
Learning to Control in Operational Space

Jan Peters1,2, Stefan Schaal2,3

(1) Max Planck Institute for Biological Cybernetics,

Spemannstr. 38, 72076 Tübingen, Germany

(2) University of Southern California,

3641 Watt Way, Los Angeles, CA 90089, USA

(3) ATR Computational Neuroscience Laboratory,

2-2-2 Hikaridai, Seika-cho, Soraku-gun Kyoto 619-0288, Japan

December 4, 2007

Abstract

One of the most general frameworks for phrasing control problems for
complex, redundant robots is operational space control. However, while
this framework is of essential importance for robotics and well-understood
from an analytical point of view, it can be prohibitively hard to achieve
accurate control in face of modeling errors, which are inevitable in com-
plex robots, e.g., humanoid robots. In this paper, we suggest a learning
approach for opertional space control as a direct inverse model learning
problem. A first important insight for this paper is that a physically cor-
rect solution to the inverse problem with redundant degrees-of-freedom
does exist when learning of the inverse map is performed in a suitable
piecewise linear way. The second crucial component for our work is based
on the insight that many operational space controllers can be understood
in terms of a constrained optimal control problem. The cost function as-
sociated with this optimal control problem allows us to formulate a learn-
ing algorithm that automatically synthesizes a globally consistent desired
resolution of redundancy while learning the operational space controller.
From the machine learning point of view, this learning problem corre-
sponds to a reinforcement learning problem that maximizes an immediate
reward. We employ an expectation-maximization policy search algorithm
in order to solve this problem. Evaluations on a three degrees of freedom
robot arm are used to illustrate the suggested approach. The applica-
tion to a physically realistic simulator of the anthropomorphic SARCOS
Master arm demonstrates feasibility for complex high degree-of-freedom
robots. We also show that the proposed method works in the setting of
learning resolved motion rate control on real, physical Mitsubishi PA-10
medical robotics arm.

1



1 Introduction

Operational space control is one of the most elegant approaches to task control
due to its potential for dynamically consistent control, compliant control, force
control, hierarchical control, and many other favorable properties, with applica-
tions from end-effector control of manipulators [?, ?] up to balancing and gait
execution for humanoid robots [?]. If the robot model is accurately known, op-
erational space control is well-understood yielding a variety of different solution
alternatives, including resolved-motion rate control, resolved-acceleration con-
trol, and force-based control [?]. However, particularly if compliant, low-gain
control is desired, as in many new robotic systems that are supposed to oper-
ate safely in human environments, operational space control becomes increas-
ingly difficult in the presence of unmodeled nonlinearities, leading to reduced
accuracy or even unpredictable and unstable null-space behavior in the robot
system. As a potential solution to this problem, learning control methods seem
to be promising. However, learning methods do not easily provide the highly
structured knowledge required in traditional operational space control laws, i.e.,
Jacobians, inertia matrices, and Coriolis/centripetal and gravity forces, since all
these terms are not always instantly observable and are therefore not suitable
for formulating supervised learning as traditionally used in learning control ap-
proaches [?].

In this paper, we will suggest a novel approach to learning operational space
control that avoids extracting such structured knowledge and rather aims at
learning the operational space control law directly. To develop our approach, we
will proceed as follows: firstly, we will review operational space control and dis-
cuss where learning can be beneficial. Secondly, we will pose operational space
control as a learning problem and discuss why standard learning techniques
cannot be applied straightforwardly. Using the alternative understanding of op-
erational space control as an optimal control technique, we reformulate it as an
immediate reward reinforcement learning or policy search problem and suggest
novel algorithms for learning some of the most standard types of operational
space control laws. These new techniques are evaluated on a simulated three
degree-of-freedom robot arm and a simulated anthropomorphic seven degrees of
freedom SARCOS robot arm.

1.1 Notation and Remarks

Throughout this paper, we assume the standard rigid body model for the de-
scription of the robot, i.e.,

M (q) q̈ + C (q, q̇) + G (q) + ε (q, q̇) = u, (1)

where q, q̇, q̈ ∈ R
n denote the joint coordinates, velocities and accelerations

of the robot, respectively. The torques generated by the motors of the robot,
also referred to as motor commands, are given by u ∈ R

n. Furthermore, M (q)
denotes the inertia tensor or mass matrix, C (q, q̇) the Coriolis and centripetal

2



forces, G (q) is gravity, and ε (q, q̇) denotes unmodeled nonlinearities. The un-
modeled nonlinearities are often time-variant and can depend on non-stationary
influences such as temperature. In this paper, we only address fully actuated
robotic systems – extensions to underactuated or overactuated systems are ad-
dressed in Section 5.

In operational space control, we intend to execute trajectories or forces1

given in the coordinate system of the actual task. A well-studied example is
a robot arm where position and orientation of the end-effector are controlled
[?, ?]; however, a variety of further applications exist, such as the control of
the center of gravity for balancing legged robots, which can also be thought
of as operational space control [?]. Position and orientation x ∈ R

m of the
controlled element of the robot in task-space, e.g., the end-effector, is given by
the forward kinematics x = fKinematics (q). The derivatives yield both velocity
and acceleration in task space, i.e.,

ẋ = J (q) q̇, ẍ = J (q) q̈ + J̇ (q) q̇, (2)

where J (q) = ∂fKinematics (q) /∂q denotes the Jacobian. We assume that the
robot is in general redundant, i.e., it has more degrees of freedom than required
for the task or, equivalently, n > m.

1.2 Operational Space Control as an Optimal Control Prob-

lem

Using the framework of trajectory tracking as an example, the general problem
in operational space control1 can be described as follows: generate a control
law u = fControl (q, q̇,xd, ẋd, ẍd) that controls the robot along a joint space
trajectory q(t), q̇(t), and q̈(t), such that the controlled element (e.g., the end-
effector) follows a desired trajectory in task space xd (t) , ẋd (t) , and ẍd (t). This
problem has been thoroughly discussed since the late 1980s (e.g., [?, ?]) and,
among others, has resulted in a class of well-known control laws [?]. As an
important insight into operational space control it was discovered [?, ?, ?], that
many of the suggested controllers in the literature can be derived as the solution
of a constrained optimization problem given by

min
u

C (u) = uTNu s.t. Jq̈ = ẍref − J̇q̇, (3)

where N denotes a positive definite metric that weights the contribution of the
motor commands to the cost function, and ẍref = ẍd (t) + Kd (ẋd (t) − ẋ (t)) +
Kp (xd (t) − x (t)) denotes a reference attractor in task space with gain matrices
Kd and Kp. The resulting control laws or solution of this optimization problem
obey the general form [?]

u = N−1/2(JM−1N−1/2)+(ẍref − J̇q̇ + JM−1F) (4)

1In the more general case, the hybrid creation of forces in task space while following a
desired trajectory needs to be included. For simplicity, we will omit such kind of tasks in this
paper.

