Anamorphic images -
J. L. Hunt, B. G. Nickel, and Chnstlan Gigault

Department of Physics, University of Guelph, Guelph, Ontario NIG 2W1, Canada

(Received 2 April 1999; accepted 10 August 1999)

Anamorphic images are images of objects which have been distorted in some way so that only by
viewing them from some particular direction or in some particular optical surface do they become
recognizable. Artists have been fascinated with these transformations since the 16th century, but
there seems to be no modemn explication of the mathematics of these transforms. In this paper we
describe the most common of the anamorphic images found in art and derive the transform
equations for plane, conical, and cylindrical cases. With these equations it is possible to analyze
early anamorphs, and with computation to create modern ones with ease. © 2000 American Association

of Physics Teachers.

I. INTRODUCTION

The revolution in art in the 16th century was accompanied
by a rediscovery of perspective. The artists, mathematicians,
and philosophers of the Renaissance studied and exploited
perspective, sometimes to the extent of obsession, as they
saw it bearing on the nature of illusion, truth, and reality.
Prodigious essays in perspective were executed resulting in
startling trompe-1’oeil decorations such as the Colonna and
Mitelli false architecture of 1616 in the Ducal Palace, Sas-
suole. A critical essay, with copious illustration of the devel-
opment of perspective, can be found in the article by
Clerici.! It is only a small further step to experiment with the
rules of perspective and to carry them to extremes, producing
distorted images which appear normal only when observed
from a particular point of view, or via some optical device.
Such images are generally known as ‘‘anamorphic images.”’

Some artist-mathematicians produced treatises on the
methods for producing these images, the most notable being
Jean-Francois Niceron® who provided geometrical construc-
tions for making many types of anamorphic transforms.
Some of these methods are exact, while others are clearly
approximations.

The most extensive modern treatment of the history of
anamorphic art is the monograph by Baltrusaitis.> An exhi-
bition in Amsterdam in 1975 prompted a book contammg
several high-quality color reproductxons by Leeman.* Earlier
brief amcles by Gardner’ and Walker® cover much the same
ground but from a more mathematical point of view. Walker
deals explicitly with the geometrical optics of the anamor-
phic transformations and provides techniques devised by
David G. Stork for producing anamorphic images photo-
graphically.

Familiar examples of anamorphic transformations are map
projections and the images in ‘‘fun-house’’ mirrors.

In this paper we ‘will present the transformations for the
“‘plane,”” “‘conical,”’ and ‘‘cylindrical’’ anamorphs which
are the most common in anamorphic art.

II. PLANE ANAMORPHS

In these images a planar figure is distorted, mostly in one
dimension, so that it appears normal (or a hidden image ap-
pears) only when viewed from a particular direction—
usually very close to the plane of the drawing. By far the
most famous of these is the painting ‘‘The Ambassadors”
(1533) by Hans Holbein which hangs in the National Gallery
in London.” This painting of two prosperous men standing
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on either side of a curio cabinet is a virtuoso exercise in
perspective. The cabinet is filled with objects which were the
standard subjects for artists to practice in their sketch-

" books—spheres, polyhedra, a lute, etc., and the tessellated

floor contains a variety of geometric shapes. However,
spread across the lower portion of the painting is a gray
smear which startlingly resolves itself into the image of a
skull when the viewer stands on the right-hand side and
glances down at an elevation of about 20° above the surface.
This memento mori may also have been intended, by the
artist, as a rubric on his name, as ‘‘hohle Bein’’ means ‘‘hol-
low bone.’

A well-known Vexierbild (puzzle pxcture) by Erhard
Schon (c. 1535) is shown in the left of Fig. 1. # The woodcut
looks like a scene in which familiar objects are presented as
perhaps in a nightmare landscape. When viewed from the
left edge at an elevation of about 10° above the surface, the
portraits of Charles V, Ferdinand I, Pope Paul III, and Fran-
cis I are seen, as shown in the reconstruction at the right in
the figure. How was such a picture produced? Was it drawn
by viewing the surface from that angle or was a formula of

~ some kind employed? We know that both methods were

used. What then are the transforms that produce these draw-
ings?

