\section*{| 4 |
| :--- |
|  |
| 0 |
| 0 |
| 0 |
| 0 |}

TEGMEAT WEPGT 85.58 .5 sp

A. E. Dietz
R. B. Proffith
R. S. Chabot
and
E. L. Moak

Hayes Internctional Corporation


January 1969


$\qquad$

TECHNICAL REPORT
69-59-GP
dESIGN MANUAL FOR
GROUND-MOUNTED ATR-SUPPORTED STRUCTURES
(SINGLE- AND DOUBLE-WALL)
(REVISED)
by
A. E. Dietz, R. B. Proffitt, R. S. Chabot, and E. L. Moak

Hayes International Corporation
Birmingham, Alabama
Contract No. DA19-129-AMC-953(N)

## General Equipment \& Packaging Laboratory

U. S. ARMY NATICK LaBORATORIES

Natick, Massachusetts 01760

## BLANK PAGE

## FOREWORD

This design manual for ground-mounted alr-supported, single- and double-wall atructures was prepared by the Hayes International Corporation and provides the Military and Covernment suppliers with design information to fabricate functional and reliable air-supported structures at the lowest possible welght. The data and design information presented is based on winc tunnel tests and analytical determinations reported in Natick Technical Report 67-36-ME entitled "Wind Tunnel Test and Analyses of Ground Mounted Air Supported Structures". Wind tunnel tests were conducted in the six foot by six foot stability tunnel at Virginia Polytechnic Institute, Blacksburg, Virginia. Initial work was conducted for the U. S. Army Natick Laboratories, Natick, Massachusetts under Contract DA19-129-AMC-129(N), during the period from July 1963 to October 1966. Additional analyses and teats were conducted under Contract DA19-129-AMC-953(N) from May 1966 to May 1968. Data presented supplement and supersede information shown in Natick Technical Report 67-35-ME dated October 1966.

Mr. Constantin J. Monego of the General Equipment \& Packaging Laboratory at the Natick Laboratories was the Army Project Engineer for "his program. Mr. A. E. Dietz was the Program Manager and Messrs. K. B. Proffitt, R. S. Chabot, and E. L. Moak were the principal investigators for the Hayes International Corporation. The asaistance provided by Mr. C. J. Monego of the Nasick Laboratories, Dr. R. T. Keefe and Prof. F. G. Maher of the Virginia Polytechnic Institute, and the personnel of the Technical Engineering Department at Hayes International Corporation are gratefully acknowledged. In particular, many thanke are due Mr. Joseph I. Bluhm, Chief, Applied Mechanics Research Laboratory and his staff at the U. S. Army Materials and Mechanics Research Center, Watertown, Maseachusetts, for review and analysis of this report which resulted in many valuable comments and recommendations, and to Messrs. J. H. Flanagan, W. C. Whittlesey, and C. W. Weikert for their encouragement and support of this work.

## TABLE OF CONTENTS

Page
LIST OF TABLES ..... vii
LIST OF FIGURES ..... vili
ABSTRACT ..... $\times 11$
SECTION 1
INTRODUCTION ..... 1
SECTION 2
GENERAL DISCUSSION ..... 2
BACKGROUND ..... 2
general characteristics ..... 4
SECTION 3
DESIGN PARAMETERS ..... 5
SENERAL ..... 5
AERODYNAMIC ..... 5
Lift ..... 7
Drag ..... 7
Overturning Moment ..... 8
TENT DEFLECTION ..... 8
Tent Anchor Loads ..... 9
Single-Wall Tents ..... 9
Double-Wall Tents ..... 10
TENT STABILITY ..... 11
Single-Wall Tents ..... 12
Double-Wall Tents ..... 12
SECTION 3 Page
STRUCTURAL ..... 13
Single-Wall Spherical Tents ..... 14
Single-Wall Cylindrical Tente with Hempapherical Ends ..... 14
Single-Wall Cylindrical Tents with Ellipsoidal Ende ..... 15
Double-Wall Cylindrics 1 Tente with Flat Ends ..... 16
PABRIC STRESS ..... 17
Single-Wall Tent ..... 17
Double-Wall Tent ..... 17
Snfety Pactors ..... 17
FABRIC WEIGHTS ..... 18
Weight of Base Fabric ..... 18
Weight of Coated Fabric ..... 18
BLOWER CHARACTERISTICS ..... 18
Single-Wall Tent ..... 20
Double-Wall Air-Supported Tents ..... 21
tent weight and cube ..... 22
Tent Weight ..... 22
Package Cube ..... 22
SECTION 4
SAMPLE DESIGN PROBLEMS ..... 23
general equations ..... 23
SINGLE-WALL TENT ..... 27

## TABLE OF CONTENTS (Continued)

SECTION 4 Page

## SAMPLE DESIGN PROBLEMS

## SINGLE-WALL TENT (Continued)

Known Shape ..... 27
Spherical Tent ..... 27
Cylindrical Tent with Hemispherical Enda ..... 33
Cylindrical Tent with Ellipsoidal End ..... 40
Unknown Shape ..... 47
DOUBLE-WALL TENT ..... 55
Known Shape ..... 55
Unknown Shape ..... 61
SUMDARY ..... 70
REPERENCES ..... 71
GLOSSARY OF TERYS ..... 72
SYMBOLS ..... 73

## LIST OF TABLES

## Table

Page

I General Tent Data -- Single- and Double-Wall Tenta . . . 3
II Tent Planform Area, Ap, Shperical and Cyilndrical Tente with Hemiapherical End. . . . . . . . . . . . . . 6

III Weight-Strength Relacionship of Plain Weave Fabrica . . . 19
vis

## ExCT OB MTGURES

Figure ..... Page
1 Single-Wall, Air-Supported Radome, Nike Hercules System ..... 77
2 Single-Wall, Air-Supported Tent, Above-Ground, Launcher, Nike Herculea Syatem ..... 78
3 Double-Wall, Air-Supported Tent, Maintenance, Multi- Purpose, Sectionalized (Pershing Minaile) ..... 79
4 Double-Wall, Air-Supported Tent, Vehicle Maintenance, Small (Arctic) ..... 80
5 Double-Wall, Air-Supported Tent, Aviation Maintenance, Medium, Sectionalized ..... 81
6 Double-Wall, Air-Supported Tent, Assembly Area, Nike Hercules Mobile System ..... 32
7 Variation of Impact Preseure with Air Speed, Sea Level Standard Armoaphere ..... 83
8 Impact Pressure Correction Factor, $k_{p}$, Variation with Altitude and Temperature ..... 84
9 Variation of Lift Coefficient with Shape (Non-PorousSpherical and Cylindrical Single-Wall Tents; 1:2, 1:4,$W / l_{h}$ )85
10 Variation of Lift Coefficient with Shape (Non-Porous Double-Wall Tents; 1:1, 1:2, 1:4 W/ $\mathrm{L}_{h}$ ) ..... 86
11 Variation of Drag Coefficient with Shape (Spherical and Cylindrical Single-Wall Tente; $1: 2,1: 4 \mathrm{~W} / \ell_{h}$ ) ..... 87
12 Variation of Drag Coefficient with Shape (Non-Porous Double-Wall Tents; 1:1, 1:2, $1: 4$ :/ $\ell_{h}$ ) ..... 88
13 Variation of Moment Coefficient with Shape (Spherical and Cylindrical Single-Wall Tente; 1:2, 1:4, $W / \ell_{h}$ ) ..... 89
14 Variation of Moment Coefficient with Shafe (Non-Porous Double-Wall Tants; $1: 1,1: 2,1: 4 \mathrm{~W} / \mathrm{E}_{\mathrm{h}}$ ) ..... 90
15 Variation of Tent Deflection with Shape (Spherical Single-Wall Tents) ..... 91
Figure Page
Comparison of Non-Porous Tent Deflection with Shape(Cylindrical Single-Wall Tente, $1: 2 \mathrm{~W} / \mathrm{l}_{\mathrm{h}}$ )92
17
Variation of Tent Deflection with Shape (Non-PorousCylindrical Single-Wall Tents, $1: 4 \mathrm{~W} / \ell_{h}$ )93
18
Variation of Tent Deflection with Shape (Non-Porous Double-Wall Tente $1: 1,1: 2,1: 4 \mathrm{~W} / \mathrm{L}_{\mathrm{h}}$ ) ..... 94
19
Variation of Tent Deflection with Cell Pressure - Guy Lines Attached at 0.80 and 0.40 Tent Height ..... 95
20
Variation of Anchor Load Coefficient with Shape(Spherical and Cylindrical Single-Wall Tents, 1:2,$1: 4 \mathrm{~W} / \mathrm{l}_{\mathrm{h}}$ )96
21
Variation of Base Anchor Load Coefficient with Shape ..... 97
22
Variation of Guy Iine Load Coefficient with Shape ..... 98
23
Variation of Peak Stress Coefficiente with Shape (Spharical Single-Wall Tents) ..... 99
24
Variation of Streas Ratio with hpax Angla (Spherical Single-Wall Tenta) ..... 100
25
Coordinate Syatem and Membrane Streasea for a Truncated Spherical Shell ..... 101
2627 Variation of Maximum Denign Strese Coefficient withTent Width-to-Length Ratio; n/d m 1/2, N $/$ qr103
28
Variation of Maximum Design Strese Coafficient with2930Tent Width-to-Length Ratio; h/d = 3/4, N $/ \mathrm{qr}$104
Variation of Maximum Design Streat Coefficient with Tent Width-to-Length Ratio; h/d $=3 / 8,1 / 2,3 / 4, N_{\phi} / \mathrm{ar}$ ..... 105
Variation of Maximum Design Strens Coefficient with Tent Width-to-Length Ratio; $\mathrm{h} / \mathrm{d}=3 / 8,1 / 2,3 / 4, \mathrm{~N}_{\phi \theta} / \mathrm{ar}$ ..... 106
31
Coordinate System and Membrane Stresaes for a Cylindrical Shell with Hemiapherical End ..... 107

| 32 | Basic Maximum Stresa Coefficients for Single-Wall Cylindrical Tents with Ellipsoidal Ends. |
| :---: | :---: |
| 33 | Correction Factors for Single-well Cyindrical Tents with Ellipsoidal Ende; . . . . . . . . |
| 34 | Correction Factors for Single-Wall Cylindrical Tente with Ellipaoidel Ends; $\theta$ |
| 35 | Corruction Factors for Single-Well Cylindrical Tents with Ellipsoidal Ends; $甲 \theta$ |
| 36 | Coordinate System and Membrane Stresses for a Cylindrical Shell with Ellipsoidal Ends . . . |
| 37 | Double-Wall Tent Cell Pressure Correction Factors |
| 38 | Variation of Web Strese Coefficient with Cell Radius |
| 39 | Variation of Hoop Streas Coefficient with Cell Radius |
| 40 | Variation of Meridional Streas Resuitant with Impact Prespure, $q$; w/d $=0.16$, $\mathrm{h} / \mathrm{d}=0.50$. |
| 41 | Variation of Meridionel Stress Resultant with Impact Presgure, 9 ; w/d 0.12, $h / d=0.50$. |
| 42 | Variation of Meiidional Stresa Resultant witt. Impact Pressure, $9 ; w / d 0.08, h / d=0.50$. |
| 43 | Variation of Meridional Stress Resultant with Impact Pressure, $q$; Sloping Sides, w/d $=0.16$, h/d $=0.80$. |
| 44 | Variation of Meridional Stress Resultant with Impact Pressure, $9 ;$ Sloping Sifes, w/d $=0.12$, h/d 0.80 |
| 45 | Variation of Meridional Stress Resultant with Impact Pressure, $q$; Sloping Sides, $w / d=0.08, h / d=0 . \varepsilon 0$. |
| 46 | Variation of Meridional Stress Resultant with Impact Pressure, $q$; w/d 0.16, h/d = 0.75. |
| 47 | Tariation of Meridional Stress Resultant with Impact Pressure, $9 ; w / d=0.12, \mathrm{~h} / \mathrm{d}=0.75$. |
| 48 | Variation of Meridional Stress Resultant with Impact Pressure, $q$; w/d=0.08, $\mathrm{h} / \mathrm{d}=0.75$ |

Eaxuse Page
49 Coordinate Systom and Striss Resultant: for a Doubie- Wall Cylindrical Tent with Circular Cioss Section ..... 125
50
Weight of Coating ior Single- and Two-Ply Coated Fabric ..... 126
51 Air Loss through a 10 Crown Slide Fastener . ..... 127
52 Coordinate System and Streas Resultants for a Double- Wall Cylindrical Tent with Straight Sides . . . . . . . ..... 128

## ABSTRACT

The objective of this design manual is to provide industry and Government suppliers with design information to fabricate functional and reliable air-bupported structures at the lowest possible weight. The data and deaign information presented are based on wind tunnel teata and analytical determinations reported in a previous investigation.

Design information is given for apherical and cylindrical (single- and double-wali) air-mupported atructures. The data in general are presented in nondimensional coefficient form and, therefore, are applicable to full-scale otructurea within the range of parameters tested. Design information is presented as charts and tables on tent aerodynamic force and moment coefficients, anchor and guyline coefficients, structural deflections, material stresses. packaged volume, and veight.

## INTRODECTIOK

In March 1956, a revised edition of the Design Manual for Spherical Air-Supported Radomes was published by Cernell Aeronautical Laboratory. Since ies publication, air-gupported atructures of other than spherical shapes have been adopted by the Army. Design and fabrication of these tenta have generally been liadted to the semi-empirical methods outlined in the revised Design Manual for Spherical Air-Supported Radomes and data estimated to cover other basic configurations.

To assist the tentage engineer to more accurately define the criteria for design of air-supported structures, the U. S. Army Natick Laboratories contracted with Haye International Corporation to formulate practical design criteria for single- and double-wall air-supported structures. The program included a comprehensive analytical study and model wind tunnel teate resulting in a design manual for ground-mounted air-supported seructures. A more rigorous solution to the analytical deteraination of fabric stresses is included in this investigation which, combined with the lateac materiala and accessory equipant information furnished by the Army, has produced wore precise tentage design eriteria than hat heretofore been available to the Arwy designer.

This design manual presents the resulte of these tests and analyses in a concise form of design tables and curves for both singleand doublewall atructures with eample probleme illustrating the use of the data.

## SECTION 2

## GENERAL DISCUSSION

## BACXGROUND

The art of tent making is thousands of yeare old. Por centuries, through trial and error, man has constructed effective shelters for habitation and housing of equipment. The evolution of this art has covered myriad configurations, but only recently has a vay been found to eliminate the cumbersome vaight of the aupporte through the use of inflation techniques. The forerunner of air-supported tents dates back to early World War II days when an external enclosure over a radar antenna was found desirable. This use was motivated by the necesaity for protection of the radar installation from high winds. These early installations were small in size and the material used ranged from single sheets of molded plexiglass or plywood to multiple layers of sandwich-type construction. The first reported use of a resinimpregnated slass fabric as a radome material stemmed from an attempt to reduce the moisture absorption properties of plywood on the earlier models through the application of a thin protective overlay on the external surface of the radome.

Larger radomes were dictated for use on later World War II radar installations. The advent of radomes ranging in diameter from 35 to 55 feet arose from the necessity to extend the United States Air Defense after World War II to include radar detection systems located in arctic zones of operation. Operational radars of that time were designed to withstand only the wind loada and weather conditions encountered in temperate zones. Wind conditions in the Arctic were known to impose greater loads upon an antenna system and upon its pedestal than those for which the structure was designed. Therefore, it wan decided to utilize radomes for environmental protection. Up until this eime, the large radomes had been used as an expedient alternative to modification and strangthening of existing radar antenna structures. With the advent of arctic usage, the intrinsic merits of the lightweight radome soon became obvious; i.e., envirommental protection, reduction in power required to rotate large antenna systems in high winds, and reduction in size and weight of structural members at the cost of amall degradation in systen performance due to the presence of the radome.

Modern acientific and technological developmente made in military equipment and in aupport of aobile army have reaultad in the need for new type tentage. The need for new tentage varies from highly specialized items for the missile program to large maintenance tents for ground vehicles and aircraft. Figurea 1 through 6 present some existing aingle- and double-wall air-supported structures and Table 1 provides general tentage information.

The use of air-supported tents, other than radomes, represents one approach taken by the Army to provide shelters of reduced weight, cost and cubage which can be easily transported, erected, and struck for more mobile

Table I
General Tent Data - Single and Double Wall Tents

| Tent Type | Dimensions | Shape | Fabric Weight |
| :---: | :---: | :---: | :---: |
| Single Wall |  |  |  |
| Pentadome - 100 ft . dia. | $h-50 \mathrm{ft}$. | Spherical | $\left\{\begin{array}{l} \text { Base }-5.5 \\ \text { Dome }-18 \end{array}\right.$ |
| Pentadome - $150 \mathrm{ft}$. dia. | $h-85 \mathrm{ft}$. | Spherical | $\begin{aligned} & \text { Base }=10 \\ & \text { Dome }-24 \end{aligned}$ |
| Air House - $40 \times 80 \mathrm{ft}$. | h-15ft. | Cylindrical <br> Spherical Ends | 18 |
| Radome - 27 ft. dia. | h - $19 \mathrm{ft}$.B in. Base Dia. 24 ft . | Spherical | 19-20 |
| Above Ground Launcher | $\begin{aligned} & h=13 f t_{0} \\ & W=17 f t_{0} \quad 6 \mathrm{in} . \\ & \ell_{h}-61 \mathrm{ft.} \end{aligned}$ | Cylindrical Spherical Ends | 18 |
| Double Wall |  |  |  |
| Assembly Area | $\begin{aligned} & h=27 f t . \\ & W=54 f t_{0} \\ & l_{h}=12 f t_{0} \\ & \text { Wall Depth - } 3 \mathrm{ft.} \end{aligned}$ | Cylindrical | 20 |
| Aviation Maintenance | $\begin{aligned} & h-18 \mathrm{ft}_{.}-4 \mathrm{fn} . \\ & \mathrm{W}-28 \mathrm{ft.} \\ & \mathrm{l}_{\mathrm{h}}-10 \mathrm{ft.}-3 \mathrm{in} . \\ & \text { Wall Depth }-2 \mathrm{ft.} \end{aligned}$ | Cylindrical | $\begin{aligned} & \text { Roof - } 14 \\ & \text { End - } 16 \end{aligned}$ |
| Shelter Set Small | $\begin{aligned} & h-13 \mathrm{ft.} 8 \mathrm{in.} . \\ & \mathrm{W}=23 \mathrm{ft.} 4 \mathrm{in.} \\ & \mathrm{l}_{\mathrm{h}}-13 \mathrm{ft.} \end{aligned}$ | Cylindrical | $\begin{aligned} & \text { Roof - } 14 \\ & \text { End - } 16 \end{aligned}$ |

*Fabric Weight, oz/yd ${ }^{2}$
 technology of tent making is developing, step by step, from a traditional craft to a branch of acientific engineering.

Cornell Aeronautical Laboratories and Massachusetts Institute of Technology have performed several scale tests on radome and missile shelter models. Cornell has produced a Radowe Design Manual for spherical radomes based on these tests. Design and fabrication of other than spherical tents has been accomplished largely by extrapolation of the deaign data contained in the Radome Design Manual and the individual designer's personal "feel" for the problew. A wind tunnel program was initiated to investigate a wide variety of tents, both apherical and cylindrical, single- and double-wall. The data obtained from these tests have been reduced and put in parametric form to facilitate future tent deaign.

