Computational Topology

seminar

Alpha shapes

Celikik Marjan

- 1. Intuitive definition and applications
- 2. Formal definition
- 3. Construction of alpha-shapes (Edelsbrunner's algorithm)
- 4. Dual definition, union of balls and homotopy equivalence
- 5. Limitations of classical alpha-shapes

6. Extensions

- Conformal Alpha-Shapes
- Weighted-Alpha Shapes

What are α -shapes ?

Originally introduced by: H. Edelsbrunner, D. G. Kirckpatrick and R. Seidel. *On the shape of a set of points in the plane*

Approach to formalize the intuitive notion of "shape" for spatial point sets

Generalization of the convex hull of a point set

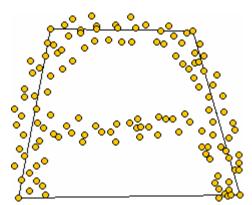
Family of shapes derived from the Delaunay triangulation parametarized by $\boldsymbol{\alpha}$

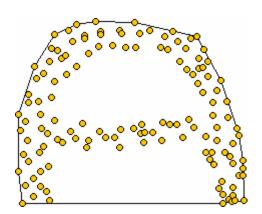
Dual shape* of the union of balls ...

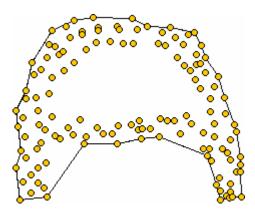
Intuitive definition

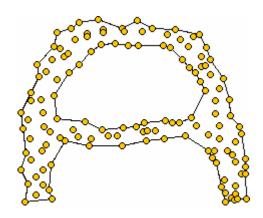
Assume a finite set of points in the plane

