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2 Abstract  
 
The well-known difficulties in obtaining good network performance for TCP-based applications 
without expert tuning or case-by-case application optimization can be overcome by building 
expertise into the operating system where it will benefit all users and applications. 
 
The Net100 Collaboration (PSC, NCAR, UT, LBL, and ORNL) proposes to develop a model for 
network-aware operating systems using Web100 as the means for incorporating network information 
and its analysis into host operating systems to improve performance. To investigate how effective 
network-aware operating systems can be, we plan a three-phase approach.  First, we will use the 
network-aware; Web100 based operating system that we develop to create a simple, bulk-transport 
application and demonstrate its use over high performance network links.  We will then extend this 
model to support more advanced and complex applications, moving from point-to-point optimization 
to optimizations for fully distributed environments.  Finally, as proof that a network-aware operating 
system can tune and optimize performance on behalf of applications, we will also develop 
application-internal tools (based on NetLogger) to monitor the efficiency of application support, and 
provide an external monitoring methodology (based on the Network Weather Service) to gauge the 
impact this system has on the rest of the network. 
 
In addition to serving the needs of high-performance computing and network users, this project will 
serve as an (open source) showcase for network-aware operating systems, beginning with a Web100-
based O/S.  The tools, sources, measured results, and methods will be showcased on a "Closing the 
Wizard Gap" web site and made available to the high performance networking community. 
 



 3

 
3 Proposal Narrative 
 
3.1 Background and Significance  

 
Backbone speeds on the Research Internets have increased considerably in the last few years as 
projects like Internet II and NGI have moved forward with aggressive deployment of new 
technologies.  At the same time, projects like NTON [NTON] and SuperNet [SuperNet] are 
providing a preview of the near future of wide area networks.  Unfortunately, applications are rarely 
able to take full advantage of these new high-speed networks.  TCP and applications using it require 
expert tuning at the end point hosts to achieve reasonable performance.  This tuning is either hand 
optimization of parameters or very sophisticated coding by a network-knowledgeable "Network 
Wizard" programmer.  Frequently network administrators are called on to help (often with erroneous 
complaints), and optimizations made on one day may be inappropriate the next.  This requirement 
for constant nursing by a Network Wizard is clearly unacceptable.  The gap between the  
network performance achievable at the hands of a Wizard and the performance seen by normal users 
has become known as the "Wizard Gap."  The dearth of wizards or even apprentice-level application 
programmers will ultimately limit the success of the coming generation of high-performance 
networks and high-performance distributed applications. 
 
The solution to this problem is to push the network expertise down, either into the operating system 
itself or into the network.  Although someday intelligent networks may become a reality, we believe 
a more realistic near-term answer is a network-aware operating system.  An operating system that is 
network-aware can dynamically adjust or tune the network services it is negotiating on behalf of 
applications.  These improvements in tuning can transparently improve the efficiency for all hosted 
applications 
 
Ideally, the underlying network infrastructure should be transparent to the end-user and applications. 
While there will always be a few applications that may need to have some knowledge of the 
underlying network conditions, this should be the exception and not the rule.  Through the Net100 
collaboration, we will begin the migration away from network-aware applications and towards 
network-aware operating systems.  The Web100 instrumented kernel [Web100] provides the perfect 
mechanism on which to base this migration.  It provides a transparent window into the inner 
workings of TCP, and a bidirectional API for reading and setting TCP's tuning parameters. 
 
3.2 Proposal Overview 
 
3.2.1 Project Summary 

 
The Net100 Collaboration (PSC, NCAR, UT, LBNL, and ORNL) proposes to develop a framework 
for network-aware operating systems using Web100 as a model for integrating network-based 
information into host operating systems. The Net100 team is composed of research groups with the 
right combination of tools and expertise to take the Web100 kernel and refine it to be truly "network-
aware", and to verify that the approach being taken will be valuable to a number of types of DOE 
applications. Net100 will bring together the following technologies and expertise: 
 
� Web100 (PSC/NCAR): Web100 provides a novel architecture within which a variety of 

different performance sensing and control strategies can be implemented. This group 
provides the essential TCP expertise required. 

 
� Network Weather Service (NWS) (UTK): NWS is a scalable, end-to-end network 

performance monitoring and analysis system. This group provides monitoring infrastructure 
and statistical analysis expertise. NWS will be hosted on systems, which are external to the 
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kernel-modified systems.  NWS will be used to measure impact and "fair use" of 
applications running on the developing network-aware OS. 

 
� NetLogger (LBNL): NetLogger is a toolkit for detailed distributed application 

instrumentation and analysis. This group provides application tuning expertise, and 
expertise on analyzing the complex interaction between the network, network protocols, 
and the applications.  It will be used to instrument and analyze applications running on the 
modified systems. 

 
� Probe (ORNL): The Probe project is working on optimizing bulk data transfers in a 

production supercomputer environment. This group provides alternative protocol expertise, 
a working testbed, and DOE mission-critical application expertise. 

 
The core component of the Net100 project is a network aware operating system (NAOS).  The 
NAOS collectively refers to kernel level modifications as well as API’s, libraries, and daemons 
developed as part of the project to support the network-aware functions.  In many cases actual 
NAOS components may depend on the base operating system and/or the underlying network 
technologies. 
 
Net100 will use the above technologies and expertise as mechanisms for testing and refining 
Web100.  however, there are some critical missing components which must be developed to allow a 
thorough analysis.  These will also be provided by Net100, and include: 
 
� The Network Tools Analysis Framework (NTAF), a framework for triggering NWS network 

measurement tools as well as other network monitoring tools, such as pathrate, pipechar, and 
Iperf.  The NTAF will be provided by LBNL. 

 
� The Network Analysis Information Base (NAIB), a monitoring data archive database that 

provides sophisticated relational queries and analysis. The NWS team at UTK will provide the 
NAIB. 

 
� Instrumented applications and tools. This involves using the Web100 TCP instrumentation 

interface to collect TCP data from a variety of applications and monitoring tools, and use 
NetLogger to format the data send it to the NAIB. LBNL, ORNL, and the NWS team will do 
this. 

 
The results of this monitoring and analysis will then be fed back to the Web100 team for further 
refinement of the Web100 kernel. 
 
The goal of Net100 is to eliminate what has been called the “wizard gap”.  Through the integration 
of end-to-end and application-level monitoring capabilities with the tuning and diagnostic 
capabilities provided by Web100, we will develop a unique and general-purpose system for 
optimizing and understanding end-to-end network and application performance. This will allow us to 
create a network-aware operating system that will be able to maximize network utilization for a wide 
variety of applications and, without help from the wizards, eliminate the wizard gap. 
 
3.2.2 Approach 
 
In the short term, Net100 will integrate the network-aware, Web100-based operating system with 
simple, bulk-transport applications and demonstrate its use over point-to-point, high-performance 
network links.  Long term, we will extend this model to more advanced and complex applications 
with a variety of bandwidth and latency requirements. 
 
