
JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS
Vol. 16, No. 2, March-April 1993

Gain-Scheduled Missile Autopilot Design Using Linear
Parameter Varying Transformations

Jeff S. Shamma*
University of Texas at Austin, Austin, Texas 78712

and
James R. Cloutiert

U.S. Air Force Armament Directorate, Eglin Air Force Base, Florida 32542

This paper presents a gain-scheduled design for a missile longitudinal autopilot. The gain-scheduled design is
novel in that it does not involve linearizations about trim conditions of the missile dynamics. Rather, the missile
dynamics are brought to a quasilinear parameter varying (LPV) form via a state transformation. An LPV system
is defined as a linear system whose dynamics depend on an exogenous variable whose values are unknown a priori
but can be measured upon system operation. In this case, the variable is the angle of attack. This is actually an
endogenous variable, hence the expression "quasi-LPV." Once in a quasi-LPV form, a robust controller using
H synthesis is designed to achieve angle-of-attack control via fin deflections. The final design is an inner/outer-
loop structure, with angle-of-attack control being the inner loop and normal acceleration control being the outer
loop.

I. Introduction

FUTURE tactical missiles will be required to operate over
an expanded flight envelope to meet the challenge of

highly maneuverable tactical aircraft. In such a scenario, an
autopilot derived from linearization about a single flight con-
dition will be unable to achieve suitable performance over all
envisioned operating conditions. A particular challenge is that
of the missile endgame. This involves the final few seconds
before delivery of ordnance. During this phase, a missile au-
topilot can expect large and rapidly time-varying acceleration
commands from the guidance law. In turn, the missile is oper-
ating at a high and rapidly changing angle of attack.

Traditionally, satisfactory performance across the flight en-
velope can be attained by gain scheduling local autopilot con-
trollers to yield a global controller. Often the angle of attack
is used as a scheduling variable. However, during the rapid
transitions in the missile endgame, a fundamental guideline
of gain scheduling to "schedule on a slow variable" is vio-
lated. Given the existing track record of gain scheduling, any
improvement in the gain-scheduling design procedure—espe-
cially in the endgame—could have an important impact on
future missile autopilot designs.

In this paper, we present a novel approach to gain-scheduled
missile autopilot design. The missile control problem under
consideration is normal acceleration control of the longitudi-
nal dynamics during the missile endgame. In standard gain
scheduling, the design plants consist of a collection of lineari-
zations about equilibrium conditions indexed by the schedul-
ing variable, in this case the angle of attack a. (see Refs. 1 and
2). In the present approach, the design plants also consist of a
family of linear plants indexed by the angle of attack. A key
difference between the present approach and standard gain
scheduling is that this family is not the result of linearizations.
Rather, it is derived via a state transformation of the original
missile dynamics (i.e., an alternate selection of state variables).
Since no linearization is involved, the approach is not limited
by the local nature of standard gain-scheduled designs.
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Since gain scheduling generally encounters families of linear
plants indexed by a scheduling variable, we shall refer to such
a family as a linear parameter varying (LPV) plant. LPV
plants differ from linear time-varying plants in that the time
variations (i.e., the scheduling variable) is unknown a priori
but may be measured/estimated upon operation of the feed-
back system. We shall call such a family quasi-LPV in case the
scheduling variable is actually endogenous to the state dynam-
ics (as in the missile problem). In Refs. 1 and 2, it was shown
that LPV and quasi-LPV dynamics form the underlying struc-
ture of gain-scheduled designs.

The design for the resulting quasi-LPV system is performed
via ju, synthesis.3 Briefly, /* synthesis exploits the structure of
performance requirements and robustness considerations to
achieve robust performance in a nonconservative manner.
Thus, the present approach makes use of gain scheduling's
ability to incorporate modern linear synthesis techniques into
a nonlinear design.

Another feature in the present approach is its interpretation
of an inner/outer-loop approach to nonlinear control design.
In standard gain scheduling (as well as geometric nonlinear
control4), one often applies an inner-loop feedback. In gain
scheduling, this feedback is an update of the current trim
condition. In geometric nonlinear control, this feedback serves
to invert certain system dynamics to yield linear behavior in the
modified plant. In either case, unless the inner-loop robustly
performs its task, the outer-loop performance and even stabil-
ity can be destroyed. In other words, any inner/outer-loop
approach must be built from the inside out. Reference 1 pre-
sents a more detailed discussion of this possibility in the con-
text of standard gain scheduling.