## GENERAL CHARACTERISTICS

Air-supported tents present the modern mobile army with many advantages over rigid atructures. Some of the more important advantages are listed below:

Radio-frequency Trangiasibility - The air-supported tent, as used to house radar antenna, due to its thin-walled conatruction, very nearly approaches the ideal shelter, i.e., a thin-walled homogeneous aphere. Por this reason the same radowe can be used for several radar systems of different frequencies.

Light Weight, Low Bulk, and Cubage - The Inherent characteristics of an airsupported structure provides a high structural efficiency, which results in vary low package weight. Use of thin flexible materlal for the envelope permits the entire unit to be folded into a mall package which facilitates shipment and storage.

Ease of Handling and Logintic Support - Due to its low weight and compactness, the alr-supported structure is one of the most portable of all preseatly available shelters. The durability of the material used for the envelope minimizes logistic requirements and maintenance. Standardization of the basic tent sizes reduces the inventory requirement and makes the alr-supported structure adaptable to nearly all shelter requirements.

## SPCPTNM 3

## DESIGN PARAYETERS

## GENERAL

This part of the deaign manual containa the mathematical equations and ifgures necessary to compute tent design parameters. Basic tent design paramecers included are as follows:

Aerodynamic: lift, 'Drag, and Pitching (Overturning) Moment Tent Deflection
Fabric Weight and Stress
Anchor Loads
Blower Characteristics: Pressure and Volume
Eatimated Weight and Package Cube of the Tents.
The graphical presentation of the design parameters shown in this manul is based on wind tunnel tests, the detalls of which are fully described in U. S. Army Natick Laboratories Technical Report 67-36-ME entitled "Wind Tunnel Teste and Analymes for Ground Mounted Air-Supported Structures" dated October 1966.

## AERODYWAMTC

Fabric shelters eubjected to winds of high velocity can experience aerodynamic forces of considerable magnitude. These forcea can be altered and minimized by proper shape design. Thirty-six single- and doublemall tents were teated to 110 alles per hour and the resulting data prepared, which facilitates the task of optinising tent shape. It should be noted that the singlewall cylindrical shapes differed from the double-wall shapes in that the ends were hemiepherical or ellipeoidal for single-wall and Elat for double-wall. The aerodynamic force data are preaented in nondimensional coefficient form by dividing the force data by a reference area, Ap, and the dynamic or impact preseure, $q$. The tent planform area, $A_{p}$, was selected as the reference area and is defined as the maximum area in ${ }^{\text {a }}$ horizontal plane. For design convenience, planform areas for tents with radil up to 80 feet are shown in Table II.

The impact pressure due to wind velocity for use in the design equations is defined by the following mathematical expression:

$$
\text { Where } \quad \begin{aligned}
q= & 1 / 2 \rho U^{2} \\
q= & \text { Impact presest, } 1 b / f t^{2} \\
\rho= & \text { Denaity of air, slugs/ft and equals } \\
& 0.00238 \text { for a sandard day at sea level } \\
U= & \text { Wind velocity, ft/sec }
\end{aligned}
$$

Table II
Tent Planform Area, $A_{p}$
Spherical and Cylindrical Tants with Hemisr ical Ends

| $\begin{aligned} & \text { Tent Ranius, } \overline{5} \\ & \text { Ft. } \end{aligned}$ | Tent Planform Area, $A_{D}$, Sq. Ft. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Spherteal | Cyindrical $1 / 2, W / R_{h}$ | Cylindrical $1 / 3, W / \ell_{h}$ | Cylindrical $1 / 4, W / \ell_{h}$ |
| 10 | 314 | 714 | 1114 | 1514 |
| 12 | 452 | 1028 | 1604 | 2180 |
| 14 | 615 | 1399 | 2183 | 2967 |
| 16 | 804 | 1828 | 2852 | 3876 |
| 18 | 1017 | 2313 | 3609 | 4*05 |
| 20 | 1256 | 2856 | 4456 | 6056 |
| 22 | 1520 | 3456 | 5: $\ddagger 2$ | 7328 |
| 24 | 1809 | 4113 | 6417 | 8721 |
| 26 | 2123 | 4827 | 7531 | 10235 |
| 28 | 2463 | 5599 | 8735 | 11871 |
| 30 | 2827 | 6427 | 10027 | 13627 |
| 32 | 3216 | 7312 | 11409 | 15505 |
| 34 | 3631 | 8255 | 12879 | 17503 |
| 36 | 4071 | 9255 | 14439 | 19623 |
| 38 | 4536 | 10312 | 16088 | 21864 |
| 40 | 5026 | 11426 | 17826 | 24226 |
| 42 | 5541 | 12597 | 19653 | 26709 |
| 44 | 6082 | 13826 | 21570 | 29314 |
| 46 | 6647 | 15111 | 23575 | 32039 |
| 48 | 7238 | 16454 | 25670 | 34886 |
| 50 | 7853 | 17854 | 27854 | 37854 |
| 52 | 8494 | 19310 | 30126 | 40942 |
| 54 | 9160 | 20824 | 32488 | 44152 |
| 56 | 9852 | 22396 | 34940 | 47484 |
| 58 | 10568 | 24024 | 37480 | 50936 |
| 60 | 11309 | 25709 | 40109 | 54509 |
| 62 | 12076 | 27452 | 42828 | 58204 |
| 64 | 12868 | 29252 | 45636 | 62020 |
| 66 | 13684 | 31108 | 48532 | 65956 |
| 68 | 14526 | 33022 | 51518 | 70014 |
| 70 | 15393 | 34993 | 54593 | 74193 |
| 72 | 16286 | 37022 | 57758 | 78494 |
| 74 | 17203 | 39107 | 61011 | 82915 |
| 76 | 18145 | 41249 | 64353 | 87457 |
| 78 | 19113 | 43449 | 67785 | 92121 |
| 80 | 20106 | 4:1,36 | 71306 | 96906 |

Note: $A_{p}=r^{2}+2 r\left(\ell_{h}-2 r\right)$

Tine variarion of impact pressure with wind upeed at sea level and $59^{\circ} \mathrm{F}$. is shown in Figure 7. The variation of impact pressure with pressure altitude and cemperature is shown in Figure 8. This Eigure presents a cortecilon factor, $k_{p}$, which, when multiplied by the otandard day impact pressure, will correct for variations in design atmospheric conditions:
$q=k_{p} q \operatorname{std}, 1 b / f t^{2}$

Lift
The aerodynamic lift coefficient is defined as follows:

$$
C_{T}=\frac{L}{\Lambda_{p}}
$$

$$
\text { where } \begin{aligned}
C_{L} & =\text { Lift coefficient, nor-dimensifal } \\
L & =\text { Total } 1 / f t, \ldots \\
q & =\text { Impact pressure, } 1 \mathrm{~b} / \mathrm{ff}^{2} \\
A_{p} & =\text { Planform area, } f t^{2}
\end{aligned}
$$

The variation in lift coefficient with tent height-to-dianeter ratio and width-to-length ratio is shown in Figure 9 for single-wall tents and Figure 10 for double-wall tents.

Drag
The sxrodynamic drag coefficient is defined as follows:

$$
\text { where } \begin{aligned}
C_{D} & =\frac{D}{q T_{p}} \\
C_{D} & =\text { Drag coefficient, non-dimensional } \\
D & =\text { Total drag, } l b \\
q & =\text { Impact prassure, } 1 b / f t^{2} \\
A_{P} & =\text { Planform area, } f t^{2}
\end{aligned}
$$

The variation in drag coefficient with tent height-ro-diameter ratio and width-to-length ratio is shown in Figure 11 for single-wall tents and Figure 12 for double-wall tents.

## Uverturaing moment

The aerodynamic overturning moment coefficient is defined as follows:

where | $C_{M}$ | $=\frac{M}{q A_{P} d}$ |
| ---: | :--- |
| $C_{M}$ | $=$ Moment coefficient - non-dimensional |
| $M$ | $=$ Overturning moment, $f t-1 b$ |
| $q$ | $=$ Impact pressure, $1 \mathrm{~b} / \mathrm{ft}^{2}$ |
| $A_{P}$ | $=$ Planform area, $\mathrm{ft}^{2}$ |
| d | $=$ Reference length, ft |

Th. variation in overturning moment with tent height-to-diameter ratio and width-to-length ratio are shown in Figure 13 for single-wall tents and in Figure 14 for doublewall tents.

In order to calculate the total aerodynamic lift, drag and moments acting on the tent, it ia necessary to rearrange the equations which define the coefficients as follows:

Lift
$L=C_{L} q A_{p}$

Dras
$D=C_{D} q A_{p}$

Moment

$$
M=C_{M} q A_{p} d
$$

The coefficients $C_{L}, C_{D}$ and $C_{M}$ are obtained from the appropriate curves. The impact pressure, $q$, is obtained from Figures 7 and 8. The reference area $A_{p}$ is obtained from Table $V$ or by calculation, using the equations provided and dinensions of the tent. The reader is referred to SECTION 4, SAMPLE DESIGN PROBLEMS, for examples in which the aerodynamic coefficient data are used.

TENT DEFLECTION
The maximum tent deflection resulting from 110 miles per hour winds are shown in Figures 15 through 19 with inflation pressure equal to $q$ or $6^{\prime \prime}$ $w . g$. The data are plotted as a ratio of tent deflection-to-tent radius, $\delta / r$ versus the ratio of tent height-to-tent diameter, $h / d$. The maximum tent deflection imposes limitations on the usable tent radius.

If the $t$ size is known, the maximum tent deflection data can be used to establisi the maximum usable tent radiua, $r$ ', in accordance with the following:

$$
\begin{aligned}
& r^{\prime}=r\left(1-\frac{\delta}{x}\right) \\
f^{\prime} & =\text { Uaable tent radius, ft } \\
\text { where } \quad r & =\text { Radius of tent, } f t \\
& \frac{\delta}{r}=\text { Deflection ratio }
\end{aligned}
$$

If the required size is not known a minimum accaptable tent radius is established for a usable volume, and allowances made to include the maximum tent deflection. This may be accomplished as follows:

$$
\text { Whare } \quad \begin{aligned}
r^{\prime} & =\frac{r}{(1-\delta / r)} \\
r^{\prime} & =\text { Minimum accoptable radius, } f t \\
\frac{\delta}{r} & =\text { Defiection ratio } \\
r & =\text { Required tent radius, ft }
\end{aligned}
$$

Tent Anchor Loads
The general anchor load coefficiant due to arodynamic forces is defined as follows:

$$
\text { where } \begin{aligned}
C_{A L} & =\frac{P_{A L}}{q A_{Y}} \\
C_{A L} & =\text { Anchor load confficient } \\
P_{A L} & =\text { Anchor Load, } 1 b \\
q & =\text { Impact pressure, } 1 b / f^{2} \\
A_{P} & =\text { Tent planform aras, } f t^{2}
\end{aligned}
$$

## Single-Wall Tenta

For aingle wall tenta, the lift due to inflation pressure must be added to the aerodynamic iift to determine total lift. The load on the
anchors due to inflation pressure can he ralrularpd fram the fa!!netan $\%$ pression:

$$
F_{I L}=P_{e} A_{f}
$$

```
where \(\quad P_{e}=\) Tent enclosure pressure, \(1 b / f t^{2}\)
\(A_{f}=\) Floor area, \(\mathrm{ft}^{2}\)
```

Usiag the anchor load coefficient from Figure 20, the total anchor load for single-wall tents is calculated as follows:

$$
\text { Total } P_{A L}=C_{A L} q A_{p}+P_{e} A_{f}=P_{A L}+P_{I L}
$$

To find the maximum load per foot of perimeter it is necessary to divide the total anchor load by the perimeter of the tent:

$$
\frac{\text { Anchor Load }}{\text { Foot }}=\frac{\text { Total } \mathrm{P}_{\mathrm{AL}}}{\text { Tent perimeter }}
$$

The anchor spacing to secure the tent at the design wind load can be calculated as follows:


Anchor spacing $=\frac{\text { (Tent perimeter) (Anchor holding capacity) }}{\text { Total } P_{A L}}$,ft

Double-Wall Tents
The anchor load coefficients for double-wall tents are defined as follows:

$$
\begin{aligned}
& C_{B L}=\frac{P_{B L}}{q A_{p}} \\
& C_{G L}=\frac{P_{G L}}{q A_{p}}
\end{aligned}
$$

*Anchor hoiding capacity © $1500 \mathrm{lb} /$ anchor
whoro

| $C_{G L}=$ Anchor load coefficient for the guy lines |
| :---: |
| $P_{B L}=\text { Anchor load on base, lb }$ |
| $\mathrm{P}_{\text {GL }}=$ Anchor load on guy lines, 1b |
| $\mathrm{q}=$ Impact pressure, $\mathbf{l b} / \mathrm{ft}^{\mathbf{2}}$ |
| ```A = Tent planform area, ft 2``` |

The variation of anchor loads with tent height-to-diameter ratios and width-to-length ratio is shown in Figure 21 for the base anchors and Figure 22 for the guy lines.

The total base anchor load can be calculated as follows:

> Total $P_{B L}=C_{B L} q_{p}$ for base anchor loads, and
> Total $P_{G L}=C_{G L} q A_{p}$ for guy line loads

The number of anchors required to secure the double-wall tent at the design wind loads can be calculated as follows:

$$
\begin{aligned}
& \text { No. of base anchors }=\frac{P_{B L}}{\text { Anchor holding capacity* }} \\
& \text { No. of guy line anchors }=\frac{P_{\mathrm{GL}}}{\text { Anchor holding capacity }}
\end{aligned}
$$

## TENT STABILITY

Tent instability, defined as the conditions of tent deflection and oscillation that coubine to produce objectional tent motion, has been studied with respect to fabric porosity, enclosure pressure, cell size, cell pressure and guy line locations. This evaluation is subjective and the

[^0] However, the following general conclusions may be made relatjue to singleand doublewall tent stability.

## Single-Wall Tents

The single tant configurations, with the exception of the $7 / 8$ sphere and all $1: 4$ width to-length ratio cylindrical tents, were found to be very stable. For the cylindrical single-wall tents, motion is more pronounced with a wind at 45 degrees attitude. Other spherical and the $1: 2$ width-tolength ratio culindrical configurations exhibited very stable properties at all test conditions. The elliptical end tent appeared to be more stable than the hemispherical end tents.

Single-wall tents with low poroaity fabric exhibited lower deflections, in general, than tents made from coated fabric and possessed equal or better stability characteristics.

The enclosure pressure for singlewall tents is an important factor in controlling tent motion. Although permissible tent deflections, as required by tent usage, could establish pressure requirements, tests indicate that only with eaclosure pressures equal to or greater than the test dynamic pressure, $q$, did both good stability and deflection characteristics exist.

Double-Wall Tents

The doublewall tents had flat ends which contributed to flow separation and less stabiilty than the singlewall tents with spherical ends. The $3 / 4$ cylindrical, $1: 1$ width-to-length tents were not 'true' cylindrical tents but, rather, had flat sides which may have contributed to this configuration's exceptionally low stability.

The ratio of tent deflection-to-tent radius versus cell pressure in inches water gage for double-wall tents is shown in Figure 18. Cell pressure is an important factor in controlling tent motion. Although permissible tent deflection, as required by tent usate, could establish pressure requirements; teste indicated that only for cell pressure equal to or in-excess-of the wiud impact pressure did both good stability and deflection characteristics exist. From a tability standpoint at 110 miles
per hour, no significant gains were achieved beyond an inflation pressure of 16 inches water gage since inaignificant deflection reductions occurred for cell pressures up to 30 incies water gage.

The best guy line configuration consists of a combination high ( 0.8 height) and low ( 0.4 tent height) line arrangement, with the upper guy linas angled 45 degrees to the tent side and the lower guy linea perpendicular to the tent side when viewed from the top of the cent.

To minimize double-wall tent corner deflection and motion, which occurs primarily when the tent is oriented 45 degrees to the wind (corner into the wind), guy lines angled 45 degrees to the tent side should be attached to each corner of the tent at a point 0.8 tent height and make an angle of approximately 45 degrees with the ground. Corner and end deflections were more pronounced on the double-wall tents. That deflection is believed to be aggravated by the flat ends of the doublewall tents and no solution to corner deflection at the 45 degree attitude was found.

Tent cell size was also observed to be factor in providing better tent stability since an increase in cell size was more rigid for the same cell inflation pressure. A prime consideration in increasing cell size is that, for the same enclosure volume, the tent overall size and weight increase rapidly.

Doublewall tent enclosure pressure should be maintained at ambient or 10 w positive pressure to preclude cell buckling tendency on the windward (forward) side of the tent.

## STRUCTURAL

The air-supported structure designer of previous years has had to use crude stress analyses and a large factor-of-safety to assure structure capable of withstanding a design wind load. The importance of optimized tent structures created the need for a more rafined analysis of the stresses involved. Fabric stress distribution was determined analytically through the use of wind tunnel measured pressure distributions about many basic tent shapes and applying suitable shell theory. Tent shapes included spherical and cylindrical singlo-wall tants, with hemispherical and ellipsoidal ends, and double-wall tente with flat ends - with and without guy lines attached. Basic tent design data are presented here while detail derivation can be fousd in Reference 1.

## Single-Wall Spherical Tents

The design curves for spherical tents are included as Figures 23 and 24. The design procedure is as follows.

1) From design requirements, select tent size and shape and dasign value of dynamic pressure.
2) Enter Figure 23 at the required $h / d$ and read $N_{\phi} / q r$, $N_{\theta} / q r$, and $N_{\phi \theta} / q r$.
3) Multiply stress coefficients by dynamic pressure in pounds per square inch and tent radius in inches.

$$
\begin{aligned}
& N_{\phi}=\left(N_{\phi} / q r\right) q r \\
& N_{\theta}=\left(N_{\theta} / q r\right) q r \\
& N_{\phi \theta}=\left(N_{\phi \theta} / q r\right) q r
\end{aligned}
$$

4) The maximum stress resultants are obtained by adding the effect of internal pressure to the stress obtained from step 3.

$$
\begin{aligned}
& \bar{N}_{\phi}=N_{\phi}+P_{e} r / 2 \\
& \bar{N}_{\theta}=N_{\theta}+P_{e^{r / 2}} \\
& \bar{N}_{\phi \theta}=N_{\phi \theta}
\end{aligned}
$$

These are the maximum design stress reaultants in pounds per inch. The coordinate system is shown in Figure 25.

Should any other than the maximum value of $\mathrm{N}_{\theta}$ be desired, enter Figure 24 and read the stress ratio for the desired h/d and $\phi$. Multiply this stress ratio by the value of $N_{\theta}$ from atep 3. Add to this the effect of internal pressure, yielding the desired value of $N_{\theta}(\phi)$.

$$
\mathbb{N}_{\theta}(\phi)=\left[N_{\theta}(\phi) / N_{\theta}(\text { peak })\right] N_{\theta}+P_{e}^{r / 2}
$$

## Single-Wall Cyilindrical Tents with Hemispherical Ends

The design curves for cylindrical tents with hemispherical ends are included as Figures 26 through 30. The design procedure is as follows.
i) $\overline{\text { rom }}$ demign requirements aetermine tent size and shape and design value for dynamic pressure.
2) Find the stress coefficients for the required $\mathrm{h} / \mathrm{d}$ and $W \cdot \ell_{h}$ ratios from Figures 26 through 30. Coefficients for both the cylindrical portion and the hemispherical end are given in these design curver.
3) Multiply stress coefficienta by the design dynamic pressure in pounds per square inch and tent radius in inches.

