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Abstract—Besides high accuracy, stability of feature selection
has recently attracted strong interest in knowledge discov-
ery from high-dimensional data. In this study, we present
a theoretical framework about the relationship between the
stability and accuracy of feature selection based on a for-
mal bias-variance decomposition of feature selection error.
The framework also suggests a variance reduction approach
for improving the stability of feature selection algorithms.
Furthermore, we propose an empirical variance reduction
framework, margin based instance weighting, which weights
training instances according to their influence to the estimation
of feature relevance. We also develop an efficient algorithm
under this framework. Experiments based on synthetic data
and real-world microarray data verify both the theoretical
framework and the effectiveness of the proposed algorithm
on variance reduction. The proposed algorithm is also shown
to be effective at improving subset stability, while maintaining
comparable classification accuracy based on selected features.

Keywords-feature selection; stability; bias-variance decom-
position; variance reduction; high-dimensional data

I. INTRODUCTION

Various feature selection algorithms have been developed
with a focus on improving classification accuracy while
reducing dimensionality [1], [2], [3]. Besides high accuracy,
another important issue is stability of feature selection - the
insensitivity of the result of a feature selection algorithm
to variations to the training set. This issue is particularly
critical for applications where feature selection is used as
a knowledge discovery tool for identifying characteristic
markers to explain the observed phenomena. For example,
in microarray analysis, biologists are interested in finding
a small number of features (genes or proteins) that explain
the mechanisms driving different behaviors of microarray
samples [4]. A feature selection algorithm often selects
largely different subsets of features under variations to the
training data, although most of these subsets are as good as
each other in terms of classification performance [5], [6], [7].
Such instability dampens the confidence of domain experts
in experimentally validating the selected features.

The stability of feature selection is a complicated issue.
Recent studies on this issue [6], [7] have shown that the sta-
bility of feature selection results depends on various factors
such as data distribution, mechanism of feature selection,

and sample size. Moreover, the stability of feature selection
results should be investigated together with the predictive
performance of the selected features. Domain experts will
not be interested in a strategy (e.g., arbitrarily selecting the
same subset of features regardless of the input instances) that
yields very stable feature subsets but bad predictive models.

In this study, we present a theoretical framework about
feature selection stability based on a formal bias-variance
decomposition of feature selection error. The theoretical
framework explains the relationship between the stability
and accuracy of feature selection and guides the development
of stable feature selection algorithms. It suggests that one
does not have to sacrifice predictive accuracy in order to
get more stable feature selection results. A better tradeoff
between the bias and variance of feature selection can lead
to more stable results while maintaining or even improving
predictive accuracy based on the selected features.

Furthermore, we propose an empirical framework, vari-
ance reduction via margin based instance weighting, to
achieve such a better tradeoff. The main idea of this
framework is to first weight each instance in a training
set according to its influence to the estimation of feature
relevance, and then provide the weighted training set to a
feature selection algorithm. Intuitively, different instances in
a training set could have different influence on the feature
selection result according to their views (or local profiles)
of the relevance of each feature. If an instance shows a
noticeably distinct local profile from the other instances, its
absence or presence in the training data will substantially
affect the feature selection result. In order to reduce the
variance of feature selection result, instances with outlying
local profiles need to be weighted differently from the rest
of the instances. To this end, we develop an efficient margin
based instance weighting algorithm which assigns a weight
to each instance according to the outlying degree of its local
profile of feature relevance compared with other instances.
The local profile of feature relevance at a given instance is
measured based on the hypothesis margin of the instance.

Our experiments on synthetic data demonstrate the bias-
variance decomposition of feature selection error based on
the widely adopted SVM-RFE algorithm. These experiments
also verify the effectiveness of the proposed instance weight-
ing algorithm at reducing the variance of feature weighting
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by SVM-RFE, and in turn improving the stability and
predictive accuracy of the selected features by SVM-RFE.
Experiments on a set of public microarray data sets further
verify that the instance weighting algorithm is effective at
reducing the variance of feature weighting, improving the
stability of the selected subsets, while maintaining compa-
rable predictive accuracy based on the selected features by
SVM-RFE. Moreover, the instance weighting algorithm is
shown to be more effective and efficient than a recently
proposed ensemble feature selection method.

The rest of the paper is organized as follows. Section II
reviews related work in contrast with our work. Section III
introduces our theoretical framework on stability of feature
selection. Section IV describes an empirical framework of
margin based instance weighting and an efficient algorithm
developed under this framework. Section V evaluates the
theoretical and empirical frameworks based on synthetic and
microarray data. Section VI concludes the paper and outlines
future research directions.

