
SIMPLY RICH

ZK

The Product Overview

January 2006

Potix Corporation

Last Modified
January 21, 2006

ZK: Product Overview Page 1 of 16 Potix Corporation

ppoottiixxppoottiixx

Copyright © 2005-2006 Potix Corporation. All rights reserved.

The material in this document is for information only and is subject to change without notice. While reasonable efforts have
been made to assure its accuracy, Potix Corporation assumes no liability resulting from errors or omissions in this document,
or from the use of the information contained herein.

Potix Corporation may have patents, patent applications, copyright or other intellectual property rights covering the subject
matter of this document. The furnishing of this document does not give you any license to these patents, copyrights or other
intellectual property.

Potix Corporation reserves the right to make changes in the product design without reservation and without notification to its
users.

The Potix logo and ZK are trademarks of Potix Corporation.

All other product names are trademarks, registered trademarks, or trade names of their respective owners.

ZK: Product Overview Page 2 of 16 Potix Corporation

Executive Summary

As the Web continues to extend its reach into our daily lives, traditional page-based Web
applications face a substantial challenge: the inability to visually represent the complexities in
today's applications. The result are two folds: frustrated user experiences and excessive
development costs.

Over a decade of evolution, Web applications evolved from static HTML pages, to Dynamic HTML
pages, to Java applets and Flash, and, finally, to Ajax technologies (Asynchronous JavaScript and
XML). Illustrated by Google Maps and Netflex, Ajax breathes new life into Web application by
delivering the similar richness of desktop applications without special plug-in at the browser.

Enabling the rich user experiences by Ajax means adding more cost and risk to the already costly
Web development. It includes more skill prerequisites for development, such as JavaScript and
asynchronous programming. It includes more maintenance efforts, such as replication of business
logic at thousands upon thousands of clients.

In response to this challenge, Potix has developed technologies and tools that enable Web
applications to have both the rich user experiences and the simple programming model. The core
of the Potix solution is ZK, which includes an Ajax-based event-driven engine to automate
interactivity, a rich set of XUL and XHTML components to enrich usability, and a markup language
to design user interfaces without programming.

With ZK, you represent your application in feature-rich off-the-shelf XUL and XHTML components,
and manipulate them by listening to events triggered by users, as you did for years in desktop
applications. All your application codes are running at the server, while the visual representations
of components and user activities at the browsers are automatically synchronized by ZK.

Your users get the same engaged interactivity and responsiveness as using desktop applications,
while your development remains the same simplicity as coding desktop applications. Meanwhile,
your art designers, by use of a modern markup language, weave your fantastic user interfaces
without programming as straight-forward as authoring Web pages with HTML.

The reach of your applications is boundless. With the standard edition, your applications could
reach browsers that support HTML and JavaScript. With upcoming ZK for Mobile, your applications
could reach any devices that support J2ME, such as PDA, mobiles and game consoles. Moreover,
you don't need to modify your application at all1.

To maximize ZK potential and to minimize the worry of vendor lock-in, Potix opens the source
codes of ZK under GPL2. It got examined and testified from eyeballs all around the world. You got
the freedom to add your value in, and to choose support and components from other parties.

1 For devices with small screen, you usually have to adjust the presentation pages.

2 http://www.fsf.org/licensing

ZK: Product Overview Page 3 of 16 Potix Corporation

The simplest way to make Web applications rich.

ZK: Product Overview Page 4 of 16 Potix Corporation

Introduction

As the Web reaching our daily lives, the effectiveness of Web applications to communicate with
users and the simplicity of developing Today's sophisticated applications becomes more important
than ever. In response to this challenge, Potix has developed technologies and tools that enable
Web applications to have both the rich user experiences and the simple programming model.

Traditional Web Applications

The Web has emerged as the default platform for application development, as the Web continues
to extend its reach into offices, family and our daily lives. The adoption and usage of the Web has
acted as the driving force behind Information Technology spending. It covers everything from
filing expense claims to oversea collaboration, from shopping to sharing photos, from business to
consumers, from technology to culture. According to IDC3, Enterprise Information Portals (EIP),
B2B and B2C applications, and e-Commerce spending are expected to grow at 41.2%
($3billitons), 20%, 57.2% ($5.7 trillions) CAGR in 2006, respectively.

