
0-0

Copyright c© 2008, 2009 Sun Microsystems, Inc. (”Sun”). All

rights are reserved by Sun except as expressly stated as follows.

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted, provided that

copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on

servers, or to redistribute to lists, requires prior specific written

permission of Sun.

1

The Big Messages

• Effective parallelism uses trees.

• Associative combining operators are good.

• MapReduce is good. Catamorphisms are good.

• There are systematic strategies for parallelizing superficially

sequential code.

• We must lose the “accumulator” paradigm and emphasize

“divide-and-conquer.”

2

This Talk Is about Performance

The bag of programming tricks

that has served us so well

for the last 50 years

is

the wrong way to think

going forward and

must be thrown out.

3

Why?
• Good sequential code minimizes total number of operations.

> Clever tricks to reuse previously computed results.

> Good parallel code often performs redundant operations

to reduce communication.

• Good sequential algorithms minimize space usage.

> Clever tricks to reuse storage.

> Good parallel code often requires extra space to permit

temporal decoupling.

• Sequential idioms stress linear problem decomposition.

> Process one thing at a time and accumulate results.

> Good parallel code usually requires multiway problem

decomposition and multiway aggregation of results.
4

Let’s Add a Bunch of Numbers

SUM = 0 !Oops!

DO I = 1, 1000000

SUM = SUM + X(I)

END DO

Can it be parallelized?

5

Let’s Add a Bunch of Numbers

SUM = 0 !Oops!

DO I = 1, 1000000

SUM = SUM + X(I)

END DO

Can it be parallelized?

This is already bad!

Clever compilers have to undo this.

6

What Does a Mathematician Say?

1000000∑
i=1

xi or maybe just

∑
x

Compare Fortran 90 SUM(X).

What, not how.

No commitment yet as to strategy. This is good.

7

Sequential Computation Tree

SUM = 0

DO I = 1, 1000000

SUM = SUM + X(I)

END DO

8

Atomic Update Computation Tree (a)

SUM = 0

PARALLEL DO I = 1, 1000000

SUM = SUM + X(I) !Wrong!

END DO

Race condition

can cause updates

to be lost.

9

Atomic Update Computation Tree (b)

SUM = 0

PARALLEL DO I = 1, 1000000

ATOMIC SUM = SUM + X(I)

END DO

10

Parallel Computation Tree

What sort of code

should we write

to get a computation

tree of this shape?

What sort of code

would we like

to write?

11

Finding the Length of a LISP List

Recursive:

(define length (list)

(cond ((null list) 0)

(else (+ 1 (length (rest list))))))

Total work: Θ(n)

Delay: Ω(n)
12

Linear versus Multiway Decomposition

• Linearly linked lists are inherently sequential.

> Compare Peano arithmetic: 5 = ((((0+1)+1)+1)+1)+1

> Binary arithmetic is much more efficient than unary!

• We need a multiway decomposition paradigm:

length [] = 0

length [a] = 1

length (a++b) = (length a) + (length b)

This is just a summation problem: adding up a bunch of 1’s!

Total work: Θ(n)

Delay: Ω(log n), O(n) depending on how a++b is split;

even worse if splitting has worse than constant cost
13

Conc Lists

empty list singleton concatenation

〈 〉 〈 23 〉 a ‖ b

14

Conc List for 〈23, 47, 18, 11〉 (1)

(
〈 23 〉 ‖ 〈 47 〉

)
‖

(
〈 18 〉 ‖ 〈 11 〉

)

15

Conc Lists for 〈23, 47, 18, 11〉 (2)

(
〈 23 〉 ‖ 〈 47 〉

)
‖

(
〈 18 〉 ‖ 〈 11 〉

)

((
〈 23 〉 ‖ 〈 47 〉

)
‖ 〈 18 〉

)
‖ 〈 11 〉

16

Conc Lists for 〈23, 47, 18, 11〉 (3)

(
〈 23 〉 ‖

(
〈 47 〉 ‖ 〈 〉

))

‖
(
〈 18 〉 ‖

(
〈 〉 ‖ 〈 11 〉

))

17

Conc Lists for 〈23, 47, 18, 11〉 (4)

18

Primitives on Lists (1)

constructors predicates accessors

’() null?

cons lists (cons a ys) car, cdr

(cons (car xs) (cdr xs)) = xs

’() null?

