CHARACTERISTICS
OF THE

MODEL 1604
COMPUTER

‘i i- CONTROL DATA CORPORATION

CHARACTERISTICS
OF THE

MODEL 1604
COMPUTER

©1959 CONTROL DATA CORPORATION

—
]
P
b=
Q
£
(0}
O
=
(@}
~O
©
o
o
=
(]
=
=

GLOSSARY OF TERMS

The following terms, symbols and abbreviations are defined as they pertain to the

discussions of the Model 1604 Computer contained in this manual.

A Accumulator, or A register

Ap The binary digit in position n of the A register
Adv Advance (add 1)

_— Transmit to

b Index designator

B Index register

(Bb) Contents of the designated index register

Exit Proceed to next program step

f Function code

Half exit Proceed to lower instruction of a program step

Indirect Addressing Using the execution address portion of an instruction to specify a
storage location which contains the address of the operand

j The condition designator for jump and stop instructions and the sub-
instruction designator for the external function instruction

Base execution address for shift and scale instructions

K Shift count for shift instructions (k + BP = K)

LA Lower address - the base execution portion of the lower instruction
of a program step

LQM Logical (bit-by-bit) product of (Q) and (M)

m Base execution address - the 15-bit portion of an instruction as read

from storage or the 15-bit portion of an instruction obtained by in-

direct addressing

()
()
()i
()
oi

sl.-s2
Red

Ret Jump
UA

U2

71 72

Execution address - the 15-bit portion of an instruction obtained

directly from storage or by indirect addressing which has been

modified by the addition of the contents of the designated index

register.
Eb=0, or (B =0, M=m
Ifb=1-6, M=m + (B

Next instruction

Contents of a register or storage location

Complement contents of a register or storage location

Initial contents of a register or storage location

Final contents of a register or storage location

Output register i

Program address register or P register

Auxiliary arithmetic register or Q register

Address buffer register or R register

Storage address registers or S registers

Reduce (subtract 1)

Return jump

Upper address

Program control register or U register

Auxiliary program control register

Exchange register or X register

The base execution address for instructions in which the operand is
normally contained in the address portion of the instruction
The operand specified by y + (Bb)

Storage restoration registers or Z registers

TABLE OF CONTENTS

I. Introduction
Summary of Characteristics
Principles of Operation
Physical Description
Over-all Analysis of Computer
Input-Output Section
Arithmetic Section

Storage Section

Control Section

II. Programming
1604 Address System
Repertoire of Instructions
Analysis of 1604 Instructions
Special Programming Features
Special Instructions
Floating -Point
Scaling
Instruction Faults
Real Time Clock
Program Interrupt
Input -Output Communication

Indirect Addressing

I-7
I-8

II-1

II-38
II-38
II-43
II-44
I1-45
II-46
I1-47
II-47

I1-49

III., Theory of Operation

Input-Output Section
Console Input-Output Equipment
1607 Magnetic Tape System
1605 Adaptor
Buffer Control
Input -Output Specifications

Storage Section

Arithmetic Section

Control Section
Program Control Register
The U2 Accumulator
Index Registers
Address Buffer Register
Program Address Register

Control Sequences

IV. Installation and Operation
Operating Controls

Installation

oI-1
mI-1
III-3
II1-4
I11-6
III-8
III-8
oI-15
II1-22
II1-26
II-27
III-30
II1-31
Im-31
I1-31

I11-32

Iv-1
Iv-1

Iv-1

I. INTRODUCTION

Control Data's Model 1604 is an all-transistorized, stored program, general-purpose
digital computer. Having a large storage capacity (32, 768 48-bit words), exceedingly fast
computation and transfer speeds, and special provisions for input-output communications,
the 1604 is designed to handle large-volume data processing and to solve large-scale
scientific problems.

The following is a summary of the 1604 features:

Stored-program, general-purpose digital computer
Parallel mode of operation
48-bit word length

Single-address logic, two instructions per 48-bit word:

operationcode, ... 6 bits
designator............................. 3 bits
base executionaddress...............cc...... 15 bits

Six index registers

Indirect addressing feature

32,768 48-bit words of magnetic core storage:
Storage in two independent 16, 384 word banks, alternate phased
4.8 microseconds effective cycle time (representative program)
6.4 microseconds total cycle time

Highly versatile input-output facilities:
Three 48 -bit buffer input channels
Three 48 -bit buffer output registers

One high-speed 48 -bit input transfer channel
(4. 8 microseconds, 48-bit parallel word)

One high-speed 48-bit output transfer channel
(4. 8 microseconds, 48-bit parallel word)

I-1

Program interrupt

Control console includes:
350 character per second transistorized photo-electric paper tape reader
60 character per second paper tape punch
Input-output electric typewriter

Translated contents of all operational registers displayed as Arabic numerals
(octal)

Flexible repertoire of 62 instructions provides:

Fixed point arithmetic (integer and fractional) . Floating binary point
arithmetic . Logical and masking operations . Indexing . Memory
searching . Input-output . Sequence control (conditional and unconditional)

Multiple precision capability (accumulator and auxiliary register treated
as a single double-length register), etc.
Binary arithmetic - modulus 248 minus one (one's complement)
parallel addition, 1.2 microseconds basic add time (without access)
Real-time clock
Completely solid-state
Diode logic - transistor amplifiers - magnetic core memory
Small size
Goes in 20' x 20' room

Low power consumption

In addition to communicating with standard peripheral equipment, such as magnetic
tape units, card reader, punch, high-speed printers, and typewriter, the 1604 can also be used

for control or communication in radar and sonar systems, real-time instrumentation systems,

I-2

digital communication systems, and special display systems.