Cylindrical Center:

$$
\begin{aligned}
& N_{\phi}=\left(N_{\phi} / q r\right)_{c y 1} q r \\
& N_{x}=\left(N_{\theta} / q r\right)_{c y 1} q r
\end{aligned}
$$

Hemispherical End:

$$
\begin{aligned}
& N_{\phi}=\left(N_{\phi} / q r\right)_{s p h} q r \\
& N_{\theta}=\left(N_{\theta} / q r\right)_{\text {sph }} q r \\
& N_{\phi \theta}=\left(N_{\phi \theta} / q r\right)_{q} r
\end{aligned}
$$

4) The maximum stress resultants are found by adding the effect of internal pressure as follows.

Cylindrical Center:

$$
\begin{aligned}
& \bar{N}_{\phi}=N_{\phi}+P_{e} r \\
& \bar{N}_{x}=N_{x}+P_{e} r / 2
\end{aligned}
$$

Hemispherical End:

$$
\begin{aligned}
& \bar{N}_{\phi}=N_{\phi}+P_{e} r / 2 \\
& \bar{N}_{\theta}=N_{\theta}+P_{e}^{r / 2} \\
& \bar{N}_{\phi \theta}=N_{\phi \theta}
\end{aligned}
$$

These are the maximum design stress resultants in pounds per inch. The coordinate system is shown in Figure 31.

Single-Wall Cylindrical Tents with Elifpeoidal Ends
The design curves for cylindrical tents with ellipsoidal ends are included as Figures 32 through : . The design procedure is as follows.

1) From design requirements determine tent size and shape and dynamic pressure design value.
2) Enter Figure 32 and read the basic stress coefficients for the design dynamic pressure.
3) Enter Figures 33 through 35 and read the correction factors for $P_{e} / \mathrm{q}, \mathrm{h} / \mathrm{d}, \mathrm{W} / \mathrm{h}_{\mathrm{h}}$, and $\mathrm{b} / \mathrm{r}$ for the cylindrical portion and ellipsoidal end.
4) Multiply corresponding correction factors with the basic stress coefficients and the dynamic pressure in pounds per square inch and tent radius in inches to get the total stress resultant.

Cylindrical Center; using the correction factors for the cylindrical portion:

$$
\begin{aligned}
& \bar{N}_{\phi}=c_{q \phi} c_{h \phi} c_{W \phi} c_{b \phi}\left(N_{\phi} / q r\right) q r \\
& \bar{N}_{x}=c_{q \theta} c_{h \theta} c_{W \theta} c_{b \theta}\left(N_{\theta} / q r\right) q r
\end{aligned}
$$

Ellipsoidal Ends; using the correction factors for the ends;

$$
\begin{aligned}
& \overline{\mathbb{N}}_{\phi}=C_{q \phi} C_{h \phi} C_{W_{\phi}} C_{b \phi}\left(N_{\phi} / q r\right) q r \\
& \bar{N}_{\theta}=C_{q \theta} C_{h \theta} C_{W \theta} C_{b \theta}\left(N_{\theta} / q r\right) q r \\
& \bar{N}_{\phi \theta}=C_{q \phi \theta} C_{h \phi \theta} C_{W \phi \theta} C_{b \phi \theta}\left(N_{\phi \theta} / q r\right) q r
\end{aligned}
$$

These are the maximum design stress resultants in pounds per inch. The coordinate system is shown in Figure 36.

Double-Wall Cylindrical Tents with Flat Ends
The design curves for double-wall tents with flat ends are included as Figures 37 through 48. The design procedure is as follows.

1) From the design requirements, determine the tent size and shape and the dynamic pressure design value.
2) Determine cell width-to-tent diameter ratio; w/d $=0.123$ was found to be the best of the models tested in the wind tunnel from a stability and weight standpoint.
3) Enter Figure 37 with $h / d$ and $w / d$ and find the basic pressure coefficient, $P_{c} / q$. Find the correction factors, $C_{q}$ and $C_{W}$ for the design values of $q$ and $W / \ell_{h}$. The required cell pressure is given by

$$
\left.s_{c}-\bar{c}_{q} \bar{c}_{W} \bar{r}_{c} ; q\right)_{q}
$$

$P_{c}$ should never be less than 7 in. w.g.
4) Enter Figure 38 to obtain web stress, $N_{w^{\prime}}$
5) Enter Figure 39 to obtain hoop stress, $N_{h}$.
6) Find the meridional stress $N_{\phi}$, from Figures 40 through 48.

These are the maximum design stress resultants in pounds per inch. The coordinate system is shown in Figure 49.

## FABRIC STRESS

## Single-Wall Tent

The atress resultants are all given in terms of orthogonal coordinate systems: Spherical, ellipsoidal, or cylindrical. Dnly in the cylindrical coordinates, however, can the stresses be related directly to the warp and filling directions of the fabric. In general, it will not be known just what orientation the fabric weave will have with regard to the pertinent coordinate system at the point (s) of maximum stress. Because of this, the fabric should be designed to withstand the maximum principal stress. Using the maximum atress resultants obtained from the design curves, a slightly conservative value of the principal stress is given by

$$
N_{\max }=\frac{1}{2}\left(\bar{N}_{\phi}+\bar{N}_{\theta}\right)+\frac{1}{2} \sqrt{\left(\bar{N}_{\phi}-\bar{N}_{\theta}\right)^{2}+4 \bar{N}_{\phi \theta}^{2}}
$$

Double-Wall Tent
The stress resultants are given in terms of meridional, hoop, and web directions. The fabric for the inside and outside surfaces should be designed to the largest of the hoop and meridional stress. The web fabric should be designed to withstand the largest of the web and meridional stress.

## Safety Factor8

The stress values provided in this manual are those stresses which develop under design wind load. In selecting a material to weet the design stresses, allowance must be made for other factors such as the following:
a. Uniformity of product
b. Weathering resistance
c. Handiing
d. Stresa-atrain characteristics of the fabric and its ultimate rupture strength.

To obtain the maximum reduction in weight and still have good durability and reliability, each of the factors liated must be accurately evaluated with respect to its effect on the strength of the material. This information can be obtained from References 2 and 3 and from the fiber manufacturers.

However, in situations where detailed information on the above factors are not avallable, Reference 4 recommends that a safety factor of 3 be used. The design strength of the fabric is, then, three times the maximum stress resultant.

## FABRIC WEIGHTS

## Weight of Base Fabric

The weight-strength relationship, $n$, of plain weave fabrics made from different fibers is shown in Table III. The unit of measure is

$$
n=\frac{1 \mathrm{bs}-\mathrm{sq} \mathrm{yd}}{\text { Inch }-0 z}
$$

The weight of base fabric is calculated as follows:
$\frac{\text { (gafety factor) (maximum atress) }}{\eta}=$ Wt of base fabric

## Weight of Coated Fabric

The estimated weight of coating required versus weight of base fabric for single-and two-ply coated fabric is shown in Figure 50.

The weight of coated fubrlc is obtained by adding the weight of the base fabric and the weight of coating as letermined from the graph.

Wt base fabric + Wt of coating = Wt of coated fabric

[^1]Tak1n III
Weight-Strength Relationship of Piain Weave Fabrics

| Fiber Type | Specific Gravity | Weight-Strength Relationship, $\eta$ $\frac{1 b-s q y d}{\text { in } \times o z}$ |
| :---: | :---: | :---: |
| Polyenter* | 1.37 | 35 |
| Nylon | 1.14 | 38 |
| Spun Acrylic | 1.17 | 12 |
| Filment Acrylic | 1.17 | 15 |
| Glass Fiber** | 2.56 | 19 |
| Polypropylene*** | 0.98 | 48 |

[^2]
## Single-Wall Tent:

Pressure: An internal pressure equal to the wind impact pressure, q, is recomended for gnod tent atability and minimum tent deflection. It should be pointed out that pressures of less than 9 can be colerated from a atability acandpoint. However, should pressures lower than $q$ be used, the greater deflections and lower usable volune reaulting from these lower pressures must be accounted for in the anticipated usage.

Bloner volume: The blower must have sufficient volume to account for all air losses and still maintain the required internal pressure. Air loases which can be calculated are fabric porosity, ventilating ports, silde factenars, and other orifices which are necessary for proper operation of the tent. The air losses through the ground seal, doora, and other closures are, for the most part, not amenable to calculacions and must be determined on an individual basis.

Fabric porosity is generally known or can be determined for any given presaure in terna of air loss in cubic feet/per square foot/per minute.

Air losses, Q, through ventilating ports, slide fasteners, and other orifices can be calculeted from the following expression:

$$
\begin{aligned}
& Q=1096,5 C_{0} A_{0} \sqrt{\frac{\Delta \rho}{g \rho}} \\
& Q=\text { Discharge, cu ft/min } \\
& A_{0}=\text { Area of orifice, sq ft } \\
& \Delta P=\text { Differential Pressure, inches w. }, \\
& g \rho=\text { Deneity of Air, ib/cu ft } \\
& C_{c}=\text { Coefficient of contraction } \\
& C_{v}=\text { Coefficient of velocity } \\
& C_{0}=C_{c} \times C_{v}=0.65
\end{aligned}
$$

where

The leakage through a number 10 crown alide fantener was calculated in terme of cubic feet per minute/per inch of alide fastener chain. The reoults are plotted as Figure 51.

Air losses through the ground seal, doors, and other closures must be determined experimentaliy.

The following air losses were found for doors with metal frames and ground seals typical for Military type air-supported tents.

Trem
Door
Ground catenary with seal skirt
Ground, pipe seal

Cubie fect/minute 503

26 per perimeter foot
6 per perimeter foot

The air loss values listed above are typical and can be expected for Military tentage installed under field conditions.

The volume capacity of the blower then becomes a aumation of all air loss factors.

## Double-Wall Air-Supported Tants

Pressure: The preseure required for doubleawall tents is related to the size of the tent, and the depth of cell walls. The larger the depth of cell wall for a givan size tent, the lower the presaura raquiraraent for the design wind load.

Experience with Military doublewall tents has shown that up to 7 inches w.g. was required to arect itaelf. It was also found that with tenta having a cell depth to tent width ratio of 0.08 to 0.12 , the minimum tube pressure which could be tolerated was "q" for murvival, and $3 q$ for good tability and minimum deflaction.

Blowar Volume: The air volum required for doublewall air apported tents is much less than that required for the singlewall type, The doublewall tant is airtight and, ideally, once inflatad the tent will ratain ita pressure with the blowar turned off. In this situation the operation requirements for air volume is minimum and blowar volume capacity can ba gagad on other tent characteristics. Two such characteristics can be definad as time for erection, and air capacity to componeate for air loseas which may occur when the cell wall is punctured. Air loseas may be estimated at for single-wall tente.

The air volume capacity required to erect the tent in a given time can be cetimated as followe:

$\frac{\text { Cell Volume }(f t)^{3}}{\text { Inflation Time }(m i n)}=$| Volumatric Capacity of Blower at zero |
| :--- |
| inchea water gage. |

## Tent Neight

## Single-Hell Tents

# Total weight-lbs $=\left(\right.$ Fabric Area-yds $\left.{ }^{2}\right)$ (Coated Fabric Weight-oz/yd ${ }^{2}$ ) (1.5/16) 

Double-Wall Tenta
Wall and roof section
Totel weight of Wall 6 Roof Sections-lbs $=\left(\right.$ Fabric Area-yd ${ }^{2}$ ) (Coated (Fabric Weight-0z/yd ${ }^{2}$ )(1,33/16)

End Curtain

## Total Weight of End Curtaina $=\left(\right.$ Fabric Area-yd ${ }^{2}$ ) (Conted Fabric Weight oz-yd ${ }^{2}$ ) (2.5/16)

## Package Cube

## Single-Wall Tents

Package cube-ft ${ }^{3}$. (Total Weight of tent-1bs) ( $0.1 \mathrm{ft}^{3} / \mathrm{lb}$ )
Double-Wall Tents
Fackage cube-ft ${ }^{3}$ ( Total inaight of Roof Wall + Total Weight of End Curtains) (0.065)

## SECTION 4

## SAMPLE DESIGN PROBLEMS

GENERAL EQUATIONS

Lift
Drag
Moment
Anchor Load
Guy line Load
Inflation Load (Single-Wall Tent)

$$
\begin{aligned}
L & =C_{L} q A_{p} \\
D & =C_{D} A_{P} \\
M & =C_{M} q A_{P} d \\
P_{A L} & =C_{A L} q A_{P} \\
P_{G L} & =C_{G L} q A_{P} \\
P_{I L} & =P_{e} A_{f}
\end{aligned}
$$

Planform Area
Single-Wall Sphere

$$
A_{P}=\pi r^{2}
$$

Single-Wall Cylinder with Hemigpherical Ends

$$
A_{p}=\pi r^{2}+2 r\left(\ell_{h}-2 r\right)
$$

## Single-Wall Cylinder with Ellipaidel Ends

$$
A_{p}=\pi b r+2 r\left(l_{h}-2 b\right)
$$

$$
\text { Double-Wall Cylinder } \quad A_{P}=W \ell_{h}
$$

## Floor Area

Single-Wall Sphere

$$
A_{E}=\pi\left(r \sin \phi_{B}\right)^{2}
$$

## Singie-Wall Cylinder with Hemispherical Ends

$$
A_{f}=\pi\left(r \sin \phi_{B}\right)^{2}+2 r \sin \phi_{B}\left(\ell_{h}-2 r\right)
$$

## Singlo- Wall Cylinder with Ellipsoidal Ende

 $A_{f}=\pi b r \sin ^{2} \phi_{B}+2 r \sin \phi_{B}\left(\ell_{h}-2 r\right)$Double-Wall Cylinder

$$
A_{f}=W \ell_{h}
$$

[^3]
## Surface Area

Single-Wall Sphere

$$
A_{B}=\pi \mathrm{dh}
$$

Sincle-Wall Cylindez with Hemispherical Endo

$$
\begin{array}{ll}
\text { Cylindrical Portion } & A_{B}=\left(\ell_{h}-2 r\right) d\left(\phi_{B} / 57.3\right) \\
\text { Hemispherical Ends } & A_{B}=\pi d h \\
\text { Single-Wall Cylinder with Ellipsoidal Ends } \\
\text { Cylindrical Portion } & A_{B}=\left(\ell_{h}-2 b\right) d\left(\phi_{B} / 57.3\right) \\
\begin{array}{ll}
\text { Ellipsoidal Ends } & A_{B}=\pi \frac{h}{d} \left\lvert\, 2 r^{2}+\frac{b^{2}}{e} \ln \frac{1+e}{1-e}\right. \\
& \text { with } \\
& e=\sqrt{1-(b / r)^{2}}
\end{array} .
\end{array}
$$

## Double-Hall Cylinder

Circular Sided

| Wall: | $A=4 \ell_{h} r\left(\phi_{B} / 57.3\right)$ |
| :--- | :--- |
| Web | $A_{B}=2 n w r\left(\phi_{B} / 57.3\right)$ |
| End Curtains | $A_{B}=2 r^{2}\left(\frac{2 \phi_{B}}{57_{0}}-\sin \phi_{B} \cos \phi_{B}\right)$ |

Flat Sided
Walls

$$
\begin{aligned}
& \left.A_{B}=4 \ell_{h} \frac{r \Phi_{B}}{573}+h_{r}\right) \\
& A_{B}=2 \pi w\left(\frac{T \phi_{B}}{57,3}+h_{r}\right) \\
& A_{B}=2 r^{2}\left(\frac{2 \phi_{B}}{573}-\sin \phi_{B} \cos \phi_{B}\right)+4 r h_{r}
\end{aligned}
$$

Web

End Curtains
Perimeter
Single-Wall Sphere

$$
P_{\ell}=2 \pi r \sin \phi_{B}
$$

Single-Wall Cylinder with Hemigpherical Ends

$$
P_{\ell}=2 \pi r \sin \phi_{B}+2\left(\ell_{h}-2 r\right)
$$

Single-Wall Cylinder with Ellipgoidal Ends

$$
P_{e}=\pi r \sin \phi_{B} \sqrt{2\left|1+\left(\frac{b}{r}\right)^{2}\right|+2\left(l_{h}-2 b\right)}
$$

Double-Well Cylinder

$$
P_{\ell}=2_{h}
$$

Number of Anchors Requitred*

| Single-Wall Tents | $N A=\frac{P_{I L}+P_{A L}}{1500}$ |
| :---: | :---: |
| Double-Wall Tents | $N A=\frac{P_{A L}+P_{G L}}{1500}$ |
| Anchor Spacing | AS - $\mathrm{P}_{\boldsymbol{l}} / \mathrm{NA}$ |
| Dynamic Presgure | $q=k_{p} \mathbf{q}_{\mathbf{s t d}}$ |

## Fabric Stress

Singlewall Sphere

$$
\begin{aligned}
& \bar{N}_{\theta}=\left(\frac{N_{\phi}}{q r}\right) q r+P_{e} r / 2 \\
& \bar{N}_{\theta}=\left(\frac{N_{\theta}}{q r}\right) q r+P_{\theta} r / 2 \\
& \bar{N}_{\phi \theta}=\left(\frac{N_{\phi \theta}}{q r}\right) q r \\
& \bar{N}_{\theta}(\phi)=\left(\frac{N_{\theta}(\phi)}{N_{\theta}\left(p e_{k}\right)}\right)\left(\frac{N_{\theta}}{q r}\right) q r+\frac{P_{\theta} r}{2}
\end{aligned}
$$

Singlowall Cylinder with Hempherical End
Cylindrical Portion
Hemispherical End
*Besed on an allowable individual anchor load of 1500 lb .

$$
\begin{aligned}
& \bar{N}_{\phi}=\frac{\left({ }_{\phi}\right)}{q r} q r+P_{e} r \\
& \bar{N}_{x}=\left(\frac{N_{\theta}}{q x}\right) q r+P_{e}^{r / 2} \\
& \bar{N}_{\phi}=\left(\frac{N}{\left(\frac{\phi}{q r}\right)} q r+P_{e} r / 2\right. \\
& \bar{N}_{\theta}=\left(\frac{N_{\theta}}{q r}\right) q r+P_{e} r / 2 \\
& \bar{N}_{\phi \theta}=\left(\frac{N}{\left(\frac{N_{\phi \theta}}{q r}\right)} \mathbf{q r}\right.
\end{aligned}
$$

Single-Wall Cylinder with Elilipsoidal Ends
Cylindrical Portion
(Using Cylinder
Correction Factors)

Ellipsoidal End
(Using End Correction Factors)

$$
\begin{aligned}
& \bar{N}_{\phi}=c_{q \phi} c_{h \phi} c_{W \phi} c_{b \phi}\left(\frac{: \dot{\phi}_{\phi}}{q r}\right) q r \\
& \bar{N}_{x}=c_{q \theta} c_{h \theta} c_{W \theta} c_{b \theta}\left(\frac{N_{x}}{q r}\right) q r \\
& \bar{N}_{\phi}=c_{q \phi} c_{h \phi} c_{W \phi} c_{b \phi}\left(\frac{N_{\phi}}{q r}\right) q r \\
& \bar{N}_{\theta}=c_{q \theta} c_{h \theta} c_{W \theta} c_{b \theta}\left(\frac{N_{\theta}}{q r}\right) q r \\
& \bar{N}_{\phi \theta}=c_{q \phi \theta} c_{h \phi \theta} c_{W \phi \theta} c_{b \phi \theta}\left(\frac{N_{\phi \theta}}{q r}\right) q r
\end{aligned}
$$