(list a) singleton? item

conc lists (conc ys zs) left, right

(list (item s)) = s

(conc (left xs) (right xs)) = xs

19

Primitives on Lists (2)

constructors predicates accessors

’() null?

cons lists (cons a ys) car, cdr

(cons (car xs) (cdr xs)) = xs

’() null?

(list a) singleton? item

conc lists (conc ys zs) split, xxxx

(list (item s)) = s

(split xs (λ (ys zs) (conc ys zs))) = xs

20

Primitives on Lists (3)

constructors predicates accessors

’() null?

cons lists (cons a ys) car, cdr

(cons (car xs) (cdr xs)) = xs

’() null?

(list a) singleton? item

conc lists (conc ys zs) split, xxxx

(list (item s)) = s

(split xs (λ (ys zs) (conc ys zs))) = xs

(split xs conc) = xs

21

Defining Lists Using car cdr cons (1)

(define (first x)

(cond ((null? x) ’())

(else (car x))))

(define (rest x)

(cond ((null? x) ’())

(else (cdr x))))

(define (append xs ys)

(cond ((null? xs) ys)

(else (cons (car xs) (append (cdr xs) ys)))))

(define (addleft a xs) (cons a xs))

(define (addright xs a)

(cond ((null? xs) (list a))

(else (cons (car xs) (addright (cdr xs) a)))))

22

Defining Lists Using car cdr cons (2)

(define (first x) ;Constant time

(cond ((null? x) ’())

(else (car x))))

(define (rest x) ;Constant time

(cond ((null? x) ’())

(else (cdr x))))

(define (append xs ys) ;Linear in (length xs)

(cond ((null? xs) ys)

(else (cons (car xs) (append (cdr xs) ys)))))

(define (addleft a xs) (cons a xs)) ;Constant time

(define (addright xs a) ;Linear in (length xs)

(cond ((null? xs) (list a))

(else (cons (car xs) (addright (cdr xs) a)))))

23

Defining Lists Using
item list split conc (1)

(define (first xs) ;Depth of left path

(cond ((null? xs) ’())

((singleton? xs) (item xs))

(else (split xs (λ (ys zs) (first ys))))))

(define (rest xs) ;Depth of left path

(cond ((null? xs) ’())

((singleton? xs) ’())

(else (split xs (λ (ys zs) (append (rest ys) zs))))))

(define (append xs ys) ;Constant time

(cond ((null? xs) ys)

((null? ys) xs)

(else (conc xs ys))))

24

Defining Lists Using
item list split conc (2)

(define (first xs) ;Depth of left path

(cond ((null? xs) ’())

((singleton? xs) (item xs))

(else (split xs (λ (ys zs) (first ys))))))

(define (rest xs) ;Depth of left path

(cond ((null? xs) ’())

((singleton? xs) ’())

(else (split xs (λ (ys zs) (append (rest ys) zs))))))

(define (append xs ys) ;???

(cond ((null? xs) ys)

((null? ys) xs)

(else (REBALANCE (conc xs ys)))))

25

Defining Lists Using
item list split conc (3)

(define (addleft a xs)

(cond ((null? xs) (list a))

((singleton? xs) (append (list a) xs))

(else (split xs (λ (ys zs) (append (addleft a ys) zs))))))

(define (addright xs a)

(cond ((null? xs) (list a))

((singleton? xs) (append xs (list a)))

(else (split xs (λ (ys zs) (append ys (addright a zs)))))))

26

Defining Lists Using
item list split conc (4)

(define (addleft a xs) (append (list a) xs))

(define (addright xs a) (append xs (list a)))

27

map reduce mapreduce Using car cdr cons

(map (λ (x) (* x x)) ’(1 2 3)) => (1 4 9)

