
The first appearance of winged insects is shrouded in the
past, but they probably took to the air almost 350 million years
ago (Wootton, 1981; Ellington, 1991a). Wingspans of the early
fossils ranged from 10 to 710 mm, and the form of the wings
suggests a variety of adaptations in flight style. The
Protodonata, which were the ancestors of dragonflies, were
among the early fliers; their wings were similar enough to
modern forms to suggest comparable flight capabilities,
although perhaps with less refinement. Through natural
selection, the insects have been experimenting successfully
with wings, kinematics, aerodynamics, control and sensory
systems for hundreds of millions of years.

Much more recently, interest has developed in small
autonomous flying vehicles, largely motived by the need for
aerial reconnaissance robots inside buildings and confined
spaces. Industry, commerce and the military have all
identified potential roles for such micro-air vehicles (MAVs).
Research on MAVs is primarily conducted by aerodynamic
and robotic engineers who are attempting to improve the
performance at small sizes of conventional fixed wings
and rotary wings. However, there already exists a very
successful design for intelligent MAVs with much better
aerodynamic performance than conventional wings and
rotors: the insects. When contemplating the design of small
flying machines, therefore, we would be well advised to
consider them.

There are some general, simplifying trends in insect
evolution. For example, early insects had two pairs of wings,
but most modern forms have either lost one pair or coupled
the fore- and hindwings together into a single functional pair.
This simplification is in stark contrast to the elaborate and
idiosyncratic wing designs found in some insects: e.g. wing
ornamentation and special motions for courtship and mating
displays; thickening of the forewings into hard protective
shells; modification of the hindwings of flies into distinctive
sensory organs, the halteres. Such aerodynamic oddities are
of little interest here. Small flying machines are in their
infancy, and the purpose of this paper is to identify general-
purpose designs that have survived the testbed of insect
evolution. Furthermore, these designs should be reduced to
their simplest features, such as only one pair of wings.

Scaling
The smallest flying insects that have been studied weigh

20–30 µg and the largest approximately 2–3 g. Over this
100 000-fold size range, the design is very close to isometric:
wing area is proportional to m2/3 on average, where m is body
mass. Wingbeat frequency increases as size decreases, scaling
as m−1/4 (Dudley, 2000). There is very considerable scatter in
such scaling relationships; individual species can compensate
for a relatively small wing area, for example, by a higher
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The wing motion in free flight has been described for
insects ranging from 1 to 100 mm in wingspan. To support
the body weight, the wings typically produce 2–3 times
more lift than can be accounted for by conventional
aerodynamics. Some insects use the fling mechanism: the
wings are clapped together and then flung open before the
start of the downstroke, creating a lift-enhancing vortex
around each wing. Most insects, however, rely on a leading-
edge vortex (LEV) created by dynamic stall during
flapping; a strong spanwise flow is also generated by the
pressure gradients on the flapping wing, causing the LEV
to spiral out to the wingtip. Technical applications of the
fling are limited by the mechanical damage that

accompanies repeated clapping of the wings, but the spiral
LEV can be used to augment the lift production of
propellers, rotors and micro-air vehicles (MAVs). Design
characteristics of insect-based flying machines are
presented, along with estimates of the mass supported, the
mechanical power requirement and maximum flight speeds
over a wide range of sizes and frequencies. To support a
given mass, larger machines need less power, but smaller
ones operating at higher frequencies will reach faster
speeds.

Key words: insect, flight, aerodynamics, flapping flight, micro-air
vehicle.
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wingbeat frequency. However, the general trends confirm that
the insects do follow a basic pattern.

The aerodynamics of insect flight is affected by the scaling
of the Reynolds number Re, which is the ratio of inertial to
viscous forces in a fluid. Re is defined as the product of a
characteristic length and velocity divided by the kinematic
viscosity ν of the fluid. For comparative purposes, we can
conveniently ignore the forward velocity and define a mean Re
for hovering flight based on the mean chord c̄ (=2R/AR) and the
mean wingtip velocity U

–
t (=2ΦnR):

where AR is the aspect ratio, n is the wingbeat frequency, R is
the wing length and Φ is the wingbeat amplitude (peak-to-
peak, in rad). Given geometric similarity and the scaling of
frequency, Re increases as m0.42. For large insects, Re lies
between 5000 and 10 000, but it approaches 10 for the smallest
ones. In all cases, the airflow is in the laminar regime, but
viscous effects become progressively more important as size
decreases.

