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Abstract 
In this position paper we attempt to derive an architecture 
and mechanism for perceptual memory and learning for 
software agents and robots from what is known, or 
believed, about the same faculties in human and other 
animal cognition. Based on that of the IDA model of 
Global Workspace Theory, a conceptual and 
computational model of cognition, this architecture, 
together with its mechanisms, offers the real possibility of  
autonomous software agents and robots learning their own 
ontologies during a developmental period. Thus the 
onerous chore of designing and implementing such an 
ontology can be avoided. 

Premises 
In particular we want to base the design on the 

following premises: 
1. Perceptual memory, that is the ability to interpret 

incoming stimuli by recognizing individuals, by 
categorizing them, and by noting relationships 
between such individuals and categories, is ubiquitous 
among animal species, as is the learning of these 
facilities (Bitterman 1965). 

Animals of all sorts can identify food sources, potential 
mates, potential predators, etc. Pigeons have been taught to 
categorize using such concepts as tree, fish, and human, 
some well outside of their evolutionary background 
(Herrnstein 1984). Honey bees have been taught to identify 
human letters independently of size, color, position or font 
(Gould & Gould 1988). An African Grey Parrot can 
identify such features as size, number, color, and material 
of objects or sets of objects that he has never been seen 
before (Pepperberg 1990).  
2. Perceptual memory is evolutionarily older than 

semantic memory in humans, and has its own, distinct 
mechanism (Franklin et al. in review).  

There are developmental arguments for a distinct 
mechanism for perceptual memory; infants who have not 
yet developed object permanence (any episodic memory) 
are quite able to recognize and categorize (Mandler 2000). 
Other arguments come from studies of human amnesiacs 
with significant loss of new declarative memory, but 
mostly intact perceptual memory and learning (Gabrieli et 
al. 1990, Fahle & Daum 2002). Perhaps the most 
convincing argument comes from experiments with rats in 

a radial arm maze. With four arms baited and four not 
(with none restocked), normal rats learn to recognize 
which arms to search (perceptual memory) and remember 
which arms they have already fed in (episodic memory) so 
as not to search there a second time. Rats with their 
hippocampal systems excised lose their episodic memory 
but retain perceptual memory, again arguing for distinct 
mechanisms (Olton et al. 1979). 
3. Conscious awareness is sufficient for perceptual 

learning (Baars 1988, Hobson & Stickgold 1994).  
This premise may be the most controversial of the lot, 

with people arguing that implicit learning, say for 
example, learning to distinguish well-formed strings from 
a finite grammar without learning the rules, doesn’t require 
consciousness. Subjects learn some implicit version of the 
grammar by being consciously exposed to well- and ill-
formed strings and being told which is which. 
Consciousness is required for this exposure. 
4. Perceptual learning is facilitated by feelings and 

emotions (Franklin & McCaulley 2004).  
In particular, the learning rate varies with arousal 

(Yerkes & Dodson 1908). 
5. Perceptual learning occurs easily and rapidly, but 

decays according to an inverse sigmoid function; new, 
weak memories decay extraordinarily rapidly, while 
saturated perceptual memories may last for many 
decades (Franklin et al. in review). 

6. Preconscious perception is the first step in a 
continually cascading series of cognitive cycles by 
means of which every animal samples its environment 
and acts on it (Baars & Franklin 2003, Franklin et al. 
in review). 

With these premises in hand, we will outline the design 
of a perceptual memory and learning mechanism within 
the conceptual and computational IDA model of cognition, 
which is derived from the IDA software agent (Franklin & 
Graesser 1997). 

The IDA Model 
IDA provides a conceptual (and computational) model 

of cognition (Franklin 2000, 2001b) partially implemented 
as a software agent (Franklin & Graesser 1997). The 
implemented IDA “lives” on a computer system with 
connections to the Internet and various databases, and does 
personnel work for the US Navy, performing all the 
specific personnel tasks of a human (Franklin 2001a). In 
particular, IDA negotiates with sailors in natural language, 



deliberates, and makes voluntary action selections in the 
process of finding new jobs for sailors at the end of their 
current tour of duty. IDA completely automates the work 
of Navy personnel agents (detailers). 

The IDA model implements and fleshes out Global 
Workspace theory (Baars 1988, 2002), which suggests that 
conscious events involve widespread distribution of focal 
information needed to recruit neuronal resources for 
problem solving. The IDA implementation of GW theory 
yields a fine-grained functional account of the steps 
involved in perception, several kinds of memory, 
consciousness, context setting, and action selection. 
Cognitive processing in IDA consists of continually 
repeated traversals through the steps of a cognitive cycle 
(Baars & Franklin 2003, Franklin et al. in review), as 
described below.  