(reduce + 0 ’(1 4 9)) => 14

(mapreduce (λ (x) (* x x)) + 0 ’(1 2 3)) => 14

(define (map f xs) ;Linear in (length xs)

(cond ((null? xs) ’())

(else (cons (f (car xs)) (map f (cdr xs))))))

(define (reduce g id xs) ;Linear in (length xs)

(cond ((null? xs) id)

(else (g (car xs) (reduce g id (cdr xs))))))

(define (mapreduce f g id xs) ;Linear in (length xs)

(cond ((null? xs) id)

(else (g (f (car xs)) (mapreduce f g id (cdr xs))))))

28

length filter Using car cdr cons

(define (length xs) ;Linear in (length xs)

(mapreduce (λ (q) 1) + 0 xs))

(define (filter p xs) ;Linear in (length xs)

(cond ((null? xs) ’())

((p (car xs)) (cons p (filter p (cdr xs))))

(else (filter p (cdr x)))))

(define (filter p xs) ;Linear in (length xs)??

(apply append

(map (λ (x) (if (p x) (list x) ’())) xs)))

(define (filter p xs) ;Linear in (length xs)!!

(mapreduce (λ (x) (if (p x) (list x) ’()))

append ’() xs))

The latter analysis depends on a crucial fact: in this situation,

each call to append will require constant, not linear, time! 29

reverse Using car cdr cons

(define (reverse xs) ;QUADRATIC in (length xs)

(cond ((null? xs) ’())

(else (addright (reverse (cdr xs)) (car xs)))))

(define (revappend xs ys) ;Linear in (length xs)

(cond ((null? xs) ys)

(else (revappend (cdr xs) (cons (car xs) ys)))))

(define (reverse xs) ;Linear in (length xs)

(revappend xs ’()))

Structural recursion on cons lists produces poor performance for

reverse. An accumulation trick gets it down to linear time.

30

Parallel map reduce mapreduce
Using item list split conc

(define (mapreduce f g id xs) ;Logarithmic in (length xs)??

(cond ((null? xs) id)

((singleton? xs) (f (item xs)))

(else (split xs (λ (ys zs)

(g (mapreduce f g id ys) ;Opportunity for

(mapreduce f g id zs))))))) ; parallelism

(define (map f xs)

(mapreduce (λ (x) (list (f x))) append ’() xs)) ;or conc

(define (reduce g id xs)

(mapreduce (λ (x) x) g id xs))

31

Parallel length filter reverse
Using item list split conc

(define (length xs) ;Logarithmic in (length xs)??

(mapreduce (λ (q) 1) + 0 xs))

(define (filter p xs) ;Logarithmic in (length xs)??

(mapreduce (λ (x) (if (p x) (list x) ’()))

append ’() xs))

(define (reverse xs) ;Logarithmic in (length xs)??

(mapreduce list (λ (ys zs) (append zs ys)) ’() xs))

32

Exercise: Write Mergesort and Quicksort
in This Binary-split Style

• Quicksort: structural induction on output

> Carefully split input into lower and upper halves (tricky)

> Recursively sort the two halves

> Cheaply append the two sorted sublists

• Mergesort: structural induction on input

> Cheaply split input in half

> Recursively sort the two halves

> Carefully merge the two sorted sublists (tricky)

33

Filters in Fortress (1)

sequentialFilterJEK(p: E → Boolean, xs : ListJEK): ListJEK = do

result : ListJEK := 〈 〉
for a← seq(xs) do

if p(a) then result := result .addRight(a) end

end

result

end

Example of use:

So what language

is this? Fortress.

odd(x:Z) = ((x MOD 2) 6= 0)

sequentialFilter(odd , 〈 1, 4, 7, 2, 5, 3 〉) produces 〈 1, 7, 5, 3 〉
34

Filters in Fortress (2)

recursiveFilterJEK(p: E → Boolean, xs : ListJEK): ListJEK =

if xs .isEmpty() then 〈 〉
else

(first , rest) = xs .extractLeft().get()

rest ′ = recursiveFilter(rest , p)

if p(first) then rest ′.addLeft(first) else rest ′ end
end

Still linear-time delay.