The simplest transform i Is, shown in the example of Fig. 2
by Samuel Marolois (1614).° In this case only one dimension
is distorted and so the correct position from which to view
the reconstruction is from infinity. The transformation equa-
tions are trivial in this case:

x'=x,

and y’'=y/sina, 1)
where the primes represent the transformed coordinates and
a is the angle of elevation above the plane. Measurements on
the drawing indicate that the angle is 13°.

Anamorphs of this type are seen by almost everyone every
day in the symbols and drawings painted on roadways. The
distorted figures appear undistorted to the car driver or bi-
cycle rider as shown in Fig. 3.1

A more realistic sitnation for smaller scale images is one
where the anamorph is viewed at an elevation angle « at a
finite distance which we choose to be 4, at height 4 from the
center of the leading edge of the anamorph as shown in the
top of Fig. 4. The transformation is found by mapping points
xy in a *‘target”” grid to points x’,y’ on the anamorphic
plane. We take the orientation of the target plane to be nor-
mal to the origin-line-of-sight, VO. From the figure,
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Fig. 1. Plane anamorph by Erhard Schon (c. 1535). At the right is the
transformed image obtained by looking from the left at an elevation of 10°
above the anamorphic plane.

h/(d+y')=tan y=tan(a— B)
and
tan B=y/(d*+h?)"2,

Using the relation for the tangent of a difference, and writing
the functions in terms of d, h, and «, we readily obtain for
the y transformation and its inverse

_ ylsna 4 v y'sina )
Ti1=(hcose ¢ YT 1+ 7d)cost a @

For each value of y, the x transformation follows from the
lower part of Fig. 4 which is the (almost) horizontal plane
including the line VAB. Writing x/VA =x'/VB in terms of d,
h vy, and y' gives

x' INRE H(d+y ) =x/Jh2+ a2+ 2. (3)

Equations (2) and (3) have Egs. (1) as a limit as d and A go
to infinity with a constant ratio h/d=tan a.

This transform is depicted in Fig. 5, originally drawn by
Niceron.>!! The square grid (enlarged) is mapped onto the
trapezoidal grid. The rest of the construction is Niceron’s
geometrical equivalent of Egs. (2) and (3) and is given in
detail by Gardner.’ Analysis of the figure shows that it is
drawn for @a=19° and a=26 times the untransformed grid
element.

r

y

Fig. 2. Plane anamorph by Marolois (1614) constructed for viewing from
infinity. The figure is to be viewed at an elevation angle of 13°.
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Fig. 3. Left: Anamorphic bicycle-lane symbol designed for viewing at about
20°. Right: View of the symbol at about the proper angle.

III. CONICAL ANAMORPHS

Anamorphic images which require an optical reflecting
surface for reconstruction have, over the centunes, proven of
more interest to both artist and viewer. The simplest is the
conical reflector where the image is viewed from directly
above the cone apex as shown in Fig. 6. The cone is charac-
terized by an apex angle 6, and a base radius taken as unity

so that the cone height is 2= cot 3 8. Clearly, the transforma-
tion has circular symmetry, so the target is taken to be a
series of concentric rings of radius r which transform to rings
of radius ' when refliected off the conical surface.

For the view from infinity (a not unreasonable assumption
in practice) the transform is the strictly linear

2(1-r)h?
r-1
More generally, the situation is as depicted in Fig. 6,

where the anamorph is viewed from a point V at height d
above the apex. From the figure,

@

r=r+

r'=AR+ (h—a)tan( %6+ ﬂ) = Z—+(h—a)tan(6— a)

and
r alh
d+h d+a’

The last line can be used to eliminate both « and a and we
find

tan a=

Fig. 4. The geometry of the plane anamorph viewed from a finite distance.
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Fig. 5. Geometrical solution to the plane anamorph viewed from a finite
distance by J.-F. Niceron (1638).

_ dr (d+h)(1—r)h[2h(d+h)—r(h*~1)
Td+h(1-r) d+h(1=r) |(d+h)(h*—1)+2rh
(5)

r/

The limit of this as d goes to infinity is Eq. (4).