II. RELATED WORK

There exist very limited studies on feature selection sta-
bility. Early work on this topic focuses on stability measures
and empirical evaluation of the stability of feature selection
algorithms [6], [8]. More recently, two approaches were pro-
posed to improve the stability of feature selection algorithms
without sacrificing classification accuracy. Saeys et al. stud-
ied bagging-based ensemble feature selection [9] which
aggregates the results from a conventional feature selection
algorithm repeatedly applied on a number of bootstrapped
samples of the same training set. Loscalzo et al. proposed an
alternative approach which exploits the intrinsic correlations
among a large number of features to identify consensus
feature groups and then selects relevant feature groups [7].
In contrast to existing studies on stable feature selection,
our study provides a theoretical framework which explains
the relationship between the stability and accuracy of fea-
ture selection. In addition, our study proposes an instance
weighting framework for improving the stability of feature
selection algorithms.

Another line of closely related research is margin based
feature selection. Several studies have developed feature
selection algorithms under the large margin principles, such
as SVM-based feature selection [10] and the Relief family
of algorithms [11], [12], [13]. These studies have shown
both nice theoretical properties and good generalization
performance of margin based feature selection algorithms,
but have not yet addressed the stability issue of feature
selection. Our study also employs the concept of margins in
the proposed margin based instance weighting algorithm. In
contrast with margin based feature selection algorithms (e.g.,
ReliefF [13]) which directly use margins to weight features,
our algorithm exploits the discrepancies among the margins
at various instances to weight instances. Our algorithm acts

as a preprocessing step to produce a weighted training set
which can be input to any feature selection algorithm capable
of handling weighted instances.

A problem related to the stability of feature selection
is the stability of learning algorithms. It is well known
that the generalization error of a learning algorithm can be
decomposed into bias, variance, and noise. Previous studies
on the bias-variance tradeoff [14], [15], [16] explain the
relationship between the stability and accuracy of learning
algorithms, while our study reveals the relationship between
the stability and accuracy of feature selection algorithms.

III. THEORETICAL FRAMEWORK

In this section, we formally define the stability of feature
selection from a sample variance perspective, present a
bias-variance decomposition of feature selection error, and
discuss the relationship between the stability and accuracy
of feature selection based on this decomposition.

Let D = {(x1, y1), ..., (xn, yn)} be a training set of n
labeled instances, where x ∈ �d, defined by d features
X1, ..., Xd, and y is the value of the class variable Y . In
general, the result of a feature selection algorithm F on a
training set D can be viewed as a vector r = (r1, ..., rd),
where rj (1 ≤ j ≤ d) is the estimated relevance score
of feature Xj assigned by F . Let r∗ = (r∗1 , ..., r∗d) be a
vector indicating the true relevance score of each feature to
the class. In this paper, we focus our discussion on feature
weighting algorithms, and adopt the commonly used squared
loss function (r∗j − rj)2 to measure the error made by F on
feature Xj . When there is no risk of ambiguity, we will
drop the subscript j and use r∗ or r to represent the true or
estimated relevance score of any feature X , respectively.

For the same feature X , a feature selection algorithm
F in general produces different estimated relevance scores
r based on different training sets D. Therefore, we can
speak of D as a random variable and use r(D) to represent
the estimated relevance score of feature X based on a
given training set. r(D) can be viewed as a Monte Carlo
estimate of r∗ for feature weighting algorithms which decide
the relevance score of each feature based on aggregating
the scores over all instances in a training set (e.g., the
Relief family of algorithms and SVM-based algorithms).
To evaluate the overall performance of F , the quantity of
interest is the expected loss (or error), EL(X), defined as:

EL(X) = E[(r∗ − r(D))2] =
�

D∈D

(r∗ − r(D))2p(D) , (1)

where D is the set of all possible training sets of size n
drawn from the same underlying data distribution, and p(D)
is the probability mass function on D .

Let E(r(D)) =
∑

D∈D r(D)p(D) be the expected value
of the estimates for feature X over D . The bias of a feature
selection algorithm F on a feature X is defined as:
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Bias(X) = [r∗ − E(r(D))]2 . (2)

The variance of a feature selection algorithm F on a feature
X is defined as:

V ar(X) = E[r(D)−E(r(D))]2 =
�

D∈D

[r(D)−E(r(D))]2p(D) .

(3)

Following the above definitions on the expected loss, bias,
and variance, for any feature X , we have the following
standard decomposition of the expected loss:

EL(X) = Bias(X) + V ar(X) .

Intuitively, the bias reflects the loss incurred by the central
tendency of F , while the variance reflects the loss incurred
by the fluctuations around the central tendency in response
to different training sets.