In the 1604 Computer, input-output operations are carried out independently of the
main computer program. When transmission of data is required, the main computer pro-
gram is used only to initiate an automatic cycle which buffers data to and from the computer
memory. The main computer program then continues while the actual buffering of data is
carried out independently and automatically.

The input-output section of the 1604 contains the facility for several modes of com-
munication. For normal exchange of data with peripheral equipment, independent control
is provided for the transfer of data via three 48-bit buffer input and three 48-bit buffer
output channels asynchronously with the main computer program. For high-speed com-
munication one 48-bit input transfer channel and one 48-bit output transfer channel are
provided so that two or more 1604's can communicate with each other. Communication
control is performed by the external function instruction. In addition, the interrupt feature
provides requests from peripheral equipment to the computer.

The storage section of the 1604 is a large-capacity magnetic core storage system
providing high-speed, non-volatile, random-access storage for 32,768 48-bit words. One
48-bit word may contain either a 48-bit data word or two 24-bit instructions. The read
access time, i.e., the time from request of data to delivery from storage, is 2.2 micro-
seconds.

The 1604 instruction repertoire contains a flexible list of 62 instructions which expand
into many sub-instructions. These 62 instructions provide fixed binary point arithmetic
(integer and fractional), floating binary point arithmetic, logical and masking operations,
normal arithmetic operations modulus 248 minus one (one's complement), indexing,

memory searching, input-output, sequence control (conditional and unconditional),

I-3

multiple precision capability, etc. Some of the special programming features include

ease of handling constants, indirect addressing, four search instructions, high-speed input-
output transfers, buffering, external function, program interrupt, and a large group of
logical commands.

In addition to the standard 1604 console with its display panel (translated contents of
all operational registers are displayed in Arabic numerals--octal), typewriter, and paper
tape reader and punch, Control Data offers as optional equipment the Model 1607 Magnetic
Tape System and the Model 1605 Adaptor. A number of 1607 Magnetic Tape Systems can
be attached to a 1604 Computer. Simultaneously among these 1607's three tape handlers
can be reading and three can be writing--each at a 30KC character transfer rate. Each
1607 tape system has the facility for simultaneously reading from one tape handler and
writing on one tape handler, while the remaining two tape handlers are rewinding. A

summary of 1607 features is as follows:

Tape Width. i it i i, 1/2 inch

Tape Recording Densitycciiviivnnnnn.n, 200 characters per inch
Read-Write Speed.coitiiniiinn i, 150 inches per second
Rewind Speed.coiiiiiiiiiiiiiini i ininennnns 150 inches per second
Character Transfer Ratec0vvun.nn.. 30KC

Lengthof Tapecooiiiniiiiini ittt ineennn, 2,500 feet

Block Length..........coiiiiiiiiiiininnnnn. e Variable

Number of Tape Handlers.cvvvvvvnrnnnnnnnns Four per Model 1607

The Control Data Model 1605 Adaptor permits communication between the 1604
Computer and any of the following IBM peripheral equipment: 714 Card Reader, 727

Magnetic Tape Units, 717 Line Printer, and 722 Card Punch. Each 1605 Adaptor can be

I-4

CONTROL

[=

g

B®F—

“———— R
B“ -

" | sTorace 1

@
0
1
w
L
T
U’)"J

= | :
|
|
|

Y I

e e
INPUT

ASSEMBLY
REGISTER

-]

L, |

|
|
!
! :
| |
|
|
R I N T
3 | ARITHMETIC
|
| —
5 !
|
!
I |

—

SIMPLIFIED BLOCK DIAGRAM OF
THE MODEL 1604 COMPUTER

FIG. I-1

I-5

connected to any of the three buffer input channels and three buffer output channels, and

each 1605 is independently addressable.

PRINCIPLES OF OPERATION

Physical Description

Standard equipment available with the Model 1604 includes the main computer cabinet
and the 1604 console. The console consists of an electric typewriter, paper tape punch,
and paper tape photo-electric reader. Optional equipment for the 1604 Computer System
includes the 1607 Magnetic Tape System, 1605 Adaptor, the 1606 Printer, the 1608 Con-
trol Unit for IBM high-speed tape transports and the 1609 Punched Card Control Unit.

Over-all Analysis of Computer

The computer can be divided functionally into four major sections: (1) Input-output
section which provides the means of communication between the computer and the various
external equipments, (2) Arithmetic section which performs both the arithmetic and logical
operations required for the execution of instructions, (3) Storage section which provides
internal storage for both data and instruction, and (4) Control section which successively
obtains the instruction from storage, then interprets each instruction to send the required
commands to other sections. The control section coordinates and sequences all the oper-
ations which carry out the execution of an instruction. A simplified block diagram of the

computer is shown in Figure 1-1.

Input-output Section

There are four input channels which bring information into the computer via the X
register. Channels 1, 3, and 5 are used for buffer communication; Channel 7 is used in
transfer communication -- a very high-speed means of exchanging data. Information from

the input-output equipment at the 1604 console is always received via channel 1.