3



with F (q, q̇) = C (q, q̇) + G (q) + ε (q, q̇), and the notation D+ defining the
pseudo inverse of a matrix such that either D+D = I, or DD+ = I (see [?, ?]),

and with the matrix root D1/2 defined as D1/2D1/2 = D.
For example, the resolved-acceleration controller of Hsu et al. [?] (without

null space optimization) is the result of using the metric N = M−2, which yields
u = MJT (ẍref − J̇q̇) + F, and corresponds to a cascade of an inverse dynamics
and an inverse kinematics control law. Another example is Khatib’s formulation
of operational space control [?], determined by the metric N = M−1 and given
by

u = JT (JM−1JT )−1(ẍref − J̇q̇ + JM−1F). (5)

Khatib’s solution is special since the metric N = M−1 is the only metric that
generates torques which correspond to the ones created by a physical contraint
pulling the robot along the trajectory [?, ?], i.e., it is the metric used by nature
according to Gauss’ principle [?, ?] and it is invariant under change of joint
coordinates [?]. Other metrics such as N = const can be used to distribute the
required forces differently, e.g., such that stronger motors get a higher portion
of the generated forces [?].

Even when achieving the task perfectly, the joint-space trajectories can result
in unfavorable postures or even joint-space instability (see Example 1). To
handle such cases, additional controls that do not affect the tasks performance
but ensure a favorable joint-space behavior need to be included. From the point
of view of the optimization framework, we would select a nominal control law
u0 (e.g., a force pulling the robot towards a rest posture u0 = −KDq̇−KD(q−
qrest)), and then solve the constrained optimization problem

min
u

C1 (u) = (u − u0)
T N (u− u0) s.t. Jq̈ = ẍref − J̇q̇, (6)

where u1 = u − u0 is the task-space control component. The general solution
is given by

u = N−
1

2 D+(ẍref − J̇q̇ + JM−1F) (7)

+ N−
1

2 (I − D+D)N−
1

2 u0,

with the torque distribution D = (JM−1N−
1

2 ). Here, the second summand
fulfill the nominal control law u0 in the null-space of the first term. When
having more than two tasks, these can be nested in a similar fashion leading to
a general framework of hierarchical task control [?, ?].

Example 1 An illustrative example of operational space control is tracking the
end-effector position x = q1 + q2 of a prismatic robot with two parallel links with
joint positions q1, q2, see Figure 1. The goal is to track a desired trajectory
xref which consists out of two super-imposed sinusoids. Here, the mass matrix
is given by M = diag (m1, 0) + m21 with masses m1 = m2 = 1, and 1 denotes
a matrix with all coefficients equal to one. The internal forces are F = 0, the
Jacobian is J = [1, 1]T , and its derivative J̇ = 0. The resulting operational space

4



(a) Prismatic 2-dof robot

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Time t

P
o
si

ti
o
n

x

N=I

N=M -1

N=M -2

(b) End-effector position (all trajectories
coincide almost perfectly with the reference
trajectory) x

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

P
o
si

ti
o
n

q 1

Time t

N=I

N=M -1

N=M -2

(c) Joint position q1

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

P
o
si

ti
o
n

q 2

Time t

N=I

N=M -1

N=M -2

(d) Joint position q2

Figure 1: When applied to the prismatic robot from Example 1 shown in (a),
the three control laws for the metrics N = I (dashed-dot red lines), N = M−1

(solid green), N = M−2 (dashed blue) result in (b) the same, perfect task-
space tracking of a reference trajectory (consisting out of two superimposed
sinusoids) but (c,d) very different joint-space behavior. See Example 1 for more
information.

control laws can be determined using Equation 7. If no null-space control law is
selected, i.e., u0 = 0, the control law in the form of Equation (4) for executing
the task ẍref = ẍd + Kd (ẋd − ẋ)+ Kp (xd − x) would result in unstable behavior
for most metrics N. Due to the linearity of the prismatic robot, the control law
always result in lines such as

u = gẍref (8)

for the case without a null-space control component. Here, g denotes a vector
distributing the reference acceleration ẍref over both joints. When adding a u0 =
−KDq̇−KDq pulling the robot towards qrest = 0, we obtain stable tracking of the
task-space trajectory with very different properties for the joint-space trajectory
as can be observed in Figure 1: (i) metric N = I will result in the second link
tracking the end-effector and the null-space component stabilizing the first link,
(ii) metric N = M−1 will distribute the task on both links evenly and have the
null-space component decouple the two links, while (iii) metric N = M−2 simply

5



minimizes the squared acceleration.

We will use this simple robot example (Example 1) to illustrate various other
issues below as it allows easy analytical understanding and graphical visualiza-
tions.

Similarly to torque-based operational space control, we can also consider
learning of resolved motion rate control in a similar manner. From the point of
view of the optimization framework, we would select a nominal velocity q̇0 (e.g.,
a velocity q̇0 = −KP (q − qrest) which pulls the robot towards a rest posture
qrest), and then solve the constrained optimization problem (according to [?])

min
q̇

C1 (q̇) = (q̇− q̇0)
T

N (q̇ − q̇0) , (9)

s.t. Jq̇ = ṗref,

q̇0 = −KP (q − qrest).

Here, the nominal component q̇0 will be canceled out if it conflicts with the task
performance ṗref, but otherwise will regularize the solution towards more favor-
able trajectory generation. This formulation results into the general solution
given by

q̇ = N−1/2(JN−1/2)+ṗref + N−1/2(I − (JN−1/2)+(N−1/2J))N1/2q̇0, (10)

where the first term achieves the desired task, while the second term results is
responsible for appropriate null-space behavior. The conversion of this reference
joint space velocity to control inputs is a standard topic of inverse kinematics-
based control, and discussed in, e.g., [?, ?]

1.3 Why should we Learn Operational Space Control?

When an accurate analytical model of the robot is available and its parameters
can be well-estimated, operational space control laws can be highly successful
[?, ?, ?, ?]. However, in many new complex robotic systems, e.g., humanoid
robots or space robots, accurate analytical models of the robot dynamics are not
available due to significant departures from idealized theoretical models such as
rigid body dynamics. For instance, in our experience with anthropomorphic
robots, unmodeled nonlinear effects were caused by complex nonlinearities in
the actuation, actuator dynamics 2, hydraulic hoses and cable bundles routed
along the light weight structure of the robot as well as complex friction effects.
Trying to model such nonlinearities is of little use due to the lack of generality
of such an approach and the daunting task of deriving useful models for the
unknown effects.

2Note that actuator dynamics can introduce a hidden state problem and these might need
to be taken into account. However, in many cases, this extension is straightforward for our
learning approach (e.g., by using motor side encoders and joint side encoders as inputs to the
linear model) while it would be highly complicated to create the model by hand.