35

Filters in Fortress (3a)

parallelFilterJEK(p: E → Boolean, xs : ListJEK): ListJEK =

if |xs| = 0 then 〈 〉
elif |xs| = 1 then

(x,) = xs .extractLeft().get()

if p(x) then 〈x〉 else 〈 〉 end
else

(x, y) = xs .split()

parallelFilter(x, p) ‖ parallelFilter(y, p)

end

36

Filters in Fortress (3b)

parallelFilterJEK(p: E → Boolean, xs : ListJEK): ListJEK =

if |xs| = 0 then 〈 〉
elif |xs| = 1 then

(x ,) = xs .extractLeft().get()

if p(x) then 〈x 〉 else 〈 〉 end
else

(x, y) = xs .split()

parallelFilter(x, p) ‖ parallelFilter(y, p)

end

37

Filters in Fortress (3c)

parallelFilterJEK(p: E → Boolean, xs : ListJEK): ListJEK =

if |xs| = 0 then 〈 〉
elif |xs| = 1 then

(x ,) = xs .extractLeft().get()

if p(x) then 〈x 〉 else 〈 〉 end
else

(x, y) = xs .split()

parallelFilter(x, p) ‖ parallelFilter(y, p)

end

reductionFilterJEK(p: E → Boolean, xs : ListJEK): ListJEK =

‖
x←xs

(if p(x) then 〈x 〉 else 〈 〉 end)
38

Filters in Fortress (4)

Actually, filters are so useful that they are built into the Fortress

comprehension notation in the usual way:

comprehensionFilterJEK(p: E → Boolean, xs : ListJEK): ListJEK =

〈x | x← xs , p(x) 〉

Oh, yes:
∑

i←1:1000000

xi and MAX
i←1:1000000

xi

or maybe:
∑
a←x

a and MAX
a←x

a

or maybe just:
∑

x and MAXx
39

Point of Order
For filter, unlike summation, we rely on maintaining

the original order of the elements in the input list.

(Both ‖ and + are associative, but only + is commutative.)

Do not confuse the ordering of elements in the result list (which

is a spatial order) with the order in which they are computed

(which is a temporal order).

Sequential programming often ties the one to the other. Good

parallel programming decouples this unnecessary dependency.

This strategy for parallelism relies only on associativity,

not commutativity.

40

Conjugate Transforms

A very simple but very powerful idea.

Instead of mapping input items directly to output data type T :

• Map inputs (maybe by way of T) to a richer data type U .

• Perform computations in this richer space U

(chosen to make computation simpler or faster).

• Finally, project the result from U back into T .

41

The Three-way Unshuffle Problem (1)
• Goal: deal a deck of cards into three piles.

• Example: from 〈a, b, c, d, e, f, g, h, i, j, k〉 ,
produce (〈a, d, g, j〉, 〈b, e, h, k〉, 〈c, f, i〉) .

• Base cases:

> 〈 〉 yields (〈 〉, 〈 〉, 〈 〉)
> 〈a〉 yields (〈a〉, 〈 〉, 〈 〉)

• Combining: let’s consider input 〈a, b, c, d〉
> (〈a〉, 〈 〉, 〈 〉) plus (〈b〉, 〈 〉, 〈 〉) yields (〈a〉, 〈b〉, 〈 〉)
> (〈c〉, 〈 〉, 〈 〉) plus (〈d〉, 〈 〉, 〈 〉) yields (〈c〉, 〈d〉, 〈 〉)
> (〈a〉, 〈b〉, 〈 〉) plus (〈c〉, 〈d〉, 〈 〉) yields (〈a, d〉, 〈b〉, 〈c〉)
We always perform three concatenations;

we just need to pair them up correctly. How?
42

The Three-way Unshuffle Problem (2)

unshuffle(xs: ListJZK): (ListJZK, ListJZK, ListJZK) =

if |xs| = 0 then (〈 〉, 〈 〉, 〈 〉)
elif |xs| = 1 then (xs, 〈 〉, 〈 〉)
else (ys, zs) = xs.split()

((a, b, c), (d, e, f)) = (unshuffle ys, unshuffle zs)

if |c| = |a| then (a ‖ d, b ‖ e, c ‖ f)

elif |b| = |a| then (a ‖ e, b ‖ f, c ‖ d)

else (a ‖ f, b ‖ d, c ‖ e)

end

end

Unfortunately, the tests |c| = |a| and |b| = |a| are slow.