1-6

Typically, channel 3 is connected to a 1607 magnetic tape system. Channel 5 provides
another means of input which may be used by the 1605 Adaptor, a second 1607, or another
equipment.

Output registers 01, 02, 03, and 04 are used to transmit information from the com-
puter to channels 2, 4, 6, and 7, respectively. Function register 00 is used to transmit

control information to the various external equipments.

Arithmetic Section

The A register, or accumulator, is the principal arithmetic register. Nearly all
arithmetic and logical operations make use of A. This register has provisions for the
parallel addition of (X) to the contents of A. It can be shifted either separately or in con-
juction with the Q register.

The Q register is an auxiliary arithmetic register which assists the accumulator in
the performance of the more complicated arithmetic operations. It is used in combination
with the X register in the formation of logical products. Q may be shifted either separately
or in conjunction with A,

The X or exchange register is used in arithmetic operations as well as in most data

transmission between various sections of the computer.

Storage Section

The 32,768 48-bit word magnetic core storage section is controlled by a two-phase
timing system, each phase controlling one-half (16, 384 48-bit words) of the total storage.
All odd storage addresses reference one storage unit; all even addresses reference the
other storage unit. The read access time of each section is 2.2 microseconds after which,

without delay, the next arithmetic operation is initiated. Each unit has a total cycle time

of 6.4 microseconds. The storage cycles of the two sections overlap one another in the

execution of a program, with the result that the effective cycle time is 3.2 microseconds
when addresses of alternate memory banks are referenced. The average effective cycle
time for random addresses is about 4. 8 microseconds for a representative program.

The address register for the even storage unit is Sl; s2 is the address register for
the odd storage unit. In addition, each unit has a storage restoration register (Z1 and Zz)
which holds the word to be written into a given storage location.

Words to be read out of either storage unit are entered in the X register, and from
there transmitted to the appropriate register. Words to be entered or written into a storage

unit are transmitted from X to the appropriate Z register, and thence to storage.

Control Section

The control section directs the operations required to execute instructions and to
exchange data with external equipment. The major portion of the control section consists
of command sequences, static networks for sensing and storing special conditions, and

several registers (U, P, R and B! 6).

through B The control section acquires instructions
and initiates the command sequences for executing them. The coordination of operations

in the various sections of the computer is maintained by the control section.

II. PROGRAMMING

GENERAL

Operation of the 1604 Computer is sequenced by an internally stored program. The
program is contained, along with the data being processed, in a central random-access
storage. The input-output equipments, as well as the internal program, have direct access
to this common storage unit, thus permitting input-output operations to proceed during com-
putation.

This chapter describes the make-up of the program that orders machine operation.
Included in the chapter are a description of the address system, a summary of the reper-

toire of instructions, and an analysis of each instruction.

1604 ADDRESS SYSTEM

The Control Data 1604 is a single-address computer. As such, one address is
explicitly referred to by one instruction. However, the computer is capable of self-
modification during the course of a program by the use of the B-boxes or indirect addressing

As already mentioned, the storage system contains 32,768 addresses divided into
two units: an odd unit and an even unit. The locations are identified, generally, by the
octal range 00000 through 77777 - the even addresses referring to one unit, the odd ad-
dresses to the other.

Certain specific storage locations in the memory are used for control and

reference functions. These storage locations may be addressed as operands as well as
being addressed implicitly by certain control functions. The address assignments for these

functions are listed below and will later be explained in detail:

II-1

Special Address Function or Purpose

00000 Real Time Clock (60 steps per second)
00001 Channel 1 control

00002 Channel 2 control

00003 Channel 3 control

00004 Channel 4 control

00005 Channel 5 control

00006 Channel 6 control

00007 Interrupt program (exit-entrance)

Program Step

A step in the computer program is composed of the orders provided to the computer
by the contents of one 48-bit word. This word is treated by halves, each containing a 1604
instruction expressed in 24 bits. The two instructions are thus described as the "upper"
and "lower" instructions of the program step.

The two instructions can be considered as logically separate entities in a program
sequence. As a practical matter in program coding, however, the pair is an entity similar
to a two-address instruction. The two single-address instructions are not separable in the
sense that the lower may not be executed without the upper.

If it is desired to place only one instruction in a program step, the other instruction

location should contain a "'do nothing" or pass instruction, described in a later paragraph.

Instruction Composition

The 1604 instruction is a 24-bit quantity specifying an operation which the computer is

to perform. The composition of the instruction word is shown in the figure below. Shown

in the figure are the general format of the four specific instruction types. These four
specific types are obtained by a variance in the interpretation of the designator and base
execution address portions of the instruction. The External Function instruction is a

special case and is covered in greater detail later in this chapter.

General Format

6 bits 3 bits 15 bits

Operation Code Designator Base Execution Address

Indexed Instructions with storage reference for operand

f = 6 bits b = 3 bits m = 15 bits

Operation Code Index Address of Operand

Indexed Instructions with self contained operand

f = 6 bits b = 3 bits y =15 bits

Operation Code Index Operand

Shift Instructions

f = 6 bits b = 3 bits k =15 bits

Operation Code Index Shift Count

Jump Instructions and sense external or internal condition sub-instructions

f = 6 bits j = 3 bits m = 15 bits

Operation Code Condition Address of Next Instruction

The breakdown of the instruction word, as indicated in the figure is:
6 bits - Operation Code, f
3 bits - Designator - Index, b

- Condition - j

15 bits - Base Execution Address - Address of Operand, m
- Operand, y
- Shift Count, k

The operation code specifies the general character of the instruction. There are 62
operation codes, identified 01 through 76 (octal), available for use in programming. Two
codes, 00 and 77, though capable of being expressed as operation codes, are interpreted
as faults which will stop computation when translated by the computer.

