferCall)

 {

 // init the count and sum

 long count = 0;

 long sum = 0;

 // get all the current argument values for this grouping

 Iterator<TupleEntry> arguments = bufferCall.getArgumentsIterator();

 while(arguments.hasNext())

 {

 count++;

 sum += arguments.next().getInteger(0);

 }

 // create a Tuple to hold our result values

 Tuple result = new Tuple(sum / count);

 // return the result Tuple

 bufferCall.getOutputCollector().add(result);

 }

 }

Example 5.8 Average Buffer

The example above implements a fully functional buffer that accepts one value in argument Tuple, adds all these

argument Tuples in the current grouping, and returns the result divided by the number of argument tuples counted

in a new Tuple.

The first constructor assumes a default field name this Buffer will return, but it is a best practice to always give

the user the option to override the declared field names to prevent any field name collisions that would cause the

planner to fail.

Using and Developing Operations

CascadingV 1.2 Cascading - User Guide 40

Note this example is somewhat fabricated, in practice a Aggregator should be implemented to compute averages.

A Buffer would be better suited for "running averages" across very large spans, for example.

5.6 Operation and BaseOperation
In all the above sections, the cascading.operation.BaseOperation class was subclassed. This class is

an implementation of the cascading.operation.Operation interface and provides a few default method

implementations. It is not strictly required to extendBaseOperation, but it is very convenient to do so.

When developing custom operations, the developer may need to initialize and destroy a resource. For example, when

doing pattern matching, a java.util.regex.Matcher may need to be initialized and used in a thread-safe way.

Or a remote connection may need to be opened and eventually closed. But for performance reasons, the operation

should not create/destroy the connection for each Tuple or every Tuple group that passes through.

The interface Operation declares two methods, prepare() and cleanup(). In the case of Hadoop and

MapReduce, the prepare() and cleanup() methods are called once per Map or Reduce task. prepare()

is called before any argument Tuple is passed in, and cleanup() is called after all Tuple arguments have been

operated on. Within each of these methods, the developer can initialize a "context" object that can hold an open socket

connection, or Matcher instance. The "context" is user defined and is the same mechanism used by the Aggregator

operation, except the Aggregator is also given the opportunity to initialize and destroy its context via the start()

and complete() methods.

If a "context" object is used, its type should be declared in the sub-class class declaration using the Java Generics

notation.

CascadingV 1.2 Cascading - User Guide 41

6. Advanced Processing

6.1 SubAssemblies
Cascading SubAssemblies are reusable pipe assemblies that are linked into larger pipe assemblies. Think of them as

subroutines in a programming language. The help organize complex pipe assemblies and allow for commonly used

pipe assemblies to be packaged into libraries for inclusion by other users.

To create a SubAssembly, the cascading.pipe.SubAssembly class must be subclassed.

public class SomeSubAssembly extends SubAssembly

 {

 public SomeSubAssembly(Pipe lhs, Pipe rhs)

 {

 // continue assembling against lhs

 lhs = new Each(lhs, new SomeFunction());

 lhs = new Each(lhs, new SomeFilter());

 // continue assembling against lhs

 rhs = new Each(rhs, new SomeFunction());

 // joins the lhs and rhs

 Pipe join = new CoGroup(lhs, rhs);

 join = new Every(join, new SomeAggregator());

 join = new GroupBy(join);

 join = new Every(join, new SomeAggregator());

 // the tail of the assembly

 join = new Each(join, new SomeFunction());

 // must register all assembly tails

 setTails(join);

 }

 }

Example 6.1 Creating a SubAssembly

In the above example, we pass in via the constructor pipes we wish to continue assembling against, and the last line

we register the 'join' pipe as a tail. This allows SubAssemblies to be nested within larger pipe assemblies or other

SubAssemblies.

Advanced Processing

CascadingV 1.2 Cascading - User Guide 42

// the "left hand side" assembly head

Pipe lhs = new Pipe("lhs");

// the "right hand side" assembly head

Pipe rhs = new Pipe("rhs");

// our custom SubAssembly

Pipe pipe = new SomeSubAssembly(lhs, rhs);

pipe = new Each(pipe, new SomeFunction());

Example 6.2 Using a SubAssembly

Above we see how natural it is to include a SubAssembly into a new pipe assembly.

If we had a SubAssembly that represented a split, that is, had two or more tails, we could use the getTails()

method to get at the array of "tails" set internally by the setTails() method.

public class SplitSubAssembly extends SubAssembly

 {

 public SplitSubAssembly(Pipe pipe)

 {

 // continue assembling against lhs

 pipe = new Each(pipe, new SomeFunction());

 Pipe lhs = new Pipe("lhs", pipe);

 lhs = new Each(lhs, new SomeFunction());

 Pipe rhs = new Pipe("rhs", pipe);

 rhs = new Each(rhs, new SomeFunction());

 // must register all assembly tails

 setTails(lhs, rhs);

 }

 }

Example 6.3 Creating a Split SubAssembly

Advanced Processing

CascadingV 1.2 Cascading - User Guide 43

// the "left hand side" assembly head

Pipe head = new Pipe("head");

// our custom SubAssembly

SubAssembly pipe = new SplitSubAssembly(head);

// grab the split branches

Pipe lhs = new Each(pipe.getTails()[0], new SomeFunction());

Pipe rhs = new Each(pipe.getTails()[1], new SomeFunction());

Example 6.4 Using a Split SubAssembly

To rephrase, if a SubAssembly does not split the incoming Tuple stream, the SubAssembly instance can be passed

directly to the next Pipe instance. But, if the SubAssembly splits the stream into multiple branches, each branch tail

must be passed to the setTails() method, and the getTails() method should be called to get a handle to the

correct branch to pass to the next Pipe instances.

6.2 Stream Assertions

Groupfunc aggr SinkSource Group

func

aggr

Source func

func

assert assert

assert

P i p e AssemblyFlow

Stream assertions are simply a mechanism to 'assert' that one or more values in a tuple stream meet certain criteria. This

is similar to the Java language 'assert' keyword, or a unit test. An example would be 'assert not null' or 'assert matches'.

Assertions are treated like any other function or aggregator in Cascading. They are embedded directly into the pipe

assembly by the developer. If an assertion fails, the processing stops, by default. Alternately they can trigger a Failure

Trap.

As with any test, sometimes they are wanted, and sometimes they are unnecessary. Thus stream assertions are

embedded as either 'strict' or 'validating'.

Advanced Processing

CascadingV 1.2 Cascading - User Guide 44

When running a tests against regression data, it makes sense to use strict assertions. This regression data should be

small and represent many of the edge cases the processing assembly must support robustly. When running tests in

staging, or with data that may vary in quality since it is from an unmanaged source, using validating assertions make

much sense. Then there are obvious cases where assertions just get in the way and slow down processing and it would

be nice to just bypass them.