An example of this transformation is shown in Fig. 7,
which is again a construction by Niceron.” An analysis of the
figure shows that the cone angle is 60°, a natural choice for a
real situation. By fitting the measured values of r’ it is fur-
ther possible to show that the situation is not drawn for d
=oo, but rather that d+h=~35. The measured values of r’
show some scatter and it is not unreasonable to speculate that
the transformed rings were positioned experimentally by
viewing a target of equally spaced circles in the cone about 5
radius units above its base.

Niceron also provided templates for making anamorphs by
looking into a mirror from the side, but the templates, being
circles in a sector, are certainly approximations.'®> Such an-
amorphs are rare.

IV. CYLINDRICAL ANAMORPHS

The anamorphs which have retained their interest for the
longest time have been those which are reconstructed by ob-
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Fig. 6. The geometry of the conical anamorph viewed from a finite distance
above the base.
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Fig. 7. Geometrical matrix for ihe construction of conical anamorphs by
J.-F. Niceron (1638).

serving them in a cylindrical mirror standing on the anamor-
phic plane. From objects of mystery in the 16th century to a
rich man’s possession in the 17th and 18th to children’s toys
in the 19th century,’* the cylindrical anamorph has a long
history.

The situation is depicted in Fig. 8. The cylinder with unit
radius stands on the anamorphic plane and the transforma-
tion is determined by imagining rays from the point P” in the
anamorphic plane striking the mirror at R and being reflected
to the point of observation V. The virtual extension of the
ray VR passes through the anamorphic plane at P’. The left
part of Fig. 8 shows the projection of the geometry onto the
horizontal anamorphic plane, and on the right is a projection
onto a vertical plane through the cylinder axis and V.

We take the origin of coordinates as the center of the base
of the cylinder and V at an elevation % and distance d in -

Cylinder
axis

P.A

P.B

ey —s

Fig. 8. The geometry of the cylindrical anamorph viewed from a finite
distance at an elevation angle a.

Hunt, Nickel, and Gigault 234



W
i
(#7555
Illlllllllllllm:.’.'
Y

e
| \\\\§

Hl
“{\\\\\\\

Fig. 9. Right: The cylindrically anamorphized contours of a 10X 20 grid of
squares viewed at d=15, h=10. Left: The same viewed from infinity at an

. 12
elevation angle a=tan"' §.

which case the geometry of the ray VP’ is exactly that
shown in Fig. 4. As a consequence we now can take the total
anamorphic transform to P" as the combination of the trans-
formation Egs. (2) and (3) plus that generated by the rotation
of the ray segment RP' to RP" by angle 7—26.

To obtain the latter transformation equations we start with

x’ sin

d+y' ~d—cos U
as shown in Fig. 8. The second equality in this equation can
be used to solve for ¢ in terms of x',y’, and d. We get, from
the resultant quadratic in cos ¥,

3 dx"?+(d+y" )Nd*(1 —x'H) +2dy +x'2+y'?
- (d+yr)2+xl2

tan =

cos ¢

. (6)

The point P” coordinates are
x"=siny+RP" sin( Y+ 8),
y"=cos ¢+ RP" cos(y+ 6),

where  the  horizontal  projection RP"=RP’'=
(cos Y+y')cos ¢. On combining the above equations to-
gether with 8=+ ¢ we obtain

x"=sin ¢+ (cos Y+ y")(sin 2+ cos 2 ¢ tan ¢)

=x’+%—,(cos y+y' Mdcosyg—1). (7)
and
y'=cos ¢+ (cos h+y')(cos 24— sin 2 ¢ tan )
dcosy—1
=—y'+2cos (cos y+y') —d_——c—087) ®)

Since sin ¢=x'(d—cos )/(d+y"), the second expressions in
each of (7) and (8) make apparent the geometrical relation-
ships (x"~x")/(y"+y')=tan ¢, i.e., P' P" is parallel to OR.
The combined Egs. (2), (3), and (6)—(8) solve the cylindrical
anamorph problem of mapping (x,y) to (x",y").