Depending upon the particular instruction, the designator is interpreted in one of two
different ways. As an address modifier (b), it causes the base execution address to be
changed by the addition of the contents of the index register specified by the designator.
When used in certain of the instructions as a jump designator (j), it determines a change in
program sequence, depending upon the condition of certain specified registers.

An index designation of 7 will indicate that indirect addressing is to be used. (Indirect
addressing is a means for expanding the reference capabilities of the instruction execution
address.)

Eight jump conditions are specified by the jump designator, j. These provide for
change of sequence depending upon the status of the A register, the Q register, or the
position of jump and stop select switches on the console. These conditions are completely
delineated in later paragraphs describing the instructions.

The base execution address of the instruction format (lower 15 bits) holds the address
which is basic to the particular instruction. This base execution address is generally the
designator of the location of the operand for the instruction which is to be performed. In
some cases, the base execution address itself can become the operand, or the shift count.
The operation code determines the particular role and definition of the base execution

address.

II-4

REPERTOIRE OF INSTRUCTIONS

Operation

Input transfer
Output transfer

External Function

Increase Accumulator
Add

Subtract

Multiply Integer
Divide Integer
Multiply Fractional
Divide Fractional
Floating Add
Floating Subtract
Floating Multiply
Floating Divide
Replace Add
Replace Subtract
Replace Add One

Replace Subtract One

INPUT-OUTPUT

Instruction Code

62b m
63 b m

iy

ARITHMETIC
11bm
14b m
15bm
24bm
25bm
26 b m
27b m
30bm
31bm
32bm
33bm
70 b m
71bm
72 b m

73 b m

25.
63.
25.
63.
11.

11.

10.
10.
10.

10.

Execution Time ps

él Max.

4.0+4.8r 6.8+4.8r

4,0+4. 8r 6.8+4.8r

6.4 6.4
3.0 3.2
7.2 9.6
7.2 9.6
25.2+.8n 66. 4
65. 2 66. 4
25.2+.8n 66. 4
65.2 66. 4
18.8 26.8
18.8 26.8
36.0 57.2
56.0 97.2
13.2 16.0
13.2 16.0
13.2 16.0
13.2 16.0

SHIFT

Operation Instruction Code Execution Time us
Min. Av. Max.
Accumulator Right Shift 0lbk 2.8 2.8+.4s 54.4
Q Register Right Shift 02bk 2.8 2.8+.4s 54.4
AQ Right Shift 03 bk 2.8 2.8+.4s 54.4
A Left Shift 05b k 2.8 2.8+.4s 54. 4
Q Left Shift 06 bk 2.8 2.8+.4s 54.4
AQ Left Shift 07 bk 2.8 2.8+.4s 54.4
Scale A 34bk 2.8 2.8+.4s 54. 4
Scale AQ 35bk 2.8 2.8+.4s 54.4
TRANSMISSIVE
Enter Q 04by 2.8 3.0 3.2
Enter A 10by 2.8 3.0 3.2
Load A 12b m 4.8 7.2 9.6
Load A, Complement 13bm 4.8 7.2 9.6
Load Q 16 bm 4.8 7.2 9.6
Load Q, Complement 17b m 4.8 7.2 9.6
Store A 20 b m 4.8 7.2 9.6
Store Q 21bm 4.8 7.2 9.6
Substitute Address (upper) 60 b my 4.8 7.2 9.6
Substitute Address (Iower) 61b my 4.8 7.2 9.6

II-6

Operation

Storage Skip
Storage Shift
Selective Set

Selective Clear

Selective Complement

Selective Substitute
Load Logical

Add Logical
Subtract Logical

Store Logical

Equality Search
Threshold Search
Masked Equality

Masked Threshold

Enter Index
Increase Index
Load Index (upper)

Load Index (lower)

LOGICAL

Instruction Code

36 bm
3Tbm
40 b m
41bm
42 b m
43b m
44bm
45b m
46 b m

47Tbm

SEARCH
64 b m
65b m
66 b m

67Tbm

INDEXING
50by
51by
52 b m,

53bm1

2.8
2.8
4.8

4.8

4.0+3.
4.0+3.
4.0+3.

4.0+3.

3.0
3.0
7.2
7.2

6r
6r
6r

6r

Execution Time ps

Max.
16.0

16.0

6.8+3.
6.8 +3.
6.8 +3.

6.8+3.

3.2
3.2
9.6
9.6

6r
6r
6r

6r

Operation

Index Skip
Index Jump
Store Index (upper)

Store Index (lower)

A Jump
Q Jump
Selective Jump

Selective Stop

INDEXING (cont.)

Instruction Code

Min.
54by 5.6
55bm 4.4
56 b my 4.8
57 b my 4.8

JUMPS AND STOPS

22 i m 4.0
23§ m 4.0
75§ m 3.0
76 j m 3.0

number of positions shifted
number of one's in multiplier

number of repeated executions

II-8

Execution us

Av.