During runtime, Cascading can be instructed to plan out strict, validating, or all assertions before building the final

MapReduce jobs via the MapReduce Job Planner. And they are truly planned out of the resulting job, not just switched

off, providing the best performance.

This is just one feature of lazily building MapReduce jobs via a planner, instead of hard coding them.

// incoming -> "ip", "time", "method", "event", "status", "size"

AssertNotNull notNull = new AssertNotNull();

assembly = new Each(assembly, AssertionLevel.STRICT, notNull);

AssertSizeEquals equals = new AssertSizeEquals(6);

assembly = new Each(assembly, AssertionLevel.STRICT, equals);

AssertMatchesAll matchesAll = new AssertMatchesAll("(GET|HEAD|POST)");

assembly = new Each(assembly, new Fields("method"),

 AssertionLevel.STRICT, matchesAll);

// outgoing -> "ip", "time", "method", "event", "status", "size"

Example 6.5 Adding Assertions

Again, assertions are added to a pipe assembly like any other operation, except the AssertionLevel must be set,

so the planner knows how to treat the assertion during planning.

Properties properties = new Properties();

// removes all assertions from the Flow

FlowConnector.setAssertionLevel(properties, AssertionLevel.NONE);

FlowConnector flowConnector = new FlowConnector(properties);

Flow flow = flowConnector.connect(source, sink, assembly);

Example 6.6 Planning Out Assertions

To configure the planner to remove some or all assertions, a property must be set

via the FlowConnector#setAssertionLevel() method. AssertionLevel.NONE removes all

assertions. AssertionLevel.VALID keeps VALID assertions but removes STRICT ones. And

AssertionLevel.STRICT keeps all assertions, which is the planner default value.

Advanced Processing

CascadingV 1.2 Cascading - User Guide 45

6.3 Failure Traps

Groupfunc aggr SinkSource Group

func

aggr

Source func

func

assert assert

assert

Flow

Trap

Trap

Trap

P i p e Assembly

Failure Traps are the same as a Tap sink (opposed to a source), except being bound to a particular tail element of the

pipe assembly, traps can be bound to intermediate pipe assembly segments, like to a Stream Assertion.

Whenever an operation fails and throws an exception, and there is an associated trap, the offending Tuple will be saved

to the resource specified by the trap Tap. This allows the job to continue processing without any data loss.

By design, clusters are hardware fault tolerant. Lose a node, the cluster continues working.

But software fault tolerance is a little different. Failure Traps provide a means for the processing to continue without

losing track of the data that caused the fault. For high fidelity applications, this may not be so attractive, but low fidelity

applications (like web page indexing) this can dramatically improve processing reliability.

Advanced Processing

CascadingV 1.2 Cascading - User Guide 46

// ...some useful pipes here

// name this pipe assembly segment

assembly = new Pipe("assertions", assembly);

AssertNotNull notNull = new AssertNotNull();

assembly = new Each(assembly, AssertionLevel.STRICT, notNull);

AssertSizeEquals equals = new AssertSizeEquals(6);

assembly = new Each(assembly, AssertionLevel.STRICT, equals);

AssertMatchesAll matchesAll = new AssertMatchesAll("(GET|HEAD|POST)");

assembly = new Each(assembly, new Fields("method"),

 AssertionLevel.STRICT, matchesAll);

// ...some more useful pipes here

Map<String,Tap> traps = new HashMap<String,Tap>();

traps.put("assertions", trap);

FlowConnector flowConnector = new FlowConnector();

Flow flow =

 flowConnector.connect("log-parser", source, sink, traps, assembly);

Example 6.7 Setting Traps

In the above example, we bind our trap Tap to the pipe assembly segment named "assertions". Note how we can name

branches and segments by using a single Pipe instance and it applies to all subsequent Pipe instances.

Note

Traps are for exceptional cases, in the same way Java Exception handling is not for application flow

control, thus traps are not a means to filter some data into other locations. Applications that need to filter

good and bad data should do so explicitly.

6.4 Event Handling
Each Flow, has the ability to execute callbacks via an event listener. This is very useful when external application

need to be notified that a Flow has completed.

A good example is when running Flows on an Amazon EC2 Hadoop cluster. After the Flow is completed, a SQS event

can be sent notifying another application it can now fetch the job results from S3. In tandem, it can start the process

of shutting down the cluster if no more work is queued up for it.

Flows support event listeners through the cascading.flow.FlowListener interface. The FlowListener

interface supports four events,onStarting, onStopping,onCompleted, and onThrowable.

Advanced Processing

CascadingV 1.2 Cascading - User Guide 47

onStarting

The onStarting event is fired when a Flow instance receives the start() message.

onStopping

The onStopping event is fired when a Flow instance receives the stop() message.

onCompleted

The onCompleted event is fired when a Flow instance has completed all work whether if was success or failed.

If there was a thrown exception, onThrowable will be fired before this event.

onThrowable

The onThrowable event is fired if any internal job client throws a Throwable type. This throwable is passed as

an argument to the event. onThrowable should return true if the given throwable was handled and should not be

rethrown from the Flow.complete() method.

FlowListeners are useful when external systems must be notified when a Flow has completed or failed.

6.5 Template Taps
The TemplateTap Tap class provides a simple means to break large datasets into smaller sets based on values in

the dataset. Typically this is called 'binning' the data, where each 'bin' of data is named after values shared by the data

in that bin. For example, organizing log files by month and year.

TextDelimited scheme = new TextDelimited(new Fields("year", "month", "entry"), "\t");

Hfs tap = new Hfs(scheme, path);

String template = "%s-%s"; // dirs named "year-month"

Tap months = new TemplateTap(tap, template, SinkMode.REPLACE);

In the above example, we construct a parent Hfs Tap and pass it to the constructor of a TemplateTap instance along

with a String format 'template'. This format template is populated in the order values are declared via the Scheme

class. If more complex path formatting is necessary then you may subclass the TemplateTap.

Note that you can only create sub-directories to bin data into. Hadoop must still write 'part' files into each bin directory.

One last thing to keep in mind is whether or not 'binning' happens during the Map or Reduce phase. By doing a

GroupBy on the values that will be used to populate the template, binning will happen during the Reduce phase and

likely scale much better if there are a very large number of unique grouping keys.

6.6 Scripting
Cascading was designed with scripting in mind. Since it is just an API, any Java compatible scripting language can

import and instantiate Cascading classes and create pipe assemblies, flows, and execute those flows.

And if the scripting language in question supports Domain Specific Language (DSL) creation, the user can create her

own DSL to handle common idioms.

Advanced Processing

CascadingV 1.2 Cascading - User Guide 48

See the Cascading website for publicly available scripting language bindings.

6.7 Custom Taps and Schemes
Cascading was designed to be easily configured and enhanced by developers. Besides allowing for custom Operations,

developers can provide custom Tap and Scheme types so applications can connect to system external to Hadoop.

A Tap represents something "physical", like a file or a database table. Subsequently Tap implementations are

responsible for life cycle issues around the resource they represent, like tests for existence, or deleting.