43

The Three-way Unshuffle Problem (3)

unshuffle ′(xs: ListJZK): (ListJZK, ListJZK, ListJZK,Z) =

if |xs| = 0 then (〈 〉, 〈 〉, 〈 〉, 0) *̄ Solution: project inputs into

elif |xs| = 1 then (xs, 〈 〉, 〈 〉, 1) *̄ a space of 4-tuples, not 3-tuples.

else (ys, zs) = xs.split()

((a, b, c, j), (d, e, f, k)) = (unshuffle ′ ys, unshuffle ′ zs)

case j of

0⇒ (a ‖ d, b ‖ e, c ‖ f, (j + k) MOD 3)

1⇒ (a ‖ f, b ‖ d, c ‖ e, (j + k) MOD 3)

2⇒ (a ‖ e, b ‖ f, c ‖ d, (j + k) MOD 3)

end

end

unshuffle(xs: ListJZK): (ListJZK, ListJZK, ListJZK) = do

(as, bs, cs, m) = unshuffle ′ xs *̄ Now project the result 4-tuple

(as, bs, cs) *̄ to the desired 3-tuple.

end 44

The Three-way Unshuffle Problem (4)

Abstract the combining operator as ¢ and then use “big ¢”:

opr ¢(p: (ListJZK, ListJZK, ListJZK,Z), q: (ListJZK, ListJZK, ListJZK,Z)) = do

((a, b, c, j), (d, e, f, k)) = (p, q)

case j of

0⇒ (a ‖ d, b ‖ e, c ‖ f, (j + k) MOD 3)

1⇒ (a ‖ f, b ‖ d, c ‖ e, (j + k) MOD 3)

2⇒ (a ‖ e, b ‖ f, c ‖ d, (j + k) MOD 3)

end

end

unshuffle(xs: ListJZK): (ListJZK, ListJZK, ListJZK) = do

(as, bs, cs, m) = ¢
x←xs

(〈x〉, 〈 〉, 〈 〉, 1)

(as, bs, cs)

end

45

Mergesort Is a Catamorphism

Abstract merging as operator MERGE and then use “big MERGE”:

opr MERGE(p: ListJZK, q: ListJZK) = do

*̄ Merge two sorted lists into a new sorted list

. . .

end

(The MERGE operator is associative and has identity 〈 〉 ;
thus lists under the MERGE operator form a monoid.)

mergesort(xs : ListJZK): ListJZK = MERGE
x←xs

〈x〉

46

The Parallel Prefix Problem (1)

• Goal: compute the running totals and final sum of a sequence.

• Example: from 〈a, b, c, d, e〉 , produce

(〈0, a, a + b, a + b + c, a + b + c + d〉, a + b + c + d + e) .

• Example: from 〈1, 2, 3, 6, 3, 4,−5, 2, 9〉 ,
produce (〈0, 1, 3, 6, 9, 13, 17, 12, 14〉, 23) .

• This is not the only possible formulation, but it is convenient

for our purposes here.

• Parallel prefix is useful with any monoid; for simplicity we

will restrict our attention to addition on integers.

47

The Parallel Prefix Problem (2)

ppsum(xs: ListJZK): (ListJZK,Z) =
„fi∑

xs[0 : k − 1]

˛̨
˛̨ k← 0 : |xs| − 1

fl
,
∑

xs

«

Unfortunately, the total work here is quadratic in |xs| .