The IDA architecture includes modules for perception 
(Zhang, et al. 1998), various types of memory (Anwar and 
Franklin. 2003, Franklin et al. in review), “consciousness” 
(Bogner, Ramamurthy and Franklin. 2000), action 
selection (Negatu and Franklin. 2002), constraint 
satisfaction (Kelemen, Liang, and Franklin. 2002), 
deliberation (Franklin 2000a), and volition (Franklin 
2000a). The mechanisms of these modules are derived 
from several different “new AI” sources (Hofstadter and 
Mitchell. 1994, Jackson 1987, Maes 1989).  

IDA senses strings of characters from email messages 
and databases, and negotiates with sailors via email. The 
computational IDA is a running software agent that has 
been tested and demonstrated to the satisfaction of the 
Navy. Detailers observing the testing often commented 
that “IDA thinks like I do.” 

The running, computational IDA software agent is 
almost entirely handcrafted. There is essentially no 
learning. However, in addition to the computational model, 
we will also speak of the conceptual IDA model, which 
includes additional capabilities that have been designed but 
not implemented, including mechanisms for feelings and 
emotions, and the mechanism for perceptual learning, the 
primary focus of this paper.  

The IDA conceptual model contains several different 
memory systems. Perceptual memory enables 
identification, recognition and categorization, including of 
feelings, as well as relationships. Working memory 
provides preconscious buffers as a workspace for internal 
activities. Transient episodic memory is a content-
addressable associative memory with a moderately fast 
decay rate. It is to be distinguished from autobiographical 
memory, a part of declarative memory. Procedural 
memory is long-term memory for skills.  The material that 
follows describes perceptual learning as envisioned in the 
IDA conceptual model.  

The IDA Technology 
The IDA Technology is based on a number of highly 

connected modules each built on its distinct mechanism. 
Most of these are up and running. A few are still being 
developed, and a couple are designed but not yet 

implemented. Following Hofstadter’s terminology (see 
below) a codelet is a special purpose, relatively 
independent, mini-agent typically implemented as a small 
piece of code running as a separate thread. IDA depends 
heavily on such codelets for almost every module. In what 
follows we will encounter several different types of 
codelets such as perceptual codelets, attention codelets, 
information codelets, behavior codelets and expectation 
codelets. Many codelets play the role of demons (as in an 
operating system) waiting patiently for the conditions 
under which they can act. Some codelets subserve some 
higher-level construct, while others act completely 
independently. Neurally, they can be thought of as cell 
assemblies or neuronal groups (Edelman1987, Edelman 
and Tononi 2000).  

In this section we describe several of the IDA modules 
that would play a role in perceptual memory and learning. 

Perception 
IDA senses only strings of characters. Perception consists 
mostly of processing incoming email messages in natural 
language (Zulandt Schneider et al. 2001). In sufficiently 
narrow domains, natural language understanding may be 
achieved via an analysis of surface features without the use 
of a traditional symbolic parser (Jurafsky & Martin 2000). 
Allen describes this approach as complex, template-based 
matching (1995).  

IDA’s perceptual module has been implemented (as yet 
without learning) as a Copycat-like architecture with 
perceptual codelets that are triggered by surface features 
and a slipnet (Hofstadter & Mitchell 1994), a semantic net 
that passes activation.   The slipnet stores domain 
knowledge. In addition there’s a pool of perceptual 
codelets specialized for recognizing particular pieces of 
text, and production templates used by codelets for 
building and verifying understanding. Together they 
constitute an integrated perceptual system for IDA, 
allowing her to recognize, categorize and understand.  

An example will illustrate what is claimed by the word 
“understand” as used in the previous sentence. A clerical 
worker sending out an email announcement of an 
upcoming seminar on Compact Operators on Banach 
Spaces can be said to have understood the organizer’s 
request that this be done even though he or she has no idea 
of what a Banach space is much less what compact 
operators on them are. In most cases it would likely require 
several person years of diligent effort to impart such 
knowledge. Nonetheless, the clerical worker understands 
the request at a level sufficient for him or her to get out the 
announcement. In the same way IDA understands 
incoming email messages well enough to do all the things 
needed to be done with them. An expanded form of this 
argument can be found in Artificial Minds (Franklin 1995). 
Glenberg also makes a similar argument (1997). 