Kinematics of ‘normal’ insect flight
The wing motion in free flight has been described for insects

with wingspans from approximately 1 to 100 mm, covering the
wide range of Re discussed above. Most of the wing motions
are rather similar and constitute a picture of ‘normal’ flight that
is probably a good starting point for the design of insect-based
flying machines. Other wing motions offer special advantages
that might prove useful for some purposes. In general, the
flapping motion is approximately confined to a ‘stroke plane’,
which is at a nearly constant orientation with respect to the
body for most insects.

Studies on bumblebees offer one of the most complete
kinematic descriptions of free flight (Dudley and Ellington,
1990a,b; Cooper, 1993) and will be used to illustrate the main
points of this section. Bumblebees vary considerably in size; I
shall refer to an individual with a mass of 0.175 g, a wing
length R of 13.2 mm, a wingbeat frequency n of 149 Hz and a
wingbeat amplitude Φ of 114 °. Recent work on the large
hawkmoth Manduca sexta provides an interesting comparison
(Willmott and Ellington, 1997a,b); the individuals were more
uniform in size, with masses of 1.6–2.0 g, R=51 mm,
N=25–26 Hz and Φ ranging from approximately 115–120 °
during hovering to 100–105 ° at top speeds. Although much
larger, the hawkmoth has disproportionately longer wings and
hence a lower wing loading: 9 N m−2 compared with 36 N m−2

for bumblebee queens. Both species use what might be called
‘normal’ flight.

Wingtip paths

Fig. 1 shows the path of the wing tip through the air for a
bumblebee worker hovering and at speeds up to 4.5 m s−1,
which is close to the maximum flight speed of 5–6 m s−1. The

wingtip path would look much the same for an insect with
twice the flapping velocity flying twice as fast, so it is more
useful for comparative purposes to introduce a dimensionless
measure of speed: the flight velocity divided by the flapping
velocity. By analogy to propeller theory, we call this the
advance ratio J. The flapping velocity varies linearly along the
wing, and some representative value must be chosen to
calculate an advance ratio. Again, we choose the mean wingtip
flapping velocity, and the advance ratio J is then:

where V is the flight velocity. The advance ratio is zero during
hovering and rises to approximately 0.6 for bumblebees at high
speed. It may be useful to think of J as the forward speed in
wing lengths per wingbeat (=V/nR) divided by 2Φ.

The wingtip path is determined by the vector sum of the
flight, flapping and downwash velocities; the all-important
velocity of the wing relative to the air is given by the tangent
to the path. Lift and drag are therefore perpendicular and
parallel to the path, respectively, and the resultant force vectors
are drawn to scale for each half-stroke in Fig. 1. During
hovering, the stroke plane is horizontal, and the wingtip path
is determined only by the flapping velocity and the downwash.
The downstroke and upstroke are nearly symmetrical,
providing weight support but no net horizontal thrust. The
wing rotates through approximately 120 ° between the half-
strokes, so the leading edge always leads, and the anatomical
lower surface of the wing becomes the aerodynamic upper
surface on the upstroke. In effect, the wing oscillates between
positive and negative angles of attack, 90 ° out of phase with
the flapping motion.

As flight speed and advance ratio increase, the body tilts
nose-down, and finally becomes horizontal; body drag is
therefore minimised at high speeds, where it is increasingly
important. The stroke plane rotates with the body orientation
and eventually reaches an inclination of approximately 40 ° to
the horizontal. As advance ratio increases, the downstroke
increasingly dominates the force balance; the downstroke path
becomes relatively longer, indicating a higher velocity and thus
larger forces. At high J, the asymmetry is very pronounced,
with the powerful downstroke responsible for weight support
and some thrust, but the direction of the feeble upstroke force
is suitable for thrust only. The required thrust is never very
large for insect flight, and even at high speeds it is only some
10–20 % of the weight. The net aerodynamic force is therefore
nearly vertical, tilted forwards by less than approximately 10 °.
Between hovering and fast flight, the stroke plane tilts by
almost 40 ° for the bumblebee, but the net force vector tilts by
only 8 °.

The geometry of the wingtip path is of paramount
importance; it fixes the direction and relative magnitude of the
wing forces on the downstroke and upstroke. This geometry is
determined mainly by the advance ratio, then by the stroke
plane angle, and finally to a small extent by the relative
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magnitude of the downwash. The advance ratio fixes both the
relative wavelength of the wingpath (=V/nR) and, through Φ,
its baseline amplitude. The stroke plane angle then controls the
symmetry of the half-strokes and the inclination of their
respective paths. Fig. 1 shows clearly that, as advance ratio
increases, the tilt of the stroke plane ensures that the inclination
of the downstroke path changes but little over the forward
speed range. For a given downstroke lift-to-drag ratio, which
will presumably be at some optimal value, the stroke plane
angle must be such that the inclination of the downstroke path
produces the almost vertical net aerodynamic force. At lower
advance ratios, the geometry is not so constrained and the
downstroke path can be somewhat less inclined, because the
increasing upstroke forces will cancel the slightly backwards
direction of the downstroke forces.