48

The Parallel Prefix Problem (3)

ppsum(xs: ListJZK): (ListJZK,Z) =

if |xs| = 0 then (〈 〉, 0)

elif |xs| = 1 then (〈0〉, xs0)

else (ys, zs) = xs.split()

((ps, a), (qs, b)) = (ppsum ys, ppsum zs)

ps ‖ 〈 a + q | q ← qs 〉
end

Now the total work is linear in |xs| .
Unfortunately, the dependency on a results in delay Ω((log n)2).

49

The Parallel Prefix Problem (4)

ppsum(xs: ListJZK): (ListJZK,Z) = ppsum ′(0, xs)

ppsum ′(k:Z, xs: ListJZK): (ListJZK,Z) =

if |xs| = 0 then (〈 〉, k)

elif |xs| = 1 then (〈k〉, k + xs0)

else (ys, zs) = xs.split()

(ps, a) = ppsum ′(k, ys)

(qs, b) = ppsum ′(a, zs)

(ps ‖ qs, b)

end

One pass, and again the total work is linear in |xs| .
Unfortunately, the dependency on a results in delay Ω(n).

50

The Parallel Prefix Problem (5)

A solution in NESL from Guy Blelloch’s 2009 PPoPP talk:

function scan(A, op) =

if (#A <= 1) then [0]

else let

sums = {op(A[2*i], A[2*i+1]) : i in [0:#A/2]};

evens = scan(sums, op);

odds = {op(evens[i], A[2*i]) : i in [0:#A/2]};

in interleave(evens,odds);

See slide 11 of http://www.cs.cmu.edu/~blelloch/papers/PPoPP09.pdf

Using tree representation: total work Θ(n), delay Ω((log n)2)

Can we do better?
51

Monoid-cached Trees

Empty Leaf Node

tree with cached sums tree with cached lengths
See Hinze, Ralf, and Paterson, Ross. “Finger Trees: A Simple General-purpose

Data Structure.” Journal of Functional Programming 16 (2): 2006, 197–217. 52

Declaring Monoid-cached Trees
in Fortress

trait ValueTreeJT, V K comprises {EmptyJT, V K, LeafJT, V K, NodeJT, V K }
val : V

end

object EmptyJT, V K(val : V) extends ValueTreeJT, V K end
object LeafJT, V K(item: T, val : V) extends ValueTreeJT, V K end
object NodeJT, V K(left : ValueTreeJT, V K, val : V , right : ValueTreeJT, V K)

extends ValueTreeJT, V K
end

53

The Parallel Prefix Problem (6)
ppsum(xs: ListJZK): (ListJZK,Z) = do

c = sumcache xs

(ppfinish(0, c), c.val)

end

sumcache(xs: ListJZK): ValueTreeJZ,ZK =

if |xs| = 0 then EmptyJZ,ZK(0)

elif |xs| = 1 then LeafJZ,ZK(xs0, xs0)

else (ys, zs) = xs.split()

(p, q) = (sumcache ys, sumcache zs)

NodeJZ,ZK(p, p.val + q.val , q)

end

ppfinish(k:Z, : EmptyJZ,ZK) = 〈 〉
ppfinish(k:Z, : LeafJZ,ZK) = 〈k〉
ppfinish(k:Z, n: NodeJZ,ZK) = ppfinish(k, n.left) ‖ ppfinish(k + n.left .val , n.right)

Total work Θ(n)

Delay Ω(log n)

It would be nice to have a simple facility to cache any monoid in a tree. It’s straightforward to cache more than one monoid, because the

cross-product of two monoids is a monoid. Deforestation of monoid-cached trees may turn out to be an important optimization. 54

MapScanZip (cf. MapReduce)

MapScanZip op id f xs =

zip xs (scan op id (map f xs))

where scan is the parallel prefix operation, parameterized by an

associative operation op and its identity id.

Monoid-cached trees provide a fast implementation.

Note that zip is difficult in the general case because the shapes

of the trees might not match, but this case is easy.