Extending the above definitions to the entire set of fea-
tures, we can speak of the average loss, average bias, and
average variance, and have the following decomposition
among the three:

1

d

d�

j=1

EL(Xj) =
1

d

d�

j=1

Bias(Xj) +
1

d

d�

j=1

V ar(Xj) . (4)

The average variance component naturally quantifies the
sensitivity or instability of a feature selection algorithm
under training data variations; lower average variance means
higher stability of the algorithm. We will use the average
variance as one of the stability measures in our empirical
study. The above bias-variance decomposition is for feature
weighting algorithms under squared loss function, and can
be extended to feature subset selection algorithms under
zero-one loss function in future study.

The above bias-variance decomposition reveals the rela-
tionship between the stability (the opposite of variance) and
the accuracy (the opposite of error) of feature selection.
Reducing either the bias or the variance alone does not
necessarily reduce the error, but a better tradeoff between the
bias and the variance does. One thing to note at this point is
that the error of feature selection in the above decomposition
is measured with respect to the true relevance of features,
not the generalization error of the model learned based on
the selected features. The former, in theory, is consistent
with the latter; a perfect weighting of the features leads
to an optimal feature set and hence an optimal Bayesian
classifier [17]. However, in practice, the generalization error
depends on both the error of feature selection and the bias-
variance properties of the learning algorithm itself.

The framework presented here also sheds lights on the
relationship between the stability of feature selection and the

predictive accuracy based on the selected features. Existing
studies on stable feature selection [6], [9] showed that
different feature selection algorithms performed differently
w.r.t. stability and predictive accuracy, and there was no clear
winner in terms of both measures. They suggested a tradeoff
between the stability and predictive accuracy. To pick the
best algorithm for a given data set, a user could use a joint
measure which weights the two criteria based on the user’s
preference on higher accuracy or higher stability. In contrast
to the previous studies, our theoretical framework suggests
that one does not have to sacrifice predictive accuracy in
order to get more stable feature selection results. A better
tradeoff between the bias and variance of feature selection
can lead to more stable feature selection results, while
maintaining or even improving predictive accuracy based
on selected features. In the next section, we propose an
empirical framework to achieve such a better tradeoff for
feature weighting algorithms.

IV. EMPIRICAL FRAMEWORK: MARGIN BASED
INSTANCE WEIGHTING

The empirical framework is motivated by importance sam-
pling, one of the commonly used variance reduction tech-
niques [18]. The theory of importance sampling suggests that
in order to reduce the variance of a Monte Carlo estimator
(e.g., the estimate of feature relevance by a feature weighting
algorithm based on a training set), instead of performing
i.i.d. sampling, we should increase the number of instances
taken from regions which contribute more to the quantity
of interest and decrease the number of instances taken from
other regions. When given only the empirical distribution
in a training set, although we cannot redo the sampling
process, we can simulate the effect of importance sampling
by increasing the weights of instances taken from more
important regions and decreasing the weights of those from
other regions. Therefore, the problem of variance reduction
for feature selection boils down to finding an empirical
solution of instance weighting. Section IV-A presents the
main ideas of the proposed framework of instance weighting
for variance reduction. Section IV-B provides the technical
details of the margin based instance weighting algorithm
developed under this framework.

A. Margin Vector Feature Space
Margins [19] measure the confidence of a classifier w.r.t.

its decision, and have been used both for theoretical gen-
eralization bounds and as guidelines for algorithm design.
There are two natural ways of defining the margin of an
instance w.r.t. a hypothesis [20]. Sample margin as used by
SVMs [19] measures the distance between the instance and
the decision boundary of the hypothesis. Hypothesis margin
as used by AdaBoost [21] measures the distance between
the hypothesis and the closest hypothesis that assigns an
alternative label to the given instance. Feature selection
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Figure 1. An illustrative example for Margin Vector Feature Space. Each data point in the original feature space (left) is projected to the margin vector
feature space (right) according to its hypothesis margin in the original feature space.

algorithms developed under the large margin principles [10],
[12] evaluate the relevance of features according to their
respective contributions to the margins.

In our framework of instance weighting, we employ the
concept of margin in a different way. By decomposing the
margin of an instance along each dimension, the instance
in the original feature space can be represented by a new
vector (called margin vector) in the margin vector feature
space defined as follows.
Definition 1: Let x = (x1, ..., xd) be an instance in the

original feature space �d, and xH and xM represent the
nearest instances to x with the same and opposite class
labels, respectively. For each x ∈ �d, x can be mapped
to x′ in a new feature space �′d according to

x′
j = |xj − xM

j | − |xj − xH
j | , (5)

where x′
j is the jth coordinate of x′ in the new feature space

�′d, and xj , xM
j , or xH

j is the jth coordinate of x, xH or
xM in �d, respectively. Vector x′ is called the margin vector
of x, and �′d is called the margin vector feature space.