Maximum flight speeds seem to be reached at the advance
ratio and stroke plane angle combination giving a nearly
vertical upstroke path and a downstroke path inclination
consistent with the lift-to-drag ratio. For bumblebees over a
large size range (Dudley and Ellington, 1990a; Cooper, 1993)
and for hawkmoths (Willmott and Ellington, 1997b), this
corresponds to J around 0.6–0.9. Hawkmoths seem able to
exceed this limit slightly by not reversing the angle of attack
on the upstroke at the highest speeds. The upstroke therefore
provides some weight support but a negative thrust, and the
insect struggles to produce a net positive thrust over the cycle.
This is a highly unusual kinematic adaptation, however, and
needs further study. Advance ratios in excess of 1 have also
been reported for some butterflies and a day-flying moth (Betts
and Wootton, 1988; Dudley, 1990; Dudley and DeVries,
1990). It is not yet known whether these slightly higher values
are correlated with their low aspect-ratio wings and low
wingbeat frequencies.

An upper limit to the advance ratio of around unity
determines the maximum flight speed for a given flapping
velocity. Dreams of very high speed insect-based micro-air
vehicles (MAVs) will simply not be realised; top speeds are
limited by the advance ratio, just as with propellers.

Kinematic changes with speed
The most obvious kinematic changes with increasing speed

can be seen with the naked eye: the concomitant tilting of the
body and stroke plane. The relationship is approximately linear
with speed. At top speed, the body is close to horizontal, and
the stroke plane angle reaches approximately 40 ° for the
bumblebee and 50–60 ° for the hawkmoth. For both insects, the
wingbeat frequency is rather constant, although with large
sample sizes Cooper (1993) found a shallow U-shaped
relationship between wingbeat frequency and speed for
bumblebees.

Wingbeat amplitude Φ tends to decrease with speed: by
20–30 ° for bumblebees (Cooper, 1993) and by approximately
15 ° for hawkmoths (Willmott and Ellington, 1997a). Results
for other insects either support this trend or else suggest that
amplitude remains constant.

Bumblebees and the hawkmoth are the only insects in which
angle of attack has been measured over the entire speed range.
It has already been stated that the angle is reversed on the
downstroke and upstroke, except for the hawkmoth at the
highest speeds. The geometric angle of attack α relative to the
stroke plane varies with speed, with the end result that the
effective angle of attack αr relative to the wingtip path remains
fairly constant at around 30 ° during most of the downstroke.
The negative αr on the upstroke is of similar magnitude for the
bumblebee, but smaller for the hawkmoth. It would be
reasonable to assume that the changes in geometrical angle of
attack, particularly on the more important downstroke, ensure
that the wings are always operating close to some optimal
angle relative to the airflow. At 30 °, αr seems very high
compared with that of conventional wings, but it is quite
characteristic of insect wings at their lower Re.

The wings are also twisted by 10–20 ° along their length,
rather like propellers, with a higher angle of attack at the wing
base than at the tip. Fruit-fly wings, however, show a negligible
twist; these small wings appear relatively stiffer than those of
larger insects and hence more resistant to torsional twisting
(Vogel, 1967; Weis-Fogh, 1972; Ellington, 1984b).

Hover
J=0

1 m s-1

J=0.13

2.5 m s-1

J=0.32

4.5 m s-1

J=0.58

Fig. 1. A two-dimensional view of the wingtip path for a
bumblebee Bombus terrestris at different flight speeds.
Resultant aerodynamic forces are shown for representative
downstrokes and upstrokes. The anatomical lower wing
surface is marked by a triangle at the leading edge.
Wingbeat frequency and stroke amplitude did not vary
significantly with speed, and values of the advance ratio J
are calculated using their means. Adapted from Ellington
(1995).
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Control and stability
Many insects are capable of remarkable controlled