A Scheme represents a format or representation, like a text format for a file, or columns in a table. Schemes are

responsible for converting the Tap managed resources proprietary format to and from a cascading.tuple.Tuple

instance.

Unfortunately creating custom Taps and Schemes can be an involved process and requires some knowledge of Hadoop

and the Hadoop FileSystem API. Most commonly, the cascading.tap.Hfs class can be subclassed if a new file

system is to be supported, assuming passing a fully qualified URL to the Hfs constructor isn't sufficient (the Hfs tap

will look up a file system based on the URL scheme via the Hadoop FileSystem API).

Delegating to the Hadoop FileSystem API is not a strict requirement, but the developer

will need to implement a Hadoop org.apache.hadoop.mapred.InputFormat and/or .

org.apache.hadoop.mapred.OutputFormat so that Hadoop knows how to split and handle the incoming/

outgoing data. The custom Scheme is responsible for setting InputFormat and OutputFormat on the JobConf

via the sinkInit and sourceInit methods.

For examples on how to implement a custom Tap and Scheme, see the Cascading Modules [???] page for samples.

6.8 Custom Types and Serialization
The Tuple class is a generic container for all java.lang.Object instances (1.0 required all objects be of

typejava.lang.Comparable). Subsequently any primitive value or custom Class can be stored in a Tuple

instance, that is, returned by a Function, Aggregator, or Buffer as a result value.

But for this to work any Class that isn't a primitive value or a Hadoop Writable type will need to have a

corresponding Hadoop 'serialization' class registered in the Hadoop configuration files for your cluster. Hadoop

Writable types work because there is already a generic serialization implementation built into Hadoop. See the

Hadoop documentation for registering a new serialization helper or to create Writable types. Cascading will

automatically inherit any registered serialization implementations.

During serialization and deserialization of Tuple instances that contain custom types, the Cascading Tuple

serialization framework will need to store the class name (as a String) before serializing the custom object. This

can be very space inneficient. To overcome this, custom types can add the SerializationToken Java annotation

to the custom type class. The SerializationToken annotation expects two arrays, one of integers named tokens,

and one of Class name strings. Both arrays must be the same size, and no token can be less than 128 (the first 128

values are for internal use).

During serialization and deserialization, the token values are used instead of the String Class names to reduce the

amount of storage used.

???
???

Advanced Processing

CascadingV 1.2 Cascading - User Guide 49

Serialization tokens may also be stored in the Hadoop config files or set as a property passed to the FlowConnector,

with the property name cascading.serialization.tokens. The value of this property is a comma separated

list of token=classname values.

Note Cascading will natively serialize/deserialize all primitives and byte arrays (byte[]). It also uses the token 127

for the Hadoop BytesWritable class.

Along with custom serialization, Cascading supports lazy deserialization during Tuple comparison when Hadoop sorts

keys during the "shuffle" phase. This is accomplished by implementing the StreamComparator interface. See the

javadoc for detailed instructions on implementing and the unit tests for examples.

By default Cascading will lazily deserialize each element in the Tuple during sorting for comparison. But the

StreamComparator allows for complex/custom Java types to also lazily deserialize fields in the object during

comparison.

6.9 Partial Aggregation instead of Combiners
Cascading does not support the so called MapReduce Combiners. Combiners are very powerful in that they reduce

the IO between the Mappers and Reducers. Why send all your Mapper to data to Reducers when you can compute

some values Map side and combine them in the Reducer. But Combiners are limited to Associative and Commutative

functions only, like 'sum' and 'max'. And in order to work, values emitted from the Map task must be serialized, sorted

(deserialized and compared), deserialized again and operated on, where again the results are serialized and sorted.

Combiners trade CPU for gains in IO.

Cascading takes a different approach by providing a mechanism to perform partial aggregations Map side and also

combine them Reduce side. But Cascading chooses to trade Memory for IO gains by caching values (up to a threshold).

This approach bypasses the unnecessary serialization, deserialization, and sorting steps. It also allows for any aggregate

function to be implemented, not just Associative and Commutative ones.

Cascading has a few built in partial aggregate operations, actually these "operations" are SubAssemblies. Further, they

are implementations of the AggregateBy SubAssembly.

Using partial aggregate operations is quite easy, they are actually less verbose than using a standard Aggregate

operation.

Pipe assembly = new Pipe("assembly");

// ...

Fields groupingFields = new Fields("date");

Fields valueField = new Fields("size");

Fields sumField = new Fields("total-size");

assembly = new SumBy(assembly, groupingFields, valueField, sumField, long.class);

Example 6.8 Using a SumBy

To compose multiple partial aggregate operations, things work slightly differently.

Advanced Processing

CascadingV 1.2 Cascading - User Guide 50

Pipe assembly = new Pipe("assembly");

// ...

Fields groupingFields = new Fields("date");

// note we do not pass the parent assembly Pipe in

Fields valueField = new Fields("size");

Fields sumField = new Fields("total-size");

SumBy sumBy = new SumBy(valueField, sumField, long.class);

Fields countField = new Fields("num-events");

CountBy countBy = new CountBy(countField);

assembly = new AggregateBy(assembly, groupingFields, sumBy, countBy);

Example 6.9 Composing partials with AggregateBy

It is important to note that a GroupBy Pipe is embedded in the resulting assemblies above. But only one GroupBy

will be performed in the case of the AggregateBy, all of the partial aggregations will be performed simultaneously.

It is also important to note, depending on the final pipe assembly, the Map side partial aggregate functions may be

planned into the previous Reduce operation in Hadoop further improving performance of the application.

CascadingV 1.2 Cascading - User Guide 51

7. Built-In Operations

7.1 Identity Function
The cascading.operation.Identify function is used to "shape" a tuple stream. Here are some common

patterns.

Discard unused fields

Here Identity passes its arguments out as results, thanks to the Fields.ARGS field declaration.

// incoming -> "ip", "time", "method", "event", "status", "size"

Identity identity = new Identity(Fields.ARGS);

pipe = new Each(pipe, new Fields("ip", "method"), identity,

 Fields.RESULTS);

// outgoing -> "ip", "method"

In practice the field declaration can be left out as Field.ARGS is the default declaration for the Identity function.

Additionally Fields.RESULTs can be left off as it is the default for the Every pipe.

// incoming -> "ip", "time", "method", "event", "status", "size"

pipe = new Each(pipe, new Fields("ip", "method"), new Identity());

// outgoing -> "ip", "method"

Rename all fields

Here Identity renames the incoming arguments. Since Fields.RESULTS is implied, the incoming Tuple is replaced

by the arguments selected and given new field names as declared on Identity.

// incoming -> "ip", "method"

Identity identity = new Identity(new Fields("address", "request"));

pipe = new Each(pipe, new Fields("ip", "method"), identity);

// outgoing -> "address", "request"

In the above example, if there were more fields than "ip" and "method", it would work fine, all the extra fields

would be discarded. If the same was true for the next example, the planner would fail.