The present approach also takes an inner/outer-loop ap-
proach to the autopilot design. The inner loop consists of a
robust angle-of-attack servo. The reason for the inner loop is
that nonlinear gain-scheduling techniques prefer to directly
control the scheduling variable. Such an inner/outer-loop de-
composition was also employed in Ref. 5, where the reasoning
was to avoid nonminimum phase dynamics from the fin deflec-
tion to normal acceleration.

The actual regulated variable of interest is the normal accel-
eration. Thus, the outer loop serves to generate angle-of-at-
tack commands ac to obtain the desired normal acceleration.
A consequence of the inner-loop design is that the dynamics
from the commanded angle of attack OLC to the angle of attack
a. exhibit a linear behavior within the bandwidth of the inner-
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Fig. 1 Linear parameter varying (LPV) system.
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Fig. 2 Loop breaking points with different properties.

loop design. Thus, as in geometric nonlinear control, the inner
loop linearizes certain dynamics. However, the approximate
linearization stems from the natural linearizing effect of feed-
back (see Ref. 6) as opposed to an exact linear geometric con-
dition on the plant state dynamics. Thus, the outer-loop design
is essentially a linear design. However, in the design process, it
is acknowledged that the linear behavior due to the inner loop
is approximate and band limited.

The remainder of this paper is organized as follows. First
we present the nonlinear missile dynamics under consider-
ation. Then we review background material on LPV systems
and jit synthesis. Next, the design and simulation results are
presented for the missile autopilot. Finally, we state some
concluding remarks.

II. Missile Dynamics
The missile dynamics considered here are taken from Ref. 7.

These dynamics are representative of a missile traveling at
Mach 3 at an altitude of 20,000 ft. However, they do not
correspond to any particular missile air frame.

The nonlinear dynamics are as follows:

. ^
a=f wv

q=fm/Iy

(1)
(2)

where

d = reference diameter, 0.75 ft
/ = radians-to-degrees conversion, 180/Tr
g = acceleration of gravity, 32.2 ft/s2

Iyy = pitch moment of inertia, 182.5 slug-ft2

m = CmQSd = pitch moment, ft-lb
Q = dynamic pressure, 6132.8 lb-ft2

q = pitch rate, deg/s
S = reference area, 0.44 ft2

V = speed, 3109.3 ft/s
W = weight, 450 Ib
Z = CZQS = normal force, Ib
a = angle of attack, deg

The normal force and pitch moment aerodynamic coefficients
are approximated by

Cz = </>z(a) + bzd (3)

Cm = (4)

where

bm = -0.206
bz = -0.034
d = fin deflection, deg
<t>m(a) = 0.000215a3-0.0195a|o:| +0.051o;
0z(a) - 0.000103a3-0.00945a|a| -0.170a

These approximations are accurate for a in the range of ± 20
deg.

Finally, the missile tailfin actuator is modeled as the second-
order system with transfer function

(5)

where
5C - commanded fin deflection, deg
a)a = actuator bandwidth, 150 rad/s
The autopilot will be required to control the normal acceler-

ation (expressed in g)
Vz = Z/W (6)

via commanded fin deflections <5C. The general performance
objective is to track acceleration step commands with a steady-
state accuracy of less than 0.5% and a time constant of 0.2 s.
Of course, the controller is band limited by flexible mode
dynamics and actuator/sensor nonlinearities (e.g., rate satura-
tions).7

III. Background Theory
A. LPV Systems

An LPV system1'2'8 is defined as a linear system whose coef-
ficients depend on an exogenous time-varying parameter. Let
y =Pdu be an LPV system as in Fig. 1. A possible realization
for P0 is

x = A(0)x + B(B)u (7)

= C(6)x (8)
The exogenous parameter 0 is unknown a priori; however, it
can be measured/estimated upon operation of the system. The
reason for the special nomenclature is to distinguish LPV sys-
tems from linear time-varying systems for which the time vari-
ations are known beforehand (as in periodic systems). Typical
a priori assumptions on 6 are bounds on its magnitude and rate
of change.

A gain-scheduled approach to controlling an LPV system is
to design a collection of controllers based on frozen parameter
values. This leads to an LPV controller Ke. It was shown in
Refs. 1 and 2 that this approach has guaranteed robustness
and performance properties provided that the parameter time
variations are "sufficiently slow." Quantitative statements
qualifying sufficiently slow are provided in Refs. 1 and 2. Of
course, sufficiently slow is with regards to the closed-loop
system dynamics. Work on modifying gain scheduling to ac-
commodate arbitrarily fast parameter time variations is in
progress (see Refs. 9 and 10).