manoeuvres. High-speed films of them flying slowly inside
chambers sometimes reveal horizontal thrusts up to five times
their weight (Ellington, 1984b). More gentle manoeuvres,
however, are simply controlled by tilting the stroke plane, as
for a helicopter. Horizontal changes in flight direction and
velocity are always preceded by a tilt of the stroke plane: the
tilt is increased as the insects accelerate forward, and
decreased, usually becoming negative, as they decelerate or
begin backward flight. Similarly, accelerations in lateral
directions are accompanied by a roll of the stroke plane. Roll
can be effected by increasing the flapping amplitude and/or
angle of attack of the outside wing. Pitching results from a
fore/aft shift of the centre of lift, which pitches the body and
hence the stroke plane. The shift can be realised by changing
the fore/aft extent of the flapping motion and/or the angle of
attack over a half-stroke. Studies on bumblebees and the
hawkmoth suggest that a backward shift of the flapping motion
is partly responsible for the increasing tilt of the stroke plane
with forward speed (Dudley and Ellington, 1990b; Willmott
and Ellington, 1997a). A nose-down pitching moment from
body lift, which is typically less than 10 % of the weight and
thus a small component in the force balance, also contributes
significantly to the body and stroke plane inclination at forward
speeds.

Changes in angle of attack have been observed to initiate
accelerations at low speeds (Ellington, 1984b). To accelerate
into forward or backward flight, insects increase the angle of
attack to large values on the upstroke or downstroke,
respectively, and use the increased drag to initiate acceleration.
The angle of attack on the drag-producing half-stroke often
approaches 90 ° and provides large horizontal accelerations.
This ‘paddling’ or ‘rowing’ motion also rotates the body (and
the stroke plane) in the correct direction because the drag force
is applied above the centre of mass. As the stroke plane tilts,
the increased drag would detract from weight support, and the
insects revert to more normal angles of attack after only one
or two wingbeats.

During hovering and slow flight, the body hangs below the
wing bases, and the insect benefits from passive pendulum
stability. The centre of mass typically lies close to the junction
between the thorax and abdomen, and this will produce a nose-
up pitching moment even at the large body angles observed for
slow flight. The wings must therefore produce a compensatory
nose-down pitching moment about their bases, and this is
accomplished by locating the centre of lift aft of the body; the
mean flapping angle of the wings in the stroke plane is typically
directed 20–30 ° backwards during hovering (Ellington,
1984b). Thus, the insects can control the mean pitching
moment, and hence the mean body angle, simply by changing
the mean flapping angle of the wings.

Whether passive pendulum stability applies to faster flight
speeds has not been addressed. I suspect that the flight becomes
unstable to some extent, but it is difficult to investigate
experimentally. Indeed, it is likely that we will learn more

about the stability of flapping flight from future work on
machines than on insects.

Tilting the stroke plane offers a very simple method of
control. It is not suitable for brisk manoeuvres, however, when
coupled with pendulum stability. With a fixed orientation of
the stroke plane relative to the body, the body’s moment of
inertia will prevent rapid changes in attitude and hence in the
stroke plane tilt. The sluggishness of the response is
particularly evident for bumblebees, whose large pendulum-
like body can be seen swinging around as they manoeuvre.
Highly manoeuvrable insects such as hoverflies circumvent
this problem in two ways (Ellington, 1984a,b). Their centre of
mass is closer to the wingbases, reducing their moment of
inertia. In addition, they can hover and fly at low speeds with
the body horizontal and the stroke plane inclined (Fig. 2). This
requires very large downstroke forces to support the weight,
because the direction of the upstroke path makes it suitable
only for horizontal forces. The inclined downstroke path is
necessary for its resultant aerodynamic force to be nearly
vertical, and the weight-supporting role of the upstroke is
sacrified to provide large thrusts when needed. Because the
body is already horizontal, the hoverfly can then accelerate
rapidly without waiting for the body angle to tilt. Other flies
(Ennos, 1989) can also vary the relative lift on the half-strokes,
tilting the net force vector without tilting the stroke plane for
rapid manoeuvres. Hovering with an inclined stroke plane has
been suggested for dragonflies (Weis-Fogh, 1973), but recent
studies have shown that they can hover and manoeuvre much
like other insects (Wakeling and Ellington, 1997b,c).

Yaw control has received little attention for insects in free
flight. In some of my high-speed films of slow flight, yawing
motion is caused by a large drag force on one wing operating
at a very high angle of attack; in effect, the insect paddles on

C. P. ELLINGTON

Fig. 2. Wing motion of the hoverfly Episyrphus balteatus hovering
with the stroke plane inclined 32 ° to the horizontal. The wingtip path
forms a slight loop ventrally, with the upstroke above the
downstroke. Wing profiles and angles of attack, from visual
estimation, are drawn on the path. After Ellington (1984b).
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one side. At higher flight speeds, tethered locusts are known to
use ruddering – lateral deflections of the abdomen – during
steering and yaw control (Dugard, 1967; Camhi, 1970).