As part of Net100, we will also create a testing and analysis framework, NTAF, for combining 
network test and monitoring tools in a standardized manner. Initially this framework will be used to 
verify the network characteristics inferred by Web100 and the auto-tuned network-aware O/S. Two 
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well-known packages, the Network Weather Service (NWS) and NetLogger will form the core of 
this framework. This framework will be used to measure the impact the bulk transport utility has on 
the network, in order to guarantee optimal, yet fair, use of the network. The framework will be 
designed in such a way that other tools, in particular, new and emerging network diagnostic and 
monitoring tools, can be integrated into the framework in a standardized manner.  
 
During the first year of the project, we will focus on using Web100 to build an auto-tuned bulk-
transport utility, developing the NTAF, and using it to validate the results. The goal for the first year 
is to fully utilize high-performance links for transferring large data sets while also demonstrating the 
validity of network-aware operating systems.  During Year 2 we will integrate this package into 
distributed application environments, such as high-energy physics Data Grid applications. We will 
continue to use the NTAF along with the NAIB for validating our results, while also identifying and 
integrating new active and passive monitoring tools into the framework.   
 
By year 3 we plan to have a fully realized net-aware open source operating system such as Linux, 
with the additional goal of working with the IETF and vendors to encourage the use of these 
techniques in vendor supplied operating systems as well.  We will also investigate the integration of 
active and passive monitoring tools into the kernel itself. As in Year 1 and 2, we will use DOE 
specific applications to test the validity of these modifications, verifying them with the NTAF and 
NAIB tools. 
 
Beyond this project we imagine a “network instrumentation and control plane” to provide network 
managers with unified access to the information and controls within the network-aware operating 
systems.  Such a control plane would give network engineers very strong tools to manage their 
networks, including an accurate picture of how the network and applications interact. 
 
In addition to serving the needs of high-performance computing and network users, this project will 
serve as an (open source) showcase for integrating the network-aware operating systems, beginning 
with a Web100-based O/S, with real applications.  The tools, sources, measured results, and methods 
will be showcased on a "Closing the Wizard Gap" web site and made available to the high 
performance networking community. 
 
3.2.3 Experience and Competance 
3.2.3.1 Web100 Project 
PSC and NCAR have worked on both individually and together on a number of projects relevant to 
the Net100 project and are summarized below.  
 
Web100 is collaboration between the Pittsburgh Supercomputing Center (PSC), the National Center 
for Atmospheric Research (NCAR) and the National Center for Scientific Applications (NCSA).  
Initial development of Web100 is funded by a three-year grant from the National Science 
Foundation (NSF) through grant [ANI-0083285].  Work under this grant includes the initial 
development, deployment and documentation of core Web100 instruments and library functions for 
the Linux Operating System. 
 
PSC and NCAR have also collaborated over the past five years on the NLANR project.  Gwendolyn 
Huntoon and Matt Mathis from PSC are co-principal investigators on the NLANR Engineering 
Services (NLANR ES) project, funded through Cooperative Agreement ANI-9720674 with the 
National Science Foundation.  NLANR ES staff at PSC and NCAR provide expert consulting to high 
performance network engineers, develop documentation on new and emerging high performance 
networking technologies, and provide tools for diagnosing and understanding network performance.  
The NLANR ES performance tuning [Perf_Tune] is an authoritative source for information on how 
to hand-tune a wide variety of operating systems for use over the national high-performance network 
backbones.  NLANR ES co-sponsors the NLANR/I2 Joint Techs Workshops with Internet2, which 
has become the primary forum for disseminating and exchanging information in the high-
performance network community.  
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Matt Mathis was also the principal investigator on the NSF-funded TCP Enhancements project 
(ANI-9870758). Under this project, PSC has made a number of contributions to TCP technology, 
including being the first authors on RFC2018 [RFC2018], “TCP Selective Acknowledgement 
Options”.  The SACK RFC has attained wide deployment in the network community.  Ongoing 
research on TCP congestion control has resulted in the development of several algorithms that 
improves TCP performance in high-performance environments [MM96, MSJ99].  PSC also did 
groundbreaking work in TCP autotuning [SMM98].  
 
3.2.3.2 Lawrence Berkeley National Laboratory 
The LBNL Distributed Systems Department has a great deal of experience in building and tuning 
data-intensive, wide-area distributed applications. The NetLogger Toolkit, described below, was 
developed in order to tune and debug distributed applications, has been used extensively in several 
high-speed networking applications, including the DPSS[DPSS], Radiance, BaBAR[BaBar], 
Visapult[Visapult], and GridFTP[GridFTP]. This experience has made us highly aware of 
functionality gaps in the currently available monitoring facilities, and the difficulties of getting the 
applications and the operating systems to fully utilize high-bandwidth network links.  
 
At the Supercomputing 2000 conference LBNL received the “Fastest and Fattest” Network 
Challenge award for the application that best utilized the wide-area network. The application was a 
remote data visualization application called Visapult, which used a peak rate of 1.5 Gbits/second, 
and a sustained data rate of 680Mbps. This performance was the result of a great deal of hand tuning 
of the SC2000 network. Visapult transforms data from a simulation using parallel compute nodes 
and transmits the transformed data in parallel over the network for rendering. The dataset, 80 GB in 
size, was stored at LBNL and the compute cluster, an 8-processor SGI Origin with 4 Gigabit 
Ethernet interfaces, was in Dallas, TX. Parallel reading of large datasets stored at a distant location is 
common in high-energy physics (HEP) applications.   
 
LBNL has also been heavily involved in the Global Grid Forum (GGF) [GGF] and, of particular 
interest here, the GF Performance Working Group. LBNL co-authored the white paper for a 
monitoring data architecture called the Grid Monitoring Architecture (GMA)[GMA]. Through our 
GGF work we have developed a thorough knowledge of the issues involved in designing and a 
distributed monitoring system. The input into the GMA was drawn from experiences developing a 
system at LBNL called Java Agents for Monitoring and Management (JAMM).  
 
3.2.3.3 Oak Ridge National Laboratory 
ORNL has been active in applied network research since the mid 70's.  ORNL developed protocols 
and applications as part of DOE's early fusion energy research network (MFEnet) in the 70's.  The 
Computer Science division developed protocols, software libraries, and applications as part of 
ORNL's leading research into distributed, parallel computers (hypercubes, mesh) in the mid 80's.  
ORNL's research and development in distributed computing is highlighted by the development of the 
widely used Parallel Virtual Machine (PVM).  PVM-related developments at ORNL included adding 
IP multicast and authentication/encryption to PVM.  ORNL deployed one of DOE's first ATM test 
beds, and PVM was extended to utilize AAL5 over ATM. ORNL extended PVM and modified 
applications to interconnect Intel Paragon supercomputers at ORNL and Sandia over ATM on DOE's 
ESnet. In recent years, ORNL has applied its network expertise to intrusion detection systems based 
on characterizing IP flows and to detecting hidden information in IP packet headers (IP 
steganography).  ORNL operates a DOE-funded ATM testbed with ATM analyzers tightly coupled 
to GPS time sources that presently provide insights into the behavior of DOE's ATM-based ESnet. 
Ongoing research includes work on alternate and multi-path routing using application-based routing 
daemons to improve both latency and throughput. ORNL also has active research in storage-area 
networks (Probe/HPSS) and in improving bulk data transfers across high bandwidth, high delay 
networks. 
 