The nature of these equations is illustrated in the right-
hand section of Fig. 9 which displays the transformation of a
10X 20 grid of squares on the interval 0<x=<1, 0=sy=<2
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with 2=10 and d=15, i.e., an elevation angle of 33.7°. Note
that the contours are not circles and the reflecting cylinder is
displaced from what would appear to be the ‘‘center’’ of the
array. The curved contours acquire an increasingly wider
spacing further from the mirror as a consequence of the finite
viewing distance. In many, if not most, situations the view-
ing distance can be taken to be infinity and a considerable
simplification in the equations is realized. If A=dtan «,
where « is the elevation angle of the line-of-sight above the
plane, then Egs. (2), (3), and (6)—(8) become

2y .

x"=x|3-2x*+ —1—x%|, 9)
Sin @«

y'=2(1-x%)¥2+ —y—( 1~2x%). (10
sin

As an example of these equations, another 10X 20 grid with
— 1=x=0 viewed from infinity at &= 33.7° is shown in the
left-half of Fig. 9. The contours are not circles but they are
equally spaced. The mirror is still not in the center of the
array.

The contrast between the left and right sides of Fig. 9
illustrates that the edges of the cylinder are not lines of con-
stant x except for viewing from infinity. At finite distance the
image of the cylinder in the eye is a trapezium, wider at the
top, which the brain insists on interpreting as a rectangle.
This in turn means that, when viewing the anamorph as a
“‘picture’’ framed by the cylinder, one is left with the im-
pression that something is not quite right as the picture re-
cedes from the cylinder edges with increasing y. To obtain an
““artistically pleasing’’ transformation we must somehow
compensate for the illusion that the edges of the cylinder
appear as parallel lines. One possibility is to leave Eq. (2)
and the corresponding target plane in Fig. 4 unchanged for
specifying the y coordinate, but replace Eq. (3) with

x'I(d+y")=x/d, (11)

which corresponds to specifying the x coordinate on a verti-
cal target plane through the cylinder axis. By defining sepa-
rate target planes we are clearly leaving the domain of per-
spective drawing in the strict sense, but it is precisely such
apparent inconsistencies that prevents a unique solution.
Niceron® has provided both an exact geometrical method
for the construction of such anamorphs and an approxima-
tion which is shown in Fig. 10."® In the approximation the
contours are circles'® with the spacing increasing with radial
distance, indicating that it has been drawn for a finite view-
ing distance. In addition, the position of the cylinder is dis-
placed from the center of the array. Finally, the radial lines in
the correct transformation (see Fig. 9) do not converge to a
common vertex whereas in the approximation they are taken
to point back to the center of the displaced cylinder. The
radial lines are drawn at equal angular separation, making the

~ sectors in the forward direction larger than at the sides. From

Fig. 9 it can be seen that this is exactly the opposite of the
correct transformation. When the Niceron matrix is tested by
transforming straight lines (a triangle, for example), the re-
constructed image retains small curvatures. This failing
would not be so noticeable or important for a drawing or
painting which was probably to be finished by direct obser-
vation in the mirror. ,

The forward transformation Egs. (2), (3), and (6)—(8) are
appropriate if the target consists of simple elements. An ex-
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Fig. 10. Geometric matrix for the construction of cylindrical anamorphs by
J.-F. Niceron (1638).

ample of such a case and the resulting reconstruction is
shown in Fig. 11. In more complicated cases such as a digi-
tized photograph it is preferable to have the inverse equa-
tions. These are derived in the Appendix, and Fig. 12 is an
example of an anamorphized photograph based on the in-
verse Egs. (A1)—(A5) supplemented with (2) and (11).

V. VIEWING THE IMAGE

-There is an ambiguity involved in describing where the
virtual image in the cylindrical mirror appears to be located.
The situation is described in Fig. 13. The anamorphic ele-
ment at distance s is imaged at s’ by the cylindrical mirror,
ie.,

1
s’

1 2
= ; + 13 .
Since z=(s—s')tan a, then,
25’2
= ( m) tan a. (12)
This image plane is shown in the figure and is responsible for
some of the fascination of these objects in the past; the image

Fig. 11. A simple anamorph constructed with Egs. (2), (3), and (6)—(8).
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Fig. 12. An anamorphized photograph using Egs. (A1)-(AS), (2),
and (11).

seems to stand up in the mirror and have a certain three-
dimensional air about it.7

There is, however, another possibility: Considered strictly
as a plane mirror in the axial direction, then s=s' and z
=0. In other words, the image will be seen to lie in the
anamorphic plane. Is such an image ever seen?