Tiny insects

The flight of tiny insects, with wingspans of less than
approximately 1 mm, deserves special mention because of
interest in micro-robots. At a Reynolds number of the order of
10, the wings of these insects should have lift-to-drag ratios of
unity or less. Horridge (1956) suggested ‘that they have
abandoned altogether the aerofoil action and that they literally
‘swim’ in the air.’ However, Weis-Fogh (1973) later
discovered that the parasitic wasp Encarsia formosa indeed
relies on lift, and not drag: its mass is 25 µg, its wingspan
1.5 mm and its wingbeat frequency 400 Hz. Its wing motion is
broadly similar to that of most insects, except that the left and
right wings come together at the dorsal end of the wingbeat.
They ‘clap’ together at the end of the upstroke and ‘fling’ apart
for the beginning of the downstroke. The fling motion is of
great conceptual interest. As the wings fling open, air is sucked
over their upper surfaces into the widening gap, creating a
vortex around each wing (Fig. 3). The vortex functions as a
‘bound vortex’ when the downstroke motion begins, increasing
the air velocity over the upper surface and decreasing it over
the lower surface, respectively. This velocity difference causes
a pressure difference across the wing by Bernoulli’s theorem
and thus generates lift.

A ‘bound vortex’ exists for any wing that produces lift; it is
simply a description of the velocity difference over the wing.
The strength of the vortex is called its circulation, and it is
directly proportional to the lift force. During normal
translational or flapping motion, a wing creates a bound vortex
by shedding a ‘starting vortex’ of equal but opposite strength
from its trailing edge. The secret of the fling mechanism is that
the bound vortex of each wing acts as the starting vortex for
the other and that the circulation is determined by the rotational
motion. With a high angular velocity of rotation, the fling
circulation can be larger than the wing would normally
experience, and thus the downstroke lift can be larger than
expected.

The other tiny insects that have been filmed to date rely on
the fling mechanism for enhanced lift production: the
greenhouse white-fly Trialeurodes vaporariorum (Weis-Fogh,
1975b) and thrips (Ellington, 1984b). On a slightly larger scale,
the fling is observed for the fruit-fly during tethered flight
(Götz, 1987; Zanker, 1990) and occasionally during hovering
(Ellington, 1984b; Ennos, 1989). The fling is also found in
some medium/large insects, most notably in butterflies and
moths, and typically produces some 25 % more lift than
‘normal’ wing motions (Marden, 1987).

The fling mechanism of lift generation provides an important
lesson in the aerodynamics of flapping flight: wing
performance can be better than the Re might suggest. The
Reynolds number is a steady-state characterisation of the flow
regime, but it takes time for thick, viscous boundary layers to
develop. Rapid changes in the wing velocity during the

flapping cycle should keep boundary layers thinner and
effectively raise the Reynolds number above steady-state
considerations. Creation of the bound vortex by the rotational
motion also illustrates that novel lift mechanisms might apply
and that the lift predicted by steady motion may not be
appropriate to flapping flight.

Although many insects take advantage of the circulation
created by the fling, most seem to shun the mechanism in spite
of the aerodynamic benefits. If nothing else, there must be
significant mechanical wear and damage to the wings caused
by repeated clapping. A fling motion might be thought
advantageous for micro-robots, because all tiny insects seem
to have converged on it, but it is likely to prove impractical.
Extra lift can be gained instead by relatively larger wings or
by a higher wingbeat frequency.

Aerodynamics
The usual aerodynamic treatment of insect flight is based on

the blade-element theory of propellers, modified by Osborne
(1951) for flapping flight. The fundamental unit of the analysis
is the blade element, or wing element, which is that portion of
a wing between the radial distances r and r+dr from the wing
base. The aerodynamic force F′ per unit span on a wing

A

B

C

D

Fig. 3. The clap and fling of the tiny wasp Encarsia formosa. The
wings clap together at the end of the upstroke (A), and then fling
apart (B,C) before the start of the downstroke (D). The fling creates a
bound vortex for each wing, and the subsequent downstroke lift can
exceed conventional limits. After Weis-Fogh (1975a).
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element can be resolved into a lift component L′ normal to the
relative velocity and a profile drag component D′pro parallel to
it; profile drag consists of the skin friction and pressure drag
on the wing. The force components for a wing section per unit
span are:

L′ = GρcUr2CL , (3)

D′pro = GρcUr2CD,pro , (4)

where ρ is the mass density of air, c is the wing chord and Ur

is the relative velocity component perpendicular to the
longitudinal wing axis. Ur is determined by the flight, flapping
and downwash velocities; any spanwise component of the
relative velocity is assumed to have no effect on the forces. CL

and CD,pro are lift and profile drag coefficients, which can be
defined for unsteady as well as steady motions. Equations 3
and 4 are resolved into vertical and horizontal components,
integrated along the wing length and averaged over a cycle.
The net force balance then requires the mean vertical force to
equal the weight, and the mean horizontal force to balance the
body drag.