Double-Wall Cylinder

$$
\begin{aligned}
& \bar{X}_{w}=\left(\frac{N}{q}\right) q \\
& \bar{X}_{h}=\left(\frac{N_{h}}{q}\right) q
\end{aligned}
$$

Febric Weight
Maximum Principal Stress

$$
N_{\max }=\frac{1}{2}\left(\bar{N}_{\phi}+\bar{N}_{\theta}\right)+\frac{1}{2} \sqrt{\left(\bar{N}_{\phi}-\bar{N}_{\theta}\right)^{2}+4 \bar{N}_{\phi \theta}}
$$

Base Fabric Weight

$$
W_{b f}=S F N_{\max } / \eta
$$

## Slide Pastener Length for Single-Wall Tenta

Cyinder with Hemispherical_Ends

$$
L_{\mathrm{af}}=2 \mathrm{r} \frac{\phi_{\mathrm{B}}}{57.3}+\left(\ell_{\mathrm{h}}-2 \mathrm{r}\right)
$$

Cylinder with Ellipsoidal Ends

$$
L_{a f}=\pi r \frac{h}{d} \sqrt{\left.2 \left\lvert\, 1+\frac{b}{r}\right.\right)^{2} \mid}+\left(l_{h}-2 b\right)
$$

Spherical
Cell Volume of Double-Wall Tenta
Circular

Flat Sided
$v_{c}=2 w \ell_{h} r \frac{\phi_{B}}{57.3}$
$v_{c}=2 w l_{h}\left(\frac{r \phi_{B}}{57.3}+h_{r}\right)$

## Known Shape

## Spherical Tent

## Givad:

> Width $=30 \mathrm{ft}$
> Height $=22.5 \mathrm{ft}$
> Height/Diemeter Ratio $=3 / 4$
> Design pressure altitude - Sea 2 evel
> Temperature Range $=-30^{\circ} \mathrm{F}$ to $+60^{\circ} \mathrm{F}$
> Wind Velocity $=90$ knots

## Solution:

1. Find dynamic pressure, $q$
a. Igtd -5.3 in w.g. $=28 \mathrm{psf}=0.19 \mathrm{psi}$ Figure 7
b. $k_{p}=1.22$

Figure 8
c. $q=1.22 q_{\text {atd }}=6.46$ in w.g.
$=34.2 \mathrm{psf}=0.232 \mathrm{psi}$
2. Find planform area, $A_{p}$

$$
A_{p}=\pi r^{2}=\pi(15)^{2}=709 \text { sq } f t
$$

3. Find floor area, $A_{f}$
$A_{f}=\pi\left(r^{2} \sin \phi_{B}\right)=\pi\left|15\left(\sin 120^{\circ}\right)\right|^{2}=177 \mathrm{sq} \mathrm{ft}$
4. Find external surface area, $A_{8}$
$A_{f}=\pi \mathrm{dh}=\pi(30)(22.5)=2120 \mathrm{eq} f t=235.6 \mathrm{gq} \mathrm{gd}$
5. Find perimeter, $P_{l}$
$P_{\ell}=2 \pi r \sin \phi_{B}=2 \pi(15)\left(\sin 120^{\circ}\right)=47.2 \mathrm{ft}$
6. Find aerodynamic loads; $L, D$, and $M$
a. Lift $=C_{L} q A_{p}$
where $C_{L}=0.763$
Figure 9
$L=(0.763)(34.2)(709)=18,500 \mathrm{lb}$
b. $\quad \mathrm{Drag}=\mathrm{C}_{\mathrm{D}} \mathrm{q} \mathrm{A}_{\mathrm{p}}$ where $C_{D}=0.437$

Figure 11 $D=(0.437)(34.2)(709)=10,596 \mathrm{lb}$
c. Overturning moment $=C_{M} q_{p}$

$$
\begin{aligned}
& \text { where } C_{M}=-0.140 \\
& M=(-0.140)(34.2)(709)=-3,395 \mathrm{ft}-\mathrm{lb}
\end{aligned}
$$

Figure 13
7. Find maximum tent deflection; $\delta_{F}, \delta_{H}, \delta_{B}$
a. $\frac{\delta_{F}}{r}=0.198, \frac{\delta_{H}}{r}=0.083 \quad \frac{\delta_{B}}{r}=0.128 \quad$ Figure 15
b. $\delta_{F}=\left(\frac{\delta_{F}}{r}\right)(r)=(0.198)(15)=2.97 \mathrm{ft}$
$\delta_{H}=\left(\frac{\delta_{H}}{r}\right)(r)=(0.083)(15)=1.25 \mathrm{ft}$
$\delta_{B}=\left(\frac{\delta_{B}}{r}\right)(r)=(0.128)(15)=1.92 \mathrm{ft}$
8. Find inflation load, $\mathrm{P}_{\text {IL }}$
$P_{\text {IL }}=P_{e} \boldsymbol{A}_{f}$
since $P_{e}=q$ for stability $P_{e}=34.2 \mathrm{psf}$
$P_{I L}=(34.2)(177)=6053 \mathrm{lb}$
9. Find anchor load, $\mathrm{P}_{\mathrm{AL}}$
$P_{A L}=C_{A L} \quad q A_{p}$
where $C_{A L}=1.50$
$P_{\text {AL }}=(1.50)(34.2)(709)=36,372 \mathrm{lb}$
10. Find number of anchore required, NA

$$
\mathrm{NA}=\frac{{ }^{\mathrm{P}} \mathrm{II}+{ }^{\mathrm{P}} \mathrm{AL}}{1500^{*}}
$$

*Based on an allowable individual anchor load of 1500 lb for a $4^{\prime \prime}$ arrowhead anchor.
N. $-\frac{6,053+36.372}{1500^{-2}}-\frac{42.425}{1500}=2 \overline{0} . j$

NA - 29 requi red
11. Find anchor epacing, AS
$A S=P_{e} / M A_{A}$
AS $=47.2 / 29=16.3 \mathrm{ft}$ between anchors
12. Find fabric strees resultants
a. Peak stress reaultants, $N_{( }$)
for $h / d=3 / 4$ :
$\frac{N_{\theta}}{q r}=1.72, \frac{N_{\phi}}{q r}=1.67, \frac{N_{\phi \theta}}{q r}=1.02$
Figure 23
$\mathrm{N}_{\theta}=(1.72) \mathrm{qr}=(1.72)(0.232)(15)(12)=71.83 \mathrm{lb} / \mathrm{in}$
$N_{\phi}=(1.67) q r=(1.67)(0.232)(15)(12)=69.741 \mathrm{~b} / \mathrm{in}$
$N_{\phi \theta}=1.02 \mathrm{qr}=(1.02)(0.232)(15)(12)=42.60 \mathrm{lb} / \mathrm{in}$
b. Maximum strese resultants, $\bar{N}()$
$\bar{N}_{\theta}=N_{\theta}+\frac{P_{e}^{r}}{2}=71.83+\frac{(0.232)(15)(12)}{2}$
$\bar{N}_{\theta}=71.83+20.88=92.71 \mathrm{lb} / \mathrm{in}$
$\bar{N}_{\phi}=N_{\phi}+\frac{P_{e}{ }^{r}}{2}=69.74+20.88$
$\bar{X}_{\phi}=90.62 \mathrm{Lb} / \mathrm{In}_{\mathrm{n}}$
$\bar{N}_{\phi \theta}=N_{\phi \theta}=42.60 \mathrm{lb} / \mathrm{in}$
c. Stress resultant at $\phi=45^{\circ}, \bar{N}_{\theta}(\phi)$

$$
\begin{aligned}
& \bar{N}_{\theta}(\phi)=\left(\frac{N_{\theta}(\phi)}{N_{\theta}(\text { peak })}\right)\left(N_{\theta}\right)+\frac{\mathrm{F}_{\mathrm{e}} \mathrm{r}}{2} \\
& \text { where } \frac{N_{\theta}(\phi)}{\mathrm{N}_{\theta}(\text { peak })}=0.50 \\
& \bar{N}_{\theta}(\phi)=(0.50)(71.83)+20.88 \\
& N_{\theta}(\phi)=35.92+20.88=56.80 \mathrm{lb} / \mathrm{in}
\end{aligned}
$$

Figure 24
d. Maximum principal stress, $N_{\text {max }}$

$$
N_{\max }=1 / 2\left(N_{\phi}+\bar{N}_{\theta}\right)+1 / 2 \sqrt{\left(N_{\phi}-N_{\theta}\right)^{2}+4 N_{\phi \theta} 2}
$$

$\mathbb{N}_{\max }=1 / 2(90.62+92.71)+1 / 2 \sqrt{(90.62-92.71)^{2}+4(42.60)^{2}}$

$$
N_{\max }=91.67+42.62=134.29 \mathrm{lb} / \mathrm{in}
$$

13. Find coated fabric weight, $\mathrm{W}_{\mathrm{cf}}$
a. Determine fiber type from other considerations, select polyester
b. Weight-strength relationship of fiber, $n$

$$
n=35 \frac{1 b-y d^{2}}{1 n o z}
$$

c. Weight of base fabric, $W_{b f}$

$$
\mathrm{W}_{\mathrm{bf}}=\mathrm{SF} \mathrm{~N}_{\max } / n
$$

$$
\text { Using a safety factor of } 3
$$


$W_{b f}=11.5002 / \mathrm{yd}^{2}$
d. Weight of fabric coating, $W$
(Assuming vinyl coating, sifigle ply)

$$
W_{c}=160 z / y^{2}
$$

Figure 50
e. Fabric aurface area

Tent surface area $=2120$ aq ft
Catenary curtain $=\left(A_{p}\right)(1$ ft high $)=(709)(1)$ - 709 sq ft

Ground seal okirt = (A $)(2 \mathrm{ft}$ wide) $=(709)(2)$ $=1418 \mathrm{eq} \mathrm{ft}$

Total fabric surface area $=2120+709+1418$ = 4247sq ft=471.98q yd
f. Costed fabric weight, $W_{c f}$
$W_{c f}=($ total surface area $)\left(W_{b f}+W_{c}\right)$
$W_{c f}=\left(\begin{array}{c}(471.9 \mathrm{sq} \mathrm{yd})\left(11.500 z / \mathrm{yd}^{2}+160 z / \mathrm{yd}^{2}\right)\end{array}\right.$ (1.5/16)
$W_{c f}(471.9)(27.5)(0.0937)=1217.5 \mathrm{lb}$
14. Find package cube, V

Eatimated cube $=\left(W_{c f}\right)\left(0.1 \mathrm{ft}^{3} / 1 \mathrm{~b}\right)$
Estimated cube $=(1217.51)(0.1)=121.75 \mathrm{ft}^{3}$
15. Find blower requirements, $Q$
a. Air lose per inch of slide fastener at $P_{e}=6.46 \mathrm{in} \mathrm{w} .8$. equals $2.6 \mathrm{ft}^{3} / \mathrm{min} / \mathrm{in}$

Figure 51
b. Total length of silde fastaner, if employed, $L_{\text {Ef }}$

$$
I_{f f}=\pi h=\pi(22.5)=70.69 \mathrm{ft}=848.28 \mathrm{in}
$$

c. Air loss through silde fastener

Air loss m (air loss/inch) (length)
Air $1088=(2.6)(848.28)=2205.5 \mathrm{ft}^{3} / \mathrm{min}$
d. Air lose through ground seal skirt

Ait loss = $26 \mathrm{ft}^{3} / \mathrm{ft}($ perimeter $) / \mathrm{min}$
where $P_{e}=47.2 \mathrm{ft}$
Aix loas $=(26)(47.2)=1227.2 \mathrm{ft}^{3} / \mathrm{min}$
e. Air loas through door is $503 \mathrm{ft}^{3} / \mathrm{min}$
f. Total air loas (from $c$, $d$ and $e$ )

Total air loss $-2205.5+1227.2+503$
$=3935.7 \mathrm{ft}^{3} / \mathrm{min}$ C $6.46 \mathrm{in} \mathrm{W} . \mathrm{g}$.
8. Total blower requirement, $Q$

$$
\begin{aligned}
& Q=(2)(\text { total air lose }) \\
& Q=(2)(3936)=7872 \mathrm{ft}^{3} / \text { min } 0.46 \text { in w.g. }
\end{aligned}
$$

## Cylyndry

Given:

```
Width = 50 ft
Height = 25 ft
Length - 100 ft
Height-to-Diameter Ratio = 1/2
Width-to-Langth Ratio = 1/2
Dasign pressure altitude - 3000 ft
Temperature Range - 25'F to + 100 % F
Wind Velocity - 110 mph
```

Solution:

1. Find dynamic pressure, $q$
a. $q_{\text {gtd }}=5.9$ in w.g. $-31 \mathrm{pgf}=0,22 \mathrm{psi}$ Figure 7
b. $k_{p}=1.075$
c. $q=1.075 \mathrm{q}_{\mathrm{gtd}}=6.34$ in w.g.

- $33.33 \mathrm{pof}=0.24 \mathrm{psi}$

2. Find planform area, $A_{p}$
$A_{p}=\pi r^{2}+2 r\left(l_{h}-2 r\right)$
$A_{p}=\pi(25)^{2}+2(25)(100-(2)(25))$
$A_{p}=\pi(625)+(50)(50)$
$A_{p}=4463.5 \mathrm{qft}$
3. Find lloor area, $\mathrm{A}_{\mathrm{f}}$
$A_{f}=\pi\left(r \sin \phi_{B}\right)^{2}+2 r \sin \phi_{B}\left(\ell_{h}-2 r\right)$
whare $\operatorname{in} \phi_{B}=\operatorname{ain} 90^{\circ}-1.0$
$A_{f}=\pi((25)(1))^{2}+2(25)(1)(100-50)$
$A_{f}=4463.5 \mathrm{eq} \mathrm{ft}$
4. Find external aurface area, $A_{\text {, }}$
$A_{B}=\pi d h+\left(\ell_{h}-2 r\right)(d)\left(\varphi_{B} / 57.3\right)$
$A_{a}=(\pi)(50)(25)+(100-2(25))(50)\left(\frac{90}{57.3}\right)$
$A_{s}=7852$ sq $f t$
5. Find perineter, $P_{i}$
$P_{\ell}=2 \pi r \sin \phi_{B}+2\left(\ell_{h}-2 r\right)$
$P_{\ell}=2 \pi(25)\left(\sin 90^{\circ}\right)+2(100-2(25))$
$P_{\ell}=157.1+100=257.1 \mathrm{ft}$
6. Find aerodynamic loads; $L, D$ and $M$
a. Lift $=C_{L} q A_{p}$
where $C_{L}=0.540$
Figure 9
$\mathrm{L}=(0.540 \times 33.33)(4463.5)=80,335 \mathrm{lb}$
b. Drag $=C_{D} q A_{p}$
where $C_{D}=0.450$
Figure 11
$D=(0.450(33.33)(4463.5)=66,9461 b$
c. Overturning moment $=C_{M} q A_{p}$
where $C_{M}=0.390$
Figure 13

$$
M=(-0.390)(33.33)(4463.5)=-58,020 \mathrm{ft}-1 \mathrm{~b}
$$

7. Find maximum tent deflection; $\delta_{F}, \delta_{H}, \delta_{B}$
a. $\frac{\delta_{F}}{r}=0.103, \frac{\delta_{H}}{r}=0.103, \frac{\delta_{B}}{r}=0.030 \quad$ Figure 16
b. $\delta_{F}=\left(\frac{\delta_{F}}{r}\right)(r)=(0.103)(25)=2.58 \mathrm{ft}$
$\delta_{H}=\left(\frac{\delta_{H}}{\mathbf{r}}\right)(r)=(0.103)(25)=2.58 \mathrm{ft}$

$$
\delta_{B}=\left(\frac{\delta_{B}}{r}\right)(r)=(0.030)(25)=0.75 \mathrm{ft}
$$

8. Find inflation load, $P_{\text {IL }}$

$$
\begin{aligned}
& P_{I L}=P_{e} A_{f} \\
& \text { Since } P_{e}=q \text { for stability; } P_{e}=33.33 \text { psf } \\
& P_{I L}=(33.33)(4463.5)=148,769 \mathrm{lb}
\end{aligned}
$$

2. Finu ancims iuad, $\bar{r}_{\text {AL }}$
$P_{A L}=C_{A L} q A_{p}$
where $C_{A L}=1.58$
Figure 20
$P_{\text {AI }}=(1.58)(33.33)(4463.5)=235,054 \mathrm{Ib}$
3. Find number of anchort required, NA
$N_{A}=\frac{P_{\text {AL }}+P_{\text {IL }}}{1500^{*}}$
$N A=\frac{148,769+235,054}{1500}=\frac{383,823}{1500}$
NA $=256$ required
4. Find anchor spacing, AS
$A S=\mathrm{P}_{\mathrm{e}} / \mathrm{NA}$

AS $=\frac{257.1}{256} \quad 1.004 \mathrm{ft}$ between anchors
12. Find fabric stress resultants
a. Cylindrical portion
1). Peak stress resultants, $N_{( }$) for
$h / d=1 / 2, W / l_{h}=1 / 2$
$\frac{N_{\phi}}{q r}=0.83$
Figure 27
$\frac{N_{\theta}}{q I}=1.40$
Figure 2
$\mathrm{N}_{\phi}=(0.83)(0.24)(25)(12)=59.76 \mathrm{lb} / \mathrm{in}$ $\mathrm{N}_{\theta}=(1.40)(0.24)(25)(12)=100.80 \mathrm{lb} / \mathrm{in}$
2) Maximum stress resultants, $\overline{\text { N }}$ ()

Based on an allowable individual anchor load of 1500 lb for $4^{\prime \prime}$ arrowhead anchor.

$$
\begin{aligned}
& N_{\dot{\psi}}=N_{\dot{\psi}}+P_{E} r \\
& \bar{N}_{\phi}=59.76+(0.24)(25)(12) \\
& \bar{N}_{\phi}=131.76 \mathrm{lb} / \mathrm{in} \\
& \bar{N}_{x}=N_{\theta}+\frac{P_{e} r}{2} \\
& \bar{N}_{x}=100.80+\frac{(0.24)(25)(12)}{2} \\
& N_{x}=100.80+36.00=136.80 \mathrm{lb} / \mathrm{in}
\end{aligned}
$$

b. Hemispherical ends

1) Peak stress resultants, $N_{( }$)
for $h / d=1 / 2, W / h_{h}=1 / 2$
$\frac{N_{\phi}}{q r}=1.50$
Figure 27
$\frac{\mathrm{N}_{\theta}}{\mathrm{qr}}=1.40$
Figure 29
$\frac{N_{\phi \theta}}{Q I}=0.66$
Figure 30
$N_{\phi}=(1.50)(0.24)(25)(12)=108.00 \mathrm{lb} / \mathrm{in}$
$N_{\theta}=(1.40)(0.24)(25)(12)=100.80 \mathrm{lb} / \mathrm{in}$
$N_{\phi \theta}=(0.66)(0.24)(25)(12)=47.52 \mathrm{Ib} / \mathrm{In}$
2) Maximum stress resultants, $\bar{N}_{( }$)
$\bar{N}_{\phi}=N_{\phi}+\frac{P_{e}}{2}$

$$
\begin{aligned}
& \bar{N}_{\hat{A}}=108.00+\frac{(0.24)(25)(12)}{2} \\
& \bar{N}_{\phi}=108.00+36.00-144.00 \mathrm{lb} / \mathrm{in} \\
& \bar{N}_{\theta}=N_{\theta}+\frac{P_{e} r}{2} \\
& \bar{N}_{\theta}=100.80+\frac{(0.24)(25)(12)}{2} \\
& \bar{N}_{\theta}=100.80+36.00=136.80 \mathrm{lb} / \mathrm{in} \\
& \bar{N}_{\phi \theta}=N_{\phi \theta}=47.52 \mathrm{lb} / \mathrm{in}
\end{aligned}
$$