3.2.3.4 University of Tennessee at Knoxville 
Researchers at the University of Tennessee, Knoxville (UTK) working on the NWS project have 
developed and deployed several software products in research and production computing settings.  
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Dr. Rich Wolski is current using the system to conduct scalable network performance monitoring 
and forecasting research and development in several different settings. 
 
As an NPACI partner, Dr. Wolski and his group working with NPACI programming support 
maintain the NWS as a nationally available network performance monitoring resource.  NPACI 
distributed computational science codes such as MCell (a molecular docking application) and The 
Wide-Area Electron Microscopy project use NWS real-time performance forecasts to determine how 
they will load the networking resources at their disposal.  These codes are hardened, production-
quality programs that are gaining an ever-wider user community through NPACI.  The persistent 
NWS installation maintained by UTK and NPACI is an integral part of their success. 
 
In addition to supporting NSF’s computational science mission, Dr. Wolski’s group is part of the 
NSF funded “Grid Applications Development Software” (GrADS) project, headed by Dr. Ken 
Kennedy, and funded under the NGS program (EIA-9972889).  GrADS is a comprehensive Grid 
research project that attempts to codify the software technologies  -- from the application level to the 
infrastructure level – that are necessary to support large-scale, wide-area high-performance 
computing.   In this context, the NWS provides near-real time forecasts of TCP/IP network 
performance (end-to-end latency and bandwidth), available real (non-paged) memory, and CPU 
availability.  GrADSoft (the software infrastructure being developed by GrADS) is a large-scale 
software system, within which the NWS is being fully integrated.  Our experience with GrADS in 
coordinating NWS research and development in the context of a collaborative research project will 
certainly prove beneficial to this work. 
 
The NWS current has also developed an international user community that is currently being 
supported by Dr. Wolski and his group.  In addition to the PACI commitments, the Asia-Pacific Grid 
project (APGrid – funded by the Japanese government through ETL and TIT), and the Globus 
DataGrid Projects have all adopted the NWS infrastructure to provide near-real time measurement 
and forecasting of network, memory, and CPU performance response.  In addition to these 
advanced-development and production computing customers, Dr. Wolski’s group also supports 
several research groups at UCSD, the Free University at Amsterdam, the Netherlands, and ENS-
Lyon, France  
 
3.3 Preliminary Studies 
3.3.1 Web 100 
The goal of the Web100 project is to create a software suite that enables a host-software 
environment that will run common TCP applications at 100% of the available bandwidth, regardless 
of the magnitude of a network's capability.   The project is based on the following observations: 
existing host system software is often optimized for low bandwidth environments; it requires a 
network wizard to optimize the host-software environment in order to improve host TCP 
performance; and, there is a general lack of host-based TCP instrumentation and tools needed to 
diagnose end-host (and end-to-end) performance problems.  
 
The Web100 software suite is a set of instruments, referred to as the kernel instrument set (KIS) or 
derived instrument set (DIS), that collects as much TCP specific information as possible to enable a 
user to isolate performance problems associated with specific TCP connections.  Kernel instruments 
are based on values or variables that can be directly collected within the host. Examples of Web100 
KIS variables include: 
 
� TCP State:  A read only integer value representing the connection state from the TCP State 

Transition Diagram.  The reference for this variable is RFC2012 (TCP-MIB v2) 
Transmission Control Protocol using SMIv2.  It is patterned after the Connection Table in 
RFC2012. 

� SACK Enabled: A read-only variable that indicates if SACK has been negotiated ON by 
both ends of the connection. The reference for this variable is RFC2018 TCP Selective 
Acknowledgement Options. 
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� Send Buffer Max: A read-write variable that sets the maximum buffer memory. This 
variable is specifically used for auto-tuning. 

� Send Buffer Min:  A read-write variable that sets the minimum buffer memory. As with 
Send Buffer Max it is specifically used for auto-tuning.  

 
Derived Instruments are those that are directly computed from KIS variables.  For example, the 
Web100 KIS does not include a direct instrument of loss probability, but it does provide direct 
instruments on the numbers of packets lost and transmitted.  The ratio of these two KIS instruments 
is a derived estimate of the loss probability.  The library also provides an extensible set of common 
derived instruments, however, many Web100 tools will also define their own (non-common) derived 
instruments. 
 
The Web100 software includes an API and library that provides access to the underlying KIS and 
DIS information.  Specifically, the library includes a TCP auto-tuning tool that provides a 
mechanism for tuning each TCP connection within the host.  While this is not the main focus of the 
project, it begins to address the wizard gap by optimizing network performance without requiring 
intervention by a network wizard. 
 
The first stable test version of Web100, referred to as Web100 Alpha0, was released to a group of 
early adopters in mid-March 2001. This release, as with most releases in the near future, is based on 
a version of the Linux operating system. The Alpha0 release contains test applications including a 
basic graphical interface for examining and monitoring variables, as well as scripting primitives and 
sample code to quick-start additional developers.  The Alpha0 KIS has 75 total instruments, of 
which seven are read/write.  All the collaborators on Web100 are among the 9 groups identified as 
early adopters for the Web100 code thus are in a position to provide early feedback to the Web100 
developers.   
 
3.3.2 Probe 
The Center for Computational Science (CCS) at ORNL has been designated as a Prototype Topical 
Center, providing massive computing resources in support of a selected set of problems in 
computational science.  Examples include climate modeling, computational chemistry, and 
computational biology or bio-informatics.  In practice, this means that large data sets, move between 
DOE’s flagship supercomputer center, the National Energy Research Scientific Computing Center 
(NERSC), and the CCS with some frequency. 
 
ORNL’s Computer Science and Mathematics Division have established the Probe testbed to study 
challenging storage-related and network-related problems [Probe1].  NERSC is a partner in Probe, 
providing the second node in a wide-area distributed-storage testbed utilizing DOE’s ESnet network.  
Probe is involved in testing new equipment (servers, network interfaces and switches, storage 
devices), new protocols (scheduled transfer, for instance), and software (the High Performance 
Storage System, database products, etc.).  Probe will be one of the drivers for SurgeNet (another 
SciDAC proposal), the proposed bandwidth-on-demand OC48 connection between ORNL and 
NERSC 
 
During the past year we have sought to optimize bulk transfers between the Probe nodes.  Large data 
set transfers of Global Climate Modeling data sets by naïve users between NERSC and ORNL were 
frequently able to realize throughput of only 250 Kbytes/sec over DOE’s ATM/OC3 ESnet network.  
The NERSC-ORNL link provides high bandwidth (150 Mbs) and high latency (60 ms round-trip 
time, RTT).  FTP was modified to request larger TCP buffer sizes and the maximum buffer sizes 
were increased in the AIX TCP stacks on the Probe notes.  This improved typical data rates to 2 
MBytes/sec. 
 