6



Example 2 In the prismatic robot from Example 1, already small unmodeled
nonlinearities can have a drastic effect. If the estimated mass matrix of the
robot M̃ = diag (m1, 0) + m21(where 1 is a matrix with only ones as entries)
just differs from the true M by M12 − M̃12 = M21 − M̃21 = 0.5 sin (q1 + q2),
e.g., through unmodeled properties of cables, then the resulting control law will
result in unstable and unpredictable null-space behavior despite that accurate task
space tracking is theoretically still possible. On a real physical system, excessive
null space behavior saturates the motors of the robot, such that also task space
tracking degrades, and the entire control system goes unstable.

Example 2 demonstrates how a small modeling error decreases the perfor-
mance of the operational control law and can result in joint-space instability
even for simple robots. For light-weight robot arms or full-body humanoid
robots, such problems become even more frequent and difficult to cope with.
Traditionally, this problem is fixed by manually improving the approximation
of the plant, i.e., after estimating the parameters in structured rigid body model
(using either CAD data or linear regression on sampled trajectories), the control
engineer uses the model error in order to identify the unknown nonlinearities.
While statistical learning techniques can help both for the structured model
estimation (e.g., Bayesian regression techniques can improve the accuracy, see
[?]), as well for approximating the unmodeled nonlinearities (e.g., see [?, ?]),
the direct learning of operational space control is a promising novel alternative
for low-gain controlled light-weight robots which are hard to model. Details will
be will be discussed in Section 2.

2 Learning Methods for Operational Space Con-

trol

Learning operational space control with redundant manipulators is largely an
unexplored problem and the literature has only few related examples. Among
those, learning approaches to task level control focussed mostly on an inverse
kinematics end-effector control [?, ?, ?, ?, ?], i.e., learning an inverse kinemat-
ics mapping, in order to create appropriate reference trajectories in joint-space,
which were to be executed by a given joint-space control law or were simply opti-
mizing a certain trajectory [?]. The combination of a learned inverse kinematics
and a learned inverse dynamics controller [?, ?, ?] can only be found occasionally
in the literature. To the best of our knowledge, full operational space control
laws with redundancy have not been addressed by general learning approaches
to date.

2.1 Can Operational Space Control be learned?

Learning operational space control is equivalent to obtaining a mapping

(q, q̇, ẍref) 7→ u (11)

7



-2 -1 0 1 2
-2

-1

0

1

2

Motor command u
1

M
o
to

r 
c
o
m

m
a
n
d
 u

2

(a) Unweighted datasets

-2 -1 0 1 2
-2

-1

0

1

2

Motor command u
1

M
o
to

r 
c
o
m

m
a
n
d
 u

2

(b) Reward weighted datasets

Figure 2: This figure shows the plane of all possible motor commands with the
resulting contours of resulting task-space acceleration (for the prismatic robot in
Example 1) indicated by the horizontal faintly dotted lines in (a) and (b). Any
valid control law here is a line u = gẍref mapping one task-space acceleration to
two motor commands and will automatically pass through the origin as there
is no bias term. We illustrate how (a) different randomly sampled data sets
result in different least squares solutions if each data point is treated with equal
importance (the blue dash-dot line corresponds to the blue diamonds and the
red dashed line to the red circles). If these data points are (b) weighted down
using the reward function r = exp(−uT Nu) (here indicated as solid thin black
lines) the solutions of different data sets will consistently approximate the same
solutions shown in the solid cyan line. While for the linear prismatic robot one
could live with any solution in (a), a combination of different local solutions for
nonlinear robots needs to have a consistent global solution over all local regions.

from sampled data using a function approximator. However, as the dimen-
sionality of the task-space reference trajectory ẍref is lower than the one of
motor command u, there are infinitely many solutions for u for most joint po-
sitions q, and joint velocities q̇. For the illustrative prismatic case in Example
ex:what:is:operational:space:control which has no null-space component, this re-
sults into linear mapping without offset corresponding to a line in the plane of
possible control laws as shown in Equation (8) and illustrated by the two lines
in Figure 2(a). The same holds true for resolved motion rate control, where the
simpler mapping (q, ẋref) 7→ q̇ is being learned; all discussions in this section
transfer straightforwardly.

A major problem arises for the case of a robot with rotary joints where the
motor commands u that achieve the same reference acceleration ẍref no longer
form a convex set, a problem first described in the context of learning inverse
kinematics [?, ?]. Thus, when learning the inverse mapping (q, q̇, ẍref) 7→ u,

8



End-Effector
Acceleration

Configuration 2

Configuration 1

(a) Consistent Local Average (b) Inconsistent Global Average

End-Effector
Acceleration

Configuration 2

Configuration 1

Figure 3: This figure shows four configurations of a three degree-of-freedom
robot arm where the employed torques result in the identical end-effector ac-
celerations, indicated by the grey arrows (with white arrowhead filling). For
simplicity, we assume the arm is at rest (zero velocities). (a) If the joint an-
gle configuration 1 and configration 2 are similar, the average of the two joint
torque vectors does not change the endeffector acceleration. (b) However, if the
two joint angle configurations are quite different, the average of the joint torque
vectors can results in a drastically different endeffector acceleration, which, from
the view point of control, could push the robot into undesirable and even un-
stable control situations.

the learning algorithm will potentially average 3 over unconnected and/or non-
convex sets of the solutions, which can result in invalid solutions to the con-
trol problem. Therefore, straightforward learning from samples with supervised
learning techniques is not suitable.

Nevertheless, the convexity issues can be resolved by employing a spatially
localized supervised learning system. In our case, spatial localization based on
both joint space position and velocity is required. Such an approach was first
introduced in the context of inverse kinematics learning [?, ?]. The key idea is
that the local combination of sampled data points will always result in a convex
set of solutions for the inverse problem. Here, the key point is that if we have n
motor commands u1, . . . ,un which result in the same end-effector acceleration
ẍ, their convex combination should also result into this acceleration. Globally,
this cannot be achieved as shown in Figure 3 (b). However, in a small region in
the vicinity of same q,q̇, we can show that that the averages will be consistent
as shown in Figure 3 (a).

This can be derived by showing that we can average over samples in a local
region without creating invalid solutions. Using the combination of Equations
(1) and (2), and assuming a constant spatial position q and velocity q̇, the
average endeffector acceleration can be written as:

ẍ = 〈ẍ〉 =
〈

JM−1 (u + F) + J̇q̇
〉

(12)

= JM−1 〈u + F〉 + J̇q̇ = JM−1 (u + F) + J̇q̇,

Here, 〈·〉 denotes the average over all points in a given data set. Now, if we
assume all data points in the data set had identical endeffector acceleration, we

3Note that most regression algorithms can be seen as averages over presented solutions.