An underlying assumption motivates our design 
decisions about perception. Suppose, for example, that 
IDA receives a message from a sailor saying that his 
projected rotation date is approaching and asking that a job 



be found for him. The perception module would recognize 
the sailor’s name and social security number, and that the 
message is of the please-find-job type. This information 
would then be written to the workspace. The general 
principle here is that the contents of perception are written 
to working memory before becoming conscious. 

Workspace 
IDA solves routine problems with novel content. This 
novel content goes into her workspace, which roughly 
plays the same role as the preconscious buffers of human 
working memory. Perceptual codelets write to the 
workspace as do other, more internal codelets. Quite a 
number of codelets, including attention codelets (see 
below) watch what’s written in the workspace in order to 
react to it. Part, but not all, the workspace, called the 
focus1, by Kanerva (1988) is set aside as an interface with 
episodic memory (EM). Retrievals from EM are made with 
cues taken from the focus and the resulting associations are 
written to other registers in the focus. The contents of still 
other registers in the focus are stored in (written to) EM. 
Items in the workspace decay over time, and may be 
overwritten. Not all of the contents of the workspace 
eventually make their way into consciousness. 

Episodic memory 
IDA employs sparse distributed memory (SDM) as her 
major episodic memory (Kanerva 1988, Anwar & Franklin 
2003). SDM is a content addressable memory that, in 
many ways, is an ideal computational mechanism for use 
as an EM. Any item written to the workspace cues a 
retrieval from EM, returning prior activity associated with 
the current entry. EM is accessed as soon as information 
reaches the workspace, and the retrieved associations will 
be also written to the workspace.  

At a given moment IDA’s workspace may contain, 
ready for use, a current entry from perception or 
elsewhere, prior entries in various states of decay, and 
associations instigated by the current entry, i.e. activated 
elements of EM. IDA’s workspace thus consists of both 
short-term working memory and something like the long-
term working memory of Ericsson and Kintsch (1995).  

“Consciousness” mechanism 
The apparatus for “consciousness”2 consists of a coalition 
manager, a spotlight controller, a broadcast manager, and a 
collection of attention codelets whose job it is to bring 
appropriate contents to “consciousness” (Bogner et al. 
2000). Each attention codelet keeps a watchful eye out for 
some particular occurrence that might call for “conscious” 
intervention. In most cases an attention codelet is watching 

                                                             
1 Not to be confused with focus as in focus of attention, an 
entirely different concept. 
2 The scare quotes signal that no claim of subjective 
consciousness is being made, only for functional consciousness 
(Franklin 2003). 

the workspace, which will likely contain both perceptual 
information and data created internally, the products of 
“thoughts.” Upon encountering such a situation, the 
appropriate attention codelet will form a coalition with the 
small number of information codelets that carry the 
information describing the situation. This association 
should lead to the collection of this small number of 
information codelets, together with the attention codelet 
that collected them, becoming a coalition. Codelets also 
have activations. The attention codelet increases its 
activation in order that the coalition, if one is formed, 
might compete for the spotlight of “consciousness”. Upon 
winning the competition, the contents of the coalition is 
then broadcast to all codelets. If or when successful, its 
contents will be broadcast.  

Action selection (decision making) 
IDA depends on a behavior net (Maes 1989, Negatu & 
Franklin 2002) for high-level action selection in the 
service of built-in drives. Several distinct drives, operating 
in parallel, vary in urgency as time passes and the 
environment changes. Behaviors are typically mid-level 
actions, many depending on several behavior codelets for 
their execution. A behavior net is composed of behaviors, 
corresponding to goal contexts in GW theory, and their 
various links. A behavior looks very much like a 
production rule, having preconditions as well as additions 
and deletions, but at a higher level of abstraction, often 
requiring the efforts of several behavior codelets to effect 
its action. Each behavior occupies a node in a digraph.  

As in connectionist models (McClelland et al. 1986), 
this digraph spreads activation. The activation comes from 
that stored in the behaviors themselves, from the 
environment, from drives, and from internal states. The 
more relevant a behavior is to the current situation, the 
more activation it receives from the environment. Each 
drive awards activation to those behaviors that will satisfy 
it. Certain internal states of the agent can also send 
activation to the behavior net. One example might be 
activation from a coalition of codelets responding to a 
“conscious” broadcast. Activation spreads from behavior 
to behavior along both excitatory and inhibitory links and a 
behavior is chosen to execute based on activation. The 
behavior net produces flexible, tunable action selection for 
IDA. As is widely recognized in humans the hierarchy of 
goal contexts is fueled at the top by drives, that is, by 
primitive motivators implemented as feelings and 
emotions, and at the bottom by input from the 
environment, both external and internal.  