We modified various TCP options in the AIX TCP stack to try to improve performance further and 
uncovered two bugs in AIX’s NewReno and SACK TCP modes that were limiting performance.  To 
better understand the ORNL-NERSC network performance, we experimented with modifying other 
TCP stack options both through network simulations ns [Ns2] and by developing an instrumented, 
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TCP-like stack at the application-layer over UDP [Dunigan].  This UDP test harness is similar to 
PSC’s TReno [Mathis96].  Our objective was to adjust TCP parameters to avoid packet loss and to 
speed startup and recovery, but yet remain TCP-friendly. We also did some experiments with 
parallel TCP streams between ORNL and NERSC using iperf [iperf] and rate-based UDP flows. 
 
3.3.3 Netlogger 
The LBNL NetLogger Toolkit [NetLogger] is designed to monitor, under actual operating 
conditions, the behavior of all the elements of the application-to-application communication path in 
order to determine exactly where time is spent within a complex system. 
  
Our experience has shown that often distributed application developers blame the network for their 
performance problems, when in fact the problem is application design. Often better pipelining of I/O 
and computation by the application will lead to dramatically increased performance.  
 
The NetLogger Toolkit is designed to solve the problem of determining whether the bottleneck is the 
network or the application. Using NetLogger, distributed application components are modified to 
produce timestamped logs of “interesting” events at all the critical points of the distributed system. 
The events are correlated with the system's behavior in order to characterize the performance of all 
aspects of the system and network in detail. 
 
All the tools in the NetLogger Toolkit share a common log format, and assume the existence of 
accurate and synchronized system clocks. The NetLogger Toolkit itself consists of three 
components: an API and library of functions to simplify the generation of application-level event 
logs, a set of tools for collecting and sorting log files, and a tool for visualization and analysis of the 
log files. In order to instrument an application to produce event logs, the application developer 
inserts calls to the NetLogger API at all the critical points in the code, then links the application with 
the NetLogger library.  
 
We have found exploratory, visual analysis of the log event data to be the most useful means of 
determining the causes of performance anomalies. The NetLogger Visualization tool, nlv, has been 
developed to provide a flexible and interactive graphical representation of system-level and 
application-level events. 
 
3.3.4 Network Weather Service 
The Network Weather Service (NWS) [NWS] uses up to date performance histories gathered from 
network and computational resources and statistical forecasting techniques to make short-term 
performance predictions for those resources.   
To provide this functionality NWS: 
 
� Operates a distributed set of performance sensors, from which it periodically collects 

performance measurements. 
� Applies a set of statistical forecasting techniques to individual performance histories 
� Generates forecast reports for the resources being monitored, which it disseminates via a 

number of different APIs. 
� The goal of the system is to apply forecasting methodologies to fresh performance 

monitoring data gathered from Network and Computational Resources resources to make 
forecasts of available performance in near-real time. 

 
The NWS was developed primarily to support application level scheduling.  Automatic scheduling 
agents, such as AppLeS. [AppLeS] Can consult the forecasts it makes to decide, dynamically, which 
resources to use when a program is executed.  More recently, we have been using the NWS in an 
operational setting to detect network performance faults such as those caused by routing table 
misconfiguration [CCGrid].  By comparing NWS forecasts to the expected performance between 
two end-points, we have been able to detect when the route between those endpoints changes due to 
a misconfiguration. 
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3.3.5 Other Related Projects 
Many tools already exist to help diagnose, tune and understand end-to-end network performance. 
However, in most cases, these tools are stand-alone tools, providing insight into one aspect of 
network performance, not an integrated view of network performance.  Brief descriptions of existing 
tools, including ones that will be incorporated into the Net100 toolkit are described below. 
 
One of the most useful tools for understanding end-to-end performance is Iperf.  Iperf, developed at 
NCSA by NLANR DAST, is a TCP and UDP bandwidth-testing tool similar to but less limited than 
ttcp and nettest. It consists of a server and client to measure network characteristics between two 
points. This tool has become one of the standard testing tools within the high performance 
networking community [IPERF].   
 
Nettest is a framework application produced by Lawrence Berkeley National Laboratory which 
makes use of SSL to provide a secure measurement infrastructure. A variety of existing and new 
network tools can be easily incorporated into it. Currently nettest includes iperf, a simple ping tool 
and a TCP based tool to determine optimal buffer sizes to meet specified bandwidth requirements 
[Nettest]. 
 
Another tool of interest is pchar - an end-to-end path characterization tool developed by Bruce Mah 
of Sandia National Laboratories. This tool is originally based on algorithms developed by Vern 
Paxon for use in pathchar; it can be used to determine bandwidth, latency, and loss on a per link 
basis. Using UDP packets of varying TTL the metrics are computed on the basis of ICMP reply 
responses. While similar in many respects to pathchar this is an independent implementation that has 
been improved over several versions [pchar].  
 
Pathrate is a new tool from the University of Delaware (with CAIDA) that is designed to measure 
both the capacity and the available bandwidth of a network path. Measuring link capacity is crucial 
for debugging, calibrating, and managing a path. Measuring the available bandwidth, on the other 
hand, is of great importance for predicting the end-to-end performance of applications, for dynamic 
path selection and traffic engineering, and for selecting between a number of differentiated classes of 
service. pathrate is designed to be robust to cross traffic effects, meaning that it can measure the path 
capacity even when the path is significantly loaded. Pathrate uses UDP-based measurements with a 
TCP control channel, and unlike pchar and pipechar, requires both a source and a sink [CAIDA]. 
 
The tool pipechar was developed by Jin Goujun at the Lawrence Berkeley National Laboratory and 
is used for initial characterization of network problems via bandwidth measurement. Pipechar is 
different that the other tools in that it is a sender only routine, thus do not need a paired receiver in 
order to locate unresponsive routers and hosts. Pipechar makes use of UDP and ICMP responses in 
very sensitive manner to make its analysis and only one pipechar may be run at a time on a host. 
While a standalone tool, it was designed to be used in conjunction with LBNL’s nettest [pipechar]. 
 