9



can write:

ẍ = ẍ = JM−1 (u + F) + J̇q̇,

which simply demonstrates that the average u over all motor commands result-
ing in a given ẍ still achieves the same ẍ. Thus, in the vicinity of same q,q̇, any
data set can introduce a locally valid linear control law transforming ẍ into u.
4. Locally linear controllers

ui = ci
β(q, q̇, ẍref) = [ẍT

ref, q̇
T , 1]βi, (13)

with parameters β
i can be used if they are only active in a region around q, q̇

(note that we added constant input in Equation (13) to account for the intercept
of a linear function; this intercept is a result of locally constant gravity and can
also absorb some of the spring-like properties of the hydraulic tubes between the
joints). From a control engineering point of view, this argument corresponds to
the insight that when we can linearize the plant in a certain region, we can find
a local control law in that region by treating the plant as linear. In general,
linear systems do not have the problem of non-convexity of the solution space
when learning an inverse function.

Next we need to address how to find an appropriate piecewise linearization
for the locally linear controllers. For this purpose, we learn a locally linear
forward or predictor model

ẍi = pi
β̂
(q, q̇,u) = [q̇T ,uT , 1]β̂

i
(14)

where β̂
i

denotes the parameters of the local forward model. Learning this
forward model is a standard supervised learning problem since the mapping is
guaranteed to be a proper function 5. A method of learning such a forward
model that automatically also learns a local linearization is Locally Weighted
Projection Regression (LWPR) [?]. In essense, LWPR performs piecewise linear
function approximation by means of locally weighted regression [?, ?] while
automatically detecting the appropriate local linear region of each linear model.
This fast online learning method scales into high-dimensions, has been used for
inverse dynamics control of humanoid robots, and can automatically determine

4Note, that the localization in velocity q̇ can be dropped for a pure rigid body formulation
as it is linear in the q̇iq̇j for all degrees of freedom i, j; this, however, is not necessarily desirable
as it will add new inputs to the local regression problem which grows quadratically with the
number of degrees of freedom.

5While learning a forward model is relatively straightforward, it only serves for identifying
local linear regions. While, in theory, it is possible to extract all terms from the locally linear
forward models that are needed in computing the analytical control law in Equation 7, one
encounters the same problems as in operational space control with inaccurate system identi-
fication. The locally linear forward models are good predictors for the forward dynamics, but
this does not mean that the regression coefficients are close to the analytically correct coeffi-
cients, particularly for high-dimensional systems. These inaccuracies create large errors in the
analytical control law 7, and renders such a forward-model learning approach for operational
space control largely infeasible.

10



Algorithm: Learning for Operational Space Control

1 for each new data point [ẍk
ref,q, q̇k,uk]

2 Add (q, q̇,u) → ẍ to the forward model regression.
3 Determine the current number of models n and

localizations of the forward models wi (q, q̇).

4 Compute desired null-space behavior uk
0 = f

(

qk, q̇k
)

.

5 Compute costs Ck
1 =

(

uk
1

)T
N
(

qk
)

uk
1 with uk

1 = uk − uk
0 .

6 For each model i = 1, 2, . . . , n
Update mean cost:

7 σ2
i =

∑k
h=1

wk
(

qh, q̇h
)

Ck
1

/

∑N
k=1

wk
(

qh, q̇h
)

,

Compute reward:
8 r (u) = σi exp

(

−0.5σ2
i C

k
1

)

Add data point to weighted regression so that:

9 Φi = [qi, q̇i, ẍi
ref]

10 Ui = ui

11 W = diag
(

r
(

u1
)

w1, . . . , r (un)wn
)

Perform policy update by regression

12 βk+1 =
(

ΦTWΦ
)

−1

ΦTWU,

13 end
14 end

Table 1: This table shows the complete learning algorithm for Operational Space
Control. See text of detailed explanations.

the number of local models that are needed to represent the function [?, ?].
The membership to a local model is determined by a weight generated from a
Gaussian kernel

wi(q, q̇) = exp

(

1

2

([

q
q̇

]

− ci

)T

Di

([

q
q̇

]

− ci

)

)

(15)

centered at ci in (q, q̇)-space and shaped by a distance metric Di. For a closer
description of this statistical learning algorithm see [?, ?, ?].

For each local forward model created by LWPR, we create a local controller
that uses the same localization in (q, q̇) as determined by the forward model.
This model is learned in parallel using the same data as used in the forward
model. It will automatically result into a locally viable control law (global
consistency will be treated in Section 2.2). This approach of pair-wise combining
predictors and controllers is related to the MOSAIC architecture [?] where the
quality of predicting a task is used for selecting which local controller should be
used for the task.

It is straightforward to make a similar case for resolved motion rate con-
trol where a localization on regions in the joint-space suffice, i.e., instead of
learning in the vicinity of a (q, q̇), we only need to stay in the vicinity if

11



a q in order to obtain a convex mapping and the proof transfers straight-
fowardly (see, e.g., [?, ?]). In this case, we only require simpler controller

models q̇i = [ẋT
ref,q

T , 1]Λi, simpler predictor models ẋi = [q̇T ,qT , 1]Λ̂
i

and a

weighting w(q) = exp(−0.5(q− c̃i)
T D̃

i
(q− c̃i)). Except for these small changes,

the line of thought remains the same.

2.2 Combining the Local Controllers and Ensuring Con-

sistent Resolution of Redundancy

In order to control a robot with these local control laws, they need to be
combined into a consistent global control law. The combination is given by
a weighted average [?]

u =

∑n
i=1

wi (q, q̇) [ẍT
ref, q̇

T , 1]βi

∑n
i=1

wi (q, q̇)
, (16)

where each control law ci
β(q, q̇, ẍref) is just valid in its local region computed

by wi (q, q̇), and βi are the parameters of each local operational space control
law6.

However, while the mappings (q, q̇, ẍref) 7→ u can properly be learned locally
in the neighborhood of some q, q̇, due to the redundancy in the robotic system,
there is no guarantee that across the local mappings the same type of solution
is acquired. This problem is due to the dependence of the inverse solution on
the training data distribution in each local model, i.e., different distributions
will pick different solutions for the inverse mapping from the infinite number of
possible inverses. In Figure 2 (a), we demonstrate this effect. While this problem
is not devastating for the prismatic robot from Example 1, it results in severe
problems for any nonlinear robot requiring multiple, consistent linear models.
There are two different approaches to tackling such problems: (1) by biasing
the system using a pre-processed data set such that it can only produce one
particular inverse solution [?], and (2) by incorporating a cost/reward function in
order to favor a certain kind of solution (an example which will be discussed later
and is shown Figure 2 (b)). The first approach lacks generality and can bias the
learning system such that the task is not properly accomplished anymore. The
major shortcoming of the second approach is that the choice of the cost/reward
function is in general non-trivial and determines the learning algorithm as well
as the learned solution.