We have a intuitive notion of the shape formed by these points

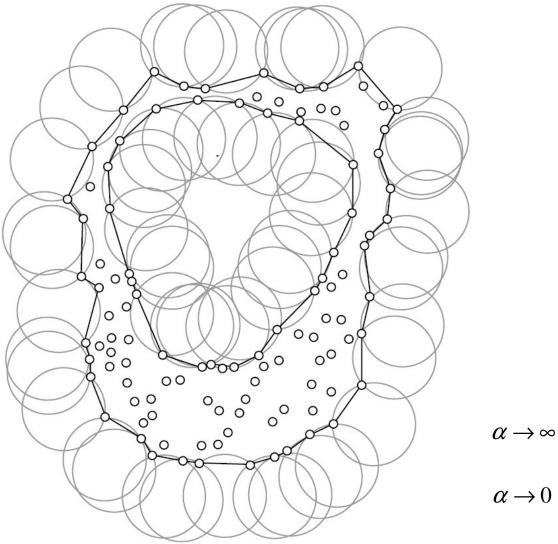








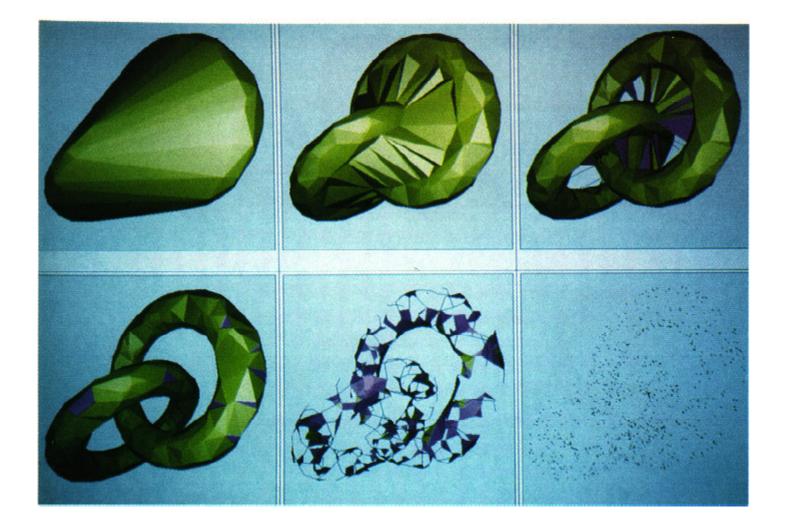
Computational Topology



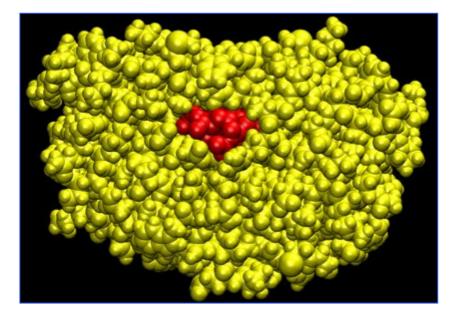
 $\alpha \rightarrow 0$

Applications

• Surface reconstruction and geometric modeling (later more)

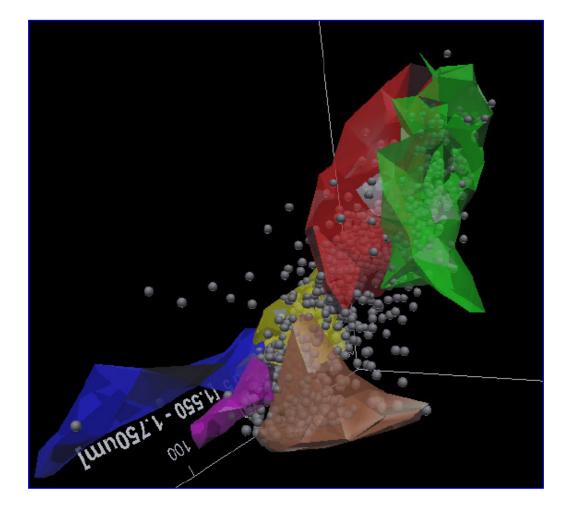


Modeling molecular structures (later more)



HIV-1 Protease

Classification and visualization



Computational Topology

Alpha Shapes

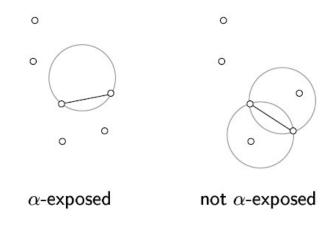
- Grid generation
- Medical image analysis
- Visualizing the structure of earthquake data ...

Let the points in *S* be in general position

def. In k-1 dimensional hyperplane lie at most k points ...

 $T \subset S$ with $|T| = k + 1 \le d + 1$, the polytope $\Delta_T = convT$ has dimension k Then Δ_T is a k-simplex

Definition. $\alpha - ball$: Open ball with radius α , where ∂b is the surface of the sphere **Definition**. *k*-simplex Δ_T is α -exposed if there exists an empty $\alpha - ball$ with $T = \partial b \cap S$



...analogy with the ice-cream "scenario"?

Formal definition – boundary of alpha-shape

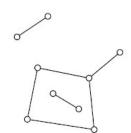
Let S_{α} be our alpha-shape

Then the boundary ∂S_{α} consists of all *k*-simplices of *S*, which are α -exposed

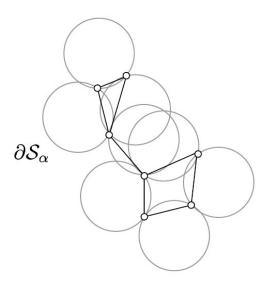
 $\partial S_{\alpha} = \{\Delta_T \mid T \subset S, |T| \leq d \text{ and } \Delta_T \text{ is } \alpha - \text{exposed}\}\$

But what exactly is our alpha-shape? Does it have a structure in space?

Or more formally... Is there any *polytope P* such that $\partial S_{\alpha} = \partial P$?



These simplices do not form a boundary.



later ...

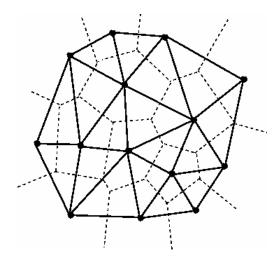
Computational Topology

Observation.

$$\lim_{\alpha \to 0} S_{\alpha} = S \qquad \lim_{\alpha \to \infty} S_{\alpha} = convS$$

Definiton. The **Delaunay triangulation** of $S \subset \mathbb{R}^d$ is the **simplicial complex** DT(S) consisting of:

- (i) All d-simplices such that their circumsphere does not contain any other points
- (*ii*) All k-simplices which are faces of other simplices in DT(S)



Delaunay triangulation is the dual shape of the Voronoi diagram

Observation.