5.

4

6

.4

11.6
11.6
11.6

11.6

ANALYSIS OF 1604 INSTRUCTIONS

The following paragraphs describe the individual instructions. The title line gives
the octal code and format, verbal name, mnemonic code in parentheses, and symbolic

description of the instruction.
01bk A RIGHT SHIFT (ARS) Shift (A) Right by K

This instruction shifts the contents of the A register to the right the number of bit
positions specified by the shift count, K. The sign bit is extended and the lowest order bits
are discarded as the shift is performed. Shift counts greater than 127 (decimal) are shifted in
the normal manner, but are considered shift faults, and produce aninterrupt (if selected). An

indicator is set which may be sensed by an external function instruction.
02bk Q RIGHT SHIFT (QRS) Shift (Q) Right by K

This instruction shifts the contents of the Q register to the right the number of bit
positions specified by the shift count, K. The sign bit is extended and the lowest order bits
are discarded as the shift is performed. Shift counts greater than 127 (decimal) are shifted in
the normal manner, but are considered shift faults, and produce an interrupt (if selected). An

indicator is set which may be sensed by an external function instruction.
03bk AQ RIGHT SHIFT (LRS) Shift (AQ) Right by K

This instruction shifts the contents of the A and Q registers to the right as one 96-bit
register. The A register is considered as the left-most 48 bits and the Q register as the
right-most 48 bits. The number of bit positions is specified by the shift count, K. The

sign bit of the A register is extended as the shift is performed. The lowest order bits of

the A register replace the highest order bits of the Q register and the lowest order bits of

the Q register are discarded as the shift is performed. Shift counts greater than 127

(decimal) are shifted in the normal manner, but are considered shift faults, and produce
an interrupt (if selected). An indicator is set which may be sensed by an external

function instruction.
04by ENTER Q (ENQ) Y—Q, Extend Sign Y

This instruction enters the execution address portion, Y, of the instruction into the
Q register. The operand, Y, is entered into the Q register as a 14-bit quantity plus sign.
The highest order bit of Y is copied into the remaining higher order bits of the Q register.

No operand storage reference is made in this instruction.

05bk A LEFT SHIFT (ALS) Shift (A) Left by K

This instruction shifts the contents of the A register circularly to the left the number
of bit postitions specified by the shift count, K. The lowest order bits are replaced with
the higher order bits as the shift is performed. Shift counts greater than 127 (decimal)
are shifted in the normal manner, but are considered shift faults, and produce an interrupt

(if selected). An indicator is set which may be sensed by an external function instruction.

06 bk Q LEFT SHIFT (QLS) Shift (Q) Left by K

This instruction shifts the contents of the Q register circularly to the left the number
of bit positions specified by the shift count, K. The lowest order bits are replaced with the
higher order bits as the shift is performed. Shift counts greater than 127 (decimal) are
shifted in the normal manner, but are considered shift faults, and produce an interrupt

(if selected). An indicator is set which may be sensed by an external function instruction.

II-10

07bk AQ LEFT SHIFT (LLS) Shift (AQ) Left by K

This instruction shifts the contents of the A and Q registers circularly to the left as
one 96-bit register. The number of bit positions is specified by the shift count, K. The
right -most bits of the A register are replaced with the left-most bits of the Q register as
the shift is performed. The right-most bits of the Q register are replaced with the left-
most bits of the A register during the shift. Shift counts greater than 127 (decimal) are
shifted in the normal manner, but are considered shift faults, and produce an interrupt

(if selected). An indicator is set which may be sensed by an external function instruction.
10by ENTER A (ENA) Y —>A, Extend Sign Y

This instruction enters the execution address portion, Y, of the instruction into the
A register. The A register is cleared and the operand Y is entered into the cleared A
register as a 14-bit quantity plus sign. The highest order bit of Y is copied into the re-
maining higher order bits of the A register. No operand storage reference is made in

this instruction.
11by INCREASE A (INA) [Y+(A)] —>A, Extend Sign Y

This instruction adds the operand, Y, to the previous contents of the A register. The
operand Y is treated as a 14-bit quantity plus sign in this operation. The addition is per-
formed as if Y were a 48-bit quantity with the higher order bits copies of the sign bit. No
operand storage reference is made in this instruction. An overflow condition produces an
interrupt (if selected) and sets an indicator which may be sensed by an external function

instruction.

1I-11

12bm LOAD A (LDA) (M) —A

This instruction replaces the contents of the A register with an operand, contained in
the location specified by the execution address. The A register is cleared, and a storage
reference is then made to obtain the 48 -bit quantity designated. The 48-bit operand is

copied into the cleared A register. Negative zero may be loaded into the A register.
13bm LOAD A, COMPLEMENT (LAC) M '—A

This instruction replaces the contents of the A register with the complement of an
operand contained in the location specified by the execution address. The A register is
cleared and a storage reference is made to obtain the 48 -bit quantity designated. The 48-
bit operand is complemented and entered into the cleared A register. Negative zero may

be thus loaded into the A register.
14 b m ADD (ADD) [(A) + (M)] —A

This instruction adds a 48-bit operand to the previous contents of the A register. A
storage reference is made to obtain the 48-bit quantity contained in the location specified by
the execution address. The operand is then added to the previous contents of the A register.
Occurrence of an overflow condition produces an interrupt (if selected) and sets an indicator
which may be sensed by an external function instruction. A negative zero may be produced

by this instruction if and only if both operands are initially negative zeros.