In Refs. 1, 2, and 8, it was shown that LPV systems provide
the underlying framework for nonlinear gain-scheduled sys-
tems. To see this relationship, consider the nonlinear square
plant

w.
+ £(z)w (9)

where u is the control input and z is the controlled output. For
this system, the nonlinearities depend only on the controlled
output. Such systems are subsequently called "output-non-
linear" systems. Note that the missile dynamics are output
nonlinear with the angle of attack a as the controlled output as
follows:

_ d / W
dt\q.

fgQS cos(a//)
WV

fQSd

fgQSbz cos(a//)

0 1
0 0

WV

fQSdbn
(10)
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Section IV discusses how to accommodate normal acceleration
t]Z as the controlled output even though the dynamics are
output nonlinear in a.

We assume that there exist continuously differentiable func-
tions weq(z) and ueq(z) such that

B(z)ueq(z) (11)

In other words, we have a family of equilibrium states parame-
terized by the controlled output z. For the missile problem, we
have

fgQS
[- -I

——————— I ^rZ v^O — —— ^Pm\^) Ip/r/j/' I /j I

Let ^4(z) and ^(z) be partitioned

A \An(z) ^412(^)1
A(Z)-[A2l(z) A22(z)Y

(12)

(13)

(14)

to conform with (z w)T. Then it is easy to show that the state
dynamics may be written as

-dt

=\°LO
Al2(z)

A22(z)-Dweq(z)Al2(z)

B2(z)-Dweg(z)Bl(z)

IfiJ[w-

[M-M^(Z)] (15)

Thus, we have transformed the original dynamics into a quasi-
LPV form, with the variable z as the "exogenous" parameter.
In case all nonlinearities are not contained in the output, the
previous transformation will be approximate up to first-order
terms in w - weq(z).1 It is interesting to note that this quasi-
LPV family is not the same family we would obtain by per-
forming linearizations about equilibrium conditions.

Now, although we may use the previous quasi-LPV plant as
the design plant, a possible drawback is the inner-loop feed-
back term ueq(z). More precisely, if one were to design a
controller for the previous quasi-LPV plant, the actual applied
control signal would be

U = Ueq(z) + U (16)

where u is the controller output. Even though the outer loop
may have guaranteed robustness properties, the inner-loop
feedback ueq(z) can destroy these properties by adversely ex-
citing flexible mode dynamics.1'8 This is illustrated in Fig. 2.
In this figure, the block P represents the plant dynamics, the
block H represents an inner feedback to update the trim con-
dition ueq(z), and the block K represents a controller designed
using the previous quasi-LPV plant. In this figure, it is possible
that unmodeled dynamics at breaking point 2 can destroy per-
formance or even be destabilizing, whereas robust perfor-
mance is obtained for the same unmodeled dynamics at break-
ing point 1. Note that actuator dynamics occur at the plant
input 1 and not the controller output 2. In the missile problem,
we have 6^(0:) = - (j)m(a)/bm. Thus fast angle-of-attack varia-
tions (as in the endgame) could excite neglected flexible mode
dynamics.

This problem can be avoided by augmenting integrators at
the plant input. Let

(17)u = v

Fig. 3 fi synthesis interconnection structure.
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Fig. 4 Inner-loop angle-of-attack control.

Then the system dynamics take the form

d_
dt

z
w-weq(z)
u-ueq(z)_

"0 Al2(z) B,(z)
0 A22(z)-Dweq(z)Al2(z) B2(z)-Dweq(z)Bl(z)
0 -Dueq(z)Al2(z) -Dueq(z)Bl(z)

w-weq(z)
u-ueq(z)_i

(18)

Now if we design a controller without using the state u - ueq(z)
for feedback, no inner-loop feedback of a trim condition is
applied. Thus, any robustness properties of the quasi-LPV
design remain intact.

The forthcoming missile design uses the previous representa-
tion of the missile dynamics for the autopilot design. This
representation is the result of a state transformation only. That
is, no approximation/linearization of the original dynamics
has occurred. As mentioned earlier, in case the system dy-
namics are nonlinear in w as well, then the previous represen-
tation is accurate up to first order in w - weq(z). Systems for
which higher order terms in w - weq(z) are large are not well
suited for gain-scheduling in the first place. In other words,
gain scheduling seeks to exploit predominantly output-nonlin-
ear dynamics.