3) Maximum principal stress, $N_{\text {max }}$ for hemispherical ends:

$$
\begin{gathered}
N_{\max }=\frac{1}{2}\left(\bar{N}_{\phi}+\bar{N}_{\theta}\right)+\frac{1}{2} \sqrt{\left(\bar{N}_{\phi}-\bar{N}_{\theta}\right)^{2}+4 \bar{N}_{\phi \theta}^{2}} \\
N_{\max }=\frac{1}{2}(144.0+136.8)+\frac{1}{2} \sqrt{(144-136.8)^{2}+4(47.52)^{2}} \\
N_{\max }=140.4+\frac{1}{2} \sqrt{9084.44}=188.07 \mathrm{ib} / \mathrm{in}
\end{gathered}
$$

13. Find coated fabric weight, $W_{c f}$
a. Determine fiber type from other congideration, select polyester
b. Weight-strength relationship of fiber, $n$
$n=35 \frac{1 b-y d^{2}}{\text { in oz }}$
Table III
c. Weight of base fabric, $W_{b f}$, using $N_{\text {max }}$
for hemispherical ends:
$W_{b f}=S F N_{\text {max }} / n$
Using a safety factor of 3 ,
$W_{b f}=\frac{3(188,07)}{35}=\frac{564.21}{35}$
$W_{b f}=16.120 z / \mathrm{yd}^{2}$
d. Weight of fabric coating, $W_{r}$
(Assuming vinyl coating, two ply)

$$
W_{c}=320 z / \mathrm{yd}^{2}
$$

Figure 50
e. Fabric surface area

Tent surface area, $A_{s}=7852$ sq ft
$\begin{aligned} \text { Catenary curtain }=\left(A_{p}\right)(1 \mathrm{ft} \mathrm{high}) & =(4463.5)(1) \\ & =4463.5 \mathrm{gq} \mathrm{ft}\end{aligned}$
Ground seal skirt $=\left(\mathrm{A}_{\mathrm{P}}\right)(2 \mathrm{ft}$ wide $)=(4463.5)(2)$

Total fabric surface area $=7852+4463.5+8927$

- $21,242.5 \mathrm{sq} \mathrm{ft}$
$=2,360,3 \mathrm{sq} \mathrm{yd}$
f. Coated fabric weight, $W_{C f}$, using $W_{b f}$ requirements of hemispherical ands:
$W_{c f}=$ (total aurface area) ( $\left.W_{b f}+W_{C}\right)$
$W_{c f}=(2,360.3)\left(16.120 z / \mathrm{yd}^{2}+320 \varepsilon / \mathrm{yd}^{2}\right)(1.5 / 16)$
$W_{c f}=(2,360.3)(48.12)(0.0937)=10,647.9 \mathrm{lb}$

14. Find package cube, $V$

Estimated cube $=\left(W_{c t}\right)\left(0.1 \mathrm{ft}^{3} / 1 \mathrm{~b}\right)$
Estimated cube $=(10,647,9)(0.1)=1,064.8 \mathrm{ft}^{3}$
15. Find blower requiraments, $Q$
a. Air losa per inch of silde fastener
at $P_{e}=6.34 \mathrm{in}$ w.g. equals $2.58 \mathrm{ft}^{3} / \mathrm{min} / \mathrm{in}$
Figure 51
b. Total length of slide fastener, if employed, $L_{s f}$

$$
L_{B f}=2 r \frac{\phi_{B}}{53.3}+\left(\ell_{h}-2 r\right)
$$

$$
L_{8 f}=(2)(25)\left(\frac{90}{57.3}\right)+(100-50)
$$

> c. Air loss through silde fastener
> Air loss = (air losa/inch) (length)
> Air loss $=(2.58)(1542)=3978.4 \mathrm{ft}^{3} / \mathrm{min}$
> d. Air lose through ground seal skirt
> Air loas = $26 \mathrm{ft}^{3} / \mathrm{ft}$ (perimetar)/min
> where $P_{\ell}=257.1 \mathrm{ft}$
> Air loss $=(26)(257.1)=6684.6 \mathrm{ft}^{3} / \mathrm{min}$
> e. Air loss through door is $503 \mathrm{ft}^{3} / \mathrm{min}$
> f. Total air lose (from $c, d$ and e)
> Total air loss $=3978.4+6684.6+503$
> Total air loas $=21,166 \mathrm{ft}^{3} / \mathrm{min} @ 6.34$ in w. 8 .
> g. Total blower requirement, $Q$
> $Q=2(\operatorname{air} 108 s)=22,332 \mathrm{ft}^{3} / \mathrm{min}$ © $6.34 \mathrm{in} w . g$.

Given:

$$
\begin{aligned}
& \text { Width }=50 \mathrm{ft} \\
& \text { Height }=25 \mathrm{ft} \\
& \text { Length }=100 \mathrm{ft} \text { with } \mathrm{b} / \mathrm{a}=1 / 2=\mathrm{b} / \mathrm{c} \\
& \text { Height-tomiameter Ratio }=1 / 2 \\
& \text { Wldth-to-Length Ratio }=1 / 2 \\
& \text { Design pressure altitude }-3000 \mathrm{ft} \\
& \text { Temperature Range }-25^{\circ} \mathrm{F} \text { to }+100^{\circ} \mathrm{F} \\
& \text { Wind Velocity }=110 \mathrm{mph}
\end{aligned}
$$

## Solution:

1. Find dynamic pressure, $q$
a. $q_{\text {atd }}=5.9$ in w.g. $=31 \mathrm{psf}=0.22 \mathrm{psi}$ Figure 7
b. $k_{p}=1.075$
c. $q=1.075 q_{g t d}=6.34$ in w.g. F $33.33 \mathrm{paf}=0.24 \mathrm{pal}$
2. Find planform area, $A_{p}$

Since $=$ tent radius, $x$, and $b / a=1 / 2:$
$\frac{b}{25}=\frac{1}{2}$ or $b=12.5 \mathrm{ft}$
$A_{p}=\pi b r+2 r\left(l_{h}-2 b\right)$
$A_{p}=\pi(12.5)(25)+2(25)(100-2(25))$
$A_{p}=981.8+2500$
$A_{p}=3481.8 \mathrm{eq} \mathrm{ft}$
3. Find floor area, $A_{f}$
$A_{f}=\pi b r \sin ^{2} \phi_{B}+2 r \sin \phi_{B}\left(\ell_{h}-2 r\right)$
where $\sin \phi_{B}=\sin 90^{\circ}=1.0$
$A_{f}=\pi(12.5)(25)(1)+2(25)(1)(100-50)$
$A_{f}=3481.8$ sq ft

$$
\begin{aligned}
& A_{s}-\left(\ell_{h}-2 b\right)(d)\left(\Phi_{B} / 57.3\right)+\pi \frac{h}{d}\left|2 r^{2}+\frac{b^{2}}{e} \ln \frac{1+e}{1-e}\right| \\
& \text { where }=\sqrt{1-(b / r)^{2}} \\
& e=\sqrt{1-\left(\frac{12.5}{25}\right)^{2}}=\sqrt{0.75}=0.866 \\
& A_{s}=(100-25)(50)(90 / 57.3)+\pi \frac{25}{50}\left|2(25)^{2}+\frac{(12.5)^{2}}{0.866} \ln \frac{1+0.866}{1-0.866}\right| \\
& A_{s}=5887.5+2286.77=8174.27 \mathrm{sqft} \\
& \text { 5. Find perimeter, } P_{\ell} \\
& P_{\ell}=\pi r \sin _{\mathrm{B}} \sqrt{2\left|1+\left(\frac{b}{r}\right)^{2}\right|}+2\left(\ell_{h}-2 b\right) \\
& P_{\ell}=\pi(25) \sin 90^{\circ} \sqrt{2\left|1+\left(\frac{12.5}{25}\right)^{2}\right|}+2(100-2(12.5)) \\
& P_{l}=25 \pi \cdot \sqrt{2.5}+150=274 \mathrm{ft} \\
& \text { 6. Find aerodynamic loade; } L, D \text { and } M \\
& \text { a. Lift }=C_{L} q A_{p} \\
& \text { whare } C_{L}=0.904 \\
& \text { Figure } 9 \\
& L=(0.904)(33.33)(3481.4)=104,8961 b \\
& \text { b. Drag }=C_{D} q A_{p} \\
& \text { where } C_{D}=0.500 \\
& \text { Figure } 11 \\
& D=(0.500)(33.33)(3481.4)=58,018 \mathrm{lb} \\
& \text { c. Overturnimg moment }=C_{M} a A_{p} \\
& \text { where } G_{M}=-0.648 \\
& \text { Figure } 13 \\
& M=(-0.648)(33.33)(3481.4)=-75,1911 b \\
& \text { 7. Find maximum tent deflection: } \delta_{F}, \delta_{H}, \delta_{B} \\
& \text { a. } \frac{\delta_{F}}{r}=0.175, \frac{\delta_{H}}{r}=0.098, \frac{\delta_{B}}{r}=0.052 \quad \text { Figure } 16
\end{aligned}
$$

$$
\text { b. } \begin{aligned}
\delta_{F} & =\left(\frac{\delta_{F}}{r}\right)(r)=(0.175)(25)=4.38 \mathrm{ft} \\
\delta_{H} & =\left(\frac{\delta_{\mathrm{H}}}{r}\right)(r)=(0.098)(25)=2.45 \mathrm{ft} \\
\delta_{B} & =\left(\frac{\delta_{\mathrm{B}}}{\mathrm{r}}\right)(r)=(0.052)(25)=1.30 \mathrm{ft}
\end{aligned}
$$

8. Find inflation load, $P_{\text {IL }}$

$$
\mathbf{P}_{I L}=P_{e} \mathbf{A}_{\mathbf{f}}
$$

Since $P_{e}=q$ for stability; $P_{e}=33.33$ paf
$P_{\text {IL }}=(33.33)(3481.8)=116,048 \mathrm{lb}$
9. Find anchor load, $\mathrm{P}_{\mathrm{AL}}$

$$
\begin{aligned}
P_{A L} & =C_{A L} q A_{P} \\
\text { where } C_{A L} & =2.30
\end{aligned}
$$

$P_{A L}=(2.30)(33.33)(3481.8)=266,9101 b$
10. Find number of anchore required, NA
$N A=\frac{P_{I L}+P_{A L}}{1500}$
$N A=\frac{116,048+266,910}{1500}=\frac{382,958}{1500}$
$N A=256$ required
11. Find anchor spacing, AS
$A S=\frac{P_{\ell}}{N A}$
AS $=\frac{274}{256}=1.07 \mathrm{ft}$ batwean anchors

[^4]i2. rund iabric atress resultants
a. Cylindrical section

1) Peak stress resultants, $N()$ for $h / d=1 / 2$ $W / \ell_{h}=1 / 2$ and $b / r=1 / 2$
$\frac{N_{\phi}}{q x}=1.90, \frac{N_{\theta}}{q x}=1.73$
Figure 32
$N_{\phi}=(1.90)(0.24)(25)(12)=136.8 \mathrm{lb} / \mathrm{in}$
$N_{\theta}=(1.73)(0.24)(25)(12)=124.6 \mathrm{lb} / \mathrm{in}$
2) Meximum strese reaultante, $\bar{N}$ () Since $P_{e} / q=1.0, b / r=1.0, W / h_{h}=1.0 ;$ $c_{q \phi}=1.0, c_{b \phi}=1.0, c_{w \phi}=1.0, c_{h \phi}=1.0$

Figure 33
$C_{q}{ }_{q}=1.0, C_{b \theta}=1.0, C_{w \theta}=1.0, C_{h \theta^{-}}=1.0$
Figure 34
$\bar{N}_{\phi}=(1.0)(1.0)(1.0)(1.0)(1.90)(0.24)(25)(12)=136.81 \mathrm{~b} / \mathrm{in}$
$\bar{N}_{\theta}=(1.0)(1.0)(1.0)(1.0)(1.73)(0.24)(25)(12)=124.61 \mathrm{~b} / 1 \mathrm{n}$
b. Ellipsoidal ends

1) Peak etrese remiltante, $N_{( }$)
$\frac{N_{\phi}}{q r}=2.72, \frac{N_{\theta}}{q x}=2.20, \frac{N_{\phi \theta}}{q r}=1.82 \quad$ Figure 32
$N_{\phi}=(2.72)(0.24)(25)(12)=195.8 \mathrm{lb} / \mathrm{in}$
$\mathrm{N}_{\theta}=(2.20)(0.24)(25).(12)=158.4 \mathrm{ib} / \mathrm{in}$
$N_{\phi \theta} \theta^{(1.81)(0.24)(25)(12)=131.0 \mathrm{lb} / \mathrm{in}, ~}$
2) Meximum atrase resultants, $\bar{N}_{( }$)

$$
\begin{aligned}
& \text { Since } P_{e} / q=1.0, b / r=1.0, w / \ell_{h}=1.0, \\
& h / d=1.0 ; \\
& c_{q \phi}=1.0, c_{b \phi}=1.0, c_{w \phi}=1.0, c_{h \phi}=1.0
\end{aligned}
$$

$$
\text { Figure } 33
$$

$$
c_{q \theta}=1.0, c_{b \theta}=1.0, c_{w \theta}=1.0, c_{h \theta}=1.0
$$

Figure 34

$$
c_{q \phi \theta}=1.0, c_{b \phi \theta^{\prime}}=1.0, c_{w \phi \theta^{\prime}}=1.0, c_{h \phi \theta^{-}}=1.0
$$

Figure 35
$\overline{\mathbb{N}}_{\phi}=(1.0)(1.0)(1.0)(1.0)(2.72)(0.24)(25)(12)=195.8 \mathrm{lb} / \mathrm{in}$ $\bar{N}_{\theta}=(1.0)(1.0)(1.0)(1.0)(2.20)(0.24)(25)(12)=158.4 \mathrm{lb} / \mathrm{in}$ $\overline{\mathbb{N}}_{\phi \theta}=(1.0)(1.0)(1.0)(1.0)(1.82)(0.24)(25)(12)=131.0 \mathrm{Ib} / \mathrm{in}$ c. Maximum strese, $N_{\max }$

1) Cylindrical portion

$$
N_{\text {max }}=\bar{N}_{\phi}=136.8 \mathrm{lb} / \mathrm{in}
$$

2) Ellipsoidal and atreas resultant

$$
N_{\max }=\frac{1}{2}\left(\bar{N}_{\phi}+\bar{N}_{\theta}\right)+\frac{1}{2} \sqrt{\left(\overline{(\bar{N}}_{\phi}-\overline{\mathbb{N}}_{\theta}\right)^{2}=4 \overline{\mathbb{N}}_{\phi \theta}^{2}}
$$

$$
N_{\max }=\frac{1}{2}(195.8+158.4)+\frac{1}{2} \sqrt{(195.8-158.4)^{2}+4(131.0)^{2}}
$$

$$
N_{\max }=177.1+\frac{1}{2} \sqrt{70042.8}-309.5 \mathrm{lb} / \mathrm{in}
$$

13. Find coatad fubric weight, $W_{c f}$
a. Determine fiber type from other consideratione, select polyestur
b. Weight-strength ralationehip of fiber, $n$
$n=35 \frac{1 \mathrm{~b}-\mathrm{yd}^{2}}{\ln -\mathrm{z}}$
Table III
c. Weight of base fabric, $W_{b f}$

$$
W_{b f}=S F N_{\max } / \eta
$$

Using a aqfoty factor nf 3 ,

1) Cylindrical portion

$$
W_{b f}=\frac{(3)(136.8)}{35}=\frac{410.4}{35}=11.72 \mathrm{oz} / \mathrm{yd}^{2}
$$

2) Ellipsoidal ends

$$
W_{b f}=\frac{3(309.5)}{35}=\frac{928.5}{35}=26.5 \mathrm{az} / \mathrm{yd}^{2}
$$

d. Weight of fabric coating, $W_{c}$ (Asauming vinyl coating, two-ply)
$W_{c}=32 \mathrm{oz} / \mathrm{yd}^{2}$
Figure 50
e. Fabric surface area

Tent unrface araa, $A_{s}=8174.27$ eq $f t$
Catenary curtain $=\left(A_{p}\right)(1 \mathrm{ft}$ high $\left.)=3481.8\right)(1)$
$=3481.8 \mathrm{sq} \mathrm{ft}$
Ground seal kkirt = ( $A_{p}$ )(2 ft wide) = 3481.8)(2) - 6963.6 sq ft

Total fabric aurface araa $-8174.3+8481.8+6963.6$
= $23,619,7 \mathrm{sq} \mathrm{ft}$

- 2,624.1 sq yd
$f$. Couted fabric weight, $W_{c f}$, uning $W_{b f}$
requiraments of elliptical ende:
$W_{c f}-\left(t o t a l\right.$ arface area) $\left(W_{b f}+W_{c}\right)$
$W_{c f}=(2,624.1)(26.5+32.0)(1.5 / 16)$
$W_{c f}=(2,624.1)(58.5)(0.0937)=14,3921 b$

14. Find package cube, $V$

Eatimated cube $-\left(W_{c f}\right)\left(0.1 \mathrm{ft}^{3} / 1 \mathrm{~b}\right)$
Estimated cube - $(14,392)(0.1)=1439 \mathrm{ft}^{3}$
15. Find blower requilements, $Q$
a. Air liss per inch of silde fastener


Figure 51
b. Total length of slide fastener, if employed, $L_{s f}$
$L_{s f}=\pi r \frac{h}{d} \sqrt{2\left|1+\left(\frac{b}{r}\right)^{2}\right|}+\left(f_{h}=2^{\prime}\right.$,
$L_{s f}=(\pi)(25)\left(\frac{25}{50}\right) \sqrt{2\left|1+\left(\frac{12.5}{25}\right)^{2}\right|}$
$L_{s f}=(39.27)(1.58)+75$
$L_{s f}=137.1 \mathrm{ft}=164.5 \mathrm{in}$
c. Air loss through slide fastener

Air 1088 * (air loss/inch) (length)
Air loss $=(2.58)(1645.2)=4244.6 \mathrm{it}^{3} / \mathrm{min}$
d. Air loss through ground seal skirt

Air loss $=26 \mathrm{ft}^{3} / \mathrm{ft}($ perimeter $) / \mathrm{min}$ where $P_{\ell}=274 \mathrm{ft}$
Air loss $=(26)(274)=7124 \mathrm{ft}^{3} / \mathrm{min}$
e. Air loss through door is $503 \mathrm{ft}^{3} / \mathrm{min}$
f. Total air loss (from $c$, $d$ and $e$ )

Total air loss $=4245+7124+503$
Total air loss $=11,872 \mathrm{ft}^{3} / \mathrm{min}$ © 6.34 in w.g.
g. Total blower requirement, $Q$ $Q=2(\operatorname{air}$ loss $)=23,744 \mathrm{ft}^{3} / \mathrm{min} @ 6.34 \mathrm{in} \mathrm{w} . \mathrm{g}$.