Each “conscious” broadcast is received by appropriate 
behavior codelets who know to instantiate a behavior 
stream in the behavior net for dealing with the current 
situation. They also bind appropriate variables, and send 
activation to appropriate behaviors. If or when a particular 
behavior is chosen to be executed, behavior codelets 
associated with it each perform its assigned task.  



There’s much more to the IDA architecture and 
mechanisms, but this is all that space will allow. 

The Cognitive Cycle 
The IDA model suggests a number of more specialized 

roles for feelings in cognition, all combining to produce 
motivations and to facilitate learning. Here we describe the 
conceptual IDA’s cognitive cycle, most, but not all, of 
which has been implemented. 
1. Perception. Sensory stimuli, external or internal, are 

received and interpreted by perception producing 
meaning. Note that this stage is unconscious.  
a. Early perception:  Input arrives through senses. 

Specialized perception codelets descend on the 
input. Those that find features relevant to their 
specialty activate appropriate nodes in the slipnet 
(a semantic net with activation). 

This perceptual memory system identifies pertinent 
feeling/emotions are along with objects, categories 
and their relations.  

2. Percept to Preconscious Buffer. The percept, 
including some of the data plus the meaning, is stored 
in preconscious buffers of IDA’s working memory. 

  In humans, these buffers may involve visuo-spatial, 
phonological, and other kinds of information. 
Feelings/emotions are part of the preconscious percept. 
3. Local Associations. Using the incoming percept and 

the residual contents of the preconscious buffers, 
including emotional content, as cues, local 
associations are automatically retrieved from 
transient episodic memory (TEM) and from 
declarative memory.   

The contents of the preconscious buffers together with 
the retrieved local associations from TEM and declarative 
memory, roughly correspond to Ericsson and Kintsch’s 
long-term working memory (1995) and to Baddeley’s 
episodic buffer (2000). These local associations include 
records of the agent’s past feelings/emotions, and actions, 
in associated situations. 
4. Competition for Consciousness. Attention codelets 

view long-term working memory, and bring relevant, 
urgent, or insistent events to consciousness,. Some of 
them gather information, form coalitions and actively 
compete for access to consciousness.  

The competition may also include such coalitions from a 
recently previous cycle. Present and past feelings/emotions 
influence this competition for consciousness. Strong 
affective content strengthens a coalition’s chances of 
coming to consciousness. 
5. Conscious Broadcast. A coalition of codelets, 

typically an attention codelet and its covey of related 
information codelets carrying content, gains access to 
the global workspace and has its contents broadcast.  

In humans, this broadcast is hypothesized to correspond 
to phenomenal consciousness. The conscious broadcast 
contains the entire content of consciousness including the 
affective portions. The contents of perceptual memory are 

updated in light of the current contents of consciousness, 
including feelings/emotions, as well as objects, categories 
and relations. The stronger the affect, the stronger the 
encoding in memory. Transient episodic memory is also 
updated with the current contents of consciousness, 
including feelings/emotions, as events. The stronger the 
affect, the stronger the encoding in memory. (At recurring 
times not part of a cognitive cycle, the contents of transient 
episodic memory are consolidated into long-term 
declarative memory.) Procedural memory (recent actions) 
is updated (reinforced) with the strength of the 
reinforcement influenced by the strength of the affect. 
6. Recruitment of Resources. Relevant behavior 

codelets respond to the conscious broadcast. These 
are typically codelets whose variables can be bound 
from information in the conscious broadcast.  

If the successful attention codelet was an expectation 
codelet calling attention to an unexpected result from a 
previous action, the responding codelets may be those that 
can help to rectify the unexpected situation. Thus 
consciousness solves the relevancy problem in recruiting 
resources. The affective content (feelings/emotions) 
together with the cognitive content, help to attract relevant 
resources (processors, neural assemblies) with which to 
deal with the current situation. 
7. Setting Goal Context Hierarchy. The recruited 

processors use the contents of consciousness, 
including feelings/emotions, to instantiate new goal 
context hierarchies, bind their variables, and increase 
their activation.  