A gain-scheduled approach to control design for quasi-LPV
systems resembles that for LPV systems. Namely, a series of
designs are performed for frozen z values of the state-space
matrices. This leads to a quasi-LPV controller with z as the
external parameter.

B. n Synthesis
In this section, we present a very brief overview of /z synthe-

sis for linear plants. See Ref. 3 for a more detailed discussion.
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First, we establish the following notation (see Ref. 11). For a
time signal g, we define ||g|| as

.11*11 ̂  gT(t)g(t)dt

For a stable dynamical system H, we define \\H\\ as

sup
\\S\\

In case H is linear time invariant, then

| = supamax[//(yV)]

(19)

(20)

(21)

Figure 3 shows the general structure for /z synthesis. In this
figure, the block Pbig denotes the "generalized plant," i.e., the
plant to be controlled as well as various weightings/normaliza-
tions on time signals and modeling errors. The block A' denotes
the controller. The block A denotes a block-diagonal system of
linear time-varying perturbations. This is a slight departure
from the usual assumption of linear time-invariant perturba-
tions. This assumption seems more appropriate since the
quasi-LPV dynamics are really nonlinear. We assume A has
been normalized (via weightings absorbed into Pbig)» so that
|| A || < 1. Let H(K,A) denote the closed-loop dynamics from d
to e. The objective is to design a controller K to minimize
1 1 H(K, A) 1 1 over all admissible perturbations A. Typically, the
problem is normalized so that \\H(K,A)\\ < 1 for all || A|| < 1
implies robust performance, i.e., performance for all admissi-
ble perturbations.

_ The /x synthesis design procedure is described as follows. Let
H(K) denote the closed-loop dynamics

The objective is to find a controller K* and a constant diago-
nal scaling D* such that \\D*H(K*)D*l\\ < 1. This implies ro-
bust performance for all admissible perturbations. The diago-
nal structure of D* is set to appropriately match the diagonal
structure of A. See Ref. 3 for more details.

A design via //, synthesis seeks to achieve the aforementioned
goal by minimizing ^\DH(K)D~1^ over stabilizing K and
appropriate diagonal D. This quantity is minimized by al-
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Fig. 5 Robustness weight Wr(ju).
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Fig. 6 Performance weight Wp(ju) for angle-of-attack control.

ternatively minimizing over K and D. First, design a controller
K0 such that ||//C&o)ll is minimized. Second, find a constant
diagonal scaling D0 such that \\D0H(K0)DQl\\ is minimized.
Next, design a controller K{ such that ||D0Jl?(A'i)D0~1|| is
minimized. Then, find a constant diagonal scaling D\ such that
\\DiH(Ki)D^l\\ is minimized, etc. This process, known as
D-K iteration, continues as long as each iteration provides a
sufficient reduction in the cost function \\DHD ~l\\. Although
D-K iteration need not find a global minimum, it can often
lead to good results.

IV. Missile Autopilot Design
In this section, we discuss the missile autopilot design. The

objective is to control normal acceleration 77 via commanded
fin deflections <5C. We assume that the angle of attack a, the
pitch rate q, and the normal acceleration ^ are available for
feedback. The pitch rate and normal acceleration measure-
ments are obtained via rate gyros and accelerometers, respec-
tively.7 However, in practice the angle of attack a. must be
estimated.

As mentioned in Sec. III.A, gain scheduling seeks to control
the output variable of an output-nonlinear system. The longi-
tudinal missile dynamics are output nonlinear with the angle of
attack a. as the output variable. Since normal acceleration yz
is the regulated variable of interest, the gain-scheduled design
is modified as follows. First, we design a controller for angle
of attack. This constitutes the inner feedback loop. We then
design an outer feedback loop to generate angle-of-attack
commands to achieve desired normal accelerations.

A. Inner-Loop Angle-of-Attack Control
The inner feedback loop consists of angle-of-attack control.

First, the missile dynamics are augmented with an integrator
and transformed to a quasi-LPV form as in Sec. III.A. The
actuator dynamics are then augmented onto the quasi-LPV
missile dynamics. This process leads to a design plant Pdes
whose states are [a q-qeq(oi) d-deq(a) xa xa]T, where
xa and xa are the actuator state variables.