In essence, x′ captures the local profile of feature rele-
vance for all features at x. The larger the value of x′

j , the
more feature Xj contributes to the margin of instance x.
Thus, the margin vector feature space captures local feature
relevance profiles (margin vectors) for all instances in the
original feature space. Figure 1 illustrates the idea of margin
vector feature space through a 2-d example. Each instance
in the original feature space is projected into the margin
vector feature space according to Eq. (5). We can clearly see
that instances labeled with triangles exhibit largely different
outlying degrees in the two feature spaces. Specifically,
those in the dashed ovals are evenly distributed within the
proximity to the rest of the triangles (except the outlier on
the leftmost) in the original feature space, but are clearly

separated from the majority of the instances in the margin
vector feature space. The outlier triangle in the original space
becomes part of the the majority group in the margin vector
feature space. To decide the overall relevance of feature
X1 vs. X2, one intuitive idea is to take the average over
all margin vectors, as adopted by the well-known Relief
algorithm [13]. However, since the triangles in the dashed
oval exhibit distinct margin vectors from the rest of the
instances, the presence or absence of these instances will
affect the global decision on which feature is more relevant.

From this illustrative example, we can see that the margin
vector feature space captures the distance among instances
w.r.t. their margin vectors (instead of feature values in the
original space), and enables the detection of instances that
largely deviate from others in this respect. By identifying
and reducing the emphasis on these outlying instances, more
stable results can be produced from a feature selection
algorithm. In the next section, we will further discuss how
to exploit such discrepancy to weight instances in order
to alleviate the affect of training data variations on feature
selection results.

B. Margin Based Instance Weighting Algorithm
The previous definition and example of margin vector

feature space only consider one nearest neighbor from
each class. To reduce the affect of noise or outliers in
the training set on the transformed feature space, multiple
nearest neighbors from each class can be used to compute
the margin vector of an instance. In this work, we consider
all neighbors from each class for a given instance. Eq. (5)
can then be extended to:

x′
j =

m�

l=1

|xj − x
Ml
j | −

h�

l=1

|xj − x
Hl
j | , (6)

209



Algorithm 1 Margin Based Instance Weighting
Input: training data D = {xi}n

i=1

Output: weight vector w for all instances in D
// Feature Space Transformation
for i = 1 to n do
for j = 1 to d do

For xi, compute x′
i,j according to Eq. (6)

end for
end for
// Instance Weighting
Calculate and store pair-wise distances among all margin
vectors x′i
for i = 1 to n do

For xi, compute its weight w(xi) according to Eq. (7)
end for

where xHl
j or xMl

j denotes the jth component of the lth
neighbor to x with the same or different class labels,
respectively. m or h represents the total number of misses
or hits (m + h equals the total number of instances in the
training set excluding the given instance).

Once the margin vector feature space is generated, the
next task is to exploit the discrepancy of margin vectors
in this space to weight instances in the original space. To
quantitatively evaluate the outlying degree of each margin
vector x′, we measure the average distance of x′ to all
other margin vectors; greater average distance indicates
higher outlying degree. As illustrated in Figure 1, the global
decision of feature relevance is more sensitive to instances
that largely deviate from the rest of the instances in the
margin vector feature space than to instances that have
low outlying degrees. To improve the stability of a feature
selection algorithm under training data variations, we assign
lower weights to instances with higher outlying degrees. This
decision is consistent with the intuition behind importance
sampling introduced earlier. Specifically, the weight for an
instance x in the original feature space is given by the
following formula:

w(x) =
1/dist(x′)�n

i=1 1/dist(x′i)
, (7)

where

dist(x′) =
1

n − 1

n−1�

i=1,x′i �=x′
dist(x′, x′i) .

Algorithm 1 outlines the key steps of margin based
instance weighting. Both feature space transformation and
instance weighting involve distance computation along all
features for all pairs of instances: the former in the original
feature space, and the latter in the margin vector feature

space. Since these computations dominate the time com-
plexity of the algorithm, the overall time complexity of the
algorithm is O(n2 ∗ d), where n is the sample size and d
is the number of features in a training set. Therefore, the
algorithm is very efficient for high-dimensional data with
small sample size (i.e., n << d).