The most popular passive monitoring package is CoralReef. CoralReef is a trace collection and 
analysis tool developed at CAIDA. It passively monitors OC3 and OC12 connections via dedicated 
hardware (PCs) and will capture, analyze and generate reports based on aggregate traffic across an 
interface. This package includes all necessary tools, drivers, examples and documentation. [CR] 
 
While many of these tools do measure similar network characteristics, their results cannot be 
collected and compared in a standard, useful manner.  Through the NTAF, Net100 will develop a 
framework for launching many of these existing tools along with NWS to measure and predict 
network characteristics.  Most of these tools are active network probes; by contrast, Web100 
passively collects network performance for a specific application as it is running. The Web100 data 
can be used to modify the behavior of the TCP stack to improve performance of the application as it 
runs.  The Web100 data will also be collected by the NAIB and archived.  This data can then be used 
to verify the predictive information provided by the other tools. OS tools such as netstat can provide 
some information on TCP performance, but the statistics apply to all activity on the system, whereas 
the Web100 data is specific to a specific TCP flow. There are other passive tools like 
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tcpdump/tcptrace/xplot that can be used to analyze a specific application flow but these tools do not 
provide real-time feedback to the running application.   
 
3.4 Research Design and Methods 
This section provides a detailed description of the design and development of the four main 
components of the Net100 project.  
 
3.4.1 Network-aware Operating System 

 
We will use Web100 as the basic building block for developing a network-aware operating 

system.  As indicated above, the Web100 software suite consists of a number of components 
including: instrumentation in the kernel itself (KIS), derived instruments (DIS) based on the kernel 
instruments, an API (Application Programming Interface) to access the instruments, and a library of 
functions.  We will enhance and expand these components to provide detailed networking 
information to the host operating system.  The Web100 software suite is currently based on the 
Linux operating system.  Our work will also focus on Linux. However, as with the Web100 project, 
our instrumentation and library functions will be documented in a standardized manner so that they 
can easily be incorporated into other operating systems.  At all times during the project, we will 
utilize the most recent and stable version of the Web100 code. The current version Alpha0, provides 
a core set of KIS and DIS variables, a basic API and a small set of library functions.  
 
In working towards a network-aware operating system, we will start by understanding existing 
Web100 instrumentation with respect to the Net100 bulk transport application. Specifically, we will 
analyze the relationship between the current collected information and what information is used or 
needed by the host operating system.  We will consider the implications for both optimizing network 
and application performance. In an iterative manner, we will add enhancements to the core 
instrumentation based on our observations and analysis.  We will work towards the specific goal of 
using a network-aware operating system to optimize bulk transfers over a high performance link 
with the ability to achieve close to full utilization of the link itself.   
 
Once point-to-point, bulk transport issues are understood, we will expand and repeat the process, this 
time focusing on multi-site distributed applications. Once again, in an iterative manner, we will 
refine the instrumentation set, API and libraries to support the application. 
 
At the same time, we will begin to develop the mechanisms needed to align and compare the 
Web100 instruments with existing monitoring and diagnostic tools. We will begin by using the 
Network Tool Analysis Framework as a way to standardize the collection and archival of the data.  
We will modify and enhance the instruments as necessary to facilitate the comparison with results 
from other tools. This aspect of the project requires close collaboration between all four groups on 
the project.  
 
As discussed below, the NTAF will be developed to verify and validate the results from both the 
underlying network-aware operating system as well as the application itself.  During Year 2 of the 
project, we will develop methods and protocols, if necessary, to provide remote access to the 
expanded NAOS instrument set. Currently, Web100 instruments are accessed only from the host 
using the API and library functions to collect and utilize the data.  We will investigate ways of 
accessing this information, from using existing SNMP mechanisms to developing a new protocol if 
necessary. 
 
By Year 3 of the project, we will have begun to unify performance measurements across all layers in 
the network stack. Currently Web100 is focused on instrumenting only host TCP characteristics. We 
will begin to investigate what other - both network and application specific - information should be 
collected and how it can be used to provide better, more efficient, network performance. 
 
There are several other research issues that we will address as part of Net100. The first is the 
frequency at which monitoring should be performed. Running the network tests more often will 
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provide more accurate results, but tools like iperf and NWS put a load on the network, and therefore 
should be run as little as possible. We will use the NAOS and other Net100 tools to try to determine 
the optimal test frequency. 

Another interesting research issue that we will address is the use of parallel streams by applications. 
Many people have observed that the use of parallel TCP streams can improve overall TCP 
throughput [psockets]. However there are several members of the IETF that worry about the 
widespread use of this technique, and what the impact of parallel streams will be on both TCP 
congestion control algorithms and the Internet in general [RFC2914]. Net100 will provide the 
perfect set of tools to research this topic. We can use Net100 to determine what the performance 
issues on a given link are, to monitor how TCP is behaving, and to determine whether or not parallel 
streams are appropriate. We can also use the NAOS to monitor the effects of the parallel streams on 
each other. Net100 will make it easy to compare results using a variable number of streams, and 
allow us to correlate data from active monitors, passive monitors, and applications.  

 
3.4.2 Applications 
 
Oak Ridge National Laboratory’s contribution to the proposed research consists of three activities.  
First, ORNL would provide a production environment in which to test and evaluate the Net100 tools.  
ORNL has applications in global climate modeling, genomics, and atmospheric radiation monitoring 
that require transferring massive amounts of data over wide area networks.  ORNL in conjunction 
with NERSC has already been investigating optimizing bulk transfers over DOE’s ESnet as part of 
the probe [Probe1] and HPSS [HPSS] project.  ORNL will use the Net100 tools and API to modify 
file transfer programs to evaluate their ability to optimize bulk transfer over high bandwidth/delay 
networks.  ORNL’s present ESnet connection is OC3 migrating to OC12 this spring.  It is anticipated 
that an “on-demand” OC48 link will be available that will interconnect the Bay Area ESnet sites, 
ORNL, and possibly Argonne National Laboratory as part of another SciDAC proposal.  These high-
speed nets and distributed applications will provide quick feedback as to the effectiveness of the 
Net100 toolset.  ORNL will work to integrate the Net100 tools and API into HSI, a widely used 
interface to HPSS. 
 
A second ORNL research activity will be to look at other extensions to the Net100 toolkit and TCP 
stack that would specifically benefit DOE applications and fully utilize DOE’s high bandwidth 
ESnet.  ORNL will investigate other TCP parameters that might be monitored or tuned by the 
operating system with the Net100 tools.  Possible parameters would include: 
 
� Altering initial segment size and/or using a bigger MTU/MSS to speed TCP startup and 

recovery after loss [Allman, Floyd1, RFC2414] 
� Altering the AIMD (additive increase, multiplicative decrease) parameters to speed 

recovery after packet loss.  Over high delay networks, TCP favors “closer” flows [Hend] 
� Doing “tentative” cwnd/ssthresh adjustments on timeouts like FreeBSD 
� Avoiding loss by sensing congesting and slowing transmission [Ahn], or utilizing ECN 

from routers [RFC2481], and/or limiting transmission bursts. 
 
We will study link characteristics that could be advantageously retained between runs of a network 
application.  Retained characteristics might include RTT, RTTVAR, ssthresh, loss rate, and alternate 
routes.  We will investigate what information routers might provide to the Net100 tools for 
characterizing links. 
 