Figure 4 shows the block diagram used for the /* synthesis
design. The block Pdes denotes the quasi-LPV design plant.
The input u to Pdes is actually the time derivative of the com-
manded fin deflection. That is,

(22)bc=\u

The measurements from Pdes are the angle of attack a, the
pitch rate trim deviation q -qeq(oL), and the normal accelera-
tion trim deviation rj-r]Z>e(](a). Note that

QSbz
——~ (23)

In the actual implementation, the values of q - qeq(a) and
*? - fleqM would be constructed from a, q, and r? measure-
ments.

The robustness and performance objectives are described as
follows. The block Ar represents linear time-varying multi-
plicative perturbation weighted by Wr. This uncertainty re-
flects actuator phase/gain uncertainty and flexible mode dy-
namics. Figure 5 shows the frequency response of Wr, where

Wr(s) = 2
(5 + 100)(5 + 200)

1000)(5+2000) (24)

The performance objective is to keep || OLC -> e\\ < 1 . The perfor-
mance weight

7(5 + 40)
.0001) (25)

has a frequency response shown in Fig. 6. Finally, the signals
n\ and n2 are small noises injected to satisfy certain rank con-
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ditions in the /* synthesis design. In terms of Fig. 3, the inter-
connection structure is

d = oic

d =

y =

*}0.001ej

(26)

(27)

(28)

(29)

and u and e as shown in Fig. 4.
A /z synthesis design procedure was performed with this

interconnection structure at the set point a = 0. That is, the
a-dependent coefficient matrices of the quasi-LPV plant Pdes
were evaluated at a = 0 for the design. The first pass led to
a frozen a robust performance level of 1.09. In terms of
Sec. III.B, the cost function \\Dft(K)D~l\\ = \.W. After six
iterations, this value was reduced to 0.5232.

Now a gain-scheduled design procedure would typically in-
volve repeating the fixed-ex designs for several a set points.
However, it turns out the ce = 0 controller delivered robust
performance for all a in the range ±20 deg. Thus, no con-
troller gain scheduling was required. For this particular air-
frame, the missile dynamics at a. = 0 are statically unstable and

become stable at higher values of a. It is believed that the /*
synthesis procedure—which is an optimization—is most con-
strained at a = 0, thereby resulting in the a. = 0 design providing
uniform robust performance. Note that, even though ^inner
stems from only one linear design, it is still a nonlinear con-
troller in that it uses q-qeq(a) and ri-rjz,e<i(a) as inputs.

Figure 7 shows the actual implementation of A^inner. The
block P denotes the nonlinear missile dynamics. The block Ga
denotes the actuator dynamics. The block T denotes a trans-
formation of the actual measurements into their "deviation
from trim" form. Note that the inner loop was designed to
give guaranteed robustness properties at loop breaking point 1
(Fig. 7). That is, the design was to deliver robust performance
for all admissible linear time-varying perturbations. However,
we see from Fig. 7 that similar robustness properties for linear
time-invariant perturbations are obtained at loop breaking
points 2 or 3, where actual model deviations are likely to
occur. As mentioned in Sec. III.A, this is one of the benefits
of augmenting integrators and not having an inner loop that
updates the trim control input.1

Regarding stability properites of the feedback system, it is
shown in Refs. 1 and 8 that robust stability and robust perfor-
mance is maintained provided there are sufficiently slow time
variations in the scheduling variable. Although Refs. 1 and 8
provide quantitative statements regarding sufficiently slow, an
application of these inequalities is likely to lead to conserva-
tive conclusions. Rather, the following qualitative interpreta-
tion is more suggestive. Namely, a sufficiently slow require-
ment is with regards to the closed-loop system dynamics. In
this case, the closed-loop system has a bandwidth of about 120
rad/s. Thus, one may expect robust performance for angle-of-

"10-3 10-2 10-1 100 10i 102

Fig. 10 Performance weight Wp(ju>) for acceleration control.
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Fig. 12 Acceleration step response.
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attack time variations of the same order. Of course, only
extensive simulations, nonconservative stability criteria, or an
alternate scheduling procedure entirely can really confirm/
refute closed-loop robust performance.2

Finally, Fig. 8 shows the response to a 15-deg a step com-
mand. Note that this step command leads to excessively large
fin deflections. This will not be the case for the overall con-
troller, since the outer feedback loop will be designed to dis-
courage drastic angle-of-attack commands, such as a signifi-
cantly large step.