It is here that feelings and emotions most directly 
implement motivations by helping to instantiate and 
activate goal contexts, and by determining which terminal 
goal contexts receive activation. Other, environmental, 
conditions determine which of the earlier goal contexts 
receive additional activation. 
8. Action Chosen. The behavior net chooses a single 

behavior (goal context), perhaps from a just 
instantiated behavior stream or possibly from a 
previously active stream.  

This selection is heavily influenced by activation passed 
to various behaviors influenced by the various 
feelings/emotions. The choice is also affected by the 
current situation, external and internal conditions, by the 
relationship between the behaviors, and by the residual 
activation values of various behaviors. 
9. Action Taken. The execution of a behavior (goal 

context) results in the behavior codelets performing 
their specialized tasks, which may have external or 
internal consequences, or both.  

This is IDA taking an action. The acting codelets also 
include at least one expectation codelet (see Step 6) whose 
task it is to monitor the action and to try and bring to 
consciousness any failure in the expected results. 

We suspect that cognitive cycles occur five to ten times 
a second in humans, cascading so that some of the steps in 
adjacent cycles occur in parallel (Baars & Franklin 2003). 
Seriality is preserved in the conscious broadcasts.  



 Perceptual Memory and Learning 
In this section we will describe in detail the structure 

and operation of the perceptual memory mechanism in the 
conceptual IDA model, as well as the procedures by which 
the memory is modified through learning. 

As mentioned above, perceptual memory (PM) is 
implemented in the IDA model as a semantic net with 
passing activation, a slipnet. The nodes in the slipnet may 
represent feature detectors (perceptual codelets), 
individuals (e.g. a person or particular thing), a category 
(e.g. chair, woman, animal), a concept (e.g. democracy, 
justice), an idea (e.g. “please find me a job”), etc. Links in 
the slipnet represent relations between nodes, including 
category membership, category inclusion, and spatial, 
temporal or causal relations. Links can be excitatory or 
inhibitory. It’s best to think of the slipnet as being 
feedforward in terms of conceptual depth (Hofstadter & 
Mitchell 1994), that is, the length of the shortest path from 
the periphery. This isn’t completely correct, since lateral 
paths can also exist. Moving inward from the periphery 
means a link from the more specific to the more abstract, 
e.g. from the Stan node to the man node to the 
human node to the animal node. 

Every autonomous agent senses its environment 
(Franklin & Graesser 1997), using such sensory modalities 
as vision, olfaction, audition, echolocation or, as in the 
software agent IDA, strings of characters. Thus each such 
agent, be it a software agent like IDA, or a human, must 
come equipped with primitive feature detectors, each with 
its receptive field among the appropriate sensory receptors. 
An example in humans might be a visual feature detector 
for an edge at a particular angle. These primitive feature 
detectors are, thus, directly connected to the agent’s 
incoming senses, and in the IDA conceptual model 
constitute the nodes of minimal conceptual depth in the 
slipnet, its very periphery. Primitive feature detectors can 
combine to form more complex feature detectors, e.g. one 
to recognize a ‘T’ form. Feature detectors send activation 
along is a feature of links to item, category, 
concept and idea nodes further in the slipnet. As described 
in Step 1b of the cognitive cycle, the slipnet passes 
activation until it stabilizes. At this point those nodes and 
links with activation above threshold become part of 
IDA’s percept, which gets passed along to the 
preconscious buffers of working memory in Step 2.  

Some categories are essentially disjoint, e.g. men and 
women. Inhibitory not links run both ways between them. 
This results in a ‘winner take all’ stabilization with at most 
one of the nodes appearing in the percept connected to a 
particular person. For example, feature detectors for long 
hair and makeup might, in our culture, give the woman 
node an initial advantage, leading to its winning. 

Each node in the slipnet (PM) has both a base-level 
activation and a current activation. Each link has only a 
base-level activation, some function of which acts as a 
weight on the link. Base-level activation is used for 
perceptual learning, while current activation results from 
the current exogenous or endogenous environment. Thus, 

current activation begins with primitive feature detectors 
and propagates inward to nodes at greater conceptual 
depth. Base-level and current activation are combined to 
arrive at the total activation of each node, upon which the 
percept is based. 

 Current activation decays quickly, so that it disappears 
completely within a small number of cognitive cycles, say 
in a second or two. Base-level activation decays in an 
inverse sigmoidal fashion, so that nodes or links with low 
base-level activations decay quite rapidly, while those with 
high, saturated base-level activations decay quite slowly, 
persisting in humans for decades. For example, I see the 
word “skunk” exceedingly rarely these days in my reading, 
but nonetheless, recognize it readily since it’s base-level 
activation has saturated over the years.  