// incoming -> "ip", "method"

Identity identity = new Identity(new Fields("address", "request"));

Built-In Operations

CascadingV 1.2 Cascading - User Guide 52

pipe = new Each(pipe, Fields.ALL, identity);

// outgoing -> "address", "request"

Since Fields.ALL is the default argument selector for the Each pipe, it can be left out.

// incoming -> "ip", "method"

Identity identity = new Identity(new Fields("address", "request"));

pipe = new Each(pipe, identity);

// outgoing -> "address", "request"

Rename a single field

Here we rename a single field, but return it along with an input Tuple field as the result.

// incoming -> "ip", "time", "method", "event", "status", "size"

Fields fieldSelector = new Fields("address", "method");

Identity identity = new Identity(new Fields("address"));

pipe = new Each(pipe, new Fields("ip"), identity, fieldSelector);

// outgoing -> "address", "method"

Coerce values to specific primitive types

Here we replace the Tuple String values "status" and "size" with int and long, respectively.

// incoming -> "ip", "time", "method", "event", "status", "size"

Identity identity = new Identity(Integer.TYPE, Long.TYPE);

pipe = new Each(pipe, new Fields("status", "size"), identity);

// outgoing -> "status", "size"

Or we can replace just the Tuple String value "status" with int while keeping all the other values in the output

Tuple.

// incoming -> "ip", "time", "method", "event", "status", "size"

Identity identity = new Identity(Integer.TYPE);

pipe = new Each(pipe, new Fields("status"), identity,

 Fields.REPLACE);

// outgoing -> "ip", "time", "method", "event", "status", "size"

Built-In Operations

CascadingV 1.2 Cascading - User Guide 53

7.2 Debug Function
The cascading.operation.Debug function is a utility Function (actually, its a Filter) that will print the

current argument Tuple to either stdout orstderr. Used with the DebugLevel enum values NONE,DEFAULT,

or VERBOSE, different debug levels can be embedded in a pipe assembly.

Below we insert a Debug operation at the VERBOSE level, but configure the planner to remove all Debug operations

from the resulting Flow.

Pipe assembly = new Pipe("assembly");

// ...

assembly = new Each(assembly, DebugLevel.VERBOSE, new Debug());

// ...

Properties properties = new Properties();

// tell the planner remove all Debug operations

FlowConnector.setDebugLevel(properties, DebugLevel.NONE);

// ...

FlowConnector flowConnector = new FlowConnector(properties);

Flow flow = flowConnector.connect("debug", source, sink, assembly);

7.3 Sample and Limit Functions
The Sample and Limit functions are used to limit the number of Tuples that pass through a pipe assembly.

Sample

The cascading.operation.filter.Sample filter allows a percentage of tuples to pass.

Limit

The cascading.operation.filter.Limit filter allows a set number of Tuples to pass.

7.4 Insert Function
The cascading.operation.Insert function allows for insertion of constant literal values into the tuple stream.

This is most useful when a splitting a tuple stream and one of the branches needs some identifying value. Or when

some missing parameter or value, like a date String for the current date, needs to be inserted.

7.5 Text Functions
Cascading includes a number of text functions in the cascading.operation.text package.

Built-In Operations

CascadingV 1.2 Cascading - User Guide 54

FieldJoiner

The cascading.operation.text.FieldJoiner function joins all the values in a Tuple with a given

delimiter and stuffs the result into a new field.

FieldFormatter

The cascading.operation.text.FieldFormatter function formats Tuple values with a given String

format and stuffs the result into a new field. The java.util.Formatter class is used to create a new

formatted String.

DateParser

The cascading.operation.text.DateParser function is used to convert a text date String to a

timestamp using the java.text.SimpleDateFormat syntax. The timestamp is a long value representing

the number of milliseconds since January 1, 1970, 00:00:00 GMT. By default it emits a field with the name "ts"

for timestamp, but this can be overridden by passing a declared Fields value.

// "time" -> 01/Sep/2007:00:01:03 +0000

DateParser dateParser = new DateParser("dd/MMM/yyyy:HH:mm:ss Z");

pipe = new Each(pipe, new Fields("time"), dateParser);

// outgoing -> "ts" -> 1188604863000

Above we convert an Apache log style date-time field into a long timestamp.

DateFormatter

The cascading.operation.text.DateFormatter function is used to convert a date timestamp to a

formatted String. This function expects a long value representing the number of milliseconds since January 1,

1970, 00:00:00 GMT. And uses the java.text.SimpleDateFormat syntax.

// "ts" -> 1188604863000

DateFormatter formatter =

 new DateFormatter(new Fields("date"), "dd/MMM/yyyy");

pipe = new Each(pipe, new Fields("ts"), formatter);

// outgoing -> "date" -> 31/Aug/2007

Above we convert a long timestamp ("ts") to a date String.

7.6 Regular Expression Operations
RegexSplitter

The cascading.operation.regex.RegexSplitter function will split an argument value by a

regex pattern String. Internally, this function uses java.util.regex.Pattern#split(), thus behaves

accordingly. By default this function splits on the TAB character ("\t"). If a known number of values will emerge

from this function, it can declare field names. In this case, if the splitter encounters more split values than

Built-In Operations

CascadingV 1.2 Cascading - User Guide 55

field names, the remaining values will be discarded, see java.util.regex.Pattern#split(input,

limit) for more information.

RegexParser

The cascading.operation.regex.RegexParser function is used to extract a regular expression

matched value from an incoming argument value. If the regular expression is sufficiently complex, and int array

may be provided which specifies which regex groups should be returned into which field names.

// incoming -> "line"

String regex =

 "^([^]*) +[^]* +[^]* +\\[([^]]*)\\] +" +

 "\\\"([^]*) ([^]*) [^]*\\\" ([^]*) ([^]*).*$";

Fields fieldDeclaration =

 new Fields("ip", "time", "method", "event", "status", "size");

int[] groups = {1, 2, 3, 4, 5, 6};

RegexParser parser = new RegexParser(fieldDeclaration, regex, groups);

assembly = new Each(assembly, new Fields("line"), parser);

// outgoing -> "ip", "time", "method", "event", "status", "size"

Above, we parse an Apache log "line" into its parts. Note the int[] groups array starts at 1, not 0. Group 0 is the

whole group, so if included the first field would be a copy of "line" and not "ip".

RegexReplace

The cascading.operation.regex.RegexReplace function is used to replace a

regex matched value with a replacement value. It maybe used in a "replace

all" or "replace first" mode. See java.util.regex.Matcher#replaceAll() and

java.util.regex.Matcher#replaceFirst() methods.

// incoming -> "line"

RegexReplace replace =

 new RegexReplace(new Fields("clean-line"), "\\s+", " ", true);

assembly = new Each(assembly, new Fields("line"), replace);

// outgoing -> "clean-line"

Above we replace all adjoined white space characters with a single space character.