The crucial component to finding a principled approach to this inconsistency
problem is based on the discussion in Section 1.2 and previous work [?]. Opera-
tional space control can be seen as a constrained optimization problem with the
cost function given in Equation (3). Thus, the cost function based approach for

6As discussed before, simply inverting the weighted combination of the forward models will
not suffice: the forward model does not provide sufficient information to apply Eqn.(4), and
inverting such forward models is numerically very fragile, particularly as actual robot data is
usually highly rank deficient.

12



the creation of a consistent set of local controllers for operational space control
can be based on this insight. The cost function can be turned into an immediate
reward r (u) by running it through an exponential function, i.e.,

r (u) = σ exp
(

−0.5σ−2C1 (u)
)

= σ exp
(

−σ−2uT
1 Nu1

)

, (17)

where σ is a scaling factor chosen for notational convenience. The task space
command u1 = u− u0 can be computed using a desired null-space behavior u0

(e.g., pulling towards a rest posture as discussed in Section 1.2). The scaling
factor σ does not affect the optimality of a solution u as it acts as a monotonic
transformation in this cost function. However, this transformation can increase
the efficiency of the learning algorithm significantly when only sparse data is
available for learning (i.e., as for most interesting robots as the high-dimensional
action spaces of complex robots will hardly ever be filled densely with data)7.
These local rewards allow the reformulation of our learning problem as an imme-

diate reward reinforcement learning problem [?], as will be discussed in Section
3.

We are now in the position to formulate a supervised learning algorithm
for the local operational space controllers. The task constraint in Equation (3)
as well as the rigid body dynamics in Equation (1) are automatically fulfilled
by all data sampled from the real robot similar to a self-supervised learning
problem. Therefore, for learning the local operational space controllers, we have
obtained a local linear regression problem where we attempt to learn primarily
from the observed motor commands uk which also have a high reward r(uk)
within each active local model ci

β(qk, q̇k, ẍk
ref). An intuitive solution is to use

reward-weighted regression, i.e., to find the solution which minimizes the cost
function

Ei =

N
∑

k=1

r(uk)wi(qk, q̇k)(uk−[ẍk,T
ref

, q̇k,T , 1]βi)2

for each controller i. The solution to this problem is the well-known weighted
regression formula

β =
(

ΦTWΦ
)

−1

ΦT WU (18)

with rows in the matrices Φ and U : Φk = [ẍk,T
ref

, q̇k,T , 1], Uk = uk,T and Wi =

r
(

ui
)

w(qi, q̇i). When employing this reward-weighted regression solution, we
will converge to a globally consistent solution across all local controllers. The
learning algorithm is shown in Table 1 together with an additional component
derived in Section 3. Note that this step was only possible due to the essential
cost function in Equation (6) from our previous work.

This framework transfers quite straightforwardly to resolved motion rate
control by replacing the local control laws, local predictors and weighting kernels
by the previously described ones.

7The reward has to be seen in the light of the relationship between the Gaussian distribution
and Gauss’ principle for constrained motion as suggested already by Carl-Friedrich Gauss in
his original work[?].

13



3 Reformulation as Reinforcement Learning

Problem

Another way of looking at operational space control is to view it as an immediate
reward reinforcement learning problem [?] with high-dimensional, continuous
states s = [q, q̇, ẍref,u0] ∈ R

n and actions u ∈ R
m for operational space control

(similarly, we have s = [q, ẋref,u0] ∈ R
n and actions q̇ref ∈ R

m if we intend to
learn resolved motion rate control). The goal of learning is to obtain an optimal
policy

u = µ (q, q̇, ẍref,u0) = µ (s) (19)

such that the system follows the reference acceleration ẍref while maximizing
the immediate reward r (u) = −(u − u0)

T N(u − u0) for any given nominal
behavior u0. In order to incorporate exploration during learning, we need a
stochastic control policy u = µθ(q, q̇, ẍref) + ε, modeled as a probability distri-
bution πθ(u|s) = p(u|s, θ) with parameter vector θ. The goal of the learning
system is thus to find the policy parameters θ that maximize

Jr (θ) =

∫

p (s)

∫

πθ (u|s) r (s,u) duds. (20)

p(s) denotes the distribution of states, which is treated as fixed in immediate
reward reinforcement learning problems [?, ?].

Originally, we derived this algorithm from a weighted regression point of
view. However, this point of view is not completely satisfying since it still has
the open parameter σ2, which determines the speed of convergence of the learn-
ing controllers. An alternative view point, i.e., in the framework of immediate
reward reinforcement learning, allows deriving the previous algorithm together
with a computation rule for σ2. Previous work in the literature suggested a
variety of optimizing methods which can be applied to immediate reward rein-
forcement learning problems, e.g., gradient based methods (e.g., REINFORCE,
Covariant REINFORCE, finite difference gradients, the Kiefer-Wolfowitz proce-
dure, ARP algorithms, CRBP, etc.) and random search algorithms (e.g., simu-
lated annealing or genetic algorithms) [?, ?, ?]. However, gradient-based meth-
ods tend to be too slow for the online learning that we desire in our problem,
while randomized search algorithms can create too arbitrary solutions, often
not suitable for execution on a robotic system. For learning operational space
control, we require a method that is computationally sufficiently efficient to deal
with high-dimensional robot systems and large amounts of data, that has a low
sample complexity, that comes with convergence guarantees, and that is suit-
able for smooth online improvement. For instance, linear regression techniques
and/or methods employing EM-style algorithms are highly desirable.

A good starting point for our work is the probabilistic reinforcement learn-
ing framework by Dayan & Hinton [?]. As we will show in the following, this
approach allows us to derive an EM-algorithm that essentially reduces the im-
mediate reward learning problem to a reward-weighted regression problem [?].

14



3.1 Reward Transformation

In order to maximize the expected return given by Equation (20) using samples,
we approximate

Jr (θ) ≈
∑n

i=1
πθ (ui|si) ri (21)

where ri = r (si,ui). For application of the probabilistic reinforcement learn-
ing framework by Dayan & Hinton [?], the reward needs to be strictly positive
such that it resembles an (improper) probability distribution. While this can
be achieved by a linear rescaling for problems with bounded rewards, for un-
bounded rewards as discussed in this paper this is no longer the case. Instead,
a nonlinear transformation of the reward Uτ (r) is required, with the constraint
that the optimal solution to the underlying problem remains unchanged. Thus,
we require that Uτ (r) is strictly monotonic with respect to r, and addition-
ally that Uτ (r) ≥ 0 and

∫

∞

0
Uτ (r) dr = const, resulting in the transformed

optimization problem

Ju (θ) =
∑n

i=1
πθ (ui|si)Uτ (ri) . (22)

The reward transformation plays a more important role than initially meets the
eye: as already pointed out in [?], convergence speed can be greatly affected by
this transformation. Making Uτ (r) an adaptive part of the learning algorithm
by means of some internal parameters τ can greatly accelerate the learning speed
and help avoid local minima during learning. Figure 4 demonstrates this issue
with a 1D continuous state and 1D continuous action example where the goal is
to learn an optimal linear policy π (u|s) = N (u|θ1s+θ2, σ

2) for a prismatic robot
with a transformed reward u(r (s, u)) = exp

(

−τ
(

q1u
2 + q2us + sq2

3

))

. Using
the algorithm that we will introduce below, an adaptive reward transformation
accelerated the convergence by a factor of 4, and actually significantly helped
avoiding local minima during learning.