V. EMPIRICAL STUDY

The objective of empirical study is threefold: (1) to
demonstrate the bias-variance decomposition proposed in
Section III; (2) to verify the effectiveness of the proposed
instance weighting algorithm on variance reduction; and (3)
to verify the effect of variance reduction on improving the
stability and predictive performance of the selected subsets.
Section V-A introduces the subset stability measure used
in our experiments. In Section V-B, using synthetic data
with prior knowledge of the true relevance of features,
we demonstrate the bias-variance decomposition based on
the widely adopted SVM-RFE algorithm. We further show
that the proposed instance weighting algorithm significantly
reduces the variance of feature weights assigned by SVM-
RFE, and consequently, improves both the stability and
the classification accuracy of the selected feature subsets.
In Section V-C, we further verify the effectiveness of the
instance weighting algorithm on variance reduction and sta-
bility improvement based on real-world microarray data sets.
Moreover, we show that the instance weighting algorithm
is more effective and efficient than a recently proposed
ensemble feature selection method.

A. Subset Stability Measure
The variance defined in Section III naturally quantifies

the instability of a feature selection algorithm w.r.t. feature
weights. The stability of a feature selection algorithm can
also be measured w.r.t. the selected subsets. Following [6],
[7], we take a similarity based approach where the sta-
bility of a feature selection algorithm is measured by the
average over all pairwise similarity comparisons among
all feature subsets obtained by the same algorithm from
different subsamplings of a data set. Let {Di}q

i=1 be a set
of subsamplings of a data set of the same size, and Si be
the subset selected by a feature selection algorithm F on
the subsampling Di. The stability of F is given by

Sim =
2
�q

i=1

�q
j=i+1 Sim(Si, Sj)

q(q − 1)
, (8)

where Sim(Si, Sj) represents a similarity measure between
two subsets. For specific measure, we adopt the Kuncheva
index, suggested by [8], defined as follows:

Sim(Si, Sj) =
|Si ∩ Sj | − (k2/d)

k − (k2/d)
, (9)
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where d denotes the total number of features in a data
set and k = |Si| = |Sj | denotes the size of the selected
subsets. The Kuncheva index takes values in [-1,1], with
larger value indicating larger number of common features
in both subsets. The k2/d term in the index corrects a bias
due to the chance of selecting common features between two
randomly chosen subsets. An index close to zero reflects that
the overlap between two subsets is mostly due to chance.

B. Experiments on Synthetic Data
1) Experimental Setup: The data distribution used to

generate training and test sets consists of 1000 random
variables (features) from a mixture of two multivariate
normal distributions: N1(μ1, Σ) and N2(μ2, Σ), with means

μ1 = (0.5, ..., 0.5,︸ ︷︷ ︸
50

0, ..., 0︸ ︷︷ ︸
950

) ,

μ2 = (−0.5, ...,−0.5,︸ ︷︷ ︸
50

0, ..., 0︸ ︷︷ ︸
950

) ,

and covariance

Σ =

⎡
⎢⎢⎢⎣

Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 0 · · · Σ100

⎤
⎥⎥⎥⎦ ,

where Σ is a block diagonal matrix, and Σi is a 10 × 10
square matrix with elements 1 along its diagonal and 0.8
off its diagonal. So, there are 100 correlated groups with 10
features per group. The class label of each instance from this
distribution is decided by the sign of a linear combination
of all feature values according to the optimal weight vector

r∗ = (0.02, ..., 0.02,︸ ︷︷ ︸
50

0, ..., 0︸ ︷︷ ︸
950

) .

Note that the weights of all features sums to 1. The first 5
groups of features are equally relevant, and the rest of the
features are irrelevant.

To measure the variance, bias, and error of a given
feature selection algorithm according to the definitions in
Section III, we simulate D , the distribution of all possible
training sets, by 500 training sets randomly drawn from the
above data distribution. Each training set consists of 100
instances with 50 from N1 and 50 from N2. To measure
the predictive performance of the selected features, we also
randomly draw a test set of 5000 instances.

For experiments with synthetic data, we focus on SVM-
RFE [10], a widely adopted feature selection algorithm
for high-dimensional data. The main process of SVM-RFE
is to recursively eliminate features of low weights, using
SVM to determine feature weights. Starting from the full
set of features, at each iteration, the algorithm trains a
linear SVM classifier based on the remaining set of features,
ranks features according to the absolute values of feature

weights in the optimal hyperplane, and eliminates one or
more features with the lowest weights. This recursive feature
elimination (RFE) process stops until all features have been
removed or a desired number of features is reached. In our
implementation, 10 percent of the remaining features are
eliminated at each iteration (as suggested by the authors
of the algorithm). We used Weka’s implementation [22] of
SVM (linear kernel, default C parameter).