RegexFilter

The cascading.operation.regex.RegexFilter function will apply a regular expression pattern

String against every input Tuple value and filter the Tuple stream accordingly. By default, Tuples that match

the given pattern are kept, and Tuples that do not match are filtered out. This can be changed by setting

"removeMatch" totrue. Also, by default, the whole Tuple is matched against the given pattern String (TAB

delimited). If "matchEachElement" is set totrue, the pattern is applied to each Tuple value individually. See the

java.util.regex.Matcher#find() method.

Built-In Operations

CascadingV 1.2 Cascading - User Guide 56

// incoming -> "ip", "time", "method", "event", "status", "size"

Filter filter = new RegexFilter("^68\\..*");

assembly = new Each(assembly, new Fields("ip"), filter);

// outgoing -> "ip", "time", "method", "event", "status", "size"

Above we keep all lines where the "ip" address starts with "68.".

RegexGenerator

The cascading.operation.regex.RegexGenerator function will emit a new Tuple for every

matched regular expression group, instead of a Tuple with every group as a value.

// incoming -> "line"

String regex = "(?<!\\pL)(?=\\pL)[^]*(?<=\\pL)(?!\\pL)";

Function function = new RegexGenerator(new Fields("word"), regex);

assembly = new Each(assembly, new Fields("line"), function);

// outgoing -> "word"

Above each "line" in a document is parsed into unique words and stored in the "word" field of each result Tuple.

RegexSplitGenerator

The cascading.operation.regex.RegexSplitGenerator function will emit a new Tuple for every

split on the incoming argument value delimited by the given pattern String. The behavior is similar to the

RegexSplitter function.

7.7 Java Expression Operations
Cascading provides some support for dynamically compiled Java expression to be used as either Functions or

Filters. This functionality is provided by the Janino embedded compiler. Janino and its documentation can be

found on its website,http://www.janino.net/. But in short, an Expression is a single line of Java, for example a +

3 * 2 ora < 7. The first would resolve to some number, the second to a boolean value. Where a and b are

field names passed in as Tuple arguments to the Operation. Janino will compile this expression into byte code giving

compiled code processing speeds.

ExpressionFunction

The cascading.operation.expression.ExpressionFunction function dynamically resolves a

given expression using argument Tuple values as inputs to the fields specified in the expression.

// incoming -> "ip", "time", "method", "event", "status", "size"

String exp =

 "\"this \" + method + \" request was \" + size + \" bytes\"";

Fields fields = new Fields("pretty");

http://www.janino.net/

Built-In Operations

CascadingV 1.2 Cascading - User Guide 57

ExpressionFunction function =

 new ExpressionFunction(fields, exp, String.class);

assembly =

 new Each(assembly, new Fields("method", "size"), function);

// outgoing -> "pretty" = "this GET request was 1282652 bytes"

Above, we create a new String value form our expression. Note we must declare the type of every input Tuple

value so the expression compiler knows how to treat the variables in the expression.

ExpressionFilter

The cascading.operation.expression.ExpressionFilter filter dynamically resolves a given

expression using argument Tuple values as inputs to the fields specified in the expression. Any Tuple that returns

true for the given expression will be removed from the stream.

// incoming -> "ip", "time", "method", "event", "status", "size"

ExpressionFilter filter =

 new ExpressionFilter("status != 200", Integer.TYPE);

assembly = new Each(assembly, new Fields("status"), filter);

// outgoing -> "ip", "time", "method", "event", "status", "size"

Above, every line in the Apache log that does not have a "200" status will be filtered out. Notice that the "status"

would be a String in this example if it was emitted from a RegexParser, if so the ExpressionFilter will coerce the

value from a String to an int for the comparison.

7.8 XML Operations
All XML Operations are kept in a module other than core, so can be included in a Cascading application by including

the cascading-xml-x.y.z.jar in the project. This module has one dependency, the TagSoup library, which

allows for HTML and XML "tidying". More about TagSoup can be read on its website,http://home.ccil.org/~cowan/

XML/tagsoup/.

XPathParser

The cascading.operation.xml.XPathParser function will extract a value from the passed Tuple

argument into a new Tuple field value. One Tuple value for every given XPath expression will be created.

This function effectively converts an XML document into a table. If the returned value of the expression is

aNodeList, only the first Node is used. The Node is converted to a new XML document and converted to a

String. If only the text values are required, search on the text() nodes, or consider using XPathGenerator to

handle multiple NodeList values.

XPathGenerator

The cascading.operation.xml.XPathGenerator function is a generator function that will emit a new

Tuple for every Node returned by the given XPath expression.

http://home.ccil.org/~cowan/XML/tagsoup/
http://home.ccil.org/~cowan/XML/tagsoup/

Built-In Operations

CascadingV 1.2 Cascading - User Guide 58

XPathFilter

The cascading.operation.xml.XPathFilter filter will filter out a Tuple if the given XPath expression

returnsfalse. Set the removeMatch parameter to true if the filter should be reversed.

TapSoupParser

The cascading.operation.xml.TagSoupParser function uses the Tag Soup library to convert

incoming HTML to clean XHTML. Use the setFeature(feature, value) method to set TagSoup

specific features (as documented on the TagSoup website listed above).

7.9 Assertions
Cascading Stream Assertions are used to build robust reusable pipe assemblies. They can be planned out of a Flow

instance during runtime. For more information see the section onStream Assertions. Below we describe the Assertions

available in the core library.

AssertEquals

The cascading.operation.assertion.AssertEquals Assertion asserts the number of values given

on the constructor is equal to the number of argument Tuple values and that each constructor value is .equals()

to its corresponding argument value.

AssertNotEquals

The cascading.operation.assertion.AssertNotEquals Assertion asserts the number of values

given on the constructor is equal to the number of argument Tuple values and that each constructor value is not

.equals() to its corresponding argument value.

AssertEqualsAll

The cascading.operation.assertion.AssertEqualsAll Assertion asserts that every value in the

argument Tuple is .equals() to the single value given on the constructor.

AssertExpression

The cascading.operation.assertion.AssertExpression Assertion dynamically resolves a given

Java expression (see Expression Operations) using argument Tuple values. Any Tuple that returns true for the

given expression passes the assertion.

AssertMatches

The cascading.operation.assertion.AssertMatches Assertion matches the given regular

expression pattern String against the whole argument Tuple by joining each individual element of the Tuple with

a TAB character (\t).

AssertMatchesAll

The cascading.operation.assertion.AssertMatchesAll Assertion matches the given regular

expression pattern String against each argument Tuple value individually.

AssertNotNull

The cascading.operation.assertion.AssertNotNull Assertion asserts that every value in the

argument Tuple is not a null value.

AssertNull

The cascading.operation.assertion.AssertNull Assertion asserts that every value in the

argument Tuple is a null value.