We will also investigate alternate protocols like SCTP [SCTP] that support out-of-order packet 
delivery.  Bulk file transfers could take packets out of order and do scatter/gather reads and writes to 
keep the receiver’s window “open” and thus possibly perform better than TCP.  Out-of-order packets 
occur because of packet loss and retransmission, but also may occur if the transport protocol or 
application supports parallel streams and/or multiple paths. 
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Evaluation of these parameters and tools will be done over DOE’s ESnet, and by emulation (to have 
repeatable test cases), and by simulation with ns [Ns2].  It will be necessary to insure that 
optimizations are still “fair” to competing network flows [RFC2914]. 
 
 
The third research activity will be to work with other vendors in incorporating the Net100 tools and 
kernel modifications in their products.  The current Web100 tookit uses Linux, and ORNL will 
deploy Linux Web100 nodes at ORNL and NERSC for testing, but DOE and ORNL have large 
computer resources based on AIX, Solaris, IRIX, and Compaq’s OSF.  As part of the Probe network 
research, ORNL has worked with IBM to optimize their TCP stack for DOE’s high bandwidth/delay 
networks.  ORNL will continue to work with the vendors to understand how to tune the operating 
system and DOE/ORNL applications to provide best network performance. 
 
3.4.3 Network Tool Analysis Framework 
 
Another new component that will be developed by Net100 will be a “Network Tool Analysis 
Framework” (NTAF).   This framework will allow the comparison of data collected from various 
active and passive monitoring tools, along with application instrumentation, providing the necessary 
input to evaluate which data are the most beneficial to enable network-aware operating systems.  

The starting point for the NTAF will be an existing LBNL developed service called Enable [Enable], 
which provides the ability to configure and schedule the execution of a variety of network testing 
tools, and save the results in a database. The design of Enable will be enhanced to make it easy to 
incorporate new monitoring tools, and to send the results to the NWS NAIB database. We will use 
the Web100 TCP-KIS interface to instrument a number of state-of-the-art network monitoring tools, 
and then use NetLogger to format and send this data to the NWS NAIB database.  

The NTAF will provide a flexible layer for configuring and triggering a wide variety of network test 
tools, and aggregating and transforming their results. The NTAF will be configurable, able to 
combine monitoring data in various ways, thus allowing the design of experiments that compare 
changes in network performance using various combinations of monitoring data. 

The ability to run several different types of monitoring tools and collect the results in one place will 
allow us to “monitor the monitors”. For example, we could run a passive Berkeley Packet Filter 
(BPF)-based tool on the same network as NWS sensors. This tool could measure the load that NWS 
is placing on the network, and thus allow us to determine the extent to which NWS is interfering 
with other traffic on that network. In this manner, we can easily measure the network overhead of 
many types of active monitoring. NTAF will provide fine-grained control over the execution 
frequency of network monitoring tools; this is particularly important for active monitoring tools, 
which may otherwise perturb the network. 

The results from several different tools that measure the same basic metric, such as bandwidth, will 
be used as input to the NTAF, so that their usefulness in determining tuning parameters can be 
compared side-by-side. Statistical analysis methods built into the NWS NAIB database will be used 
to determine which tools are the most consistent predictors of application performance. 

We will also develop an “application friendly” client API to the NTAF, and work with several Data 
Grid applications, such as the PPDG project, and with Grid middleware service developers, such as 
Globus, to test what types of information are most valuable to the applications.  

We now present a sample usage scenario on how the NTAF might be used. All tools will use the 
Web100 TCP-KIS interface to collect TCP information from the Web100 kernel, and then use 
NetLogger to format and send this data to the NWS NAIB database. The NTAF could be configured 
to run the following network tests every few hours over a period of several days: 

� ping -- measure network delay 
� pipechar and pathrate -- actively measure speed of the bottleneck link 
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� iperf -- actively measure TCP throughput. Multiple iperf  tests could be run with different 
parameters for the number of parallel streams {e.g.: 1,2,4} and the method of tuning the 
TCP buffers {Web100 auto-tuned, hand-tuned} 

� NWS -- measure and predict network delay and bandwidth using NWS’ own sensors 
 
Using this configuration, there is a tremendous amount of analysis that may be performed, including: 

� The ability to compare Web100 tuned throughput to hand-tuned throughput. 
� The ability to compare NWS predicted bandwidth with application and iperf bandwidth. 
� The ability to determine the advantage, if any, of parallel data streams, using both hand-

tuned and autotuned (Web100-tuned) TCP. 
� The ability to see the variability of the results over time. 
� The ability to compare pipechar and pathrate to see which is most accurate. 
� The ability to measure the impact of tuned TCP streams on non-tuned streams. 

 
This level of analysis requires the ability to easily configure and trigger the desired set of monitoring 
tools on the desired set of hosts, and then to collect all the information in a common format and in a 
central location. This would be almost impossible without the framework provided by NTAF and the 
NWS NAIB.  

3.4.4 Network Analysis Information Base 
 
A network-aware operating system must be able to provide its users with a "picture" of how system 
level performance response is impacting application execution.  The system may report packet-
traffic along a network route between two communication machines, but that information does the 
user no good unless it can be used to estimate end-to-end network performance at the application 
level. 
 
 To be truly effective, then, a network-aware operating system must be able to provide predictions of 
future performance levels to support resource allocation, and to correlate system-level performance 
data with observed application performance. Both of these requirements can be met by using Net100 
as a framework for integrating the Network Weather Service (NWS) and Netlogger to create a new 
abstraction performance analysis abstraction. Our goal is to provide a time-sensitive performance 
analysis detailing the various performance metrics available from different network components and 
to correlate that information with the performance a user experiences when using the network. 
 
Our plan is to develop a "Network Analysis Information Base" (NAIB), based on the NWS and 
Netlogger, that uses NWS forecasting techniques to construct, dynamically, a picture of the 
performance that is available from a set of network resources.  By comparing the information 
gathered by the NWS to the performance observed by an application loading the network, we will be 
able to validate the efficacy of the Net100 toolkit. 
 
Information will be provided to the NAIB from a number of different measurement sources. We will 
develop an input interface so that NetLogger data can be incorporated. NetLogger provides a 
common data format for many different resource and application performance measurements. 
NetLogger formatted monitoring data collected via the NTAF, in addition to data from the standard 
NWS sensors, will be stored in the NAIB, along with network configuration information collected 
by traceroute and SNMP. Then, using the NWS statistical models, we will construct an aggregate 
"picture" of the performance an application can expect when it chooses to load a given set of 
network resources.  At the same time, since application instrumentation data taken from NetLogger 
will be available, the resulting service will be able to provide real-time measurements of how well 
observed application performance matches predicted performance.   The NAIB therefore constitutes 
provides a validation facility for Net100 research.   
 