If Δ_T is an α -exposed simplex of *S*, then $\Delta_T \in DT(S)$

Proof. (black-board)

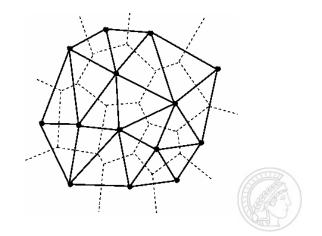
Observation.

For any $0 \le \alpha \le \infty$ $S_{\alpha} \subset DT(S)$

This results allows us to construct simple algorithm for computing the alpha-shape

for each (*d*-1)-simplex Δ_T in *DT*(*S*) if one of its circumspheres with radius α is empty then Δ_T is α -exposed

...but what about lower dimensional simplices ? infinitely many α-balls touching it

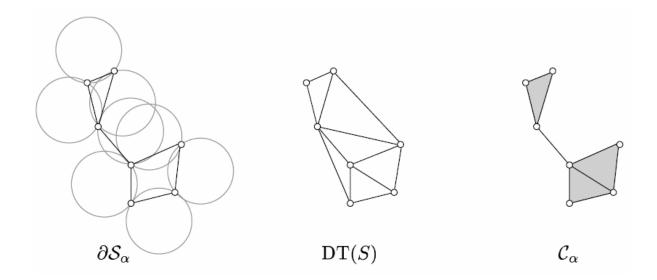


Computational Topology

Formal definition – Alpha Complex

Definition. The α -complex $C_{\alpha}(S)$ is a simplicial subcomplex of DT(S). A simplex $\Delta_T \in DT(S)$ is in $C_{\alpha}(S)$ if

> (*i*) it's circumsphere is empty and has radius smaller than α , or (*ii*) Δ_T is a face of another simplex in $C_{\alpha}(S)$



We found a simplicial complex with boundary ∂S_{α} ...

Result. The boundary of the α -complex is the boundary of the α -shape There exist a polytope *P*, such that $\partial S_{\alpha} = \partial P$, for all $\infty \ge \alpha \ge 0$

One can prove:

$$\Delta_T \in \partial S_{\alpha}(S) \Longrightarrow \Delta_T \in C_{\alpha}(S)$$

$$\Delta_{T} \in \partial S_{\alpha}(S) \Longrightarrow \Delta_{T} \in \partial C_{\alpha}(S)$$

$$\Delta_{T} \in \partial C_{\alpha}(S) \Longrightarrow \Delta_{T} \in \partial S_{\alpha}(S)$$

Finally:

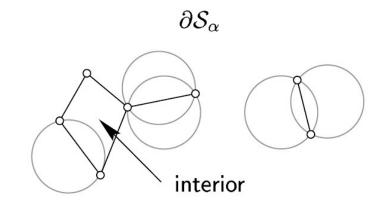
$$\partial C_{\alpha}(S) = \partial S_{\alpha}(S)$$

 $S_{\alpha}(S) \leftarrow C_{\alpha}(S)$

The α -shape is the α -complex

Formal definition – Interior of the alpha-shape

How to find the interior of an alpha-shape?



The straight-forward way:

Inspect the α -complex structure and check whether there is a *d*-simplex containing the facet

Another (better) way:

A facet Δ_T bounds the interior iff exactly one of the two α -balls with $T = \partial b \cap S$ is empty

Proof. (black-board)

Observation.

$$\alpha_1 \leq \alpha_2 \Longrightarrow C_{\alpha_1}(S) \subset C_{\alpha_2}(S) \Longrightarrow S_{\alpha_1}(S) \subset S_{\alpha_2}(S)$$

Proof.

According (i)
$$\alpha_1 \leq \alpha_2$$
 implies $C_{\alpha_1}(S) \subset C_{\alpha_2}(S)$

 α -complex:

(i) it's circumsphere is empty and has radius smaller than α , or

(ii) Δ_{τ} is a face of another simplex in $C_{\alpha}(S)$

Result.