3.2 EM Reinforcement Learning with Reward Transfor-

mation

To derive our learning algorithm, similar to the one in [?], we start by estab-
lishing the lower bound

log Ju (θ) = log
∑n

i=1
q (i)

πθ (ui|si)Uτ (ri)

q (i)
(23)

≥
∑n

i=1
q (i) log

πθ (ui|si)Uτ (ri)

q (i)
(24)

=
∑n

i=1
q (i) [log πθ (ui|si) + log Uτ (ri) − log q (i)] (25)

= F (q, θ, τ ) , (26)

15



Step 1

-2 0 2
-1

0

1 Step 2

-2 0 2
-1

0

1

A
ct

io
n

u

State s

A
ct

io
n

u

State s

Step 0

-2 0 2
-1

0

1
A

ct
io

n
u

State s

Step 3

-2 0 2
-1

0

1

A
ct

io
n

u

State s

Step 20

-2 0 2
-1

0

1

A
ct

io
n

u

State s

Step 1

-2 0 2
-1

0

1 Step 2

-2 0 2
-1

0

1

A
ct

io
n

u

A
ct

io
n

u

Step 0

-2 0 2
-1

0

1

A
ct

io
n

u

State s State sState s

Step 3

-2 0 2
-1

0

1

A
ct

io
n

u

State s

Step 6

-2 0 2
-1

0

1

A
ct

io
n

u

State s

(b) Adaptive Reward Transformation

(a) Fixed Reward Transformation

Figure 4: A comparison of fixed and adaptive reward transformation for learn-
ing a linear policy π (u|s) = N (u|θ1s + θ2, σ

2) under the transformed reward
u(r (s, u)) = exp

(

−τ
(

q1u
2 + q2us + sq2

3

))

. The transformed reward is indi-
cated by the dotted blue ellipses, the variance of the action distribution is in-
dicated by the red thick ellipse, and the mean of the linear policy is shown
by the red thick line. With τ being adaptive, significantly faster learning of
the optimal policy is achieved. Step 0 shows the initial policy and initial trans-
formed reward, Step 1 shows the initial policy with adapted transformed reward.
Quite clearly, the adaptation of the reward transformation in (b) speeds up the
learning process in comparison to (b) while converging to the same solution.

due to Jensen’s inequality [?]. The re-weighting distribution q (i) obeys the
constraint

∑n

i=1
q (i) − 1 = 0. (27)

The resulting EM algorithm is given below.

Algorithm 3 An EM algorithm for optimizing both the expected reward as well
as the reward-transformation is given by an E-Step

qk+1 (j) =
πθk

(uj |sj)Uτk
(rj)

∑n
i=1

πθ (ui|si)Uτk
(ri)

, (28)

a M-Step for the policy parameter update given

θk+1 = arg max
θ

∑n

i=1
qk+1 (i) log πθ (ui|si) , (29)

and a M-Step for the adaptive reward transformation given by

τ k+1 = arg max
τ

∑n

i=1
qk+1 (i) log Uτ (ri) . (30)

16



Proof. The E-Step is given by

qk+1 = argmax
q

F (q, θ, τ ) (31)

while fulfilling the constraint

0 =
∑n

i=1
q (i) − 1. (32)

Thus, we obtain a constrained optimization problem with Lagrangian function
of

L (λ, q) =
∑n

i=1
q (i) [log πθ (ui|si) + log Uτ (ri) − log q (i) + λ] − λ. (33)

Optimizing L (λ, q) with respect to q and λ results in Equation (28). Optimizing
F (qk+1, θ, τ ) with respect to θ and τ yields Equations(29, 30).

3.3 Reinforcement Learning by Reward-Weighted Regres-

sion

Let us assume the specific class of normally distributed policies (as in [?]):

πθ (u|s) = N
(

u|µθ (s) , σ2I
)

(34)

with a nominal or mean behavior µθ (s) = φ (s)
T

θ where φ (s) denotes some
fixed preprocessing of the state by basis functions (which are determined using
locally linear forward model approximations as previously discussed) and σ2I
determines the exploration8. Furthermore, we choose the reward transformation

Uτ (r) = τ exp (−τr) , (35)

which, for r > 0 fulfills all our requirements on a reward transformation (cited
from Sec.3.1). Algorithm 3 thus becomes:

Algorithm 4 The update equations for the policy πθ (u|s) = N
(

u|µθ (s) , σ2I
)

are:

θk+1 =
(

ΦTWΦ
)

−1

ΦTWY, (36)

σ2
k+1 =

∥

∥

∥
Y − θ

T
k+1Φ

∥

∥

∥

2

W
, (37)

where a diagonal matrix with transformed rewards is denoted by

W = diag (Uτ (r1) , Uτ (r2) , . . . , Uτ (rn)) /UΣ (38)

with UΣ = (
∑n

i=1
Uτ (ri)).

8Note that σ2I could be replaced by a full variance matrix with little changes in the algo-
rithm. However, this would result in a quadratic growth of parameters with the dimensionality
of the state and is therefore less desirable.

17



Φ = [φ (s1) , φ (s2) , . . . , φ (sn)]T , (39)

and
Y = [u1,u2, . . . ,un]T (40)

the motor commands. The reward transformation Uτ (r) = τ exp (−τr) is up-
dated using

τk+1 =

∑n
i=1

Uτk
(ri)

∑n
i=1

Uτk
(ri) ri

. (41)

Proof. When computing qk+1 (j) from samples in Equation (28), we have

qk+1 (j) =
Uτk

(rj)
∑n

i=1
Uτk

(ri)
(42)

since the probabilities are replaced by relative frequencies. We insert the policy

πθ (u|s) = Zσ exp

(

−
1

2σ2

∥

∥

∥
u − φ (s)T θ

∥

∥

∥

2
)

with Zσ =
(

2πσ2
)

−
d

2 into Equation (29). By differentiating with respect to θ
and equating the result to zero, we obtain Equation (36) as

ΦTWΦ =
n
∑

i=1

qk+1 (i)φ (si) φ (si)
T (43)

ΦTWY =

n
∑

i=1

qk+1 (i)φ (si)uT
i . (44)

In matrix vector form, this equation corresponds to Equation (36). Analogously,
the reward transformation is obtained from differentiation with respect to τ as

n
∑

i=1

qk+1 (i)
∂

∂τ
log Uτ (ri)=

n
∑

i=1

qk+1 (i)
(

τ−1 − ri

)

= 0, (45)

which results in Equation (41). It is straightforward to see that the resulting
algorithm is equivalent to the one described in Section 2.2.