Almost all viewers see the cylindrical situation [Eq. (12)]
when viewing the image normally, i.e., with the interocular
axis perpendicular to the cylinder axis. It is, however, re-
markable that when the head is turned to the side (interocular
axis in the direction of the cylinder axis), then almost all
viewers we have sampled see the image lying in the anamor-
phic plane. This illusion is very strong and viewing with one
eye closed does not seem to affect it! We are not aware that
this illusion has been previously reported.

APPENDIX: THE INVERSE TRANSFORMS FOR
THE CYLINDRICAL ANAMORPH

The inverse mapping for the cylindrical anamorph has
been referred to by Dorrie!® as Alhazen’s Billiard Problem.
We start by combining Egs. (7) and (8) into the alternative
pair,

(x"—sin ¢)(cos 2¢y—sin 2¢tan @)
=(y"—cos ¢)(sin2¢+cos 2 tan @),
(x" = sin )2+ (y" — cos ) 2= (cos ¢+y')%(1+tan> ¢).

R2
8
<&
2
E
=
Two possible
image planes
z
o
I S §' =

Fig. 13. The geometry of the image plane for the cylindrical anamorph.
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The first of these equations, when used with

tan ¢=sin y/(d—cos ), reduces to
(x"~sin ¢)(d cos 2 zp—vcos )
=(y"~—cos ¢)(d sin2¢z—' sin i),

which is an equation for ¢ in terms of x”,y”, and d.
The remaining equation gives y’ once ¢ is known. Since
cos Y+y’ is necessarily positive,

y'=~—cos ¢

+ \/2_2_5_2;_%:1_ V(x"=sin )2+ (y" —cos ¢)2,

(A1)

and, for completeness, from the discussion leading to Eq. (6),
sin

x'—d cos://(d+y,) (A2)

The equation for ¢ given above simplifies considerably if
we introduce polar coordinates r, 2¢ to replace x”,y" and
write ¢ in terms of the deviation from the bisecting angle e,
ie., y=e€+ 5. With these changes the y-equation becomes
equivalent to

sin 6 cos 6=A sin 6+ B cos 6,

where
1 1+1 B_l 1 1)
A_E 7 Ecose, =3\7 Zsme,
x"=rsin2e, y"=rcos2e. (A3)

Since the equation for the coordinates x”,y" define r and €
and hence A and B, we are left with the equation for & as the
only nontrivial relationship. This, in turn, is the quartic

sin* 6— 2B sin® 6— (1~ A%~ B?)sin? 6+ 2B sin 6~ B*=0,
which yields, as the physical solution,

b

sin5=(7+—az\/__723;, (A4)
where
a=B+v, b=u+BQ+w)lv, v=+1+u—A2,
u=4Csin(L)sinW—-—t, C=s(1-A2=B?), (A5)
3 3 3

[ AB
t=sin"!| =
with |t|</2. The solution of the inverse problem is now
trivially completed with Egs. (Al) and (A2) and siny
=sin(e+ d).

The solution given in Eq. (A4) is numerically stable with
| 8] < 7/2 and all intermediate variables automatically real for
any r, d>1 in the physically allowed region |2¢|
<cos~!(1/d)+cos™!(1/r). In the extended or ‘‘shadow’’ re-
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gion cos™(1/d)+cos}(1/r)<|2€|<2m, the solution pre-
dicted by Eq. (A4) corresponds to rays penetrating the cyl-
inder and reflecting off the inner face. There is no dramatic
simplification that occurs in the inverse Egs. (A1)-(AS5)
when d= in contrast to the forward transformation case
[cf. Egs. (9) and (10)].

It is perhaps worth noting that none of the intermediate
functions a, b, v, or u in Eqs. (A4) and (AS5) have any par-
ticular symmetry under reflection €é— — €, and thus the sym-
metry requirement that sin & be an odd function of € is not
explicit. This does not mean Eq. (A4) is defective. On the
contrary, Eq. (A4) is our ‘‘best’” choice as we have found
that other representations of the solution, which do satisfy
the reflection symmetry explicitly, are numerically less
stable and/or more complicated.
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