Built-In Operations

CascadingV 1.2 Cascading - User Guide 59

AssertSizeEquals

The cascading.operation.assertion.AssertSizeEquals Assertion asserts that the current Tuple

in the tuple stream is exactly the given size. On evaluation, Tuple#size() is called (note Tuples may hold

null values).

AssertSizeLessThan

The cascading.operation.assertion.AssertSizeLessThan Assertion asserts that the current

Tuple in the stream has a size less than (<) the given size. On evaluation, Tuple#size() is called (note Tuples

may hold null values).

AssertSizeMoreThan

The cascading.operation.assertion.AssertSizeMoreThan Assertion asserts that the current

Tuple in the stream has a size more than (>) the given size. On evaluation, Tuple#size() is called (note Tuples

may hold null values).

AssertGroupSizeEquals

The cascading.operation.assertion.AssertGroupSizeEquals Group Assertion asserts that the

number of items in the current grouping is equal (==) the given size. If a pattern String is given, only grouping

keys that match the regular expression will have this assertion applied where multiple key values are delimited

by a TAB character.

AssertGroupSizeLessThan

The cascading.operation.assertion.AssertGroupSizeEquals Group Assertion asserts that the

number of items in the current grouping is less than (<) the given size. If a pattern String is given, only grouping

keys that match the regular expression will have this assertion applied where multiple key values are delimited

by a TAB character.

AssertGroupSizeMoreThan

The cascading.operation.assertion.AssertGroupSizeEquals Group Assertion asserts that the

number of items in the current grouping is more than (>) the given size. If a pattern String is given, only grouping

keys that match the regular expression will have this assertion applied where multiple key values are delimited

by a TAB character.

7.10 Logical Filter Operators
The logical Filter operators allows the user to assemble more complex filtering to be used in a single Pipe, instead

of chaining multiple Pipes together to get the same effect.

And

The cascading.operation.filter.And Filter will logically 'and' the results of the constructor

provided Filter instances. Logically, if Filter#isRemove() returns true for all given instances, this

filter will returntrue.

Or

The cascading.operation.filter.Or Filter will logically 'or' the results of the constructor provided

Filter instances. Logically, if Filter#isRemove() returns true for any of the given instances, this filter

will returntrue.

Built-In Operations

CascadingV 1.2 Cascading - User Guide 60

Not

The cascading.operation.filter.Not Filter will logically 'not' (negation) the results of the

constructor provided Filter instances. Logically, if Filter#isRemove() returns true for the given

instance, this filter will return the opposite,false.

Xor

The cascading.operation.filter.Xor Filter will logically 'xor' (exclusive or) the results of the

constructor provided Filter instances. Logically, if Filter#isRemove() returns true for all given

instances, or returns false for all given instances, this filter will returntrue. Note that Xor can only be applied

to two values.

// incoming -> "ip", "time", "method", "event", "status", "size"

FilterNull filterNull = new FilterNull();

RegexFilter regexFilter = new RegexFilter("(GET|HEAD|POST)");

And andFilter = new And(filterNull, regexFilter);

assembly = new Each(assembly, new Fields("method"), andFilter);

// outgoing -> "ip", "time", "method", "event", "status", "size"

Example 7.1 Combining Filters

Above, we are "and-ing" the two filters. Both must be satisfied for the data to pass through this one Pipe.

CascadingV 1.2 Cascading - User Guide 61

8. Best Practices

8.1 Unit Testing
Testing Operations, pipe-assemblies, and applications is a must. The cascading.CascadingTestCase provides

a number of helper methods.

When testing custom Operations, use the invokeFunction(), invokeFilter(), invokeAggregator(),

and invokeBuffer() methods.

When testing Flows, use the validateLength() methods. There are quite a few, each offering extra flexibility.

All of them will read the sink Tap and validate it is the correct length, have the correct Tuple size, and if the values

match a given regular expression pattern.

The cascading.ClusterTestCase can be used if you want to launch an embedded Hadoop cluster inside your

TestCase.

Make sure cascading-test-x.y.z.jar is in your testing class-path in order to use these helper classes.

8.2 Flow Granularity
Even though having one large Flow may result in a slightly more efficient execution plan, it is much more modular and

flexible to give smaller Flows well defined responsibilities and to hand all the dependent Flow instances to a Cascade

for execution as a single unit. Using the TextDelimited Scheme between Flow instances also provides a means

to hand intermediate data off to other systems for reporting or QA with minimal penalty while remaining compatible

with other tools.

8.3 SubAssemblies, not Factories
When developing your applications, use SubAssembly sub-classes, not "factory" methods. This way the code is

much easier to read and to test.

The funny thing is that Object constructors are "factories", so there isn't much reason to build frameworks to duplicate

what a constructor already does. Of course there are exceptions, but in practice they are rare when you can use a

SubAssembly.

8.4 Give SubAssemblies Logical
Responsibilities
SubAssembies provide a very convenient means to co-locate like responsibilities into a single place. For example, have

a ParsingSubAssembly and a RulesSubAssembly, where the first is responsible solely for parsing incoming

Tuple streams (log files for example), and the second applies rules to decide if a given Tuple should be discarded

or marked as bad.

Best Practices

CascadingV 1.2 Cascading - User Guide 62

Further, in your unit tests, you can create an TestAssertionsSubAssembly, that just inlines various

ValueAssertions and GroupAssertions. Inlining Assertions directly in your SubAssemblies is also very

important, but sometimes it makes sense to have more tests outside of the business logic.

8.5 Java Operators in Field Names
There are a number of Operations in Cascading that will compile and apply Java expressions on the fly, see

ExpressionFunction and ExpressionFilter for examples. In these expressions, Operation argument field

names are used as variable in the expression. When creating field names, be conscious of the fact that if they are used

in an expression, some characters will cause compilation errors. For example, "first-name" is a valid field name for

use with Cascading, but this expression, first-name.trim(), will fail.

8.6 Debugging Planner Failures
Oftentimes the FlowConnector will fail when attempting to plan a Flow. If the exception message given

by PlannerException is vague, use the method PlannerException.writeDOT() to export a text

representation of the internal pipe assembly. DOT files can be opened by GraphViz and OmniGraffle. These plans are

only partial, but you will be able to see where the Cascading planner failed.

Also note you can create a DOT file from a Flow as well via Flow.writeDOT().

8.7 Optimizing Joins
When joining two streams via a CoGroup Pipe, attempt to place the largest of the streams in the left most argument to

the CoGroup. Joining multiple streams requires some accumulation of values before the join operator can begin, but

the left most stream will not be accumulated. This should improve the performance of most joins.

8.8 Debuging Streams
When creating complex assemblies it is safe to embed Debug operations (seeDebug Function) at appropriate debug

levels where appropriate. Use the planner to remove them at runtime for production and staging runs to prevent them

from using unnecessary resources.