55

Splitting a String into Words (1)

• Given: a string

• Result: List of strings, the words separated by spaces

> Words must be nonempty

> Words may be separated by more than one space

> String may or may not begin (or end) with spaces

56

Splitting a String into Words (2)
• Tests:

println words(“This is a sample”)

println words(“ Here is another sample ”)

println words(“JustOneWord”)

println words(“ ”)

println words(“”)

• Expected output:

〈 This, is, a, sample 〉
〈 Here, is, another, sample 〉
〈 JustOneWord 〉
〈 〉
〈 〉

57

Splitting a String into Words (3)
words(s: String) = do

result : ListJStringK := 〈 〉
word : String := “”

for c← seq(s) do

if (c = ‘ ’) then

if (word 6= “”) then result := result ‖ 〈word 〉 end
word := “”

else

word := word ‖ c

end

end

if (word 6= “”) then result := result ‖ 〈word 〉 end
result

end

58

Splitting a String into Words (4a)

59

Splitting a String into Words (4b)

60

Splitting a String into Words (5)

maybeWord(s: String): ListJStringK =

if s = “” then 〈 〉 else 〈 s 〉 end

trait WordState

extends {AssociativeJWordState,⊕K }
comprises {Chunk, Segment }

opr ⊕(self, other : WordState): WordState

end

61

Splitting a String into Words (6)

object Chunk(s: String) extends WordState

opr ⊕(self, other : Chunk): WordState =

Chunk(s ‖ other .s)

opr ⊕(self, other : Segment): WordState =

Segment(s ‖ other .l, other .A, other .r)

end

62

Splitting a String into Words (7)

object Segment(l: String, A: ListJStringK, r: String)

extends WordState

opr ⊕(self, other : Chunk): WordState =

Segment(l, A, r ‖ other .s)

opr ⊕(self, other : Segment): WordState =

Segment(l, A ‖ maybeWord(r ‖ other .l) ‖ other .A, other .r)

end

63

Splitting a String into Words (8)

processChar(c: Character): WordState =

if (c = ‘ ’) then Segment(“”, 〈 〉, “”) else Chunk(c) end

words(s: String) = do

g =
⊕
c←s

processChar(c) *̄ All the parallelism happens here

typecase g of

Chunk⇒ maybeWord(g.s)

Segment⇒ maybeWord(g.l) ‖ g.A ‖ maybeWord(g.r)

end

end

64

Splitting a String into Words (9)

(* The mechanics of BIG OPLUS *)

opr BIG ⊕JT K(g: (ReductionJWordStateK,
T →WordState)

→WordState): WordState =

g(GlomReduction, identityJWordStateK)

object GlomReduction extends ReductionJWordStateK
getter toString() = “GlomReduction”

empty(): WordState = Chunk(“”) *̄ Identity value

join(a: WordState, b: WordState): WordState = a⊕ b

end

65

To Summarize: A Big Idea

• Summations and list constructors and loops are alike!∑
i←1:1000000

x2
i

〈x2
i | i← 1 : 1000000 〉

for i← 1 : 1000000 do xi := x2
i end

> Generate an abstract collection

> The body computes a function of each item

> Combine the results (or just synchronize)

> In other words: generate-and-reduce

• Whether to be sequential or parallel is a separable question

> That’s why they are especially good abstractions!

> Make the decision on the fly, to use available resources
66

Another Big Idea

• Formulate a sequential loop (or finite-state machine) as

successive applications of state transformation functions fi

• Find an efficient way to compute and represent compositions

of such functions (this step requires ingenuity)

• Instead of computing

s := s0; for i← seq(1 : 1000000) do s := fi(s) end ,

compute s := (◦
i←1:1000000

fi) s0

• Because function composition is associative, the latter has a

parallel strategy

• If you need intermediate results, use parallel prefix function

composition; then map down the result, applying each to s0

See, for example, Hillis, W. D., and Steele, G. L. “Data parallel algorithms.” Comm. ACM 29, 12 (Dec. 1986), 1170–1183. 67

Splitting a String into Words (3, again)
words(s: String) = do

result : ListJStringK := 〈 〉
word : String := “”

for k ← seq(0#length(s)) do

char = substring(s, k, k + 1)

if (char = “ ”) then

if (word 6= “”) then result := result ‖ 〈word 〉 end
word := “”

else

word := word ‖ char

end

end

if (word 6= “”) then result := result ‖ 〈word 〉 end
result

end

68

Automatic Construction of Parallel Code

If you can construct two sequential versions of a function that
is a homomorphism on lists, one that operates left-to-right and
one right-to-left, then there is a technique for constructing a
parallel version automatically.