Following Premise 3 above, perceptual learning in the 
IDA model occurs with consciousness. This learning is of 
two forms, the strengthening or weakening of the base-
level activation of existing nodes and links, as well as the 
creation of new nodes and links. Any existing concept or 
relation that appears in the conscious broadcast (Step 5 of 
the cognitive cycle) has the base-level activation of its 
corresponding node or link strengthened as a function of 
the arousal of the agent (or weakened, depending on the 
valence) at the time of the broadcast. 

A new individual item that comes to consciousness 
results in a new node being created, together with links 
into it from the feature detectors of its features. Such a new 
item gets to consciousness by means of some new item-
attention codelet that notices a collection of active features 
in the percept without a common object of which they are 
features. Such a new item-attention codelet might be 
looking for such features as special contiguity, common 
motion, and persistence over time. If this attention codelet 
succeeds in bringing the resulting new item to 
consciousness, a node for it is created in PM by the 
perceptual learning mechanism. 

New links (relations) occur similarly. Here’s how a new 
category may be formed. If a similarity-attention codelet 
notices in long-term working memory (see Step 3 of the 
cognitive cycle) two items with several common features, 
and succeeds in bringing this similarity to consciousness, a 
new category is created by the perceptual learning 
mechanism with is a links into the new category from 
each of the items. Other new relations are learned into 
links in PM when other relation-noting-attention codelets 
succeed in bringing the new relations to consciousness, 
that is when the relation “pops into mind” or “occurs to 
me.“ The initial base-level activation of new nodes and 
links are assigned as a function of arousal at the time of the 
conscious broadcast (Step 5 of the cognitive cycle above). 

One may object that all these new nodes and links, 
sometimes created as often as several times a second, 
might prove computationally intractable. But nature is 
often profligate; witness the vast numbers of acorns or 
sperm, so few of which come to any fruition. Here we have 
another example of such profligacy in perceptual learning. 
We are saved from computationally intractability by the 



rapid decay of almost all of the new nodes and links, by 
virtue of their inverse sigmoidal decay curves. Only those 
new nodes and links that come to consciousness often 
and/or at high arousal levels have much chance of not 
decaying away. In the AI literature, a similar mechanism is 
referred to as generate and test. In the IDA conceptual 
model, perceptual learning generates trial nodes (combined 
feature detectors, individual items, categories, etc.) and 
links (relations), and rapidly discards those that don’t 
quickly prove useful. 

 
One can argue that the IDA conceptual model’s slipnet 

every node is a category node. A primitive feature 
dectector can be though of as the category of the sensory 
receptors in its receptive field. A combined feature 

detector node can be thought of as the category of feature 
detectors of less conceptual depth of which it is composed, 
that is, with is-a-feature-of links into it. A 
individual item node can be thought of as the category of 
its feature detectors. And, nodes can represent categories 
of categories. 

In keeping with Barsalou’s Perceptual Symbol Systems 
(1999), the nodes and links in IDA’s slipnet form 
perceptual symbol representations that carry forward 
throughout the entire architecture, including working 
memory, episodic memory (with a detour back through 
perception), long-term working memory, “consciousness,” 
and action selection. There are no amodal representations. 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
Figure 1. An early portion of a Slipnet. Primitive feature detectors respond to activity in their receptive fields and activate 
more complex feature detectors, etc. Feature detectors eventually combine to activate item nodes which, in turn, go on to 
activate category nodes. The process continues activating nodes of greater conceptual depth. When the Slipnet stabilizes, 
those nodes with total activation, that is combining base-level and current activation, above threshold, constitute the current 
percept. Thus, perception is a filtering process through which some nodes are selected to trigger local associations and to 
compete for conscious awareness.  
 

Conclusion 
What we’ve outlined above can be viewed as a program 
for implementing procedural memory and learning in 
autonomous software agents and robots. Such a program 
supports arguments for a developmental period, one of 
rapid perceptual learning, in the “lives” of both software 
agents and robots. Such a developmental period would 
circumvent the necessity of designing and implementing a 
complex ontology on the front end, a clear pragmatic 
advantage. In complex, dynamic environments, the learned 

ontology can be expected to out perform one designed and 
built in, and to do so with much less human effort. 
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