15b m SUBTRACT (SUB) [(A) - (M)] —>A

This instruction subtracts a 48-bit operand from the previous contents of the A

register. A storage reference is made to obtain the 48-bit quantity contained in the location

II-12

specified by the execution address. The operand is then subtracted from the previous con-
tents of the A register. An overflow condition produces an interrupt (if selected) and sets
an indicator which may be sensed by an external function instruction. A negative zero may
be produced by this instruction if the initial content of A is negative zero and the quantity

in storage is a positive zero.

16 b m LOAD Q (LDQ) M) —Q

This instruction replaces the contents of the Q register with an operand contained in
the location specified by the execution address. The Q register is cleared and a storage
reference is made to obtain the 48-bit quantity designated. The 48-bit operand is then

entered into the cleared Q register. Negative zero may be loaded in Q.
17bm LOAD Q, COMPLEMENT (LQC) M)'—Q

This instruction replaces the contents of the Q register with the complement of an
operand contained in the location specified by the execution address. The Q register is
cleared and a storage reference is then made to obtain the 48-bit quantity specified. The
48-bit operand is complemented and entered into the cleared Q register. A negative zero

may be thus loaded in Q.
20bm STORE A (STA) (A) —M

This instruction stores the contents of the A register at the storage location specified

by the execution address. The contents of the A register are not modified by this instruction.
21bm STORE Q (STQ) Q—M

This instruction stores the contents of the Q register at the storage location specified

II-13

by the execution address. The Q register content is not modified by this instruction.

22 jim A JUMP (AJP) Jump to m

This instruction has eight sub-instructions which cause a change in the prgoram
sequence because of a specified condition of the A register. The index registers are not
used for address modification in this instruction. The jump designator, j, in the instruction
specifies which sub-instruction is to be performed. In the jump conditions both negative
and positive zero are treated as zero.

The sub-instructions and the conditions required to cause a jump in the program
sequence are as follows:

22 0 m - Jump if the A register content is zero

22 1 m - Jump if the A register content is not zero

22 2 m - Jump if the A register content is positive

22 3 m - Jump if the A register content is negative

22 4 m - Return jump if the A register content is zero

22 5 m - Return jump if the A register content is not zero

22 6 m - Return jump if the A register content is positive

22 T m - Return jump if the A register content is negative

23 jm Q JUMP (QJP) Jump to m

This instruction has eight sub-instructions which cause a change in program sequence

because of a specified condition of the Q register. The index registers are not used for
address modification in this instruction. The jump designator, j, in the instruction spec -

ifies which sub-instruction is to be performed. In the jump conditions both negative and

II-14

positive zero are treated as zero.

The sub-instructions and the conditions required to cause a jump in the program
sequence are as follows:

23 0 m - Jump if the Q register content is zero

23 1 m - Jump if the Q register content is not zero

23 2 m - Jump if the Q register content is positive

23 3 m - Jump if the Q register content is negative

23 4 m - Return jump if the Q register content is zero

23 5 m - Return jump if the Q register content is not zero

23 6 m - Return jump if the Q register content is positive

23 7 m - Return jump if the Q register content is negative
24bm MULTIPLY INTEGER (MUI) (A) (M)— QA

This instruction forms a 96-bit product from two 48-bit operands. The multiplier
must be loaded into the A register prior to the execution of this instruction. The execution
address specifies the location of the multiplicand in storage. The resulting product is con-
tained in the QA register as a 96-bit quantity. If the operands are considered as integers,
the product is correctly positioned as an integer in the QA register, i.e., the high order

bits in Q and the low order bits in A.
25bm DIVIDE INTEGER (DVI) (QA)/ (M) —A; Remainder = Qg

This instruction divides a 96-bit integer dividend by a 48 -bit integer divisor. The 96-
bit dividend must be formed in the QA register prior to the execution of this instruction.

The 48-bit divisor is read from the storage specified by the execution address. The

II-15

quotient is formed in the A register. The remainder is left in the Q register at the end of
the operation. The dividend and remainder bear the same algebraic sign.
A divide overflow produces an interrupt (if selected) and sets an indicator which may

be sensed by an external function instruction.

NOTE: In the case of Integer Multiply and Divide, it should be noted that the position of
the most significant bits in the product and dividend differ from the usual positioning of bits
in the AQ register. Since the most significant digits are found in Q, this combined use of

A and Q is referred to as QA (See Glossary of Terms for further definitions).

26 b m MULTIPLY FRACTIONAL (MUF) (A) (M) —AQ

This instruction forms a 96-bit product from two 48 -bit operands. All quantities
involved in this operation are treated as fractions with the binary point immediately to the
right of the sign digit. The multiplier must be loaded into the A register prior to the ex-
ecution of this instruction. The multiplicand is read from the storage location specified by
the execution address. The product is formed in the AQ register and the multiplier is

discarded in the multiplication process.

27 b m DIVIDE FRACTIONAL (DVF) (AQ) / (M) — A: Remainder = Q¢

This instruction divides a 96-bit quantity by a 48 -bit divisor. All quantities involved
in this operation are treated as fractions with the binary point immediately to the right of
the sign digit. The 96-bit dividend must be loaded into the AQ register prior to the ex-
ecution of this instruction. The 48-bit divisor is read from the storage location specified
by the execution address. At the end of the operation the quotient is left in the A register,

The remainder and the dividend bear the same algebraic sign.