As the Web continues to extend its ubiquitous reach and popularity, traditional Web applications
face a substantial challenge: the inability to visually represent the complexities in today's
applications. The limitations are inherent from the page-based and stateless-communication
model.

In this model, a page is self-contained and the minimal unit to communicate between clients and
servers. While simple and elegant in design and for exchanging documents, ironically the page-
based model has become cumbersome and complex for developing modern applications.

For example, to give a customer a quotation, you might
have to open another page to search his trading records,
another page for the recent prices, and another page for
current stocking. Users are forced to leave the page he is
working on, and navigate among several pages. It is easy
to get lost and confused, and the result is unhappy
customers, lost sales and low productivities.

The challenge to develop a modern application upon this
page-based model is also substantial. In this model,
applications running at the server have to take care
everything from parsing the request, rendering the
response, routing processes that link users from one page
to another, and handling versatile errors made by users.
Tens of frameworks, such as Struct, Tapestry and JSF, are then emerged to simplify this

3 http://download.macromedia.com/pub/solutions/downloads/business/idc_impact_of_rias.pdf

ZK: Product Overview Page 5 of 16 Potix Corporation

Servlet 1

Servlet 2

Submit

A HTML page

Submit

A HTML page

Page 1

Page 2

Page 3

Browser Server

development process. Due to the huge gap between the page-based model and the modern
applications, learning and using these frameworks is never a pleasant process, not to mention
intuition or simplicity.

Ad-hoc Ajax Applications

Over a decade of evolution, Web applications evolved from static HTML pages, to Dynamic HTML
pages, to applets and Flash, and, finally, to Ajax4 technologies (Asynchronous JavaScript and
XML). Illustrated by Google Maps and Suggest, Ajax breaths new life into Web applications by
delivering the same level of interactivity and responsiveness as desktop applications. Unlike
applets or Flash, Ajax is based the standard browser and JavaScript and no proprietary plugin is
required.

Ajax is a kind of new generation DHTML. Like DHTML, it
heavily relies on JavaScript to listen events triggered by
user's activity, and then manipulate visual representation of
a page (aka. DOM) in the browser dynamically. Moreover, it
takes a step further by enabling the communication with the
server asynchronously without leaving or rendering the
whole page again. It breaks the page-based model by
introducing light-weight communication between clients and
servers. With proper design, Ajax could bring rich
components common to desktop applications to life in Web
applications, and all of their content could be dynamically
updated under the control of applications.

Challenges

When providing the interactivity that users demand, Ajax adds more complexities and skill
prerequisites to the already costly development of Web applications.

1. Incompatible and Sophisticated JavaScript API

Manipulating DOM in the browser and communicating with servers to implement sophisticated
components is not easy. Incomplete, even buggy, implementation of DOM API found in most
browsers and incompatibility among different versions and browsers make the development
process time-consuming and frustrating.

2. Replicating a Subset of the Application Data Model and Business Logic in the Browser

The use of Ajax is mainly to exchanges data between clients and servers, beside handling the
visual representation. Such exchanging totally depends on the applications. It, like client/server,

4 Ajax is coined by Jesse James Garrett in Ajax: A New Approach to Web Applications.

ZK: Product Overview Page 6 of 16 Potix Corporation

Browser

Server

Servlet 1-1

Servlet 1

AJAX request

Submit

A HTML page

Page 1, State 1

Page 2

Page 1, State 2

Page 1, State 3 Servlet 1-2

Update a potion of the page

AJAX request

Update a potion of the page

has strong tendency to replicate business logic and even data to the client to simplify the chores
of communication and to improve performance. It therefore introduces the significant cost of
development and maintenance.