One method of applying the blade-element analysis rests on
successive stepwise solutions of equations 3 and 4. Complete
kinematic data are necessary for this approach: the motion of
the longitudinal wing axis, the geometric angle of attack and
the section profile must all be known as functions of time and
radial position. Combined with an estimate of the downwash,
the effective angle of attack can then be calculated, and
appropriate values of CL and CD,pro selected from experimental
results. However, this approach is very prone to error: angles
of attack and profile sections cannot be measured with great
accuracy, and the downwash estimate is crude at best. The
‘mean coefficients method’ is normally used instead. By
treating the force coefficients as constants over a half-stroke,
they can be removed from the double integrals resulting from
manipulations of the equations, and mean values found that
satisfy the net force balance. The kinematic detail required for
this method is greatly reduced since only the motion of the
longitudinal wing axis is needed. The mean lift coeffient is
particularly interesting because it is also the minimum value
compatible with flight; if CL varies during the wingbeat, then
some instantaneous values must exceed the mean.

Maximum lift coefficients for insect wings in steady airflow
in a windtunnel are typically 0.6–0.9 (reviewed in Willmott
and Ellington, 1997b), although dragonflies show values up to
1.15 (Wakeling and Ellington, 1997a). Most modern
applications of the mean coefficients method have concluded
than the mean CL required for weight support exceeds the
maximum for steady flow, sometimes by factors of 2 or 3 (for
reviews, see Ellington, 1995; Wakeling and Ellington, 1997c;
Willmott and Ellington, 1997b). These results show that
insects cannot fly according to the conventional laws of
aerodynamics and that unsteady high-lift mechanisms are
employed instead. The fling is one such mechanism, but it is
not widely used.

Recently, flow visualization studies on the hawkmoth and a
10× scale mechanical model – the flapper – have identified

dynamic stall as the high-lift mechanism used by most insects
(Ellington et al., 1996; van den Berg and Ellington, 1997a,b;
Willmott et al., 1997). During the downstroke, air swirls
around the leading edge and rolls up into an intense leading-
edge vortex, LEV (Fig. 4). A LEV is to be expected at these
Re for thin wings with sharp leading edges operating at high
angles of attack. The circulation of the LEV augments the
bound vortex and hence the lift. This is an example of dynamic
stall, whereby a wing can travel at high angles of attack for a
brief period, generating extra lift before it stalls.

Dynamic stall has long been a candidate for explaining the
extra lift of insect wings, but two-dimensional aerodynamic
studies showed that the lift enhancement is limited to
approximately 3–4 chord lengths of travel (Dickinson and
Götz, 1993); the LEV grows until it becomes unstable at that
distance and breaks away from the wing, causing a deep stall.
The wings of hawkmoths and bumblebees travel twice that far
during the downstroke at high speeds, which should rule out
dynamic stall as the high-lift mechanism. However, a strong
spanwise flow in the LEV was discovered for the hawkmoth
and the flapper; when combined with the swirl motion, it
results in a spiral LEV with a pitch angle of 46 °. The spanwise
flow convects vorticity out towards the wing tip, where it joins
with the tip vortex and prevents the LEV from growing so large
that it breaks away. The spanwise flow therefore stabilises the
LEV, prolonging the benefits of dynamic stall for the entire
downstroke. The spiral LEV is a new aerodynamic
phenomenon for rotary and flapping wings, and the exact
conditions for establishing spanwise flow in the LEV are not
yet understood. However, the mechanism appears to be robust
to kinematic changes, and it generates sufficient lift for weight
support.

Designs for flapping machines
The picture of normal insect flight presented in this paper

provides a minimal design for flapping machines capable of
controlled flight over a range of speeds. In this section, we
summarise the kinematics necessary for the design and then
calculate the load-lifting capacity, power requirement and top
speed for machines over a wide size range.