To measure the variance, bias, and error of SVM-RFE,
we alternatively view the RFE process as an iterative feature
weighting process, and associate a normalized weight vector
r = (r1, ..., rd) (

∑d
j=1 rj = 1, rj ≥ 0) to the full set of d

features. At each iteration of the RFE process, the weight
of each feature is determined according to rj = |wj |�d

j=1 |wj | ,
where wj = 0 for the eliminated features, and wj equals the
weight of feature j in the current optimal hyperplane for the
remaining features.
2) Bias-Variance Decomposition and Variance Reduction

w.r.t. Feature Weights: Given the 500 training sets described
above, SVM-RFE is applied on each training set, and the
resulting normalized weights for all features are recorded at
each iteration of the RFE process. The variance, bias, and
error over all features (as defined in Eqs. (1)-(4)) are then
calculated at each iteration of the RFE process. To verify
the effect of instance weighting on variance reduction, the
proposed instance weighting algorithm is also applied on
each training set to produce its weighted version. SVM-
RFE is then repeatedly applied on the 500 weighted training
sets in order to measure its variance, bias, and error under
instance weighting. We refer to the instance weighting
version of SVM-RFE as IW SVM-RFE.

Figure 2 reports the variance, bias, and error of SVM-
RFE based on both the original and weighted training sets
across the RFE process (until 10 features remain at the 40th
iteration). We can observe the following three major trends.
First, for both versions of SVM-RFE, at any iteration, the
error is always equal to the sum of the variance and the bias,
which is consistent with the bias-variance decomposition of
error shown in Eq. (4). Second, for both versions of SVM-
RFE, the error is first dominated by the bias during the early
iterations when many irrelevant features are assigned non-
zero weights, and then becomes dominated by the variance
during the later iterations when some relevant features are
assigned zero weights. In particular, the error of IW SVM-
RFE reaches to almost zero at the 28th iteration when the
number of remaining features is closest to 50 (the number of
truly relevant features). Before or after that point, its error
almost solely results from its bias or variance, respectively.
Third, IW SVM-RFE exhibits significantly lower variance
and bias (hence, lower error) than SVM-RFE when the
number of remaining features approaches to 50.
3) Stability and Predictive Performance w.r.t. Selected

Subsets: We next verify the effect of variance reduction
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Figure 2. Variance, Bias, and Error of the feature weights assigned by the conventional and Instance Weighting (IW) versions of the SVM-RFE algorithm
at each iteration of the Recursive Feature Elimination (RFE) process for synthetic data.
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Figure 3. Stability (by Kuncheva Index) and predictive performance (by accuracy of linear SVM) of the selected subsets by the conventional and Instance
Weighting (IW) versions of the SVM-RFE algorithm at each iteration of the Recursive Feature Elimination (RFE) process for synthetic data.

on improving the stability and predictive performance of
the selected subsets. Figure 3 (left) compares the subset
stability (by Kuncheva index) of SVM-RFE and IW SVM-
RFE across the RFE process (until about 50 features remain
at the 28th iteration). To measure predictive performance, for
each training set, a linear SVM classifier is trained based on
the selected subset at each RFE iteration and tested on the
independent test set. Figure 3 (right) compares the average
classification accuracy (over the 500 training/test trials) of
linear SVM at each RFE iteration.

From Figure 3 (left), we can observe that the stability of
the subsets selected by IW SVM-RFE becomes significantly
higher than those selected by SVM-RFE as the number of
selected features approaches to the number of truly relevant
features at the 28th iteration. Examining the trend of subset
stability together with the trend of variance (in Figure 2), we
can see that the reduction of variance by instance weighting
goes in parallel with the improvement of subset stability,
except for the early iterations when irrelevant features are
eliminated largely by chance. Note that both versions of
SVM-RFE exhibit very low stability during the early itera-
tions, because of the inclusion of the correction term in the
Kuncheva index. From Figure 3 (right), we can observe that
the subsets selected by IW SVM-RFE also result in higher
classification accuracy than those selected by SVM-RFE.
The difference is particularly significant during iterations

when IW SVM-RFE exhibits much higher stability than
SVM-RFE. Overall, results from Figure 2 and Figure 3
demonstrate that variance reduction by instance weighting,
an approach for a better bias-variance tradeoff, can lead to
increased subset stability as well as improved classification
accuracy based on the selected features.

C. Experiments on Real-World Data
1) Experimental Setup: We experimented with four fre-

quently studied microarray data sets characterized in Table I.
For the Lung data set, we applied a t-test to the original data
set and only kept the top 5000 features in order to make the
experiments more manageable.

Table I
SUMMARY OF MICROARRAY DATA SETS.