3. Synchronization between the Clients and the Servers

The Ajax clients communicate with the server asynchronous. From the server's viewpoint, Ajax
requests are no different from regular HTTP requests and they are processed in parallel. It
therefore causes some racing problems that application developers have to handle. For example,
when user types a product number, an Ajax request is sent for asking the price. Meanwhile, user
might click submit without waiting the price to come back. Then, the application is hard to decide
whether a price is entered intentionally by users, or just not yet responsed back.

Current Solutions

In order to deliver a manageable Ajax solution, many frameworks or libraries are developed . They
can be classified into three categories.

1. JavaScript Components and Libraries

The most straight forward way5 is to provide ready-to-use JavaScript components so application
developers need not to handle sophisticated user interface from scratch. However, application
developers have to manipulate these components in JavaScript and develop a custom-made way
to handle dynamic data exchanging between clients and servers, though some of them have a set
of libraries to make such communication portable across different browsers.

2. Extending HTML with Special Tags

Some suppliers6 eliminated the requirement of JavaScript programming for application developers
by extending HTML with proprietary tags. A special engine (written in JavaScript) must run in the
browser at first, and it then intercept all HTML content sent from the server to process these
proprietary tags specially. No JavaScript, but exchanging dynamic data between clients and
servers is required.

Like other declarative programming, the advantage of such extended tags are not difficult to learn
for non-programmers. However, they might become cumbersome and complex if sophisticated
logic, such as conditions and loops, is required. Multiple round trips to get a new page is another
issue since the engine must run first.

3. Enhancing Existent Frameworks with Ajax

Extending existent Web frameworks7 to embrace Ajax is another common approach. The results

5 Bindows, WebFX...

6 Backbase

7 AjaxFaces, Rubby on Trail...

ZK: Product Overview Page 7 of 16 Potix Corporation

highly depend on the original architecture. Most of them eliminated the requirement of JavaScript
programming. Developing additional servlets to exchanging dynamic data between clients and
servers is required.

After examining closely, these solutions, better or worse, are mainly solving the first challenge:
eliminated the JavaScript hassles. The asynchronous communication between clients and servers
remains, more or less, the duty of application developers.

ZK: Simple and Rich

In Potix, we believe Ajax is more of architecture than technology.

In 1994, we developed an infrastructure, inspired by zApp and OWL, for developing an accounting
system for Windows. In 2000, we developed another infrastructure, inspired by Struct and
WebWorks, for developing an ERP system for J2EE. After coaching and watching the development
of these systems, we found that not only the Web version required much higher skills and
prerequisites to develop, but also its total cost is four times more than the client/server one.
Worse of all, the user-friendly reminded us the age of green terminals, though the look, after
decorating with proper images and CSS, is modern and fresh.

We start wondering whether it is intrinsic, or the programming model is simply inadequate.
Looking back the success of desktop applications in 1990s, the event-driven, component-based
programming model is the corner stone of all excitements. Being blessed with the ease to learn
and develop, it is the standard and best way to handle interactive and responsive user interfaces.
Can we apply this model to Web applications?

In response to this challenge, Potix has developed technologies and tools that enable Web
development to have both the same rich user experiences and the same simple programming
model that desktop application developers enjoyed. The core of the Potix solution is ZK, which
includes an Ajax-based engine to automate interactivity, a rich set of XUL and XHTML components
to enrich usability, and a markup language to design user interfaces without programming.

With ZK, you represent your Web applications in feature-rich XUL8 components, and manipulate
them by listening to events triggered by users, as you did for years in desktop applications.
Meanwhile, your art designers, by use of a markup language called ZUML9, weave your fantastic
user interfaces without programming as straight-forward as authoring Web pages with HTML.

At the heart, all your application codes are running at the server. Whatever events user trigger are
automatically sent to your application running at the server. Whatever you alter components
running at the server are automatically updated to the visual representation at the browser. It is
just like you don't care how GDI communicates with the display card, when developing desktop
applications.

8 http://xul.sourceforge.net/mozilla.html

9 ZK User-interface Markup Language.

ZK: Product Overview Page 8 of 16 Potix Corporation

No more terminal-like frustrated user interfaces. No more JavaScript headache. No more
asynchronous hassles. No more replication of business logics at clients.