A cylindrical enclosure with a storage area of 600 sq ft to contain a package cube having a height, $y$, of 8 feet. Anticipated environmental conditions are:

Pressure altitude, 2000 ft
Temperature, $+125^{\circ}$ to $=50^{\circ} \mathrm{F}$
Wind velocity, 105 mph
"olution:

1. Find optimum $W / h_{h}$ and $h / d$ ratios from a stability and aerodynamic loads standpoint.
a. Due to high wind enviroment a $W / \ell_{h}=1 / 2$ is recommended.
b. To Miniaize aerodynamic loads with a $W / \ell_{h}=1 / 2$, a tent with hemispherical ends and $a h / d=1 / 2$ is recommended.

Figures 9, 11, 13
2. Find the tent radius, $r$, to enclose the required package cube.
a. Since the enclosure has hemispherical ends and $a / l_{h_{i}}=1 / 2$, the package length must equal twice the radius, or
$(2 r)(2 x)=4 x r=600 f t^{2}$
where $x=1 / 2$ package width
b. Also the tent radius equals the square root of the sum of the squares of $x$ and $y$ (package height) or,
$x=\sqrt{x^{2}+y^{2}}$
c. Combining equation in " $a$ " and " $b$ " and solving for $x$ and $r$ yields
$x=11.0 \mathrm{ft}$ and $\mathrm{r}=13.6 \mathrm{ft}$
d. Also, since $W / \ell_{h}=1 / 2, \chi_{h}=4 r=54.4 \mathrm{ft}$

3. Find dynamic pressure, q
a. $\mathrm{q}_{\mathrm{std}}=5.4 \mathrm{in} \mathbf{w . g}=28.1 \mathrm{psf}=0.159 \mathrm{psi}$
for a sea level standard day Figure 7
b. $k_{p}=1.18$

Figure $B$
c. $q=1.18 q_{\text {std }}=6.37$ in w. 8 .
$=33.16 \mathrm{psf}=0.188 \mathrm{psi}$
4. Find planform area, $A_{p}$
$A_{p}=\because r^{2}+2 r\left(l_{h}-2 r\right)$
$A_{p}=\pi(13.6)^{2}+2(13.6)(54.4-27.2)$
$A_{p}=581.1+739.8$
$A_{p}=1320.9 \mathrm{gq} \mathrm{ft}$
5. Find floor area, $A_{f}$
$A_{f}=\pi\left(r \sin \phi_{B}\right)^{2}+2 r \sin \phi_{B}\left(l_{h}-2 r\right)$
where $\sin \phi_{B}=\sin 90^{\circ}=1.0$
$A_{f}=\pi((13.6)(i))^{2}+2(13.6)(1)(54.4-27.2)$
$A_{f}=\pi(185)+(27.2)(27.2)$
$A_{f}=581.1+739.8=1320.9$ sq ft
6. Find external s rface area, $A_{s}$
$A_{s}=\pi \mathrm{dh}+\left(\varepsilon_{h}-2 r\right)(d)\left({ }^{\phi} B / 57.3\right)$
$A_{s}=(\pi)(27.2)(13.6)+(54.4-27.2)(27.2)(90 / 57.3)$
$A_{s}=1162.1+739.8=1901.9 \mathrm{sq} \mathrm{ft}$
7. Find perimeter, $P_{\ell}$
$P_{\ell}=2 \pi r \sin \phi_{B}+2\left(\ell_{n}-2 r\right)$
$P_{\ell}=2 \pi(13.6)\left(\sin 90^{\circ}\right)+2(54.4-27.2)$
$P_{\ell}=85.5+54.4=139.9 \mathrm{ft}$
8. Find aerodynamic loads; L, D and M
a. Lift $=C_{L} q A_{P}$
where $C_{L}=0.540$
Figure 9
$L=(0.540)(33.16)(1320.9)=23,652.5 \mathrm{lb}$
b. Drag $=C_{D} q A_{p}$
where $C_{D}=0.450$
Figure 11

$$
D=(0.450)(33.16)(1320.9)=19,710.51 \mathrm{~b}
$$

c. Overturning moment $=C_{M} q A_{p}$
where $G_{M}=-0.390$
Figure 13
$M=(-0.390)(33.16)(1320.9)=17,082.4 \mathrm{ft-1b}$
9. Find maximum tent duflection; $\delta_{F}, \delta_{H}$, and $\delta_{B}$
a. $\frac{\delta_{F}}{r}=0.103, \frac{\delta_{H}}{r}=0.103, \frac{\delta_{B}}{r}=0.030 \quad$ Figure 16
b. $\delta_{F}=\left(\frac{\delta}{r}\right)(r)=(0.103)(13.6)=14.0 \mathrm{ft}$
$\delta_{H}=\left(\frac{\delta_{H}}{\mathrm{I}}\right)(\mathrm{r})=(0.103)(13.6)=14.0 \mathrm{ft}$
$\delta_{B}=\left(\frac{\delta_{B}}{r}\right)(r)=(0.030)(13.6)=0.41 \mathrm{ft}$
10. Find inflation load, $\mathrm{P}_{\text {IL }}$
$P_{\text {IL }}=P_{e} A_{f}$

Since $P_{e}=q$ for atability, $P_{e}=33.16 \mathrm{psf}$
$P_{\text {IL }}=(33.16)(1320.9)=43,801 \mathrm{lb}$
11. Find anchor 10ad, $P_{A L}$
$P_{A L}=C_{A L} q A_{p}$
where $C_{A L}=1.58 \quad$ Figure 20
$P_{A L}=(1.58)(33.16)(1320.9)=69,205.6 \mathrm{lb}$
12. Find number of anchors required, NA
$N A=\frac{P_{Y Y}+P_{A I}}{1500^{m}}$
$N A=\frac{43,801+69,206}{1500}=\frac{113,007}{1500}$
$N A=75.3$ required
13. Find anchor spacing, AS
$A S=P_{\ell} / N A$
AS $=\frac{139.9}{75,3}=1.85 \mathrm{ft}$ between anchors
14. Find fabric stress resultants
a. Cyilndrical portion


$$
\begin{array}{ll}
\frac{N_{\phi}}{q r}=0.83 & \text { Figure } 27 \\
\frac{N_{\theta}}{q r}=1.40 & \text { Figure } 29 \\
N_{\phi}=(0.83)(0.188)(13.6)(12)=25.47 \mathrm{lb} / \text { in } \\
N_{\theta}=(1.40)(0.188)(13.6)(12)=42.95 \mathrm{lb} / \mathrm{in}
\end{array}
$$

2) Maximum stresa resultants, $\bar{N}_{( }$)

$$
\overline{\mathbb{N}}_{\phi}=\mathbb{N}_{\phi}+\mathbf{P}_{e^{r}}
$$

$$
\bar{N}_{\phi}=25.47+(0.188)(13.6)(12)
$$

$$
\pi_{\phi}=25.47+30.68=56.15 \mathrm{lb} / \mathrm{in}
$$

$$
\bar{N}_{x}=N_{\theta}+\frac{P_{\theta}}{2}
$$

[^5]\[

$$
\begin{aligned}
& \bar{N}_{x}=42.95+\frac{\left(0.188 j\left(\frac{1}{2} 1.6\right)(12)\right.}{} \\
& \bar{N}_{x}=42.95+15.34=58.29 \mathrm{ib} / \mathrm{in}
\end{aligned}
$$
\]

b. Hemispherical ends

1) Peak stress resultants, $N_{( }$, for $h / d=1 / 2$,
$W / \ell_{h}$
$\frac{N_{\phi}}{q r}=1.50$
Pigure 27
$\frac{N_{\theta}}{q r}=1.40$
Figure 29
$\frac{N_{\phi \theta}}{q r}=0.66$
$N_{\phi}=(1.50)(0.188)(13.6)(12)=46.021 \mathrm{ib} / \mathrm{in}$
$N_{\theta}=(1.40)(0.188)(13.6)(12)=42.951 \mathrm{~b} / \mathrm{in}$
$N_{\phi \theta}=(0.66)(0.188)(13.6)(12)=25.011 \mathrm{~b} / \mathrm{In}$
2) Maximum strese resultants, $\bar{N}_{( }$)
$\bar{N}_{\phi}=N+\frac{P_{e}{ }^{r}}{2}$
$\bar{N}_{\phi}=46.02+\frac{(0.188)(13.6)(12)}{2}$
$\bar{N}_{\phi}=46.02+15.34=61.36 \mathrm{lb} / \mathrm{in}$
$\bar{N}_{\theta}=N_{\theta}+\frac{\mathbf{P}_{e} \boldsymbol{r}}{2}$
$\bar{N}_{\theta}=42.95+\frac{(0.188)(13.6)(12)}{2}$
$\bar{N}_{\theta}=42.95+15.34=58.29 \mathrm{Ib} / \mathrm{in}$
$\tilde{N}_{\phi \theta}=\tilde{i d \theta}-25.01 \mathrm{lb} / \mathrm{in}$
3) Maximum principal stress, $N_{\text {max }}$
for hemispherical ends:

$$
N_{\max }=\frac{1}{2}\left(\bar{N}_{\phi}+\bar{N}_{\theta}\right)+\frac{1}{2} \sqrt{\left(\bar{N}_{\phi}-\bar{N}_{\theta}\right)^{2}+4 N_{\phi \theta}{ }^{2}}
$$

$N_{\max }=\frac{1}{2}(61.36+58.29)+\frac{1}{2} \sqrt{(61.36-58.29)^{2}+4(25.01)^{2}}$
$N_{\max }=59.82+\frac{1}{2} \sqrt{2511.42}=84.881 \mathrm{~b} / 1 \mathrm{n}$
15. Find coated fabric weight, w $c f$
a. Determine fiber type from other considerations, select polyester
b. Weight-strength relationship of fiber, $n$
$n=35 \cdot \frac{1 b-\mathrm{yd}^{3}}{\text { in oz }}$
Table III
c. Weight of base fabric, wbf, using
$N_{\text {max }}$ for hemispherical ends:
$W_{b f}=S F N_{\max } / \pi$

Using a afety factor of 3,
$w_{b f}=\frac{3(84.88)}{35} \quad \frac{254.64}{35}$
$w_{b t}=7.280 z / \mathrm{yd}^{2}$
d. Weight of fabric coating, $w_{c}$
(Assuming vinyl coating, two ply)
$\omega_{c}=32.0 \mathrm{oz} / \mathrm{yd}^{2}$
Figure 50
e. Fabric surface area

Tent surface area, $A_{s}=1901.9$ sq ft

$$
\begin{aligned}
\text { Catenary curtain area } & =\left(A_{p}\right)(1 \mathrm{ft} \mathrm{high}) \\
& =(1320.9)(1)=1320.9 \mathrm{sq} \mathrm{ft} \\
\text { Ground seal skirt area } & =\left(\Lambda_{p}\right)(2 \mathrm{ft} \mathrm{wide}) \\
& =(1320.9)(2)=2641.8 \mathrm{eq} \mathrm{ft} \\
\text { Total fabric surface area } & =1901.9+1320.9+2641.8 \\
& =5864.6 \mathrm{eq} \mathrm{ft} \\
& =651.0 \mathrm{eq} \mathrm{yd}
\end{aligned}
$$

f. Coated fabric weight, ${ }_{c f}$, using wbf
requirements of hemispherical ends:

$$
\begin{aligned}
& w_{c f}=(\text { total surface area })\left(w_{b f}+w_{c}\right) \\
& w_{c f}=(651.0)\left(7.28 \mathrm{oz} / \mathrm{yd}^{2}+350 z / \mathrm{yd}^{2}\right)(1.5 / 16) \\
& w_{c f}=(651.0)(42.28)(0.0937)=2579 \mathrm{lb}
\end{aligned}
$$

16. Find package weight and cube

Adfusted packuge wt $=1.5 \mathbf{w}_{\mathrm{cf}}=3869 \mathrm{ib}$
Estimated cube - (adjusted package wt) ( $0.1 \mathrm{ft}^{\mathbf{3} / 1 b}$
Estimated cube $-(3869)(0.1)=386.9 \mathrm{ft}^{3}$
17. Find blower requirements, $Q$
a. Air loss per inch of silde fastener

$$
\text { at } P_{e}=6.37 \text { in } w .8 \text {. equal. } 2.59 \mathrm{ft}^{3} / \mathrm{min} / \mathrm{in}
$$

b. Total length of alide fastener, if employed, L:
$L_{s f}=2 r\left(\frac{\phi_{B}}{57.3}\right)+\left(\ell_{h}-2 r\right)$

$$
\begin{aligned}
& L_{s f}=2(13.6)\left(\frac{90}{57.3}\right)+(54.4-27.2) \\
& L_{s f}=42.7+27.2-69.9 \mathrm{ft}=838.8 \mathrm{in}
\end{aligned}
$$

c. Air loss through slide fastener

Air loss $=($ air loss $/$ inch $)($ length $)$
Atr lose $=(2.59)(838.8)=2172.5 \mathrm{ft}^{3} / \mathrm{min}$
d. Air loss through ground seal skirt

Air 10ss $=26 \mathrm{ft}^{3} / \mathrm{ft}($ perimeter $) / \mathrm{min}$
where $P_{f}=139.9 \mathrm{ft}$
Air loss = (26)(139.9)=3637.4 ft ${ }^{3} / \mathrm{min}$
e. Air loss through door is $503 \mathrm{ft}^{3} / \mathrm{min}$
i. Total air lass (from $c, d$ and $e$ )

Total air loss $=2172.5+3637.4+503$
Total air loss $=6312.9 \mathrm{ft}^{3} / \mathrm{min} @ 6.37 \mathrm{in} w . g$.
g. Total blower requirements, $Q$

$$
Q=2(a i r 108 s)=12,625.8 \mathrm{ft}^{3} / \mathrm{min} @ 6.37 \mathrm{in} \mathrm{w} . \mathrm{g} .
$$

## Known Shape

## Given:

Double-wall cylinder with ilat ends
Width $\sim 100 \mathrm{ft}$
Length $=200 \mathrm{ft}$
Height a 50 ft
Height:Diameter Ratio = $1 / 2$
Width:Length Retio - $1 / 2$
Cell Radius = 2 ft
Sea Level Standard Atmosphera
Wind Velocity $=90$ knots
Solution:

1. Find dynamic pressure $q$
a. Gstd = 5.3 in w.g. = 28 psf $=0 / 19$ psi Figure 7
2. Find planform area, $A_{p}$
$A_{p}=W \ell_{h}$
$A_{p}=(100)(200)-20,000$ eq $f t$
3. Find floor aren, $A_{f}$
$A_{f}=W L_{h}$
$A_{f}=(100)(200)=20,000$ q $f t$
4. Find burface area, $A_{g}$, of circular aided tent
a. Walls

$$
\begin{aligned}
& A_{A}=4 i_{h} \times\left(\frac{\phi_{B}}{57.3}\right) \\
& A_{B}=4(200)(50)\left(\frac{90}{57.3}\right)
\end{aligned}
$$

$$
A_{8}=62,800 \text { eqft=6,980 aq yd }
$$

b. Webe

With cell radius, $r_{c}=2 f t, w=4 \mathrm{ft}$
and setting $a_{c}-30^{0}$
Web spacing - (2) $\left(r_{c}\right)\left(\sin a_{c}\right)$
Web epacing (2) (2) (sin $30^{\circ}$ ) 2 ft
Number of webs $=\frac{200}{2}=100$
$A=2 \mathrm{mur} \frac{18}{57.3}$
$A_{1}=(2)(100)(4)(50)\left(\frac{90}{37.3}\right)=62,800 \mathrm{sq} \mathrm{ft}$
c. End curtains

$$
\begin{aligned}
& A_{8}=2 r^{2}\left(2 \frac{\phi_{B}}{57.3}-\sin \phi B \cos \phi 8\right) \\
& A_{8}=2(50)^{2} \\
& \quad \text { (2) }\left(\frac{90}{57.3}-\sin 90^{\circ} \cos 90^{\circ}\right) \\
& A_{8}=2(2500) \\
& \text { (i) }(1.57)-0
\end{aligned}
$$

$A_{n}=15,700 \mathrm{sqft}=1,745 \mathrm{sq} \mathrm{yd}$
d. Total aurface aran, A.

$$
A_{\mathrm{a}}=\underline{62,800}+\underline{62,800}+\underline{15,700}
$$

$A_{1}=141,300 s q f t-15,700$ sq $y d$
5. Pind length of anciorsd sides

$$
P_{\ell}=2 \ell_{h}=400 \mathrm{ft}
$$

6. Finsl aerodynuaic loads; $L, D$, and $M$ (assume tent anchored and guyed)
a. Lift $=C_{L} q A_{p}$
where $C_{i}=0.566$
L-(0.56t) (28) $(20,000)=316,960 \mathrm{lb}$
b. Dras $=C_{D} 9 A_{p}$
where $C_{D}=0.275$

$$
D=(0275)(28)(20,000)=154,000 \mathrm{lb}
$$

$$
\begin{aligned}
& \text { c. Overturning monent }=C_{M} q A_{P} \\
& \text { where } C_{M}=-0.508 \quad \text { Figure } 14 \\
& M=(-0.508)(28)(20,000)=-284,480 \mathrm{ft} \mathrm{1b}
\end{aligned}
$$

7. Find maximum tent deflection; $\delta_{F}, \delta_{H}, \delta_{B}$

$$
\text { a. } \begin{aligned}
\frac{\delta_{F}}{r} & =0.102, \frac{\delta_{H}}{r}=0.100, \frac{\delta_{B}}{r}=0.080 \\
\text { b. } \delta_{F} & =\left(\frac{\delta_{F}}{r}\right)(r)=(0.102)(50)=5.1 \mathrm{ft} \\
\delta_{H} & =\left(\frac{\delta_{H}}{r}\right)(r)=(0.100)(50)=5.0 \mathrm{ft} \\
\delta_{B} & =\left(\frac{\delta_{B}}{r}\right)(r)=(0.080)(50)=4.0 \mathrm{ft}
\end{aligned}
$$

8. Find bese anchor load, $\mathrm{P}_{\mathrm{BL}}$

$$
P_{B L}=C_{B L} q A_{P}
$$

$$
\text { where } C_{B L}=1.0
$$

Figure 21

$$
P_{B L}=(1.0)(28)(20,000)=560,000 \mathrm{lb}
$$

9. Find number of base anchors required,

$$
\begin{aligned}
& \mathrm{NA}=\frac{\mathrm{P}_{\mathrm{BL}}}{1500} \\
& \mathrm{NA}=\frac{560,000}{1500}=374
\end{aligned}
$$

10. Find base anchor spacing, AS

$$
\begin{aligned}
& A S=\frac{P_{\ell}}{N A} \\
& A S=\frac{400}{374}=1.07 \mathrm{ft} \\
& \text { 11. Find guy line load, } P_{G L} \\
& P_{G L}=C_{G L} q A_{P}
\end{aligned}
$$

[^6]\[

$$
\begin{gathered}
\text { where } C_{G L}=0.450 \\
P_{G L}=(0.450)(28)(20,000)=252,000 \mathrm{lb}
\end{gathered}
$$
\]