C. P. ELLINGTON

Fig. 4. Flow visualization of the leading-edge vortex over a wing of
the flapper during the middle of the downstroke. Smoke was released
from the leading edge. The camera view is parallel to the wing
surface. After van den Berg and Ellington (1997a).
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Kinematic features

The simplest implementation of the design is likely to need
independent adjustment of the flapping amplitude and mean
flapping angle for each wing. Furthermore, the angle of attack
must change with forward speed for the wings to operate at
an optimal angle relative to the wing path. Angles of attack
could also be varied for manoeuvres, but it might be easier
to control them with amplitude and mean flapping angle
adjustments. The wing design should incorporate a twist from
base to tip, like a propeller, but this twist must reverse
between the half-strokes. There has not been time in this
paper to consider the mechanical design of insect wings, but
Wootton (1990) provides an excellent introduction to the
subject. Insect wings are elegant essays in small-scale
engineering. They are deformable aerofoils whose shape is
actively controlled by the wingbase articulation while the
wing area is subject to inertial, elastic and aerodynamic
forces. For the first generation of flapping machines,
however, a simple sail-like construction will probably
suffice: a stiff leading edge supporting a membrane, further
braced by a boom at the base. Movement of the boom will
control the angle of attack at the wing base, and billowing of
the sail will provide the necessary twist along the span. The
fan-like hindwings of some insects, such as locusts, provide
a more sophisticated variant on the sail design that might
prove useful (Wootton, 1995).

The wingbeat frequency is normally constrained within
fairly tight limits for insects, and studies with small sample
sizes usually conclude that there is no significant variation.
Small but significant changes have been found for bumblebees
with large sample sizes (Cooper, 1993); frequency increases
by up to 15 % with loading and at top flight speeds. The flight
system of insects is a damped resonator (Greenewalt, 1960),
so the frequency cannot change greatly. The stiffness of the
system can be changed somewhat by the action of small
accessory muscles in the thorax (Nachtigall and Wilson, 1967;
Josephson, 1981), and this can facilitate small changes in the
resonant frequency. The ‘quality’ Q of an oscillator in the
neighbourhood of resonance is conventionally defined as:

From published analyses of the mechanics of flight (e.g.
Dudley and Ellington, 1990b; Willmott and Ellington, 1997b;
Dickinson and Lighton, 1995), we can obtain values for the
kinetic energy of the oscillating wings and their aerodynamic
added mass, and for the aerodynamic work that must be
dissipated per cycle. The value of Q is then approximately 6.5
for the fruit-fly, 10 for the hawkmoth and 19 for the
bumblebee. Such high Q values are impressive for biological
systems and, for a constant driving force, the amplitude of the
motion would decline dramatically with changes in frequency.
Flapping machines should also be designed as resonant
systems, so large changes in frequency will similarly be ruled
out for them.

Lift and power requirements

How much weight can be supported by the wings of an
insect-based flapping machine, and how much power is
needed? For five reasons, I shall use hovering flight as a
convenient benchmark for these calculations. First, the lift and
power equations are particularly simple because the added
complication of the flight speed is absent. Second, as with
insects, hovering flight will be easier to study for flapping
machines, providing a practical testbed for designs. Third,
pendulum stability will minimise control problems. Fourth, lift
coefficients decline with increasing speed, showing a
maximum somewhere between hovering and approximately
2 m s−1 (Dudley and Ellington, 1990b; Cooper, 1993; Willmott
and Ellington, 1997b). And fifth, the power requirement of
hovering is also adequate for flight at speeds approaching the
maximum speed (Dudley and Ellington, 1990b; Ellington et
al., 1990; Cooper, 1993; Willmott and Ellington, 1997b). Thus,
if we can design an insect-based machine that hovers, it will
also be able to support its weight and power the wings over
virtually the entire speed range. The maximum flight speed can
even be estimated from the flapping velocity in hovering, using
a maximum advance ratio of approximately unity.

Full equations for the aerodynamic analysis of hovering
flight are derived in Ellington (1984c). I shall simplify them
here by incorporating minor variables into numerical constants
to emphasize the important design parameters. For example,
simple harmonic motion will be assumed for the flapping
velocity. The centroid of wing area will be taken at half the
wing length; the wing planform influences the calculations, but
for a range of insects the mean position of the centroid is very
close to 0.5R. Standard values for air density and gravitational
acceleration are also absorbed into the constants.

With these simplifications, the mass m that can be supported
during hovering with a horizontal stroke plane is given by:

with units m (kg), Φ (rad), n (Hz) and R (m). The induced
power Pind needed to support that mass will obviously vary
greatly over a wide size range, and it is convenient to divide it
by the mass to give the mass-specific induced power P*ind in
W kg−1, or mW g−1. Induced power is typically 15 % greater
than the steady momentum jet estimate used in propeller theory
and is given by (Ellington, 1984c):

The mass-specific profile power P*pro needed to overcome
pressure and skin friction drag on the wings is:

Typical values are now assigned to some parameters. The
stroke amplitude Φ is taken as 120 °; this is a fairly

(8)P*pro = 18.2ΦnR .
CD,pro

CL

(7)P*ind = 14.0nR .
ΦCL

AR









1/2

(6)m = 0.387 ,
Φ2n2R4CL

AR

(5)Q = 2π .
peak kinetic energy of oscillator

energy dissipated per cycle
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characteristic value for insects, and it offers a safe margin for
increases with loading or manoeuvring. The aspect ratio AR
ranges from approximately 5 to 12 for insects that do not use
a clap-and-fling motion; 7 is a fairly typical value and will be
used here. The mean lift coefficient CL in hovering and slow
flight, with and without loads, is usually 2–3 or less (e.g.
Ellington, 1984c; Ennos, 1989; Dudley and Ellington, 1990b;
Cooper, 1993; Dudley, 1995; Willmott and Ellington, 1997b);
a value of 2 will be used as a conservative upper limit.