8.9 Handling Good and Bad Data
It is very common when processing raw data streams to encounter data that is corrupt or malformed in some way. This

may be because bad content was fetched off the web via a crawler/fetcher upstream. Or a bug leaked into a browser

widget that sends user behavior information back for analysis. Whatever the use-case, there is likely a set of rules that

govern when to identify and choose to keep or discard a questionable record.

It is tempting to simiply throw an exception and have a Trap capture the offendingTuple, but Traps were not designed

as a filtering mechanism, and subsequently much valuable information would be lost.

Instead create a SubAssembly that applies rules to the stream by setting a binary field that marks the tuple as good

or bad. After all the rules are applied, split the stream based on the value of the good/bad boolean value. Optionally,

set a reason field as to why the Tuple was marked bad.

Best Practices

CascadingV 1.2 Cascading - User Guide 63

8.10 Maintaining State in Operations
When creating custom Operations (Function, Filter,Aggregator, or Buffer) do not store operation state

in class fields. For example, if implementing a custom 'counter' Aggregator, do not create a field named 'count' and

increment it on every Aggregator.aggregate() call. There is no guarantee your Operation will be called from

a single thread in a JVM, future version of Hadoop could execute the same operation from multiple threads.

To maintain state across Operation calls, create and initialize a "context" object that is maintained by the appropriate

OperationCall (FilterCall,FunctionCall, AggregatorCall, and BufferCall). In the example

above, store an Integer 0 in the AggregatorCall passed to the Aggregator.start() method and increment

it in the Aggregator.aggregate() method.

8.11 Custom Types
It is generally frowned upon to pass a custom class through a Tuple stream. One one hand this increases coupling of

custom Operations to a particular type, and it removes opportunities for reducing the amount of data that passes over

the network (or is serialized/deserialized).

To overcome the first objection, with every custom type with multiple instance fields, attempt to provide Functions

that can promote a value from the custom object to a position in a Tuple or demote the Tuple value to a particular

field back into the custom type. This allows existing operations (like ExpressionFunction or RegexFilter) to operate

on values owned by a custom type. For example, if you have a Person object, have a Function named GetPersonAge

that takes Person as an argument and only returns the age as the result. The next operation can then Filter all Persons

based on their age. This may seem like more work and less effiicient, but it keeps your application flexible and reduces

the amount of duplicate code (the only alternative here is to create a PersonAgeFilter which results in one more thing

to test).

8.12 Fields Constants
Instead of having String field names strewn about, create an Interface that holds a constant value for each field name;

public static Fields FIRST_NAME = new Fields("firstname");

Using the Fields class instead of String allows for building more complex constants; public static Fields

NAME = FIRST_NAME.append(LAST_NAME);

8.13 Look at the Source Code
When in doubt, look at the Cascading source code. If something is not documented in this User Guide or JavaDoc and

its a feature of Cascading, the source code will give you clear instructions on what to do or expect.

CascadingV 1.2 Cascading - User Guide 64

9. CookBook
Some common idioms used in Cascading applications.

9.1 Tuples and Fields
Copy a Tuple instance

Tuple original = new Tuple("john", "doe");

// call copy constructor

Tuple copy = new Tuple(original);

assert copy.get(0).equals("john");

Nest a Tuple instance within a Tuple

Tuple parent = new Tuple();

parent.add(new Tuple("john", "doe"));

assert ((Tuple) parent.get(0)).get(0).equals("john");

Build a longer Fields instance

Fields first = new Fields("first");

Fields middle = new Fields("middle");

Fields last = new Fields("last");

Fields full = first.append(middle).append(last);

Remove a field from a longer Fields instance

Fields full = new Fields("first", "middle", "last");

Fields firstLast = full.subtract(new Fields("middle"));

9.2 Stream Shaping
Split (branch) a Tuple Stream

Pipe pipe = new Pipe("head");

pipe = new Each(pipe, new SomeFunction());

// ...

CookBook

CascadingV 1.2 Cascading - User Guide 65

// split left with the branch name 'lhs'

Pipe lhs = new Pipe("lhs", pipe);

lhs = new Each(lhs, new SomeFunction());

// ...

// split right with the branch name 'rhs'

Pipe rhs = new Pipe("rhs", pipe);

rhs = new Each(rhs, new SomeFunction());

// ...

Copy a field value

Fields argument = new Fields("field");

Identity identity = new Identity(new Fields("copy"));

// identity copies the incoming argument to the result tuple

pipe = new Each(pipe, argument, identity, Fields.ALL);

Discard (drop) a field

// incoming -> "keepField", "dropField"

pipe = new Each(pipe, new Fields("keepField"), new Identity(),

 Fields.RESULTS);

// outgoing -> "keepField"

Rename a field

// a simple SubAssembly that uses Identity internally

pipe = new Rename(pipe, new Fields("from"), new Fields("to"));

Coerce field values from Strings to primitives

Fields arguments = new Fields("longField", "booleanField");

Class types[] = new Class[]{long.class, boolean.class};

Identity identity = new Identity(types);

// convert from string to given type, inline replace values

pipe = new Each(pipe, arguments, identity, Fields.REPLACE);

Insert constant values into a stream

Fields fields = new Fields("constant1", "constant2");

pipe = new Each(pipe, new Insert(fields, "value1", "value2"),

 Fields.ALL);

CookBook

CascadingV 1.2 Cascading - User Guide 66

9.3 Common Operations
Parse a String date/time value

// convert string date/time field to a long

// milliseconds "timestamp" value

String format = "yyyy:MM:dd:HH:mm:ss.SSS";

DateParser parser = new DateParser(new Fields("ts"), format);

pipe = new Each(pipe, new Fields("datetime"), parser, Fields.ALL);

Format a time-stamp to a date/time value

// convert a long milliseconds "timestamp" value to a string

String format = "HH:mm:ss.SSS";

DateFormatter formatter = new DateFormatter(new Fields("datetime"),

 format);

pipe = new Each(pipe, new Fields("ts"), formatter, Fields.ALL);

9.4 Stream Ordering
Remove duplicate Tuples in a stream

// group on all values

pipe = new GroupBy(pipe, Fields.ALL);

// only take the first tuple in the grouping, ignore the rest

pipe = new Every(pipe, Fields.ALL, new First(), Fields.RESULTS);

Create a list of unique values

// find all unique 'ip' values

pipe = new Unique(pipe, new Fields("ip"));

Find first occurrence in time of a unique value

// group on all unique 'ip' values

// secondary sort on 'datetime', natural order is in ascending order

pipe = new GroupBy(pipe, new Fields("ip"), new Fields("datetime"));

// take the first 'ip' tuple in the group which has the

// oldest 'datetime' value

pipe = new Every(pipe, Fields.ALL, new First(), Fields.RESULTS);

CookBook

CascadingV 1.2 Cascading - User Guide 67

9.5 API Usage
Pass properties to a custom Operation

// set property on Flow

Properties properties = new Properties();

properties.put("key", "value");

FlowConnector flowConnector = new FlowConnector(properties);

// ...