Data Set # Features # Instances Source
Colon 2000 62 [23]
Leukemia 7129 72 [24]
Prostate 6034 102 [25]
Lung 12533 181 [26]

In addition to SVM-RFE and its instance weighting ver-
sion, IW SVM-RFE, we also evaluated the performance of a
recently proposed bagging-based ensemble feature selection
method [9], using SVM-RFE as the base algorithm. Given
a training set, the bagging ensemble method first generates
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Figure 4. Variance of the feature weights assigned by the conventional and Instance Weighting (IW) versions of the SVM-RFE algorithm at each iteration
of the Recursive Feature Elimination (RFE) process for microarray data.
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Figure 5. Stability (by Kuncheva Index) of the selected subsets by the conventional, Ensemble (En), and Instance Weighting (IW) versions of the
SVM-RFE algorithm for microarray data.

a number of bootstrapped training sets, and then repeatedly
applies the base algorithm on each of the newly created
training sets to generate a number of feature rankings. These
rankings are aggregated into a final consensus ranking by
summing the ranks of each feature decided based on all
bootstrapped training sets. In our implementation, we used
20 bootstrapped training sets to construct the ensemble. We
refer to the ensemble version of SVM-RFE as En SVM-
RFE. In contrast to IW SVM-RFE which only applies
SVM-RFE once on a weighted training set, En SVM-RFE
applies SVM-RFE on a number of bootstrapped training sets
generated from the original training set.

To evaluate the performance of the three versions of SVM-
RFE on a given data set, we applied the 10 fold cross-
validation procedure. The original, ensemble, and instance
weighting versions of SVM-RFE were repeatedly applied to
9 out of the 10 folds to produce feature weights and select
subsets of features at various sizes, while a different fold was
hold out each time. For each selected subset, both a linear
SVM and a KNN (K=1) classifiers were trained based on the
selected features and the training set, and then tested on the
corresponding hold-out test set. The subset stability of each
algorithm was measured based on Eq. (8). The predictive
performance of each algorithm was measured based on the
CV accuracies of the linear SVM and KNN classifiers.
2) Variance Reduction w.r.t. Feature Weights: Since the

true relevance of features is usually unknown for real-world
data, it is infeasible to measure the bias and error of feature
selection and study the effect of instance weighting on them

for real-world data. Nevertheless, we can still evaluate the
effect of instance weighting on the variance of SVM-RFE
following a similar procedure as used for synthetic data.
Figure 4 reports the variance of SVM-RFE and IW SVM-
RFE across the RFE process for each of the four microarray
data sets. Since these data sets contain various numbers of
features, to make all figures comparable along the horizontal
axis, each variance curve is made to show 40 iterations
starting from when about 1000 features remain until when
about 10 features remain (the same range shown in Figure 2
for synthetic data). As shown from Figure 4, the variance
for both versions of SVM-RFE remains almost zero in the
early iterations. However, in the later iterations, the variance
of SVM-RFE increases sharply as the number of remaining
features approaches to 10, while the variance of IW SVM-
RFE shows a significantly slower rate of increase than SVM-
RFE. Such observations demonstrate the effect of instance
weighting on variance reduction on real-world data.

3) Stability and Predictive Performance w.r.t. Selected
Subsets: Figure 5 reports the subset stability across different
numbers of selected features for SVM-RFE in three versions
on four data sets. Instance weighting significantly improves
the stability of SVM-RFE, which is consistent with both
the trend of subset stability improvement observed from
synthetic data and the variance reduction effect of instance
weighting mentioned above. Moreover, a comparison of the
stability of IW SVM-RFE and En SVM-RFE indicates
that instance weighting is more effective than ensemble for
improving the stability of SVM-RFE.
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Table II
CLASSIFICATION ACCURACY OF THE SELECTED SUBSETS BY THE CONVENTIONAL, ENSEMBLE (En), AND INSTANCE WEIGHTING (IW) VERSIONS OF

THE SVM-RFE ALGORITHM FOR MICROARRAY DATA.

Number of Selected Features
Data Set Classifier Selection Method 10 20 30 40 50
Colon SVM SVM-RFE 82.1±3.5 82.1±3.8 81.9±4.9 82.4±3.6 82.1±3.3

En SVM-RFE 82.1±4.5 83.9±2.8 83.2±4.5 82.5±4.0 83.2±4.0
IW SVM-RFE 82.8±2.3 86.6±1.3 86.3±3.1 85.6±3.6 84.6±2.6

1NN SVM-RFE 76.8±3.8 78.7±3.9 79.5±3.7 81.0±3.0 81.8±3.5
En SVM-RFE 76.5±4.5 80.3±2.5 79.0±3.1 79.2±3.1 80.2±3.6
IW SVM-RFE 76.4±4.0 77.6±5.6 77.7±3.3 78.8±2.4 79.7±2.6

Leukemia SVM SVM-RFE 95.0±2.0 96.0±1.4 96.7±1.2 96.8±0.7 97.1±0.8
En SVM-RFE 94.4±1.3 96.0±1.0 96.2±0.9 95.8±1.1 96.8±1.3
IW SVM-RFE 92.9±1.2 94.7±1.8 96.0±1.5 96.4±1.2 96.5±0.7