II-16

A divide overflow produces an interrupt (if selected) and sets an indicator which may

be sensed by an external function instruction.
30 b m FLOATING ADD (FAD) [(A) + (M)] — A

This instruction forms the sum of two 48 -bit quantities which are packed in floating-
point format. An operand is read from the storage location specified by the execution ad-
dress and is added to the previous contents of the A register. The result is normalized
and rounded and left in the A register at the end of the operation. The Q register contains
the residue from the rounding operation at the end of the sequence. Floating-point range
faults (exponent overflow or underflow) produce an interrupt (if selected) and set an indicato.

which may be sensed by an external function instruction.
31bm FLOATING SUBTRACT (FSB) [a) - o) — A

This instruction subtracts an operand in floating -point format from the previous con-
tents of the A register, also in floating-point format. The operand is read from the storage
location specified by the execution address. The result is normalized and rounded in the A
register. The residue from the rounding operation is left in the Q register at the end of
the sequence. A floating-point range fault produces an interrupt (if selected) and sets an

indicator which may be sensed by an external function instruction.
32bm FLOATING MULTIPLY (FMU) (A) (M)—>A

This instruction forms the product of an operand in floating -point format with the
previous contents of the A register, also in floating-point format. The operand is read

from the storage location specified by the execution address. The result is rounded and

II-17

normalized in the A register. The residue from the rounding operation is left in the Q
register at the end of the sequence. A floating-point range fault produces an interrupt (if

selected) and sets an indicator which may be sensed by an external function instruction.
33 b m FLOATING DIVIDE (FDV) Ay / (M) — A

This instruction forms the quotient of two 48-bit quantities in floating -point format.
The dividend must be loaded into the A register prior to the execution of this instruction.
The divisor is read from the storage location specified by the execution address. The
quotient is rounded and normalized in the A register at the end of the operation. The
residue from the rounding operation is left in the Q register at the end of the operation. A
floating -point range fault produces an interrupt (if selected) and sets an indicator which

may be sensed by an external function instruction.

34bk SCALE A (SCA) A left until (Ag4n) # (Agg) ork =0
Reduce k by one per shift; k¢ — BP
This instruction shifts the quantity in the A register circularly to the left until the
most significant digit is immediately to the right of the sign digit. The shift count k is
reduced by the number of bit positions shifted. The shift is terminated if k becomes zero
before the normalizing operation is completed. In any event the reduced shift count is then
entered into the designated index register. The range of k is 0 through 77777g. The Shift

Fault indicator is not affected by the execution of this instruction.

35bk SCALE AQ (SCQ) AQ left until (Agn)=~ (Agg) or k =0

Reduce k by one per shift; ks — Bb
This instruction shifts the quantity in the AQ register circularly to the left until the

most significant digit is immediately to the right of the sign digit. The shift count k is re-

II-18

duced by the number of bit positions shifted. The shift is terminated if k becomes zero
before the normalizing operation is completed. In any event the reduced shift count is then
entered into the designated index register. The range of k is 0 through 77777g. The Shift

Fault indicator is not affected by the execution of this instruction.
36 b m STORAGE SKIP (SSK) (Myn) Neg: Exit

(Myn) Pos: Half Exit

This instruction senses the sign digit of the quantity in the storage location designated
by -the execution address. If the quantity is negative, an exit is performed. If the quantity
is positive, a half exit is performed. None of the quantities in the operational registers

are modified by this instruction.

37Tbm STORAGE SHIFT (SSH) (My4n) Neg: Exit, Shift Left One

(Mg7) Pos: Half Exit, Shift Left One

This instruction senses the sign digit of the quantity in the storage location designated
by the execution address. If the quantity is negative, an exit is performed. If the quantity
is positive, a half exit is performed. In either case the quantity in storage is then shifted
circularly to the left one bit position. None of the quantities in the operational registers are

modified by this instruction,
40bm SELECTIVE SET (SST) SET (Ap) = 1for M,) =1

This instruction sets individual bits of the A register to one where there are corres-
ponding ones in the quantity in the storage location designated by the execution address.

This is a bit-by-bit function and does not involve normal addition. Bits in the Accumulator

II-19

corresponding to zeros in the operand are not modified. This is the inclusive "or' function.
41bm SELECTIVE CLEAR (sCL) Clear (A;) to zero for (Mp) = 1

This instruction clears individual bits of the A register to zero where there are cor-
responding ones in the quantity in the storage location designated by the execution address.
This is a bit-by-bit function and does not involve normal addition. Bits in A corresponding

to zeros in the operand are not modified.
42 b m SELECTIVE COMPLEMENT (SCM) Complement (A,) for (M) = 1

This instruction complements individual bits of the A register where there are ones
in the quantity in the storage location designated by the execution address. This is a bit-
by-bit function and does not involve normal addition. Bits in A corresponding to zeros in

the operand are not modified. This is the exclusive "or'" function.
43 bm SELECTIVE SUBSTITUTE (SSU) (Mp) = A, for (Qp) =1

This instruction‘substitutes portions of an operand into the A register using the Q
register contents as a mask. This may be considered in two steps. Individual bits of the
A register are cleared to zero where there are ones in corresponding bits of the Q register.
Then those same individual bits of the A register are replaced with corresponding bit values

from the storage location specified by the execution address.
44bm LOAD LOGICAL (LDL) L(Q (M) —A

This instruction loads the A register with the bit-by-bit logical product of the Q

register contents and the quantity in the storage location designated by the execution address.