// get the property from within an Operation (Function, Filter, etc)

String value = (String) flowProcess.getProperty("key");

Bind multiple sources and sinks to a Flow

Pipe headLeft = new Pipe("headLeft");

// do something interesting

Pipe headRight = new Pipe("headRight");

// do something interesting

// merge the two input streams

Pipe merged = new GroupBy(headLeft, headRight, new Fields("common"));

// ...

// branch the merged stream

Pipe tailLeft = new Pipe("tailLeft", merged);

// filter out values to the left

tailLeft = new Each(tailLeft, new SomeFilter());

Pipe tailRight = new Pipe("tailRight", merged);

// filter out values to the right

tailRight = new Each(tailRight, new SomeFilter());

// source taps

Tap sourceLeft = new Hfs(new Fields("some-fields"), "some/path");

Tap sourceRight = new Hfs(new Fields("some-fields"), "some/path");

Pipe[] pipesArray = Pipe.pipes(headLeft, headRight);

Tap[] tapsArray = Tap.taps(sourceLeft, sourceRight);

// a convenience function for creating branch names to tap maps

Map<String, Tap> sources = Cascades.tapsMap(pipesArray, tapsArray);

// sink taps

CookBook

CascadingV 1.2 Cascading - User Guide 68

Tap sinkLeft = new Hfs(new Fields("some-fields"), "some/path");

Tap sinkRight = new Hfs(new Fields("some-fields"), "some/path");

pipesArray = Pipe.pipes(tailLeft, tailRight);

tapsArray = Tap.taps(sinkLeft, sinkRight);

// or create the Map manually

Map<String, Tap> sinks = new HashMap<String, Tap>();

sinks.put(tailLeft.getName(), sinkLeft);

sinks.put(tailRight.getName(), sinkRight);

// set property on Flow

FlowConnector flowConnector = new FlowConnector();

Flow flow = flowConnector.connect("flow-name", sources, sinks, tailLeft, tailRight);

CascadingV 1.2 Cascading - User Guide 69

10. How It Works

10.1 MapReduce Job Planner
The MapReduce Job Planner is an internal feature of Cascading.

When a collection of functions, splits, and joins are all tied up together into a 'pipe assembly', the FlowConnector

object is used to create a new Flow instance against input and output data paths. This Flow is a single Cascading job.

Internally the FlowConnector employs an intelligent planner to convert the pipe assembly to a graph of dependent

MapReduce jobs that can be executed on a Hadoop cluster.

All this happens under the scenes. As is the scheduling of the individual MapReduce jobs, and the clean up of

intermediate data sets that bind the jobs together.

Map

CoGroupfunc aggr SinkSource GroupBy

func

aggr

Source func

functemp

Reduce Map Reduce

Above we can see how a reasonably normal Flow would be partitioned into MapReduce jobs. Every job is delimited

by a temporary file that is the sink from the first job, and then the source to the next job.

To see how your Flows are partitioned, call the Flow#writeDOT() method. This will write a DOT [http://

en.wikipedia.org/wiki/DOT_language] file out to the path specified, and can be imported into a graphics package like

OmniGraffle or Graphviz.

10.2 The Cascade Topological Scheduler
Cascading has a simple class, Cascade , that will take a collection of Cascading Flows and execute them on the

target cluster in dependency order.

Consider the following example.

• Flow 'first' reads input file A and outputs B.

• Flow 'second' expects input B and outputs C and D.

• Flow 'third' expects input C and outputs E.

A Cascade is constructed through the CascadeConnector class, by building an internal graph that makes each

Flow a 'vertex', and each file an 'edge'. A topological walk on this graph will touch each vertex in order of its

dependencies. When a vertex has all it's incoming edges (files) available, it will be scheduled on the cluster.

http://en.wikipedia.org/wiki/DOT_language
http://en.wikipedia.org/wiki/DOT_language
http://en.wikipedia.org/wiki/DOT_language

How It Works

CascadingV 1.2 Cascading - User Guide 70

In the example above, 'first' goes first, 'second' goes second, and 'third' is last.

If two or more Flows are independent of one another, they will be scheduled concurrently.

And by default, if any outputs from a Flow are newer than the inputs, the Flow is skipped. The assumption is that the

Flow was executed recently, since the output isn't stale. So there is no reason to re-execute it and use up resources or add

time to the job. This is similar behaviour a compiler would exhibit if a source file wasn't updated before a recompile.

This is very handy if you have a large number of jobs that should be executed as a logical unit with varying dependencies

between them. Just pass them to the CascadeConnector, and let it sort them all out.

	Cascading - User Guide
	Table of Contents
	1. Cascading
	1.1 What is Cascading?
	1.2 Who should use Cascading?
	1.3 What is Apache Hadoop

	2. Diving In
	3. Data Processing
	3.1 Introduction
	3.2 Pipe Assemblies
	Assembling Pipe Assemblies
	Each and Every Pipes
	GroupBy and CoGroup Pipes
	Sorting

	3.3 Source and Sink Taps
	3.4 Field Algebra
	3.5 Flows
	Creating Flows from Pipe Assemblies
	Configuring Flows
	Skipping Flows
	Creating Flows from a JobConf
	Creating Custom Flows

	3.6 Cascades

	4. Executing Processes
	4.1 Introduction
	4.2 Building
	4.3 Configuring
	4.4 Executing

	5. Using and Developing Operations
	5.1 Introduction
	5.2 Functions
	5.3 Filter
	5.4 Aggregator
	5.5 Buffer
	5.6 Operation and BaseOperation

	6. Advanced Processing
	6.1 SubAssemblies
	6.2 Stream Assertions
	6.3 Failure Traps
	6.4 Event Handling
	6.5 Template Taps
	6.6 Scripting
	6.7 Custom Taps and Schemes
	6.8 Custom Types and Serialization
	6.9 Partial Aggregation instead of Combiners

	7. Built-In Operations
	7.1 Identity Function
	7.2 Debug Function
	7.3 Sample and Limit Functions
	7.4 Insert Function
	7.5 Text Functions
	7.6 Regular Expression Operations
	7.7 Java Expression Operations
	7.8 XML Operations
	7.9 Assertions
	7.10 Logical Filter Operators

	8. Best Practices
	8.1 Unit Testing
	8.2 Flow Granularity
	8.3 SubAssemblies, not Factories
	8.4 Give SubAssemblies Logical Responsibilities
	8.5 Java Operators in Field Names
	8.6 Debugging Planner Failures
	8.7 Optimizing Joins
	8.8 Debuging Streams
	8.9 Handling Good and Bad Data
	8.10 Maintaining State in Operations
	8.11 Custom Types
	8.12 Fields Constants
	8.13 Look at the Source Code

	9. CookBook
	9.1 Tuples and Fields
	9.2 Stream Shaping
	9.3 Common Operations
	9.4 Stream Ordering
	9.5 API Usage

	10. How It Works
	10.1 MapReduce Job Planner
	10.2 The Cascade Topological Scheduler