12. Find number of guy lines required

$$
\begin{aligned}
& \text { NGL }=\frac{252,000}{1500 \uparrow} \\
& \text { NGL }=168 \\
& \text { (Reference test stability discussion for best guy } \\
& \text { line arrangement) }
\end{aligned}
$$

13. Find cell pressure required, $P_{c}$
a. Cell width to diameter ratio, w/d $=\frac{4}{50}=0.08$
b. $\frac{P_{c}}{q}=3.2 C_{q}=1.05$ and $c_{w}=1.0 \quad$ Figure 37
c. $P_{c}=C_{q} C_{W}\left(P_{c} / q\right) q$
$P_{c}=(1.05)(2.0)(3.2)(5.3)$
$P_{c}=17.8$ in w. 8.
14. Find the fabric atress resultants $N_{( }$)
a. The web stress, $N_{w}$
$\frac{N_{w}}{q}=3.4$ (interpolated) Figure 38
$N_{w}=\underbrace{N_{w}}_{q}(q)=(4.0)(5.3)=21.2 \mathrm{lb} / \mathrm{in}$
b. The 100p stress, $N_{h}$

$$
\begin{aligned}
& \frac{N_{h}}{q}=3.8 \text { (interpolated) } \\
& N_{h}=\left(\frac{N_{h}}{q}\right)(q)=(3.9)(5.3) * 20.6 \mathrm{lb} / \text { in } \\
& \text { c. The meridional stress, } N_{\phi} \\
& N_{\phi}=14.2 \quad \text { Figure } 39
\end{aligned}
$$

[^7]15. Find coated fabric weight, $W_{c f}$
a. Determine fiber type from other considerations, select polyester.
b. Weight - strength relationship of fiber, $N$
$N=35 \frac{1 b-y d^{2}}{\text { in } 0 z}$
Table III
c. Weight of base fabric, $W_{b f}$
$H_{b f}=S F N_{\text {max }} / N_{\text {using }} S F=3.0$

1. Inner and outer skin fabric

$$
\begin{aligned}
& W_{b f}=(S F)\left(N_{h} / N\right) \\
& W_{b f}=(3.0)(20.6 / 35)=1.77 \mathrm{oz} / \mathrm{yd}^{2}
\end{aligned}
$$

2. Web fabric

$$
\begin{aligned}
& W_{b f}=(S F)\left(N_{w} / N\right) \\
& W_{b f}=(3.0)(21.2 / 35)=1.810 z / y d^{2}
\end{aligned}
$$

d. Weight of fabric coating, Wc
(Assuming vinyl coating, single-ply)
$W_{c}=8.502 / \mathrm{yd}^{2}$
Figure 50
e. Coated fabric weight, Wcf

1. Walls and webs
$W_{c f}=$ (wall and web area) $\left(W_{b f}+W_{c}\right)(1.33 / 16)$ Assuming $W_{b f}=1.81 ~ o z / y^{2}$
$W_{c f}=(13,960)(1.81+8.5)(1.33 / 16)$
$W_{c f}=(13,960)(10.31)(0.083)=11,9301 b$
2. End curtains
$W_{c f}=$ (end curtain area) $\left(W_{b f}+W_{c}\right)(1.5 / 16)$
$W_{C f}=(1,745)(10.31)(0.094)=1,696 \mathrm{lb}$
3. Total coated fabric weight, $W_{c f}$

$$
\begin{aligned}
& W_{c f}=(15, e, 1+15, e, 2) \\
& W_{c f}=(11,930+1,696)=13,6261 b
\end{aligned}
$$

16. Find package cube, V

> Estimated cube $=\left(\right.$ total $\left.W_{\mathrm{cf}}\right)\left(0.065 \mathrm{ft}^{3} / 1 \mathrm{~b}\right)$
> Estimated cube $=(13,626)(0.065)=885.7 \mathrm{ft}^{3}$
17. Find blower requirements, $Q$
a. Cell volume, $v_{c}=2 w \ell_{h} r\left(\frac{\phi_{B}}{57.3}\right)$

$$
\begin{aligned}
& V_{c}=2(4)(200)(50)\left(\frac{90}{57.3}\right) \\
& V_{c}=125,600 \mathrm{ft}^{3}
\end{aligned}
$$

b. Volumetric flow, $Q=\frac{c e l l \text { volume }}{\text { inflation time }}$

Assuming an inflation time of 30 minutes

$$
\begin{aligned}
& Q=\frac{125,600}{30} \\
& Q=4,187 \quad \mathrm{ft}^{3} / \mathrm{min} \text { at zero in w.g. }
\end{aligned}
$$

A cylindrical encloaure with a atorage floor atea of 900 eq ft and a minimus heigit of 11 ft . Anticipated environmencal conditions are:

Pressure altitude, 2000 ft
Temperature range, $+125^{\circ}$ to $-50^{\circ} \mathrm{P}$
Wind velocity, 110 mph
Solution:

1. Find optimum tent shape, $\mathrm{W} / \ell_{\text {f }}$ and $\mathrm{h} / \mathrm{d}$ ratios, to minimize anchor loade, asauming guy lines.
a. Select $W / \ell^{\prime}=1 / 4$ and $h / d=0.375$ for minimum $\mathrm{C}_{\mathrm{BL}}$

Pigure 21
b. From a geometric point of view, it can be shown that a tent having an $\mathrm{h} / \mathrm{d}=0.375$ will more than double the vidth to meet the requiremant for the 11-foot height, leading to exceseive aise and weight. To arrive at the optimum tent size and shape requires extensive geometric study, the extent of which is beyond the cope of this manual.
C. To continue this example problem, a cent with a higher h/d would lead to a lighter weight structure. A tent of optimum $h / d$ and $W / l_{h}$ can be arrived at as follow.
d. Find the enclosure dimensions to house the required storage cube.
a. Storage cube = (width) (length) (height) Since $W / \ell_{h}$ is assumed $1 / 4$, the minimum length $=h_{4}$ (width). Therefore, cube $=4$ (height) (width) ${ }^{2}$ Since floor area 900 sq ft and the height = 11 ft , the storage cube $=(900)$ (11) $=9900 \mathrm{cu} \mathrm{ft}$ Thus:
$9900=(4)(11)(\text { vidth })^{2}$

> or Storage width $=\sqrt{\frac{9900}{44}}=\sqrt{225}=15 \mathrm{ft}$
> and Storage length $=4($ width $)=60 \mathrm{ft}$
e. Find the smallest tent radius to enclose the storage cross-sectional area. The smallest radius would be the one which circumscribes the four corners of the storage area. Hence the radius, $r$, is
$r=\sqrt{\left(\frac{\text { (Hdth }}{2}\right)^{2}+\left(\frac{\text { height }}{2}\right)^{2}}$
$r=\sqrt{7.5^{2}+\overline{5.5}^{2}}$
$r=\sqrt{86.50}$
$r=9.3 \mathrm{ft}$
Hence diameter, $d,=2 r=18.6 \mathrm{ft}$
Tent height, $h=r+\frac{\text { storage height }}{2}$
$h=9.3+5.5=14.8 \mathrm{ft}$
Approximate $h / d=\frac{14.8}{18.6} \simeq 0.8$
and $W / \varepsilon_{h}=\frac{18.6}{60} \simeq 1 / 3$
f. Adjust the tent radius to provide for wind deflection and cell depth.
Since $\frac{\delta_{F}}{\mathbf{F}}=0.275$
for the approximate $h / d$ and $W / l_{h}$
$\delta_{F}=\left(\frac{\delta_{F}}{r}\right) r=(0.275)(9.3)=2.56 \mathrm{ft}$
and cell width $w=0.123\left(d+2 \delta_{F}\right)$
$w=(0.123)(23.72)$
$w=2.92 \mathrm{ft}$

> Therefore, final tent radius, $r$ is $r$

Thus, $d=2 r=W=29.56 \mathrm{ft}$
Since required length, $\ell_{h}$ is 60 ft , the tent $W / \ell_{h}=\frac{29.56}{60}$ or $1 / 2$.
g. Find final h/d ratio
$\frac{h}{d}=\frac{\text { outside tent radius }+5.5}{\text { outside tent diameter }}$
Hence final h/d follows:
$h / d=\frac{14.78+5.5}{29.56}=\frac{20.28}{29.56}$
$h / d=0.7$
h. Find planform area, $A_{p}$

$$
\begin{aligned}
& A_{p}=W \ell_{h} \\
& A_{p}=(29.56)(60) \\
& A_{p}=1774 \mathrm{sq} \mathrm{ft}
\end{aligned}
$$

2. Find the surface area, $A_{8}$, of circular aided tent.
a. Walls

$$
A_{\mathrm{g}}=4 \ell_{\mathrm{h}} \mathbf{r} \phi_{\mathrm{B}}
$$

where

$$
\phi_{B}=2 \sin ^{-1} \frac{C}{2 r}
$$

and

$$
\begin{aligned}
& \frac{c}{2}=\sqrt{r^{2}-\overline{5.5}^{2}} \\
& \frac{c}{2}=\sqrt{218-30.25}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{C}{2}=\sqrt{180} \\
& \frac{C}{2}=13.4 \\
& c=26.8
\end{aligned}
$$

## Therefore

$$
\begin{aligned}
\Phi_{B} & =2 \sin ^{-1} \frac{26.8}{29.6} \\
\Phi_{B} & =2 \sin ^{-1} 0.9 \\
\Phi_{B} & =2(64)=128^{\circ} \\
A_{s} & =4(60)(29.6) \frac{128}{57.3} \\
A_{s} & =(240)(29.6)(2.24) \\
A_{s} & =15,913 \mathrm{sq} \mathrm{ft}=1766 \mathrm{sq} \mathrm{yds}
\end{aligned}
$$

b. Webs

With cell radius, $r_{c}=1.46 \mathrm{ft}$ and setting cell angle, $\alpha_{c}=30^{\circ}$
veb spacing $=2 r_{c}$ sin $\alpha_{c}$
web spacing $=(2)(1,46)\left(\sin 30^{\circ}\right)=1.46 \mathrm{ft}$
Number of webs $=\ell_{h} /$ spacing $=\frac{145}{1.46}=100$
$A_{B}=2 n w r \frac{\phi_{B}}{57.3}$
$A_{s}=(2)(100)(2.92)(14.78)\left(\frac{128}{57.3}\right)$
$A_{g}=19,250 \mathrm{sq} \mathrm{ft}=2,140 \mathrm{sq} \mathrm{yd}$
c. End Curtains
$A_{8}=2 r^{2} \quad\left[2 \frac{\phi_{B}}{57.3}-\sin \phi_{B} \cos \phi_{B}\right]$
$\left.A_{8}=2(14.78)^{2}\left[(2)\left(\frac{128}{57.3}\right)-(.7880) \times .6157\right)\right]$
$A_{8}=436 \quad[4.47-.482]$
$A_{s}=1740 \mathrm{sq} \mathrm{ft}=193 \mathrm{sq} \mathrm{yd}$
d. Total surface area, $A_{s}$

$$
A_{s}=1766+2140+193=4,099 \text { sq yd }
$$

3. Find length of anchored sides
$P_{\ell}=2 \ell_{h}=2(60)=120 \mathrm{ft}$
4. Find the dynamic pressure, $q$

$$
\begin{aligned}
& \text { a. } \mathrm{q}_{\mathrm{atd}}=2.4 \mathrm{in} \mathrm{w} . \mathrm{g} \text {. }=14.5 \mathrm{paf}=0.11 \mathrm{psi} \\
& \text { for a sea level standard day Figure } \\
& \text { b. } X_{p}=1.18 \\
& \text { Figure } 8 \\
& \text { c. } q=1.18 q_{\text {gtd }}=2.84 \text { in w.g. } \\
& \text { - } 17.1 \mathrm{paf}=0.13 \mathrm{psi}
\end{aligned}
$$

5. Find aerodynamic loads; $L, D$, and $M$ (assume tent anchored and guyed)
a. Lift $=C_{L} q A_{p}$
where $C_{L}=0.725$
Figure 10
$L=(0.725)(17.1)(1771)=22,0001 b$
b. Drag $=C_{D} q A_{P}$
where $C_{D}=0.550$
Figure 12
$D=(0.550)(17.1)(1771)=16,670 \mathrm{lb}$
c. Overturning moment $=C_{M} \& A_{p}$
where $C_{M}=-0.588$
Figure $1:$
$M=(-0.588)(17.1)(1771)=-17,820$ ft 1 b
6. Find maximum tent deflection $\delta_{F}, \delta_{H}, \delta_{B}$
a. $\frac{\delta_{F}}{r}=0.187, \frac{\delta_{H}}{r}=0.107, \frac{\delta_{B}}{r}=0.113$ Figure 18
b. $\delta_{F}=\left(\frac{\delta_{F}}{r}\right)(x)=(0.187)(14.78)=2.77 \mathrm{ft}$
$\delta_{H}=\left(\frac{\delta_{H}}{r}\right)(r)=(0.207)(14.78)=1.58 \mathrm{ft}$
$\delta_{B}=\left(\frac{\delta_{B}}{\mathrm{r}}\right)(\mathrm{r})=(0.113)(14.78)=1.67 \mathrm{ft}$
7. Find base anchor load, $P_{B L}$
$P_{B L}=C_{B L} q A_{P}$
where $C_{\text {gL }}=1.04$
Figure 21
$P_{\text {訳 }}=(1.04)(17.1)(1771)=31,5001 b$
8. Find number of base anchors required, NA
$\mathrm{NA}=\frac{\mathrm{P}_{\mathrm{BL}}}{1500^{*}}$
$N A=\frac{31,500}{1500}=21$ (Say 22, 1.1 each side)
9. Find base anchor spacing, AS
$A S=\frac{P_{\ell}}{N A}$
$A S=\frac{120}{22} 5.45 \mathrm{ft}$
10. Find guy 1tne load, $\mathrm{P}_{\text {GL }}$
$P_{G L}=C_{G L} q A_{P}$
where $C_{G L}=0.566$
Figure 22
$P_{G L}=(0.566)(17.1)(1771)=17,1501 \mathrm{~b}$
11. Find number of guy lines required

NGL $=\frac{{ }^{P_{G L}}}{1500}$
NGL $=\frac{17,150}{1500}=11.5$ (Say 12)
(Reference tent stability discussion for best guy-line arrangement)
12. Find cell pressure required, $p_{c}$
a. Cell width to tent diameter ratio, w/d

$$
w / d=\frac{2.92}{29,56}-0.099 \text {, Use } h / d=3 / 8 \text { curve }
$$

* Based on an allowable individual anchor load of 1500 lb sor a $4^{\prime \prime}$ arruwhead anchor
b. $\frac{P_{c}}{q}=3.3 . C_{q}=1.4$ and $C_{w}=1.0$
c. $\quad P_{c}=C_{q} C_{W}\left(P_{c} / q\right) q$
$P_{c}=(1.4)(1.0)(3.3)(2.84)$
$P_{C}=13.1$ in W.g. or 4.6 q

13. Find the fabric etress reaultanta $N_{( }$)
a. The web strens, $\mathrm{N}_{\mathrm{w}}$
$\frac{N_{w}}{q}-3.95$, Since $r_{c}=17.5 \mathrm{in}$
Figure 38 and $P_{c} \simeq 5 q$
$N_{v}=\left(\frac{N_{w}}{q}\right)(42=(3.93)(2.84)=11.21 b /$ in
b. The hoop atrese, $N_{h}$
$\frac{\mathrm{N}_{\mathrm{h}}}{\mathrm{q}}=3.98$
Figure 39
$N_{h}=\left(\frac{N_{h}}{q}\right)(q)-(3.98)(2.84)=11.3 \mathrm{Ib} / \mathrm{in}$
c. The meridional etreat; $N_{\phi}$
$N_{\phi}=7.8 \mathrm{lb} / \mathrm{In}$
Figure 42
14. Find coated fabzic weight, Wct
a. Determine fiber type from other conelderations, select polyastar
b. Weight - etriagth ralationahip of fibar, $n$
$n=35 \frac{1 b-y d^{2}}{i n 0 \Sigma}$
Tabla III
c. Weight of base fabric, We
$H_{b f}=S F N \max / 7$ using $S F=3.0$
1) Inner and outer skin fabric

$$
\begin{aligned}
& W_{b f}=(S F)\left(N_{h} / n\right) \\
& W_{b f}=(3.0)(11.3 / 35)=0.97 \mathrm{oz} / \mathrm{yd}^{2}
\end{aligned}
$$

2) Web fabric

$$
\begin{aligned}
& W_{b f}=(S F)\left(N_{w} / \eta\right) \\
& W_{b f}=(3.0)(11.2 / 35)=0.96 \mathrm{oz} / \mathrm{yd}^{2}
\end{aligned}
$$

d. Weight of fabric coating, $H_{c}$
(assuming vinyl coating, single ply)
$W_{c}=8.5 \mathrm{oz} / \mathrm{yd}^{2}$
Figure 50
e. Cuated fabric weight, $W_{c f}$

1) Walls and webs
$W_{c f}=$ (wall and web area) $\left(W_{b f}+W_{c}\right)(1.33 / 16)$
using $W_{b f}=0.9708 / \mathrm{yd}^{2}$
$W_{\text {cf }}=(3906)(9.47)(1.33 / 16)$
$W_{c f}=(3906)(9.47)(0.083)=3060 \mathrm{lb}$
2) End curtains
$W_{c f}=$ (end curtain area) $\left(W_{b f}+W_{c}\right)(1.5 / 16)$
$W_{c f}=(193)(9.47)(0.094)=172 \mathrm{lb}$
3) Total coated fabric weight, $W_{c f}$
$W_{c f}=(15 . e .1 .+15 . e .2)$
$W_{c f}=(3060+172)=3232 \mathbf{I b}$
15. Find package cube, V

$$
\begin{aligned}
& \text { Estimated cube }=\left(\text { total } W_{c f}\right)\left(0.065 \mathrm{ft}^{3} / 1 \mathrm{~b}\right) \\
& \text { Estimated cube }=(3232)(0.065)=210 \mathrm{ft}^{3}
\end{aligned}
$$

ic. Filli inower requiremente, $Q$
a. Cell volume, $v_{c}=2 w e_{h} r\left(\frac{\Phi_{B}}{57.3}\right)$

$$
\begin{aligned}
& v_{c}=(2)(2.92)(60)(14.78)\left(\frac{128}{57.3}\right) \\
& v_{c}=11,600 \mathrm{ft}^{3}
\end{aligned}
$$

b. Volumetric flow, $Q$
(assuming an inflation time of 30 minutes)
$Q=\frac{\text { cell voluma }}{\text { inflation time }}$
$Q=\frac{11,600}{30}$
$Q=387 \mathrm{ft}^{3} / \mathrm{min}$ at zero in w.g.

## SUPMARY

The objective of this program ia to provide tentage information based on wind tunnel teat data that can be applied either to the evaluation and improvement of existing ground-mounted, alr-aupported structures or to the design of such future structures. The data pregented are the raaulta of a program conducted by the Hayen Internaticual Corporetion of Birainghan, Alabama for the U. S. Arny Matick Laboratories, Ratick, Masaachusetts.

The program consisted of atudy, test, and analytical inveetigation phases which began in July 1963 and concluded in May 1968. Duriag the study phase, a review was made of pertinent literature on experimental techniques, data, and analyses applicable to deternining maximu aerodynanic forces on and strestes in fabric structures. The wind tunnel inveatigations consiated of detailed teating of thirty-six tent models to include eeventeen single-wall structures (eleven with nonporous and six vith porous fabric) and nimeteen double-wall structures. Tests were conducted at stabilized wind apeeds up to 110 ailes per hour in the Virginia Polytechnic Institute's $6^{\prime} \times 6^{\prime}$ etability tunnel. In the analytical phase, test data ware used to develop fabric streas and aerodynamic coefficient data variation with tent parameters.