B. Outer-Loop Normal Acceleration Control
The outer-loop feedback is designed to generate angle-of-

attack commands ac to achieve desired normal accelerations.
As mentioned in Sec. II, the performance requirements are to
track acceleration step commands with a steady-state accuracy
of less than 0.59/0 and a time constant of 0.2 s. However, the
outer loop is band limited by the inner feedback loop. That is,
the outer loop should only generate angle-of-attack commands
ac within the bandwidth of the inner loop. It is over this range
that we have a reasonable model of the inner-loop behavior.

The first part of this design is to obtain the appro-
priate quasi-LPV system dynamics from ac to rjz. The inner
loop leads to quasi-LPV dynamics from ac to the states
[a q - qeq(a) d-deq]T. However, the normal acceleration is
given by

Thus the normal acceleration rjz is a nonlinear function of the
quasi-LPV states. Performing a linear approximation of the

, rw. /*.\ — ih /£» \A. f^,\~i i^o/'io +/-»
V.JU.U.O1 J_(A T OlClll/O. J. WJ. A Vyj. 111A11£, C* AAllV^tVJ

term [</>z(o;)-(Z?z/Z?m)(/)m(Q;)] leads to

(31)

This leads to an output coefficient matrix that approximates
the normal acceleration by a linear function of the quasi-LPV
states.

Figure 9 shows the block diagram used for the /* synthesis
design. The block rdes denotes the closed-loop dynamics from

Fig. 13 Acceleration square wave response.

.500
time (sec)

Fig. 15 Step response with 7 = 3.5 gain margin.

Fig. 16 Step response with - 10% perturbation in

ac to rjz . The measurement is r?c - ??z » where rjc is the com-
manded acceleration. The performance objective is to keep
||77c'-»e|| < 1, where

Wp(s) =
155 + 200
405 + 1 (32)

Figure 10 shows the frequency response for Wp. The block A0
represents an additive perturbation on the closed inner-loop
dynamics. The weighting (cf., Fig. 11)

5+0.01

5 + 150 (33)

y = ac - a

3 = ea

Fig. 14 Fin and angle-of-attack square wave response.

reflects that the inner-loop model is fairly accurate at low
frequencies. However, the model is less accurate for high-fre-
quency angle-of-attack commands. In terms of Fig. 3, the
interconnection structure is

(34)

(35)

(36)

(37)

u = otc (38)

and e as shown in Fig. 9.
A ju synthesis design procedure was performed with this

interconnection structure at the set point a = 0. The first pass
led to a frozen a. robust performance level of 3.125. After two
iterations, this value was reduced to 0.732.

Once again, the controller for a. = 0 proved adequate for the
entire a. range of a. ± 20 deg. Thus, no gain scheduling is
required. Recall that this was the case in the inner-loop a
control. For the inner loop, this was due to the air frame dy-
namics at o; = 0 being the most difficult to control. However,
it is believed that the outer loop not requiring gain scheduling
is to be expected in general. Recall that the inner loop was the
result of a robust servo design. This feedback in itself has a
linearizing effect on the missile dynamics (see Ref. 6). For
example, one has that a = Iac, for the class of ac within the
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inner-loop bandwidth. Outside of this bandwidth, the linear
behavior will deteriorate—hence the additive uncertainty
weighting Wa. Thus, although not needing gain scheduling in
the inner loop is not typical, it seems reasonable in the outer
loop. Note that the linearization through feedback differs
from that of geometric feedback linearization (see Ref. 4). In
this case, the linearization is due to a robust servo design.
Hence it is approximate and band limited. Furthermore, the
design of the outer loop takes this into account.

Figure 12 shows the response to a 25g step command. Note
that large fin deflections do not occur as in the angle-of-attack
step response (Fig. 8). As mentioned earlier, this is due to the
outer loop acknowledging the band-limited performance of
the inner loop. During the missile endgame, the guidance law
typically generates large rapidly varying acceleration com-
mands. To illustrate the performance in such a scenario, Fig 13
shows the response to a square-wave command oscillating be-
tween 25 g and Og. Figure 14 shows the fin deflections and
angle-of-attack response.

The stability and performance robustness was tested for
model uncertainties not addressed explicitly in the ju, synthesis
design. The results are described as follows. The issued fin

V. Conclusions
This paper has presented a novel approach to gain-sched-

uled missile autopilot design for longitudinal missile dynamics.
Some key features of this approach are as follows. First, the
missile dynamics are brought to an LPV form via a state
transformation rather than the usual linearization. Second, an
integrator is augmented so that no *'update of trim control"
feedback loop is present. Finally, an inner/outer-loop decom-
position is applied. It is believed that an effect of the inner loop
is to linearize the missile dynamics in an approximate and band
limited manner, thereby leading to a simplified outer-loop
design with guaranteed inner-loop robustness properties.