Morita, K., Morihata, A., Matsuzaki, K., Hu, Z., and Takeichi, M.

“Automatic inversion generates divide-and-conquer parallel programs.”

Proc. 2007 ACM SIGPLAN PLDI, 146-155.

Just derive a weak right inverse function and then apply the

Third Homomorphism Theorem. See—it’s easy!

There is an analogous result for tree homomorphisms. Morihata, A., Matsuzaki, K., Hu, Z., and Takeichi, M. “The third homomorphism

theorem on trees: Downward and upward lead to divide-and-conquer.” Proc. 2009 ACM SIGPLAN-SIGACT POPL, 177–185.

Full disclosure: the authors of these papers were members of a research group at the University of Tokyo that has had a collaborative research

agreement with the Programming Language Research group at Sun Microsystems Laboratories.

69

We Need a New Mindset for Multicores
• DO loops are so 1950s! (Literally: Fortran is now 50 years old.)

• So are linear linked lists! (Literally: Lisp is now 50 years old.)

• JavaTM-style iterators are so last millennium!

• Even arrays are suspect! Ultimately, it’s all trees.

• As soon as you say “first, SUM = 0” you are hosed.

Accumulators are BAD for parallelism. Note that foldl and

foldr, though functional, are fundamentally accumulative.

• If you say, “process subproblems in order,” you lose.

• The great tricks of the sequential past DON’T WORK.

• The programming idioms that have become second nature to

us as everyday tools DON’T WORK.

70

The Parallel Future
• We need parallel strategies for problem decomposition, data

structure design, and algorithmic organization:

> The top-down view:

Don’t split a problem into “the first” and “the rest.”

Instead, split a problem into roughly equal pieces;

recursively solve subproblems, then combine subsolutions.

> The bottom-up view:

Don’t create a null solution, then successively update it;

Instead, map inputs independently to singleton solutions,

then merge the subsolutions treewise.

> Combining subsolutions is usually trickier than

incremental update of a single solution.
71

MapReduce Is a Big Deal!

• Associative combining operators are a VERY BIG DEAL!

> Google MapReduce requires that combining operators

also be commutative.

> There are ways around that.

• Inventing new combining operators is a very, very big deal.

> Creative catamorphisms!

> We need programming languages that encourage this.

> We need assistance in proving them associative.

72

The Fully Engineered Story

In practice, there are many optimizations:

• Optimized representations of singleton lists.

• Use tree branching factors larger than 2. (Example: Rich Hickey’s

Clojure is a JVMTM-based Lisp that represents lists as 64-ary trees.)

• Use self-balancing trees (2-3, red-black, finger trees, . . .).

• Use sequential techniques near the leaves.

• Have arrays at the leaves. Decide dynamically whether to

process them sequentially or by parallel recursive subdivision.

• When iterating over an integer range, decide dynamically

whether to process it sequentially or by parallel recursive

subdivision.
Linear lists must be processed sequentially. A tree can be processed breadth-first (parallel) or depth-first (sequential), or both. Therefore we

should use both parallel and sequential strategies, and perhaps derive one from the other. 73

Conclusion
• Programs and data structures organized according to linear

problem decomposition principles can be hard to parallelize.

• Programs and data structures organized according to parallel

problem decomposition principles are easily processed either

in parallel or sequentially, according to available resources.

• This parallel strategy has costs and overheads. They will be

reduced over time but will not disappear.

• In a world of parallel computers of wildly varying sizes,

this is our only hope for program portability in the future.

• Better language design can encourage better parallel

programming.

74

Get rid of cons!

75

75-1