The derivation of this reward-weighted regression algorithm for this imme-
diate reward reinforcement learning problem allows us now to understand the
problem from the weighted regression point of view, see the review papers [?, ?]
for more information on this topic. It allows the highly data-efficient compu-
tation of the regression problem solutions with the supervised learning method
LWPR [?, ?, ?].

18



(a) 3 DoF Robot Arm (b) Tracking Performance 

0.44 0.48 0.52 0.56

0.04
0.06
0.08
0.1
0.12
0.14
0.16

Hand coordinate x1

H
a
n
d
 c

o
o
rd

in
a
te

 x
2

desired learned

(c) Optimal vs Learned Motor Command 

0 0.5 1 1.5 2-10

0
10
20
30
40
50
60

Time tT
a
s
k
s
p
a
c
e
 m

o
to

r 



  
 c

o
m

m
a
n
d
s
 u

1

u1
1

u1
2

u1
3

optimal learned

Figure 5: (a) screenshot of the 3 DoF arm simulator, (b) near ideal tracking
performance for a planar figure-8 pattern for the 3 DoF arm, and (c) a compar-
ison between the analytically obtained optimal control commands (by solving
Equation (3) as traditionally done) to the learned ones for one figure-8 cycle of
the 3 DoF arm exhibits that a near-optimal policy is obtained.

4 Evaluations

We have evaluated our approach both for full, torque-based operational space
control and for resolved motion rate control. The operational space control
framework was evaluated both on two different simulated, physically realistic
robots: (i) a three degree-of-freedom (DoF) planar robot arm shown in Figure
5 (a), (ii) a seven DoF simulated SARCOS master robot arm (Figure 6 (a));
see Section 4.1. The resolved motion rate control was evaluated on an actual
Mitsubishi PA-10 robot, see Section 4.2.

4.1 Evaluation for Learning Torque-based Operational Space

Control

Both experiments were conducted as follows: first, learning the forward models
and an initial control policy in each local model was obtained from random
point-to-point movements in joint space using a simple PD control law. This
“motor babbling” exploration was necessary in order bootstrap learning with
some initial data. During the first phase, we generated a sequence of 60 arbi-
trary joint space positions and connected these positions in joint-space using
fifth order polynomials in order to create desired trajectories in joint space of
duration 1 s. A purposely badly tuned joint-soace PD control law, which could
not track the trajectories accurately, was used to generate the data. Otherwise,
we would experience rather slow learning, as typically observed in similar direct-
inverse learning approaches [?]. The measured end-effector accelerations served
as desired acceleration in Equation (13), and all other variables for learning
the local controllers were measurable as well. Subsequently, the learning con-
troller was used on-policy with the normally distributed actuator noise serving
as exploration.

19



(a) SARCOS Master Robot Arm (b) Tracking Performance

0.34 0.38
-0.1

-0.05

0

0.05

0.1

y-z plane

y

z

0.25 0.3 0.35 0.4 0.45 0.5 0.55
-0.1

-0.05

0

0.05

0.1

x-z plane

x

z
Figure 6: (a) Anthropomorphic SARCOS Master Arm used as simulated system
and in progress of actual robot evaluations. (b) Tracking performance for a
planar figure-8 pattern for the simulated SARCOS Master arm.

Both robots learned to track desired trajectories with high accuracy as shown
in Figures 5 (b) and 6 (b). For the three DoF arm, we verified the quality of
the learned control commands in comparison to the analytical solution, given
in Equation (7): Figure 5 (c) demonstrates that the motor commands of the
learned and analytically optimal case are almost identical. Learning results of
the simulated seven DoF SARCOS robot achieved almost the same end-effector
tracking quality and is shown in Figure 6. It exhibits only slightly increased
errors. However, the joint commands were not quite as close to the optimal ones
as for the 3 DoF arm — the rather high dimensional learning space of the 7 DoF
arm most likely requires more extensive training and more careful tuning of the
LWPR learning algorithm to achieve local linearizations with very high accuracy
and with enough data to find the optimal solution. Tuning of LWPR involved
the proper normalization of regression inputs and outputs, the initialization of
the distance metric such that the number of generated models stays low while
achieving accuracy, and the proper setting of the gradient descent learning rates
in order to achieve a good adaptation of the local weighting kernels. For more
information on the proper application of LWPR, see [?, ?]. The 3 DoF arm
required about 2 hours of real-time training. The setup, however, was optimized
for the 7 DoF arm where a 60 minute run of real-time training was sufficient for
achieving the quality exhibited on the test trajectory in Figure 6 (b).

4.2 Evaluation for Learning Resolved Velocity Control

In order to demonstrate the feasibility of our learning approach on an actual
robot, we evaluated our learning approach to resolved motion rate control on
a Mitsubishi PA-10 arm shown in Figure 7 (a). We compare our results to the

20



(a) Mitsubishi PA-10

0.5 0.55 0.6 0.65 0.7 0.75
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3
Task-Space Performance       x vs y

Cartesian Position x

C
a

rt
e

s
ia

n
 P

o
s
it
io

n
 y

Desired
Learned
Analytical

0.38 0.4 0.42

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3
y vs z

Cartesian Position z

C
a

rt
e

s
ia

n
 P

o
s
it
io

n
 y

(b) Task-Space Tracking

Figure 7: This figure shows (a) the Mitsubishi PA-10 robot arm with seven
degrees of freedom used in the experiments in this paper and (b) illustrates the
task performance of both the analytical and the learned resolved motion rate
control laws. Here, the green dotted line shows the desired trajectory which
the robot should follow, the red dashed line is the performance of the real-
time learning control law while the blue solid line shows the performance of the
resolved motion rate control law. Note, that while the online learning solution
is as good as the analytical solution, it still yields comparable performance
without any pre-training of the local control laws before the online learning
(nevertheless, the predictors were pre-trained).

analytical solution from the robotics literature [?, ?]. The Mitsubishi PA-10
is general purpose 7 DoF robot arm for low-velocity applications such as sur-
gical tool placement or teleoperated soft-tissue manipulation [?]. This robot
includes a Mitsubishi-supplied control box which allows the setting of the ve-
locity in an asynchronous mode at a sampling frequency of 200Hz. The setup
includes a stereo camera system with two Basler cameras mounted on a pan-
tilt unit (one in color at 5Hz, one in black & white at 30Hz). The goal of
the experiment is to show that we can learn consistent resolved motion rate
control laws without observing the task beforehand. For doing so, we choose
the standard task of a figure-8 in task space [?, ?]. The rest posture is given
by qrest = [0.1627, 0.6076, 0.2127, 1.4407, 0.2626, 1.6965,−0.0138]T , and was se-
lected such that it lies in the middle of the visual field of the stereo camera
pan-tilt unit. For the joint-space attractor towards the rest posture we chose
q̇0 = −KP (q − qrest) with KP = 0.1I. The gain KR

p of the reference attractor

is set to KR
p = 10I. We assume an identity metric N = I for both the analytical

control law which serves as the benchmark control law as well as for the cost
function of the reward-weighted regression.