This shows that for any simplex $\Delta \in DT(S)$ there is an interval $I = [a, \infty]$ and the simplex is in $C_{\alpha}(S)$ iff $\alpha \in I$

Basis for Edelsbrunner's Algorithm ... (next)

Edelsbrunner's Algorithm - Intuitive

- 1. Compute the Delaunay triangulation of S knowing that it contains our α -shape
- 2. Compute C_{α} by inspecting all simplices Δ_T in DT(S) :

3. All d-simplices of C_{α} make up the interior of S_{α} . All simplices on the boundary ∂C_{α} form ∂S_{α}

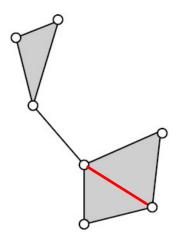
We need certain "primitives" to make the algorithm work:

- Delaunay triangulation (easy)
- Test of "emptiness" (easy)
- Whether a simplex lies on the boundary or inside ?

if its circumsphere is empty with smaller radius than α *then* accept it (as well as all of its faces)

Whether a simplex lies on the boundary or inside ?

- 1. If $\Delta_T \in \text{conv}S$ then it must lie on the boundary
- 2. If all *d*-simplices containing it lie in C_{α} , then its inside



Let's increase α from 0 to infinity and let $\Delta_T \in DT(S)$,

$$\Delta_T \quad \text{is} \quad \begin{cases} \text{not in } \mathcal{C}_{\alpha} & (\text{for } \alpha < a) \\ \text{in } \partial \mathcal{C}_{\alpha} & (\text{for } \alpha \in [a, b)) \\ \text{interior to } \mathcal{C}_{\alpha} & (\text{for } \alpha \in [b, \infty)) \end{cases} \quad \text{for all } \Delta_T \in DT(S)$$

The algorithm computes all possible α -shapes for *S*

Case 1: *d*-dimensional simplex (trivial)

Cannot be on the boundary: a = b = radius of its circumsphere

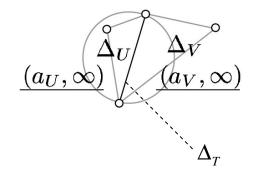
Case 2: *k*-dimensional simplex (*k*<*d*)

Idea: compute interval of k-simplex using already computed intervals for (k+1)-simplices.

 α -complex:

(i) it's circumsphere is empty and has radius smaller than α , or

(ii) Δ_T is a face of another simplex in $C_{\alpha}(S)$



 $\Delta_T \in \mathcal{C}_{\alpha} \quad \Leftrightarrow \quad \Delta_U \text{ or } \Delta_V \text{ in } \mathcal{C}_{\alpha}$ $\Leftrightarrow \quad \alpha \in (\min(a_U, a_V), \infty)$

Observation. Let
$$\Delta_T \in DT(S)$$

 $a = \min \{ a_U \mid B_U = (a_U, b_u), \Delta_U (k+1) \text{-}Simplex, T \subset U \}$

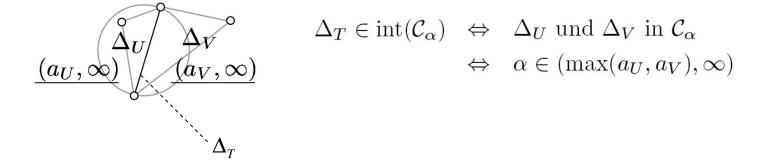
Then
$$\Delta_T \in \mathcal{C}_{\alpha}$$
 if and only if $\alpha \in (a, \infty)$.