Seamlessly Evolution

As the rich user interface enabled by Ajax is changing the way we interact with the Web, how to
preserve existent investments on Web applications has become more important than ever. To
ensure to work with existent technologies, ZK is made to a pure presentation tier solution. Logic
tier and data tier are both intact. Moreover, all codes of applications run at the server, and there is
no need to apply RMI, RPC or Web Services, though not preventing from using them, either. All
your middleware utilities work as they used to, such as JDBC, Hibernate, Java Mail or JMS.

ZK could co-exist with portals, JSP, dashboards or any other technologies. You could make any
portions of your page highly interactive by simply including ZUML pages. ZUML page could include
any kind of servlets and pages including another ZUML pages. You have the total control upon
steps and speed in the process of making your applications communicating your customers more
effectively.

If you preferred not to change the technology, say JSP, used to generated a HTML page, you could
apply a ZK filter and add ZUML tags to it. Then, the filter will translate the dynamically generated
page as if it is an static ZUML page.

ZK: Product Overview Page 9 of 16 Potix Corporation

Architecture Overview

The core of the Potix solution is ZK, which includes an Ajax-based mechanism to automate
interactivity, a rich set of XUL-based components to enrich usability, and a markup language to
simplify the development.

Ajax-based Mechanism

The Ajax-based engine consists of three parts: ZK Loader, ZK AU Engine and ZK Client Engine.
The ZK Loader, loads ZUML pages10 and render them into HTML pages in response to URL
requests.

The ZK Client Engine is running at the browser, and the ZK AU Engine at the server. They act as
pitcher and catcher. They deliver events happening in the browser to the application running at
the server, and update the DOM tree at the browser based on how components are manipulated
by the application.

• Client engine sits at the browser to detect any event triggered by user's activity such as

moving mouse or changing a value. Once detected, it notifies AU Engine.

• Upon receiving the request from Client Engine, AU Engine updates the content of

corresponding component, if necessary. And then, AU Engine notifies the applications by
invoking the event handlers, if any.

10 A ZUML page is a file, an input stream or a string written in ZUML.

ZK: Product Overview Page 10 of 16 Potix Corporation

Browser

Server

ZK Loader

ZK AU Engine

ZK
components

ZK
components

Internet

Application

ZK Pages
zul, zhtml…

Codes

JDBC, EJB,
JDO, JMS,…

An URL Request

A HTML page

ZK Requests

ZK Responses

Load Pages

Create

Update

Notify

Notify

Access

Access

ZK Client
Engine

DOM

• If applications choose to change content of components, remove, add or move

components, AU Engine send the new content of altered components to Client Engine.
Then, Client Engine update the DOM tree accordingly.

Simple Thread Model

An Ajax request might be sent before the previous one has been processed. It created
synchronization issue for ad-hoc Ajax applications. With ZK, requests (and events) are pipelined
into an independent queue for each page , and event handlers is then invoked sequentially one-
event-by-another. Thus, there is no concurrent access ever made to event handlers and
components. Meanwhile, ZK processes Ajax requests for different pages simultaneously to
maximize the performance.

The advantage is that the application developers need not to worry about threads, synchronization
and other concurrency issues. Of course, it doesn't prevent developers from using threads. For
example, it is common to use a thread to execute a long operation, while another UI thread to
show the progress bar and a button for aborting the operation.

Suspend, Resume, and Modal Dialogs

When processing a request, an application sometimes needs to suspend the processing and wait
for a condition being satisfied. For example, show a message and wait for user's confirmation. Due
to request-and-response limitation, this is hard, if not impossible, to implement in Web
applications.

With ZK event-driven model, developers could suspend an event handler any time and resume it
later. Modal dialogs are a common example that utilizes this feature.

if (Messagebox.show("Are you ready?", "Ready",
Messagebox.YES|Messagebox.NO, Messagebox.QUESTION) == Messagebox.YES)

go_ahead();

Minimized Network Traffics and Round-trips

Client-side events are queued before they are really necessary, so multiple events could be sent in
the same network packet. In additions, redundant events, such as changing the value of the same
component twice, are eliminated.