To develop NAIB we will focus on three goals. 
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� We will develop an extensible infrastructure for management of performance data that is 

capable of incorporating measurement data from any available measurement facility, using 
Netlogger as the primary data-delivery mechanism, and Net100 as the integration 
technology. 

 
� We will investigate forecasting models that are able to combine performance measurement 

data originating from different sources to form a composite forecast topology of future 
conditions. 

 
� We will deploy the NAIB as a Net100 tool over ESnet both to verify the efficacy of our 

techniques and to provide topology service to the wider DOE research community. 
 
3.4.4.1 Developing the The Network Analysis Information Base  
 
Currently, there are a variety of dynamic performance measurement systems deployed for the 
Internet, but from the perspective of dynamic analysis, they suffer from two common limitations.  
The first is that they capture measurement data reflecting what conditions were, and not how they 
will be, and secondly they usually make results available graphically or via HTML.  We propose to 
address both of these issues by developing the NAIB so that it 
 
� can gather and serve data via programatic as well as graphical interfaces, 
�  incorporates low-level resource measurement, high-level application instrumentation, and 

forecast data, and 
�  provides the performance response necessary to make near real-time analysis and 

validation of user performance useful.  
 
One of the primary concerns in the architecture of the NAIB is scalability.  Our initial efforts have 
been to employ Oracle's commercial RDBMS system, utilizing the Partitioning and Parallel options 
to achieve storage of and rapid access to this vast volume of data. 
 
Further, it is quite clear that only a certain amount of this data can be archived in the central data 
repositories.  The balance will need to transit the network from producer to consumer as appropriate 
to minimize wasted effort.  To this end, we will leverage our relationship with the Logistical 
Computation and Internetworking (LoCI) effort on-going at the University of Tennessee.  One of the 
goals of LoCI is to enable the efficient management of shared but distributed state in the network.  
Results from this NSF-funded and previously DOE-funded effort will be highly relevant to our work 
with the NAIB. 
 
We will interface the NAIB to both "active" and "passive" measurements sources via Net100.  In 
particular, we wish to incorporate active data gathered using both hard and soft collaboration 
probing methodologies as well as path-oriented probing methods such as those employed by 
traceroute, pathchar, clink, and pchar.  Examples of passive measurements include periodic 
snapshots of routing table state, network device utilization, packet traffic counts and Cisco Netflow-
style flow data.  To the extent that this data is available in Netlogger format, we will choose this 
method of data incorporation above all others.  
 
To achieve a quality deployment, the staffing requirements for the NAIB component of Net100 
cannot be met with graduate students alone.  Clearly, we will need to achieve a new set of research 
results in order to develop performance topologies.  To make those results available to DOE users 
via Net100, however, will require the skills and professional commitment of a full-time scientific 
staff member. 
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3.4.4.2 Application Performance Verification  
 
Once the NAIB is in place, we will provide an application performance interface that will be 
compatible with Netlogger.  The goal of this software component to allow the application user to 
query the NAIB for an estimate of network performance between two end-points, and the compare 
the performance prediction to the actual performance that the application achieves.  By building both 
the prediction mechanisms and the means to observe the effectiveness of the predictions into 
Net100, the resulting functionality will offer DOE high-performance network users a uniquely 
transparent system. All performance data will be available as well as measurement of the error 
associated with using it to predict application performance.  We believe that this level of 
instrumentation and analysis sophistication will be invaluable as DOE users tune their network 
applications.  
 
3.5 Outreach 
3.5.1 Dissemination and Technology Transfer 
The "Closing the Gap” WWW site, distributed between and supported by each of the collaborators 
on the project, will be used as a mechanism for disseminating information associated with the 
Net100 project. This web site will highlight current Net100 research activities at each site as well as 
provide a mechanism for code distribution, documentation, test results and Frequently Asked 
Questions (FAQ).   
 
A primary goal of the Net100 project will be the dissemination and use of the Net100 components 
within the community.  By using Web100 as a basic building block, we can work with existing DoE 
Web100 users to test and deploy the NAOS.  We will work with the Web100 project, as well as the 
broader DoE and high performance networking community to provide a mechanism for easily 
distributing any software developed within the Net100 project.  Through ORNL and LBNL we will 
develop core Web100 and NAOS expertise within the DoE community, expanding it to other DoE 
laboratories, applications and projects.  While not the focus of this project, feedback from this 
broader community will be used when possible to influence the design and development of NAOS 
functionality.   
 
Technology Transfer is critical to the long term adoption of network-aware operating systems. To 
this extent, we will provide standardized documentation of the NAOS so that the vendor community 
can easily adopt it.  Also, by the end of the project, we will make all operational software 
components of the Net100 project publicly available.   Results collected and archived within the 
NAIB will also be available on a widespread basis. Where possible, we will attempt to establish a 
collaborative partnership with network backbone provides, such as Qwest and the ESnet 
administration, to make our findings available to them in support of their on-going diagnostic and 
capacity-planning activities 
 
A key advantage of the Net100 approach is that it will result in an implementation prototype with 
real operational utility.  We believe, based on our previous experience with other Net100 related 
projects the core Net100 components, from the NAOS itself to the NAIB, will enable other 
computational and computer science efforts at DOE that focus on large-scale distributed computing.  
 
The "Closing the Gap" www site will be used as a mechanism for disseminating information. 
  
3.5.2 Relationship to other projects 
LBNL has submitted a SCIDAC proposal titled “Self-Configuring Network Monitoring” that would 
create an infrastructure of passive and active monitoring on ESNet, with results stored in a network 
assessable monitoring data archive. The proposal will provide an infrastructure where monitoring 
sensors can be triggered on the fly based on some predefined criteria. For example, if active 
monitoring shows that the speed of a given link is substantially less than is was in the past, passive 
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monitors will be started to analyze the cause of the performance decrease. If this proposal is funded, 
we will interface Net100 with data from that archive. 

We plan to leverage our ties to several large "Data Grid" [DataGrid] projects to provide a realistic 
test environment for the tools and techniques developed in this proposal. These projects include he 
Particle Physics Data Grid [PPDG], GriPhyN [GriPhyN], the EU DataGrid [EUDG], and the Earth 
Systems Grid [ESG]. These projects all require the efficient transfer of very large scientific data files 
across the network, and would all benefit from the work described here.  

We will also work closely with the SciDAC proposed "DOE Science Grid" project, led by William 
Johnston, LBNL. This project proposes creating a multi-laboratory Collaboratory Pilot aimed at 
integrating, deploying, and supporting the persistent services needed for a scalable, robust, high-
performance DOE Science Grid, thus creating the underpinnings for a DOE Science Grid 
Collaboratory Software Environment (DSG-CSE).  

We will use our experience and expertise in tuning high-performance distributed applications to 
validate the techniques from this proposal. We also have close ties to ESNet, NTON [NTON], and 
SuperNet [SuperNet] networks, and will work with each of them to deploy these new network tools 
and services in each of these environments. This will allow us to validate the utility of these tools 
and services in a real network environment.  