 α -complex:

(i) it's circumsphere is empty and has radius smaller than α , or

(ii) Δ_T is a face of another simplex in $C_{\alpha}(S)$

If $\Delta_{\tau} \in \operatorname{conv} S$ then it must lie on the boundary



Observation. Let $\Delta_T \in C_s(\alpha)$ $b = \max \{ a_U \mid B_U = (a_U, b_u), B_U \text{ } d\text{-}Simplex \text{ } mit \ T \subset U \}$

Then $\Delta_T \in \text{interior of } C_s(\alpha) \text{ iff } \alpha \in (b, \infty)$

Whether a simplex lies on the boundary or inside

1. If $\Delta_T \in \text{conv}S$ then it must lie on the boundary

If all d-simplices containing it lie in C_{α} , then its inside

Edelsbrunner's Algorithm

Altogether we get the following algorithm:

```
procedure AlphaShape(S,d);
{Given a point-set S \subset \mathbb{R}^d, computes a list R of simplices \Delta_T and}
{two lists B, I of intervals such that \Delta_T \in \partial \mathcal{S}_{\alpha} if and only if \alpha \in B_T}
{and \Delta_T \in int(\mathcal{S}_{\alpha}) if and only if \alpha \in I_T.}
begin
    R := DT(S);
    for each d-simplex \Delta_T \in R do
        B_T := \emptyset; I_T := (\sigma_i, \infty);
    end for;
    for k := d - 1 to 0 by -1 do
        for each k-simplex \Delta_T \in R do
             if b_T is empty then
                 a := \sigma_T;
             else
                 a:=\min\{a_U \mid B_U=(a_U, b_u), \Delta_U \ (k+1)\text{-Simplex}, T \subset U\}
             if \Delta_T \in \partial \operatorname{conv}(S) then
                 b := \infty:
             else
                 b:=\max\{a_U \mid B_U = (a_U, b_u), B_U \text{ d-Simplex mit } T \subset U\};
             B_T := (a, b); I_T := (b, \infty);
        end for;
    end for:
    return (R, B, I);
end AlphaShape;
```


Two dimensions.

Delaunay triangulation doable in $O(n \log n)$ time

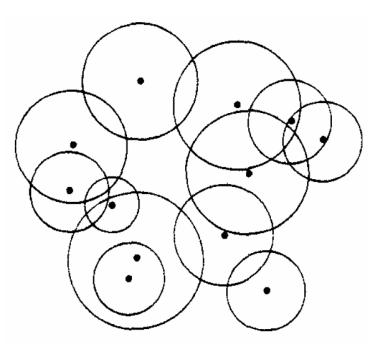
The number of simplices (faces) is O(n)

d dimensions.

The number of simplices is $\Theta(n^{\lfloor (d-1)/2 \rfloor})$!

 α -shapes are tightly related to another type of shape: **The union of** *d*-**dimensional balls** Connection to be established soon...

Let *B* be a set of n *d*-balls in R^d



Union of balls important for modeling molecules in chemistry and biology

Union of balls – The three primal diagrams

 $p_{b} = \{x \in \mathbb{R}^{d} : || x - b || \le || x - b' ||, b' \in B\} - voronoi \text{ cell}$ $q_{b} = p_{b} \cap b \text{ - intersection of the cell with its ball}$ $p_{T} = \bigcap_{b \in T} p_{b}$ $q_{T} = \bigcap_{b \in T} q_{b}$

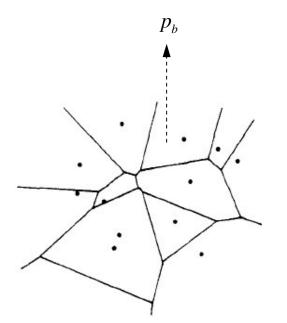
 $P = P(B) = \{p_T \mid \emptyset \neq T \subseteq B\}$ The *power diagram* of *B* (generalization of the Voronoi diagram)

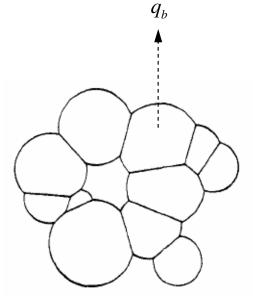
 $D = D(B) = \{q_T \mid \emptyset \neq T \subseteq B\}$ Intersection of P with U

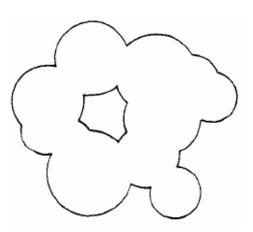
 $U = U(B) = \bigcup_{b \in B} b$

The *union* of the balls

Union of balls – The three primal diagrams







 $P = P(B) = \{ p_T \mid \emptyset \neq T \subseteq B \}$ $\mid P \models \bigcup_{p_T \in P} p_T = R^d$