XUL-based Components

Instead of inventing proprietary components, ZK provides a rich set of XUL-based components.
XUL (XML User Interface Language) is a user interface markup language developed to support
desktop applications like Mozilla Firefox and Mozilla Thunderbird. Unlike other XUL
implementation, ZK components are tuned to have better performance across Internet.

ZK: Product Overview Page 11 of 16 Potix Corporation

Comprehensive Components

More than 60 components are supported. They
include menus, tab boxes, list boxes, tree
controls, sliders, group boxes, grids, date boxes
and many other sophisticated components.

Component Garbage Collector

The life-cycle of components is managed
automatically. The visual part of a component
shown at the browser is created and removed
automatically, if it is attached to and detached
from a page. If it is no longer in use, the
garbage collector releases its memory automatically. Managing ZK components is as simple as
regular Java objects.

ZK User Interface Markup Language (ZUML)

ZUML is a XML-based markup language for describing the presentation of user interfaces. It is
designed to be component-independent, such that developers could use different set of tags, such
as XUL and HTML, in the same ZUML page.

Flexible User Interface Description

The simplest way is to use a file to describe an user interface in ZUML. After you copy the file to
the proper location, users could use the corresponding URL to access the user face.

The file is called a ZUML page, which is interpreted at the run time when a user requests for it. It
is re-interpreted automatically if the file has been modified.

<window title=“My First XUL”>
Hello World!
<button label=“Say Hi” onClick=“Messagebox.show("Hi")”/>

</window>

Each ZK component is an instance of specific Java class. Like Swing, you could create and
manipulate them directly in Java codes.

new Label(“Hello World”).setParent(window);

Another example to create components from another ZUML page is illustrated below.

<checkbox onCheck=“Executions.createComponents("/dir/another.zul",
null, null)”/>

ZK: Product Overview Page 12 of 16 Potix Corporation

The ZUML page could be constructed dynamically, too.

String content = “<window title=\"Hi\">Hello World!</window>”;
Executions.createComponentsDirectly(content, null, null);

With proper authorizing tools, a user could customize a page to have a unique view he likes.

Powerful Script in Java

By leveraging BeanShell, you could embed Java codes into ZUML pages to do initialization or
handling events. To access a component in Java codes or EL expressions, you simply use the
component's ID you assigned.

<textbox id=“what”/>
<button onClick=“what.disabled = true”/>

EL Expression

Like JSP, you could use EL expressions in ZUML pages. EL expressions are easier to learn for non-
programmers, and somehow more elegant.

<?taglib uri="/WEB-INF/tld/pat/core.tld" prefix="p" ?>
<window id=“main” title=“${p:l('app.name')}”><!--Locale-dependent string-->

What is ${main.title}?
</window>

Prototyping and MVC

Embedding Java codes in ZUML pages are mainly for quick prototyping and customization. In
production version, it is sometimes better to apply MVC (Model, View and Controller). You could
associate a component with your class by the use attribute as follows. The class then acts as the
controller to handle child components.

<window use=“MyClass”>
<listbox id=“checks”/>

</window>

Event Handlers

To listen and process an event, you could declare the event-specific attributes, say onClick, and
methods to specify what to execute when an event occurs. In additions, you could add and
remove event handlers dynamically.

ZK: Product Overview Page 13 of 16 Potix Corporation

<textbox id=“input” onChange=“do_something()”/>
<zscript>

input.addEventListener(“onChange”, new DoAnother());
</zscript>

Live Data and Separation of Data and View

Some components, like listbox, supports live data. First, it separates the visual representation and
the data by an application-dependent renderer. Then, when an item becomes visible (caused by,
say, user's scrolling), the renderer is invoked automatically to retrieve and render it dynamically.
It makes the application more efficient if there is a lot of data to display.