Appendix: Compensator State Equations
Let {A9B,C,D } denote the state dynamics

x = Ax + Bu

y = Cx+Du (Al)

The inner-loop compensator #inner= [Ainner, £inner, Qnneo
Anner} has eight states, three inputs, and one output (cf., Fig.
7), with

A —-^ inner ~~

2.2498* -04
7.9862* -08
1.1309* -07
3.70586? -05
4.6000* + 06
6.5405* -17
2.0444e +02
2.0444e +02

-5. 82406? -01
-6.33926? +02

2.59966? +03
9.68356? +05
1.3621* +08
2.43796? -18
7. 0983 6? +00
7. 0983 6? + 00

-2.1941e-02
-2.3883* +01
-1.1688* +03
-8.2186* +05
-2.3542* +08
-6.5340* -18
-2.0437* +01
-2.0437* + 01

7. 5435* -14
-1.0295* -13

1.0000* +00
5. 8075* -09

-2.5886* +04
-4.8140* -20
-1.5048* -01
-1.5048* -01

2.8314* -16
3. 8644* -16
2. 1864* -14
1.0000* +00
2.2271* +02
1.8069* -22
5.6481* -04
5.6481* -04

3.1178*-10
-1.8726* -09
1.0594* -07
1.0563* -04

-6. 1576* +07
-9.9997* -05
-2.7367* +03
-2.7367* +03

2.4908* -10
-3.3994* -.10
1.9234* -08
1.9176* -05
9.0707* +06

-1.5895* -16
-5. 9686* +02
4.0314* +02

4.3565* -11
-5.9458* -11
3. 3641* -09
3.3539* -06
3. 8545* +07

-2.7801* -17
-8.6903* +01
-2.8690* +02

(A2)

command 5C was perturbed by a scalar gain 7. Good perfor-
mance was achieved for 7 up to 3.5; stability was maintained
for 7 down to 0.5, but with poor performance. Stability and
performance were maintained for a +50% uncertainty in
</>w(a); stability was maintained for a - 30% uncertainty. Sta-
bility was maintained for a - 10% perturbation and a +5%
perturbation in 0Z(«). It is believed the increased sensitivity
was due to the cubic terms in the polynomial. In fact, stability
was maintained for ±20% perturbations in the linear coeffi-
cient Cz,«, which nominally equals -0.170. The design was
sensitive (i.e., tolerating ±5%) to combined uncertainties in-
volving both control gains and plant models, such as per-
turbing both (t)z(a) and bz. Representative 25g step command
time responses are shown in Fig. 15, exhibiting good perfor-
mance and in Fig. 16, exhibiting stability only.

Of course, all of these perturbations imply that the plant
dynamics and the design model are different. A further impli-
cation is that the true plant dynamics and the transformation
to equilibrium values are mismatched (cf., the block T in
Fig. 7). A potential improvement would be to incorporate this
mismatch into the design process.

ft —° inner ~~

-3.9368* -06
-1.3999* -09
2. 1174* -09
7. 8654* -07
1.1058* -04
1.7499* -02

0
0

2.7690* -02
1.1082* +01

-4.5494* +01
-1.6945* +04
-2.3807* +06
-2.9233* -21

0
0

8.4886* -03
9.2208* +00

-1.0091* +02
-7. 0956* + 04
-2.0286* + 07
3. 3947* -22

0
0

(A3)

inner = (1-1683*+04 4.0565*+02 -1.1679*+03

-8.5994*+ 00 -3.2277*-02 -1.5640*+05

2.3039*+04 9.7899*+04) (A4)

Anner = 0 0 0) (A5)
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The outer-loop compensator Kouier = [Aouter, £0uter> Couter,
A>uter) has three states, one input, and one output (cf., Fig. 7),
with

.