 $D = D(B) = \{q_T \mid \emptyset \neq T \subseteq B\}$ $\mid D \models U$

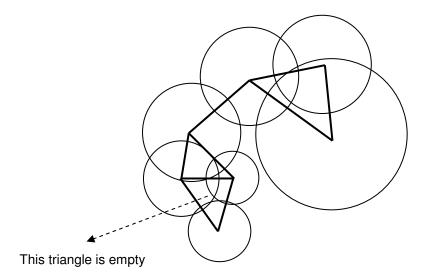
 $U = U(B) = \bigcup_{b \in B} b$

Union of balls – The three dual diagrams

Definition. Nerve of a collection of sets A is $N(A) = \{X \subseteq A \mid \bigcap_{a \in X} a \neq \emptyset\}$

All subsets of A with non-empty intersection (thus *N*(*A*) is an abstract simplicial complex)

Example: The nerve of *B* is the collection of all subsets of *d*-balls with non-empty common intersection



Geometric realization of the nerve of a set of balls

Union of balls – The three dual diagrams

 $\sigma_T \equiv$ Convex hull of the centers of the *d*-balls in *T* (actually the corresponding simplex *convT*)

 $R = R(B) = \{\sigma_T \mid \emptyset \neq p_T \in P\} \cup \{\emptyset\}$ The *regular triangulation* of *B* (Delaunay triangulation)

 $K = K(B) = \{\sigma_T \mid \emptyset \neq q_T \in D\} \cup \{\emptyset\}$ The *dual complex* of *D*

S = S(B) = |K| The *dual shape* of U

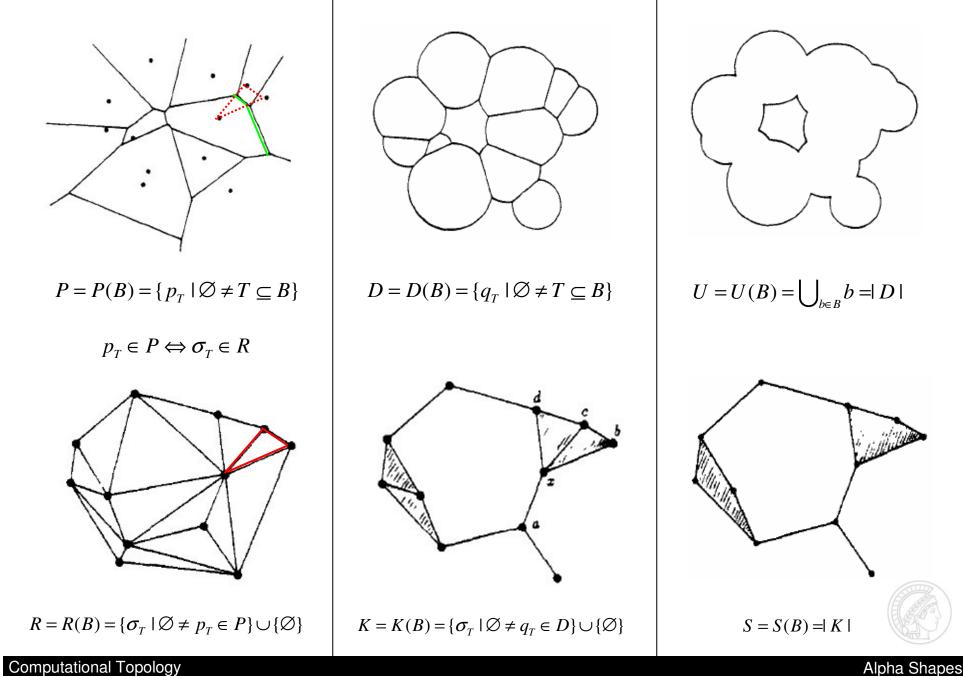
R and K are geometric realizations of the nerves of P, D