<zscript>
String[] data = {"A", "B", "C", "D", "E", "F", "G"};
ListModel strset = new SimpleListModel(data);

</zscript>
<listbox id="list3" multiple="true" width="200px" model="${strset}">

<listcols>
<listcol label="Dynamic"/>

</listcols>
</listbox>

Embedded by or Embedding HTML

Today's Web applications are often built on a collection of different technologies, such as portals,
JSP and JSF. ZUML pages are therefore designed to work with other Web technologies seamlessly.

First, any HTML page or portlet could include any number of ZUML pages.

<jsp:include page=“/my/welcome.zul”/>

Second, a ZUML page could include any number of servlets including JSP pages and ZUML pages.

<include src=“/another/servlet”/>

If you want to embed HTML tags directly in a ZUML page, the XML name space must be used to
distinguish them from XUL tags.

ZK: Product Overview Page 14 of 16 Potix Corporation

<window xmlns:h="http://www.w3.org/1999/xhtml">
<h:table border="1">
<h:tr>

<h:td>
<listbox>

<listitem label="AA"/>
<listitem label="BB"/>

</listbox>
</h:td>

</h:tr>
</h:table>

</window>

In additions, ZUML provides a simpler way if no need to mix HTML and XUL tags.

<html>
<attribute name="content"><![CDATA[

Potix Rich Internet Solution

SIMPLE
RICH

]]></attribute>
</html>

ZK: Product Overview Page 15 of 16 Potix Corporation

Features and Benefits

Features Benefits

Ajax-based Rich User
Interfaces

Interactive and responsive.
Users get the same level of use experience as using desktop
applications, without any plugin at the browser.

Event Driven Model Simple and intuitive.
The cornerstone of desktop applications in 1990s is sound for its
ease to learn and develop.

XUL-based Components Rich and standard.
Fastest way to build rich Web applications with over 60 off-the-
shelf feature-rich components. No proprietary components secure
your investment against vendor lock-in.

ZK User-interface Markup
Language

Straight-forward and zero programming. Zero configuration.
Neutral to components: XUL, XHTML or mixed is up to UI
designers. Leverage the resources of XUL and XHTML community.

Server-Centric Processing No replication of business logic at the clients. No asynchronous
programming hassles. No RMI nor RPC. Use the same logic and
data tiers you are used to.

Script in Java and
EL Expressions

Quick prototyping and customization. No compilation. No
JavaScript. No DOM. Just POJO (Plain Old Java cOde).

Modal Dialogs Most intuitive way to interact with users for alternatives and
decisions. Decomposing a sophisticated UI into several
manageable dialogs.

Simple Thread Model No thread knowledge and skills required, while the server remains
the scalability to handle requests for different pages
simultaneously. Yet flexible enough for suspending, resuming and
multi-threading for handling sophisticated operations if necessary.

Live Data Separating view and data, reduced development costs, loading
large data effectively, and browsing large data easily.

Mixing Different Servlet
Technologies

Evolved to rich Web applications at the speed you preferred. No
need to replace or abandon what you have invested.

GPL No vendor lock-in. Encouragement and beneficiary of global
collaboration. Verification from large community and deployment.

ZK: Product Overview Page 16 of 16 Potix Corporation

	Executive Summary
	Introduction
	Traditional Web Applications
	Ad-hoc Ajax Applications
	Challenges
	1. Incompatible and Sophisticated JavaScript API
	2. Replicating a Subset of the Application Data Model and Business Logic in the Browser
	3. Synchronization between the Clients and the Servers

	Current Solutions
	1. JavaScript Components and Libraries
	2. Extending HTML with Special Tags
	3. Enhancing Existent Frameworks with Ajax

	ZK: Simple and Rich
	Seamlessly Evolution

	Architecture Overview
	Ajax-based Mechanism
	Simple Thread Model
	Suspend, Resume, and Modal Dialogs
	Minimized Network Traffics and Round-trips

	XUL-based Components
	Comprehensive Components
	Component Garbage Collector

	ZK User Interface Markup Language (ZUML)
	Flexible User Interface Description
	Powerful Script in Java
	EL Expression
	Prototyping and MVC
	Event Handlers
	Live Data and Separation of Data and View
	Embedded by or Embedding HTML

	Features and Benefits