The experiment consists out of two phases. In the first phase, we pre-train
the predictor models by moving in a small region in joint-space around the rest

21



posture. This initialization allows us to generate some initial predictor models;
however, the controller models are not learned in this first part. In the second
phase, we start the resolved motion rate control law on the desired trajectory
and perturb its output with a very small amount of exploration ε ∼ N

(

0, σ2I
)

with σ = 0.001, i.e., q̇ = π(q, ṗref) + ε. This perturbation is necessary for fast
learning of the resolved motion rate control law as the robot would otherwise
never have a sufficiently rich set of observations. While this motor babbling is
so small in magnitude that it cannot be observed in Figures 7,8, it nevertheless
has an impact as it causes the robot to slightly drift in the null-space of the
task during execution, as can be observed in Figure 8.

The resulting online-learning is achieved sufficiently fast so that the robot
is capable of learning to track on the same trajectory which it is executing.
Due to the prediction accuracy, the learning system has already determined 7
different local regions and will only learn 5 additional different regions during
the execution of the trajectory. Alltogether this trajectory requires 12 locally
linear regions for accurate tracking. All these models determine the activity of
the locally linear control laws which are learned online during the execution of
the trajectory. The gain of the reference attractor compensates for initial model
errors and could be reduced once the control law has been learned sufficiently
well.

In Figure 7, the resulting task-space performance can be observed. We can
see that the resulting task space tracking performance is quite close to the one
of the analytical resolved motion rate control law. In Figure 8, we can see a
comparison of the joint-space trajectories of both the analytical resolved motion
rate control law and the learned control law one. Both are similar throughout
the trajectory, they differ due to the exploration and model errors.

5 Discussion & Conclusion

In this paper, a general learning framework for operational space control of
redundant robots has been presented, which is among the first successful at-
tempts of learning such control laws to date. We overcome the difficulties of
having a non-convex solution spaces by only learning in the vincinity of a local
model anchored both in joint velocity and joint position. The local regions are
obtained by learning forward models, which predict the movement of the end-
effector. The global consistency of the redundancy resolution of the local model
controllers is ensured through minimizing the cost function of operational space
control. This cost function, derived in our previous work, is crucial to the suc-
cess of this framework and its absence has most likely been the reason for the
absence of learning operational space controllers to date. The resulting learn-
ing algorithm for the local models can be understood from two perspectives,
i.e., as a weighted regression problem where we intend to match the reward
weighted motor commands (after transforming the cost into a reward) or as a
reinforcement learning problem where we attempt to maximize an immediate
reward criterion. Throughout this paper, we have illustrated the problems and

22



advantages of learning operational space control using a prismatic two degrees
of freedom robot arm as example. As evaluations, we implemented our learning
approach on a simulated 3 DoF robot arm, a simulated Sarcos Master arm with
7 DoF, and an actual Mitsubishi PA-10 robot with 6 DoF. In all cases, the
robots learned to perform the desired task nearly perfectly, and demonstrated
close to optimal null-space performance.

While this paper has presented a novel algorithm for learning operational
space control for fully actuated robots, several open issues remain for future
work in order to bring this approach to complex robots like walking humanoid
robots. First, we need to be able to deal with underactuation which is possible
in this framework as long as the number of actuated degrees of freedom (DoF)
exceeds the number of the DoFs required for the task. While this condition can
be fulfilled for many interesting tasks, its violation will result in the requirement
of considering multiple step planning solutions. Second, in this paper, we have
focussed on tracking control in operational space - the necessary and important
issue of force control in task space has been neglected. Thus, this part will
be an important topic for future research in learning operational space control.
Third, for implementations on high DoF robots, computational requirements
for implementing real-time learning grow significantly and require state-of-the-
art high-speed and multi-processor computers that are rarely used in real-time
robotic setups so far due to high energy consumption and relatively large space
requirement on an autonomous robot. Creating efficient hardware platforms
for this purpose still requires major efforts, although it is technologically fea-
sible. Finally, while the usage of the function approximator LWPR [?, ?, ?]
is currently the standard method for real-time function approximation and the
natural choice for applying the reward-weighted regression in this framework,
the usage of potentially more accurate or easier to train regression techniques
such as Support Vector Regression [?] or Gaussian Process Regression [?] could
help significantly. Currently, these methods cannot be used for online, real-time
training for an interesting robot system; however, specialized approaches such
as local Gaussian Process Regression [?, ?] can be used in order to bring these
function approximator into this new domain.

We anticipate that the true power of our suggested learning approach will
become apparent when robotics increasingly moves away from the structured
domains of industrial robotics towards complex robotic systems, which both are
increasingly high-dimensional and increasingly hard to model, such as humanoid
robots. While real-time learning systems are more complex to implement, the
techniques and theory developed in this paper will become crucial in transition-
ing towards truly autonomous and self-tuning robotic systems.

23



0 2 4 6 8 10 12 14 16

0.05

0.1

0.15

0.2

Time t [s]

A
n

g
le

q
1

[r
a

d
]

Learned
Analytical

(a) Position of Joint 1

0 2 4 6 8 10 12 14 16

0.5

0.6

0.7

Time t [s]

A
n

g
le

q
2

[r
a

d
]

Learned
Analytical

(b) Position of Joint 2

0 2 4 6 8 10 12 14 16

0.15

0.2

0.25

0.3

Time t [s]

A
n

g
le

q
3

[r
a

d
]

Learned
Analytical

(c) Position of Joint 3

0 2 4 6 8 10 12 14 16

1.2

1.4

1.6

Time t [s]

A
n

g
le

q
4

[r
a

d
] Learned

Analytical

(d) Position of Joint 4

Figure 8: This figure illustrates the resulting joint-space trajectories for several
degrees of freedom for both the analytical and the learned solution of the re-
solved motion rate control law executed on our actual Mitsubishi PA-10 robot
shown in Figure 7(a). Please note that these differ slightly as the learning so-
lution cannot oversample the state-space and, thus, it does not converge to the
optimal solution that fast. Additionally, the model error accumulates along the
trajectory and the task-space control law needs to compensate for it. Note that
the task space trajectory performance of the learned approach is comparable
to the analytical approach as presented in Figure 7. The blue solid line shows
the joint-space trajectory of the analytical approach while the red dashed line

24