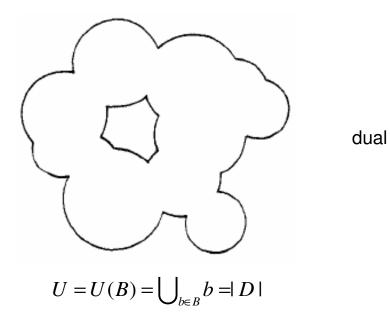
 $P = P(B) = \{ p_T \mid \emptyset \neq T \subseteq B \}$ $D = D(B) = \{ q_T \mid \emptyset \neq T \subseteq B \}$ $U = U(B) = \bigcup_{b \in B} b$

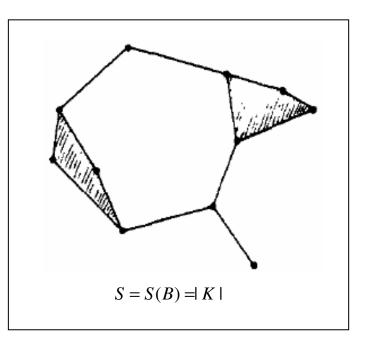
Computational Topology

Alpha Shapes

Union of balls – The three dual diagrams





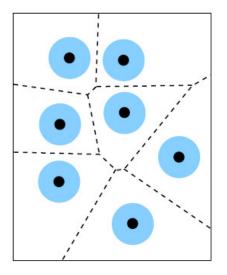


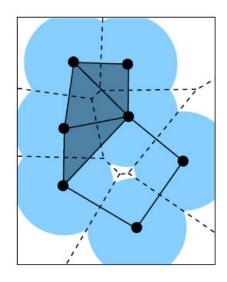
Boundary of this complex is the boundary of an α -shape* !

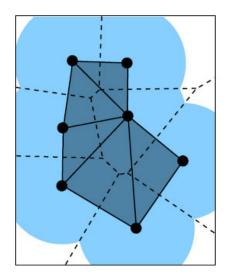
Alpha shape is the nerve of the union of balls intersected with their respective voronoi cells

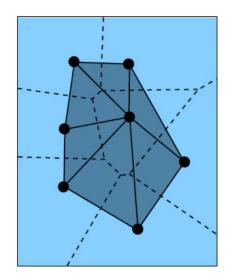
Anybody noticing any difference with the previous definition? :-)

Union of balls – Another definition of alpha-shapes









Computational Topology

Union of balls – Homotopy Equivalence

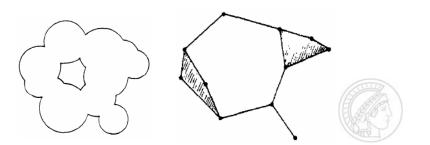
Result. They are homotopy equivalent!

S captures the basic topology of the union (but independently of dimension)

Deformation retraction. S is a deformation retraction of U

Intuitively, continuous deformation of *the space* until becomes *the subspace* without moving...

Special case of homotopy (the requirement of subspace is relaxed here)



Union of balls – Algorithmic implications of homotopy equivalence

For a topological space *Y*, the *k*-th homology group $H_k = H_k(Y)$ is an abelian group that expresses the *k*-dimensional connectivity of *Y*

Theorem. Two homotopy equivalent topological spaces have isomorphic homology groups.

Fact. There are very well known and efficient algorithms for computing homology groups of simplicial complexes.

Result. We have an efficient algorithm for computing the homology groups for the union of balls!

Union of balls – Algorithmic implications of homotopy equivalence

The Union of balls as a model for various molecules has

- Combinatorial
- Metric
- Topological properties
- Folding, Connectivity ...

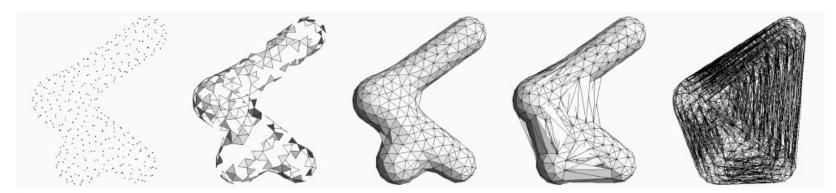
...directly computable from the α -shape which is computationally inexpensive

Examples:

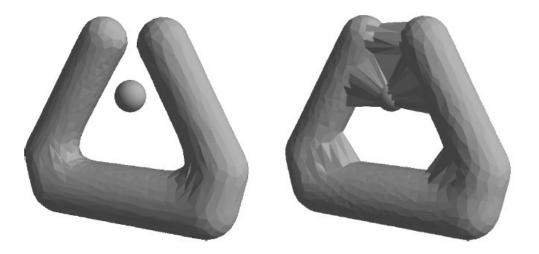
- · Counting faces of the union of balls
- Measuring the union of balls (ex. volume)
- Physical forces associated with the molecules etc.