The steady-state profile drag coefficients for some insect
wings have been measured at high angles of incidence in
windtunnels. They scale with Reynolds number as (Ellington,
1984c):

CD,pro = 7Re−1/2 , (9)

where Re is given by equation 1. This relationship was derived
from scant experimental data over the lower range of Re. It
holds reasonably well for bumblebees and dragonflies at their
higher Re (Dudley and Ellington, 1990b; Wakeling and
Ellington, 1997a), but measurements on hawkmoth wings are
significantly larger than the predicted values (Willmott and
Ellington, 1997b). In all cases, the corresponding lift
coefficients were much lower than those needed for weight
support. Lacking studies that clarify this discrepancy and that
compare steady-state values with unsteady results, we have
had to persevere with equation 9 when estimating profile
power. The recent discovery of the spiral LEV, however, has
prompted J. R. Usherwood (personal communication) to
suggest a much better alternative. Suction from the LEV causes

a large normal force on the wing, with lift and drag components
given by the cosine and sine of the effective angle of attack αr.
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Fig. 5. Contours of the mass supported as functions of wingbeat
frequency and wing length for a hovering insect-based flying
machine. See text for values assigned to other parameters.

Fig. 6. Contours of the mass-specific power (mW g−1) required for
hovering as functions of wingbeat frequency and wing length.

Fig. 7. Contours of maximum flight speed (m s−1) as functions of
wingbeat frequency and wing length. Maximum speed is estimated
from the flapping velocity during hovering and the advance ratio
J=1.
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The LEV accounts for most of the wing force, so the lift-to-
profile-drag ratio should simply be cotαr to a first
approximation. Values of αr are typically approximately 30 °,
giving a ratio of 1.73; this is much lower than previous
estimates but more realistic for such high-lift conditions.
Equation 8 then reduces to:

P*pro = 10.5ΦnR . (10)

The lifting capacity, power requirement and predicted
maximum speed are now just functions of wing length and
frequency, as shown in Figs 5–7, respectively. The mass-
specific aerodynamic power is the sum of the induced and
profile powers and is equal to 32.8nR, given the selected values
for Φ, CL and AR in equations 7 and 10. It is assumed that the
kinetic energy of the flapping wings is stored elastically and
that negligible power, other than aerodynamic, is required to
sustain the oscillation.

The first specification in a design study is probably the mass
to be supported, and this is likely to prove a difficult target.
Equation 6 shows that the mass is proportional to n2R4, so
increases in R will be more effective in achieving the required
mass than increases in n; e.g. doubling R will increase mass
support 16-fold, whereas doubling n will increase it only fourfold.
Therefore, within any limitations imposed by the design
specifications, longer wings rather than higher frequencies offer
a better route for mass support, as shown in Fig. 5.

The aerodynamic power per unit mass is proportional to nR.
To support the same target mass, R has to be increased much
less than n, and hence the mass-specific power will be lower.
The power saving can be very substantial, as shown in Figs 5
and 6: e.g. to support 200 mg with R=10 mm and n=200 Hz
requires an order of magnitude more power than with R=100 mm
and n=2 Hz. Therefore, a given mass will be supported with less
power by using a longer wing length and lower wingbeat
frequency. The only disadvantage is that the maximum flight
speed is 10 times lower for the larger design (Fig. 7). Flight
speed is proportional to the flapping velocity and hence to nR.
If mass support is achieved by small increases in R rather than
larger ones in n, the speeds will necessarily be smaller.

Mass, power and maximum speed are likely to be major
design constraints for insect-based flapping machines. Small
power plants with a high output per unit mass are a severe
limitation at present, but internal combustion engines and
lithium batteries can provide sufficient power for many of the
examples given here. Longer wings are clearly advantageous
for mass support and for power savings. Maximum speeds
would be low but, because of their larger size, fabrication
would be easier and they would offer a more convenient
testbed for the development of control systems.

This research is supported by the BBSRC and DARPA.
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