 
3.6 Timeline in Milestones 
3.6.1 Pittsburgh Supercomputing Center  

Year 1: 
•  Work with ORNL to understand the instrumentation requirements from the bulk-tramport 

application and integrate existing Web100 kernel into the host operating system and 
application itself. 

•  Based on observations and analysis of the results from using the initial application, modify 
and enhance Web100 instrument sets, API and libraries. 

•  Document instrumentation and library functions in a standardized manner. Work with the 
Web100 developers to incorporate this into a document (i.e, IETF MIB) that can be submitted 
to the standards track at IETF. 

•  Begin development of mechanisms for using NOAS generated information with the Network 
Tool Analysis Framework. 

Year 2: 
•  Work with ORNL to integrate NOAS into multi-site distributed application. 
•  Identify and implement NOAS instruments and enhancements necessary to support the 

distributed applications. 
•  Continue documentation and standardization process. 
•  Identify key operating systems NOAS should be expanded to. Work with Net100 

collaborators to get vendors to adopt the NOAS and Web100 standards. 
•  Start the proccess to develop remote access mechanisms. 

Year 3: 
•  Continue to expand and enhance NOAS instrumentation and functions based feedback from 

applications, primarily focusing on integrating NOAS into a range of DoE specific distributed 
applications. 

•  Continue process of developing remote access mechanims, including testing these 
mechanims within the NTAF as well as with other projects. 

•  Begin the process of unifying performance measurements across all layers in the network.  
Add instrumentation and functions to the NAOS as necessary. 

•  Document and standardize all enhancements and provide mechanism for distributing NOAS 
code to DoE users. 
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3.6.2 Oak Ridge National Laboratory 
Year 1 
� Deploy Web100 at ORNL and NBERSC nodes to develop Net100 expertise. 
� Develop and demonstrate Web100-aware bulk data transfer application for Probe/HPSS 

testing between NERSC and ORNL. 
� Contribute to test and evaluation of existing end-to-end tools. 
� Get access to ESnet ORNL and NERSC routers and investigate possible realtime feedback 

to application (e.g.: using SNMP). 
� Explore transport optimizations for single TCP flows. 
� Develop file transfer application/protocol to support out-of-order packet arrivals. 
� Deploy a small emulator testbed to test transport protocols/applications. 
� Explore turning the IBM/AIX 5.1 TCP stack and investigate extending it with Net100 

mods. 
� Test Net100 tools on ESnet’s OC48 testbed. 
� Publish tools and tips on web page and in formal publications and presentations. 

 
Year 2 
� Integrate Net100 tools into HPSS transfer protocols (HSI). 
� Modify kernels to support ECN and use Net100 tools to tune DOE TCP applications with 

ECN feedback (assumes DOE’s ESnet routers will be ECN-capable). 
� Continue Net100 integration with other vendor TCP stacks (Solaris, Irix, Compaq). 
� Integrate ORNL’s network-daemon statistical sampling research with NWS/Net100. 
� Extend Net100 tools to include adaptive source-based routing and multipath routing via 

application network daemons. 
 
Year 3 
� Continue Net100 integration with other vendor TCP stacks (Irix, FreeBSD). 
� Extend Net100 tuning to include DOE’s IPv6 network (jumbograms). 

 
3.6.3 Lawrence Berkeley National Laboratory  

Year 1: 
•  generalize existing LBNL tools to create the core NTAF framework (6 person-months) 
•  interface NTAF with NWS (2 person-months) 
•  instrument iperf, pipechar, pathrate and GridFTP using Web100 TCP-KIS and NetLogger 

•  1person-months 
•  analyze Web100 autotuning of GridFTP using NTAF and NWS  

•  with ORNL, 2 person-months 
•  help design and test NWS NAB analysis modules (with UT: 1 person-months) 
•  begin analysis of which monitoring tools will be required for network-aware operating 

systems (joint effort with all participants: (1 person-months) 
•  total effort for year 1: 1 FTE 

Year 2: 
•  continue to improve NTAF framework (2 person-months) 
•  continue to instrument and integrate new network tools as they become available (1 person-

months) 
•  analyze Web100 autotuning with Grid applications (2 person-months) 
•  analyze impact of tuned applications on non-tuned applications (with PSC: 2 person-months) 
•  analyze impact of parallel streams (with PSC: 1 person-months) 
•  analyze alternative protocols (with ORNL: 1 person-months) 
•  continue to help design and test NWS NAB analysis modules (with UT: 1 person-months) 
•  integrate with other monitoring projects (2 person-months) 
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•  total effort for year 2: 1 FTE 

Year 3: 
•  continue to improve NTAF framework (1 person-months) 
•  continue to instrument and integrate new network tools as they become available (1 person-

months) 
•  help write IETF documents on network-aware operating system techniques (1 person-

months) 
•  continue to analyze Web100 autotuning with Grid applications (3 person-months) 
•  continue to analyze impact of tuned applications on non-tuned applications (with PSC: 2 

person-months) 
•  continue to analyze alternative protocols (with ORNL: 1 person-months) 
•  continue to help design and test NWS NAB analysis modules (with UT: 1 person-months) 
•  continue to integrate with other monitoring projects (2 person-months) 

•  total effort for year 3: 1 FTE 

 
3.6.4 University of Tennessee at Knoxville  

Year 1: 
•  Generalize NWS interface to accept Web100 measurement information (2 person months) 
•  interface NTAF with NWS (2 person-months) 
•  incorporate iperf, pipechar, pathrate and GridFTP using web100 TCP-KIS from NetLogger 

into NWS (2 person-months) 
•  analyze Web100 autotuning of GridFTP using NTAF and NWS (with ORNL, 2 person-

months) 
•  design and begin to prototype NWS NAIB analysis modules (6 person-months) 

•  total effort for year 1: 1 FTE 

Year 2: 
•  continue to design and prototype NAIB (6 person-months) 
•  continue integrate new network tools as they become available (1 person-months) 
•  begin integration of  NAIB within NTAF (with LBNL 2 person months) 
•  analyze Web100 autotuning with Grid applications (2 person-months)  
•  begin development of multivariate analysis models that can incorporate data from multiple 

measurement sourcdes (1 person month) 
•  total effort for year 2: 1 FTE 

Year 3: 
•  help to continue to improve NTAF framework (with LBNL 1 person-months) 
•  complete NAIB prototype (2 person months) 
•  deploy integrated NTAF and NAIB (with ORNL, PSC, LBNL 2 person months) 
•  help write IETF documents on network-aware operating system techniques (1 person-

months) 
•  help to enhance Web100 autotuning with Grid applications (with PSC 3 person-months) 
•  continue to analyze impact of tuned applications on non-tuned applications (with PSC: 2 

person-months) 
•  incorporate and report on multivariate analysis models (1 person month) 

•  total effort for year 3: 1 FTE 



 20

 