Shape modeling.

Reconstruction of objects which have been sampled by points.



How to determine the "best" α ?



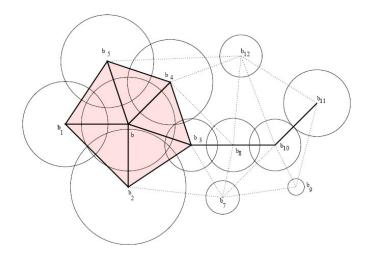
There are sets of points for which no satisfying α exists

- Low density point-set will require large α in order to connect...
- Non-uniform distribution of points not appropriate

Extensions – weighted alpha shapes

Generalization of α **-shapes** (the dual of the union of balls)

Each point has a weight assigned, α -shapes: all weights set to 0 Intuitively weights corresponds to radii of the balls



Again weighted alpha shape (again) is a polytope whose boundary is the union of all α -exposed simplices spanned by S

Different definition of α -exposed simplex

Solves the problem of classical α -shapes for non-uniform density of sample points

Problem: How to assign the weights?

Extensions – conformal alpha shapes

Conformal α -shape. Use a local scale parameter $\hat{\alpha}$ instead of the global scale parameter α Used for reconstructing 3-dimensional smooth surfaces from a finite sampling...

At each point *p* in *S* we put a ball of radius α_p determined from its internal alpha scale:

$$\alpha_p(\hat{\alpha}) = \alpha_p^+ \hat{\alpha} + \alpha_p^- \qquad \alpha_p^+ = \| p - p^* \| \alpha_p^- = \alpha_p^1 = 0$$

Let $C_p^{\hat{\alpha}}$ be the intersection of the voronoi cell and the ball at *p*, and let $C^{\hat{\alpha}}$ be the interior of $\bigcup_{p \in P} C_p^{\hat{\alpha}}$

Then conformal alpha complex is the Delaunay triangulation restricted to $C^{\hat{\alpha}}$

Also a filtration of the Delaunay triangulation DT(S)

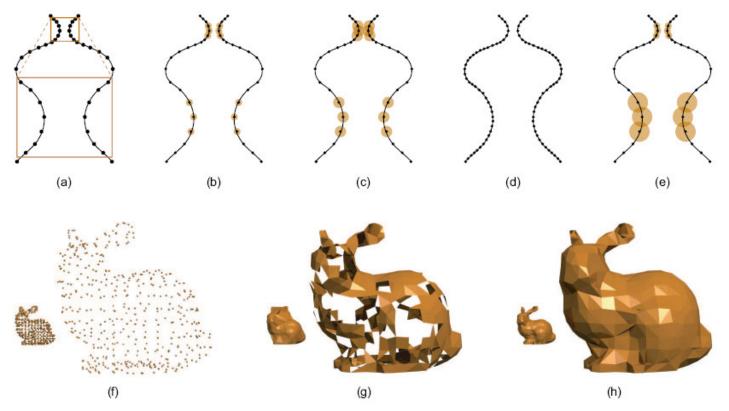


Fig. 5 Adapting the growth of the balls at the sample points as it is done for conformal α -shapes illustrates the superiority of conformal α -shapes (e) over uniform α -shapes (b,c) for curve and surface reconstruction from non-uniform samples (a). Uniform α -shapes would need uniform sampling as in (d). In (f) two scaled versions of a uniform sub-samples of the Stanford Bunny are shown in one scene to illustrate non-uniform sampling on a global scale. An α -shape for this sample is shown in (g) and a conformal α -shape is shown in (h).