The rasults of the wind tunnel ingestigations and the strass analyses hive bean incorporated into this design manual and include comprehensive, practical design data suitable for angineering reliable, stable, aingle- and double-all, air-aupported atructures. Data, in seneral, are prisented in nondimensional coefficient form, and, therefore, are applicable to full scale structures within the range of parameters investigated. Design information is presented as charts and tables or auch item as tent aerodynamic force and moment coefficiente, anchor and suy line coefficients, aurface deflections, eaterial stresees and apecifications, usable volume, and weight.

## REREAnces

1. A. E. Dietz, R. B, Profitit, and R. S. Chabot, 'Mind Tunnel Teste and Analyees of Ground Mounted Ar-Supported seructures" U. S. Army Matick Leboratories Techaical Report No. 67-36-ME (AD 651954), under Contract Ho. DA19-129-AMc-129(N) with Hayea International Corporation, Brminchan, Alabam, Detober 1966.
2. Wellington Sears Handbook of Ioductrial Textilee, Wellington Seare Company, Inc., 1963.
3. Textila World, Man-Made Fiber Chart, MeGraw-Hill Publiehing Company, Inc., New York, 1964.
4. Walter W. Bird, "Design Manual for Spherical Air-Supported Radones" (Revised), Report No. UH-909-0-2, Cornell Aeronauticel Laboratory, March 1956.

Coefficient - A dimensionless parametric ratio which is a function of tent shape and inertia and viscous forces acting on the tent.

Dynamic Prespure - That portion of the stagnation pressure which results from the motion of the fiuid. Also referred to as impact pressure or velocity pressure. The mathematical expression for dynamic pressure is

$$
q=\frac{1}{2} \rho U^{2}
$$

In. W.g. - Gage pressure expressed in inches of water.
Plantorm Area - Maximum projection area of a structure in a horizontal plane.

| $\mathrm{A}_{\mathbf{f}}$ | Ploor Area (12) |
| :---: | :---: |
| $A_{0}$ | Orifice area (22) |
| $A_{p}$ | Planform area ( $\mathbf{1 2}^{\mathbf{2}}$ ) |
| $A_{8}$ | Surface area (12) |
| AS | Anchor spacing (1) |
| * | Ellipsoidal semimajor axis (1) |
| b | Ellipsoidal semiminor axis (1) |
| $\mathrm{CaL}_{\text {AL }}$ | Anchor load coefficiunt, ainglewall tent |
| $\mathrm{C}_{\mathrm{BL}}$ | Base anchor load coefficient, double-wall tent |
| Cb () | Ellipsoidal end singlewall tent stress resultant correction factor |
| $C_{c}$ | Coefficient of contraction |
| $C_{\text {D }}$ | Drag coefficient |
| $C_{\text {GL }}$ | Guy line coefficient, doublewsll tent |
| $C_{\text {h }}$ ( $)$ | Ellipsoidal and singlewall tent streas resultant correction factor |
| $C_{L}$ | Lift coeffictent |
| $C_{M}$ | Pitching, overturning, moment coefficient |
| $C_{0}$ | Orifice coefficient |
| $\mathrm{C}_{4}$ | Cell presaure correction factor, doublewall tent |
| $C_{\text {q }}()$ | Ellipsoidal and single-wall tent atrese resuleant correction factor |
| $c_{v}$ | Velocity coefficient |
| $C_{W}$ | Cell pressure corraction factor, double-wall tent |
| $C_{W( }$ ) | Ellipaoidal end single-wall tent atreas reaultant correction factor |
| c | Tent floor chord-width (1) |


| D | Drag (f) |
| :---: | :---: |
| d | Tent dimmeter (1) |
| e | Ellipsoidal end eccentricity, Bingle-wall tent |
| h | Tent height (1) |
| ${ }^{h} \mathbf{r}$ | Distance from ground plane to center of curvature (1) |
| $\mathbf{k}_{\mathbf{p}}$ | Impact pressure correction factor |
| L | Lift (f) |
| $L_{8 f}$ | Slide fastencr length (1) |
| $\ell_{h}$ | Tent length (1) |
| M | Bending moment (1-f) |
| NA | Number of anchors |
| $\mathrm{N}_{\mathrm{h}}$ | Hoop strese rasultaut (f1-l) |
| $N_{w}$ | Web stress resultant ( $\mathbf{f 1}{ }^{-1}$ ) |
| $\mathrm{N}_{\mathbf{x}}$ | Longitudinal stress resultant ( $\mathrm{fl}^{-1}$ ) |
| $\mathbf{N}_{\theta}$ | Circumferential strese resultant ( $\mathrm{fl}^{-1}$ ) |
| $\mathrm{N}_{\boldsymbol{\phi}}$ | Meridional ttress resultant ( $\mathrm{fl}^{-1}$ ) |
| $N_{\phi \boldsymbol{*}}, N_{\phi \theta}$ | Shear stress resultants ( $\left(1^{-1}\right.$ ) |
| $\left.\bar{N}_{( }\right)$ | Maximum atress reaultant ( $\mathrm{fl}^{-1}$ ) |
| n | Number of cella |
| $\mathbf{P}_{\text {AL }}$ | Anchor load, singlewall tent (f) |
| $\mathbf{P}_{\text {BL }}$ | Anchor load on base, doublewall tent (f) |
| ${ }^{P}{ }_{C}$ | Cell pressure ( $\mathbf{f l}^{-2}$ ) |
| ${ }^{P}$ e | Tent enclosure pressure ( $\mathbf{1 0}^{-2}$ ) |
| $\mathbf{P}_{\text {GL }}$ | Guy line load, doublewall tent (f) |
| $P_{\ell}$ | Tent perimeter (1) |


| Q | Voluse flow ( $1^{3} t^{-1}$ ) |
| :---: | :---: |
| 4 | Dypanic (impact) preasure (fi ${ }^{-2}$ ) |
| r | Tent radiue (1) |
| ${ }^{1}$ | Cell radius (1) |
| 87 | Safaty factor |
| 0 | Velocity ( $1 t^{-1}$ ) |
| V | Fackage cube ( ${ }^{3}$ ) |
| $\overline{7}$ | Tent enclosed volute ( $1^{3}$ ) |
| $\nabla_{c}$ | Cell volume ( ${ }^{3}$ ) |
| W | Tent width (1) |
| We. | Weingt of beee fabric ( $11^{-2}$ ) |
| Wef | Welght of costed febric ( $51{ }^{-2}$ ) |
| $W_{c}$ | Welght of febric coatios ( $11{ }^{-2}$ ) |
| * | Cell width (1) |
| * | Cachalf package width (1) |
| $y$ | Package height (1) |

## GREEK SYMBOLS

| $a_{c}$ | Cell angle |
| :---: | :---: |
| $\delta_{B}$ | Rear tont deflection (1) |
| $\delta_{F}$ | Front tent deflection (1) |
| ${ }_{6}$ | Top tent deflection (1) |
| $n$ | Fabric weight-strength ratio $\left(\frac{f-1^{2}}{1-f}\right)$ |
| ө, $\dagger$ | Curvilinear coordinates |
| $\pi$ | Numerical constant, 3.1416 |
| $\rho$ | Density of air ( $\mathrm{fl}^{-3}$ ) |
| $\Phi_{\text {B }}$ | Angle subtended by curved beam, degrees |

```
Dimensional Notacion:
\(f\) denotes units of force
1 denotes units of length
\(t\) denotes units of time
T denotes unita of cemperature
```




Figure 2. Single-Na11, Air-Supported Tent,
Above-Ground, Launcher, Nike Hercules System.


Pigure 6. Double-Nall,
Air-Supported Tent, Assembly Area, Hike Hercules Mobile System.


MAXIMUM LIFT COEFFICIENT
SINC;I.E-WAI.L SPIIERES ANDCYI.INDEHS
 Maximum Lift Coefficient, $C_{L}$


Figure 9. - Variation of Lift Coefficient with Shape (Non-Porous Spherical and Cylindrical Singlo-Wall Tents; $1: 2,1: 4, W / l_{h}$ )


Figure 10. Variation of Lift Coefficient With Shape
(Non-Porous Double-Wall Tents; 1:1, 1:2, 1:4 W/th

MAXIMUM DRAGCOEFFICIENT
SIN(:LE-WAI.I, SPIIERES AND C.YI.INDEIS


Figure 11. Variation of Drag Coefficient With Shape (Spherical and Cylindrical Single-Wall Tents; $1: 2,1: 4 \mathrm{~W} / \ell_{h}$ )


Figure 12. Variation of Drag Coefficient with Shape
(Non-Porous Double-Wall Tents; $1: 1,1: 2,1: 4 \mathrm{~W} / \mathrm{l}_{\mathrm{h}}$ )

MAXIMUM MOMFNT (OOEFFICIFN'
SIN(ILF-WAI,I, SPIERFS AND (:YIINIDEDS


Figure 13. Variation of Moment Coefficient with Shape (Spherical and Cylindrical Single-Wall Tents; $\left.1: 2,1: 4, W / h_{h}\right)$

ПOUBLEEWAII, (YIINI)FMS
(1)


Figure 14. Variation of Moment Coefficient with Shape $\left.\quad \mathrm{W} / \mathrm{l}_{\mathrm{h}}\right)$ (Non-Porous

## MAXIMUM TENT DEFLECTION

SINGLE-WALL SPHERES


Figure 15. Variation of Tent Deflection with Shape (Spherical Single-Wall Tents).


Figure 16. Comparia on of Non-Porous Tent Deflection with Shape (Cylindrical Single-Wall Tents, $1: 2 \mathrm{~W} / \mathrm{E}_{\mathrm{h}}$ )


(Hemispharical Inds)


Figure 17. Variation of Tent Deflection with Snape
(Non-Porois Cylindrical Single-Wall Tents, $1: 4 \mathrm{~W} / \ell_{h}$ )


Figure 18. Variation of Tent Deflection with Shape (Non-Purous Double-Wall Tents $1: 1,1: 2,1: 4\left(W / l_{h}\right)$

Notr: Cull Width/Enclosure Diameler 0.123
Cond: q 6. $0^{\prime \prime}$ w.g.


Figure 19. Variation of Tent Deflection with Cell Pressure. Guy Lines Attached at 0.80 and 0.40 Tent Height.


Figure 20. Variation of Anchor Load Coefficient with Shape (Spherical and Cylindrical Single Wall Tents, $1: 2,1: 4 \mathrm{~W} / \mathrm{I}_{\mathrm{h}}$ )

MAXIMUM BASE ANCHOR I,OAD COEFITCTFNTS DOUBLEEWAI,L CYI.INDFIRS



Figure 21. Variation of Base Anchor Load Coefficient with Shape

MAXIMUM GUY LINE LOAD COFIFFICIF:NT
DOUBLE-WALL CYIANDER


Figure 22. Variation of Guy Line Load Coefficient With Shape.

PENK 8TRE88 COEFTICTMIT8
SIMGLE-WALL SPEETES

$\frac{\text { Tent Halght }}{\text { Tent Drameter }} \frac{h}{d}$

Meme 23. Variation of Peak Streas Confilcients with Thape (spmerical siagle-ivall Tente).

## Single-Wall Spheres

1. $h / d=3 / 8$
2. $h / d=1 / 2$
3. $h / d=3 / 4$
4. $h / d=7 / 8$


Figure 24. Variation of Streme Ratio with Apex Angle (Spherical Single Wall Tenta)


Figure 25. Coordinate Syetem and Membrane Stresses for A Truncated Spherical Shell

## 



Figure 26. Variation of Maximum Design Strese Coefficient With Tent Width-to-Length Ratio; $\mathrm{h} / \mathrm{d}=3 / 8, N_{\phi} / \mathrm{qr}$


Figure 27. Variation of Maximum Design Streae Coafficient With Tant Width-tomLength Ratio; $\mathrm{n} / \mathrm{d}=1 / 2, \mathrm{~N}_{\phi} / \mathrm{qr}$

MAXIMUM DESIGN STRESS COEFFICIENT

Note: $W / 2 h=.25$ to 1.00


Figure 28. Variation of Maximu Design Stress Coefficient With Tent Width-to-Length Ratio; $h / d=3 / 4, N_{\phi} / \mathrm{qr}$


Figure 29. Variation of Maximum Design Siress Coefficient With Tent Width-to-Leugth Ratio; $\mathrm{h} / \mathrm{d}=3 / 8,1 / 2,3 / 4, \mathrm{~N}_{\phi} / \mathrm{qr}$

MAX TMM DRGTGN STRESS OMPRPICTENT

Mote: $W / /_{h}=.25$ to 1.00


Figure 30. Variation of Maximum Design Stress Coefficient With Tent Width-to-Length Ratio; $5 / \mathrm{d}=3 / 8,1 / 2,3 / 4, \mathrm{~N}_{\phi \theta} / \mathrm{qr}$


Figure 31. Coordinate System and Membrane Stresses for a Cylindrical Shell with Hemispherical Ends.



Figure 33. Correction Factore for Single-Wall Cylindzical
Tents with Ellipsoidal Enda; $\phi$


Figure 34. Correction Factors for Single-Wall Cylindrical Tente with Elilpsoidnl Ends; $\theta$



Figure 35. Correction Factors for Single_tlail Cvilndrical Tents with Ellipsoidal Ends; $\phi \theta$

Figure 36. Coordinate System and Membrane Stresses for



Figure 37.
Double-Wall Tent cell

DOUBLE-WALL CYLINDERS

| Cond: | $P_{c}$ |  | $\alpha_{c}$ |
| ---: | :--- | :--- | :--- |
|  |  | $5 q$ | $30^{\circ}$ |
| 2. |  | $4 q$ | $30^{\circ}$ |
| 3. | $3 q$ | $30^{\circ}$ |  |



Figure 38. Variation of Web Strees Coefficient with cell madius.

DOTRTR-MATI CYTTMYREN


Figure 39. Variation of troop Strese Coefficient with Cell Radius.
~ニuñz wimil Eiliziovens
GUY LINES ATTACHED 0.90 TENT HEIGGT


Figure 40. Variatiot. © Meridional Stress Resultant with Impact Pressure, $q$, w/d $=0.16, h / d=0.50$

MNIRIP-UATI CVITvngoc
GUY LINES ATTACHED 0.80 TENT HEIGHT


Figure 41. Variation of Meridional Stress Resultant with Impact Presoure, $9 ; \mathbf{w} / \mathrm{d} C .12, \mathrm{~h} / \mathrm{d}=0.50$

OUBLE-WALL CILINDERS
GUY LINES ATTACHED 0.80 TENT HEIGHT


Figure 42. Variation of Meridional Stress Resultant with Impact Pressure, $q$; v/d 0.08, h/d $=0.50$

DOUBLE WALL CYLINDERS
GUY LINES ATTACHED 0.80 TENT HELGHT


Figure 43. Variation of Meridional Stress Resultant with Impact Pressure, q; Sloping Sidea, $\mathrm{w} / \mathrm{d}=0.16, \mathrm{~h} / \mathrm{d}=0.80$

UOUBLE-WALL CYLINDERS
GUY LINES ATTACHED 0.80 TENT HEIGHT


Figure 44. Variation of Meridional Stress Resultant with Impact Pressure, $9 ;$ Sloping Sides, w/d = 0.12, h/d 0.80

DOUBLE-WALL CYLINDERS
GUY LINES ATTACHED 0.80 TENT HEIGHT


DOUBLE-WALL CYLINDERS



Figure 46. Variation of Meridional Stress Resultant with Impact Pressure, $q ; w / d 0.16, h / d=0.75$

DOUBLE-WALL CYLINDERS
GUY LINES ATTACHED 0.80 TENT HEIGHT


Figure 47. Variation of Meridional Stress Resultant with Impact Pressure, $q$; w/d=0.12, h/d=0.75

DOUBLE-WALL CYLINIERS
GUY LINES ATTACHED 0.80 TENT HEIGHT


Figure 48. Variation of Meridional Seress Resultant with Impact Presaure, $q$; $v / d=0.08, \mathrm{~h} / \mathrm{d}=0.75$


Figure
49. Coordinate System and Streas Keaultante for a Double-Wall Cylindrical Tent with Circular Cross Section

Legend:
Vinyl Coating, Single-Ply, MIL-C-43086
———Vinyl Coating, Two-Ply Bias
-----Chloroprene, Single-P1y, MIL-C-43285
-- Chloroprene, Two-Ply Bias


Pigure 50. Weight of Coating for Single-and Two-ply Coated Fabric.
SLIDE FASTENER AIR LOSS

Inflation Preseure - Inches w.g.



Figure 52. Coordinate Syatem and Iizrese Resultants
for a Double-Wall Cylindrical Tent with Straight Sidee

3. MEDAT TITLE

Design Manual for Ground-Mounted Air-Supported Structures (Single- and Double-Wall) (Revised)
4. DESERID TIVE MOTES (Ty

Bevised

A. E. Dietz, K. B. Profifitt, R. S. Chabot, and L. L. Moak


The objective of this design manual is. to provide industry and coverment auppliers with design information to fabricate functional and reliable air-supported structures at the lowest poseible weight. The data and deaign information presented are based on wind tunnel tests and amalytical determinations reported in a previous investigation.

Design information ia given for apherical and cylindrical (single- and double-wall) air-supported atructures. The data in general are presented in nondimensional coefficient form and, therefore, are applicable to full-scale structures within the range of parameters tested. Deaign information is presented as charts and tables on tent aerodynamic force and moment coefficients, anchor and guyline coefficients, atructural deflections, material stresaes, packaged volumes, and weight.



[^0]:    *Anchor holding eapacity © $1500 \mathrm{lb} /$ anchor

[^1]:    BIOWER CHARACTERIS1ICS
    The blower pressure-volume relationships for single and double wall tents differ and will be considered separately.

[^2]:    *Strip tensile test. Other tensile test data calculated from grab tensile data using the relatiouship; Grab tensile test $\times 0.66$ = Strips tensile test.
    **Base fabric prepared for coating.
    ***High initial test degrades rapidly in weathering. Satisfactory coating adhesion difficult to attain.

[^3]:    Note: On all single-wall tents and circular cylindrical doublewall tents: $\phi_{B}=75^{\circ}$ for $\mathrm{h} / \mathrm{d}=3 / 8 ; \phi_{B}=90^{\circ}$ for $\mathrm{h} / \mathrm{d}=1 / 2 ; \phi_{B}=120^{\circ}$ for $\mathrm{h} / \mathrm{d}=$ 374 ; and $\phi_{B}=140^{\circ}$ for $h / d^{B}=7 / B$. For double wall tencs with straight sides $\phi_{B}$ must be specified so shown in Figure 52.

[^4]:    Wased on an allowable individual anchor load of 1500 ib for a 4 " arrowhead anchor.

[^5]:    Based on an allowable individual anchor load of 1500 lb for a $4^{\prime \prime}$ arrowhead anchor.

[^6]:    * Based on an allowable individual anchor load of 1500 lb for a $4^{\prime \prime}$ arrowhead anchor.

[^7]:    * Based on an allowable individual anchor load of 1500 lb for a $4^{\prime \prime}$ arrowhead anchor.