-2.5009^-02 1.3148^-01 4.6253e-02\
0 -1.8846*+01 5.9814e+01 j
0 -7.2876e+01 -3.2574e+00/

(A6)

(A7)

uter = (-2.1376e +00 3.2141^+00 3.4579e-01)
(A8)

2.1391e+00\

outer- ( -2.7653^+00

outer = -1.6948*-02 (A9)

Acknowledgments
This research was supported by an Air Force Office of Sci-

entific Research (AFOSR) Summer Faculty Fellowship at the
U.S. Air Force Armament Directorate, Eglin Air Force Base,
FL, AFOSR Research Initiation Grant 92-70 subcontracted to
the Research and Development Laboratory, and National Sci-
ence Foundation Grant ECS-9296074. The authors thank
Johnny Evers and Bob Reichert for helpful discussions.

References
^hamma, J. S., "Analysis and Design of Gain Scheduled Control

Systems," Ph.D. Thesis, Dept. of Mechanical Enginering, Massachu-
setts Inst. of Technology, Cambridge, MA, 1988.

2Shamma, J. S., and Athans, M., ''Analysis of Nonlinear Gain
Scheduled Control Systems," IEEE Transactions on Automatic Con-
trol, Aug. 1990, pp. 898-907.

3Balas, G., Doyle, J. C., Glover, K., Packard, A., and Smith, R.,
"/*-Analysis and Synthesis Toolbox: /x-Tools," MUSYN, Inc., and
The Mathworks, Inc., Dec. 1990.

4Isidori, A., Nonlinear Control Systems: An Introduction, Vol. 72,
Lecture Notes in Control and Information Science, Springer-Verlag,
Berlin, 1985.

5Tahk, M., Briggs, M. M., and Menon, P. K. A., "Applications of
Plant Inversion via State Feedback to Missile Autopilot Design,"
Proceedings of the 27th IEEE Conference on Decision and Control
(Austin, TX), Dec. 1988, pp. 730-735.

6Desoer, C. A., and Wang, Y.-T., "Foundations of Feedback The-
ory for Nonlinear Dynamical Systems," IEEE Transactions on Cir-
cuits and Systems, Vol. CAS-27, No. 2, Feb. 1980, pp. 104-123.

7Reichert, R., "Modern Robust Control for Missile Autopilot De-
sign," Proceedings of the American Control Conference (San Diego,
CA), June 1990, pp. 2368-2373.

8Shamma, J. S., and Athans, M., "Guaranteed Properties of Gain
Scheduled Control of Linear Parameter-Varying Plants," Automat-
ica, Vol. 27, No. 3, May 1991, pp. 559-565.

9Shahruz, S. M., and Behtash, S., "Design of Controllers for Lin-
ear Parameter Varying Systems by the Gain Scheduling Technique,"
Berkeley Engineering Research Inst., Memorandum BERI M90/1,
Univ. of California, Berkeley, CA, Jan. 1990.

10Shamma, J. S., and Athans, M., "Gain Scheduling: Potential
Hazards and Possible Remedies," IEEE Control Systems Magazine,
June 1992.

HDesoer, C. A., and Vidyasagar, M., Feedback Systems: Input-
Output Properties, Academic, New York, 1975.

mm

Recommended Reading from Progress in Astronautics and Aeronautics

Propagation of
Intensive Laser Radiation in Clouds

O.A. Volkovitsky, Yu.S. Sedunov, and L.P. Semenov

This text deals with the interaction between intensive laser radiation and clouds
and will be helpful in implementing specific laser systems operating in the real
atmosphere. It is intended for those interested in the problems of laser radiation
propagation in the atmosphere and those specializing in non-linear optics, laser
physics, and quantum electronics. Topics include: Fundamentals of Interaction
Between Intense Laser Radiation and Cloud Medium; Evaporation of Droplets in
an Electromagnetic Field; Radiative Destruction of Ice Crystals; Formation of
Clearing Zone in Cloud Medium by Intense Radiation; and more.

1992, 339 pps, i l lus, Hardback
ISBN 1-56347-020-9

AIAA Members $59.95
Nonmembers $92.95
Order #: V-138(830)Place your order today! Call 1-800/682-AIAA

&A1AA
American Institute of Aeronautics and Astronautics
Publications Customer Service, 9 Jay Could Ct., P.O. Box 753, Waldorf, MD 20604
FAX 301/843-0159 Phone 1-800/682-2422 9 a.m. - 5 p.m. Eastern

Sales Tax: CA residents, 8.25%; DC, 6%. For shipping and handling add $4.75 for 1-4 books (call
for rates for higher quantities). Orders under $100.00 must be prepaid. Foreign orders must be
prepaid and include a $20.00 postal surcharge. Please allow 4 weeks for delivery. Prices are subject
to change without notice. Returns will be accepted within 30 days.