1NN SVM-RFE 93.6±2.2 95.3±1.2 95.8±1.6 95.7±1.0 96.5±1.8
En SVM-RFE 93.3±1.9 94.2±2.2 95.1±1.8 95.4±3.0 95.7±2.4
IW SVM-RFE 92.8±1.9 95.1±1.3 95.3±1.4 94.7±1.4 95.7±1.8

Prostate SVM SVM-RFE 91.9±2.3 92.3±2.0 93.0±1.6 92.6±1.6 93.8±0.9
En SVM-RFE 93.0±2.5 92.9±1.3 93.8±1.9 94.4±1.7 94.1±1.2
IW SVM-RFE 93.0±1.3 92.0±1.1 91.3±1.6 91.2±1.7 91.2±1.2

1NN SVM-RFE 90.3±3.1 90.5±3.9 91.7±2.7 91.7±2.5 92.3±1.2
En SVM-RFE 89.7±2.7 91.7±2.7 91.6±2.3 92.1±2.2 92.3±1.8
IW SVM-RFE 91.0±1.7 90.9±1.3 90.5±2.2 90.2±2.4 91.6±2.3

Lung SVM SVM-RFE 98.3±0.4 98.8±0.3 99.0±0.3 99.0±0.3 98.9±0.0
En SVM-RFE 98.8±0.5 98.8±0.2 98.8±0.2 99.0±0.2 98.9±0.0
IW SVM-RFE 98.5±0.5 98.8±0.2 98.9±0.0 99.1±0.3 99.0±0.2

1NN SVM-RFE 98.2±0.4 98.5±0.4 98.4±0.6 98.6±0.4 98.7±0.3
En SVM-RFE 98.8±0.2 98.5±0.4 98.6±0.5 98.7±0.3 98.5±0.3
IW SVM-RFE 98.8±0.6 98.5±0.6 98.8±0.2 98.9±0.0 98.9±0.0

Table II reports the classification accuracy (average value
± standard deviation) of linear SVM and 1NN based on
the selected features by the three versions SVM-RFE, re-
spectively. The three algorithms in general lead to very
similar classification accuracy. Except for a few cases, the
differences in the average accuracy values produced by
the three algorithms are insignificant given the standard
deviations. The accuracy results in Table II verify that
the increased stability resulted from instance weighting (as
shown in Figure 5) is not at the price of accuracy.

Observations from Figure 5 and Table II indicate that dif-
ferent feature selection algorithms can lead to similarly good
classification results, while their stability performance can
largely vary. The difficulty in distinguishing feature selection
algorithms in terms of classification accuracy mainly lies in
the small sample size of the test sets in microarray data as
opposed to synthetic data used in Section V-B. Studying the
stability of feature selection provides a new perspective to
domain experts in choosing a feature selection algorithm and
validating the selected features.

4) Algorithm Efficiency: Figure 6 compares the running
time of the three versions of SVM-RFE on the entire data
set for each microarray data set. En SVM-RFE is almost 20
times slower than SVM-RFE, while IW SVM-RFE is only
slightly slower than SVM-RFE. The efficiency of IW SVM-
RFE lies in the fact that the instance weighting process acts
as a preprocessing step which is executed only once. Such
slight extra cost of instance weighting leads to significantly
increased stability of IW SVM-RFE.

 0

 5

 10

 15

 20

 25

Colon Leukemia Prostate Lung

Ti
m

e 
(1

02  S
ec

on
ds

)

SVM-RFE
En SVM-RFE
IW SVM-RFE

Figure 6. Running time for the conventional, Ensemble (En), and Instance
Weighting (IW) versions of the SVM-RFE algorithm on microarray data.

VI. CONCLUSION

In this paper, we have presented a theoretical framework
which reveals the relationship between the stability and
accuracy of feature selection. We have also developed an
empirical instance weighting framework for variance reduc-
tion and a margin based instance weighting algorithm. Our
empirical study has verified that instance weighting is an
effective and efficient approach to reduce the variance and
improve the stability of feature selection algorithms without
sacrificing predictive accuracy.
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The specific algorithm developed under the instance
weighting framework was meant to demonstrate the effec-
tiveness of the framework, and can be improved in various
ways. In the future, we plan to investigate alternative meth-
ods for weighting instances according to margin vectors and
study the effectiveness of the instance weighting framework
for other feature selection algorithms. Along the theoretical
framework, an interesting direction would be to investigate
how the stability of feature selection affects the bias-variance
properties of various learning algorithms.
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