II-20

45bm ADD LOGICAL (ADL) [(A) + LQ) (M)] — A

This instruction adds to the A register contents the logical product of the Q register
contents and the quantity in the storage location designated by the execution address. This
is a normal addition of the selected portion of the operand with all other bits interpreted as
zero. Occurrence of an overflow condition produces an interrupt (if so selected) and sets

an indicator which may be sensed by an external function instruction.
46bm SUBTRACT LOGICAL (SBL) [(A) - L(@ ()] —a

This instruction subtracts from the A register contents the logical product of the Q
register contents and the quantity in the storage location designated by the execution address.
This is a normal subtraction operation for the selected portion of the operand with all other
bits interpreted as zero. Occurrence of an overflow condition produces an interrupt (if

selected) and sets an indicator which may be sensed by an external function instruction.
47 b m STORE LOGICAL (STL) LQ) (A) =M

This instruction stores the logical product of the A register and the Q register con-
tents at the storage location specified by the execution address. Neither the A nor the Q

register contents are modified by this instruction.
50 by ENTER INDEX (ENI) y — Bb

This instruction replaces the contents of the designated index register with the operand
y contained in the instruction itself. No storage reference is made in this instruction. If

zero is used as the index designator, this instruction becomes the pass instruction.

II-21

51by INCREASE INDEX (INT) [y + (Bb):| —>BP

This instruction adds the operand y to the contents of the designated index register.
The addition is performed modulus 215 minus one. No storage reference is made in this

instruction.
52 b my LOAD INDEX (upper) (LIU) (myp) = BP

This instruction replaces the contents of the designated index register with the address

from the upper instruction at the designated storage location.
53 b my LOAD INDEX (lower) (LIL) (mpp) — BP

This instruction replaces the contents of the designated index register with the address

from the lower instruction at the designated storage location.

54 by INDEX SKIP (ISK) (BP) = y: Exit, Clear BP
(BY) # y: Adv (BP), Half Exit

This instruction compares the quantity in the designated index register with the oper-
and, y. If the two quantities are equal, then the designated index register is cleared to zero
and an exit is performed. If the quantity in the index register is not equal to y, then the

quantity in the index register is increased one count and a half exit is performed.

55 b m INDEX JUMP (1IJP) (BP) # 0: Reduce (BP), Jump to m

(Bb) = 0: Execute NI

This instruction examines the quantity in the designated index register. If this quan-

tity is not zero, then the quantity is reduced one count and a jump is executed to the base

II-22

execution address. I this quantity is zero, then the present program sequence is con-

tinued.
56 b my STORE INDEX (Upper) (SIU) (BP) — myjp

This instruction stores the quantity in the designated index register in the address
portion of the upper instruction contained in the storage location specified by the base ex-
ecution address. The remaining bits at the specified storage location are not modified in
this operation. This instruction effectively inserts an address in the first instruction at

the specified storage location.
57 b my STORE INDEX (lower) (SIL) (BP) = myp

This instruction stores the quantity in the designated index register in the address
portion of the lower instruction contained in the storage location specified by the base ex-
ecution address. The remaining bits at the specified storage location are not modified in
this operation. This instruction effectively inserts an address in the second instruction at

the specified storage location.
60 b my SUBSTITUTE ADDRESS (upper) (SAU) (Agp-14) = Myp

This instruction replaces the address portion of the upper instruction word in the
storage location designated by the execution address with the lowest order 15 bits of the A
register contents. The remaining bits of the designated word in storage are not modified
by this operation. This instruction effectively inserts an address in the first instruction at

the designated storage location. The contents of A are not modified by this instruction.

61b mg SUBSTITUTE ADDRESS (lower) (SAL) (Ayq_14) = My A

II-23

This instruction replaces the address portion of the lower instruction word in the
storage location designated by the execution address with the lowest order 15 bits of the A
register contents. The remaining bits of the designated word in storage are not modified
by this operation. This instruction effectively inserts an address in the second instruction

at the designated storage location. The contents of A are not modified by this instruction.

62 b m INPUT TRANSFER (INT) Transfer (Bb) words to memory,

beginning at the last address

This instruction transfers a block of data from an external equipment into the central
computer storage. The number of words to be transferred is specified by the contents of
the designated index register, BP. These words are located in a consecutive list which be-
gins at the location specified by the base execution address, m. The transfer begins by
storing the first word in the last position in the list. The content of the designated index
register is reduced by one for each word that is transferred. The transfer continues until

the contents of the designated index register are reduced to zero.

63 b m OUTPUT TRANSFER (OUT) Transfer (Bb) words from memory,

beginning with the last address

This instruction transfers a block of data from computer storage to an external equip-
ment. The number of words to be transferred is specified by the contents of the designated
index register, BP. The words to be transferred are located in a consecutive list which be-
gins at the location specified by the execution address, m. The transfer begins by obtaining
the first word from the last position in the list. The content of the designated index register
is reduced by one for each word that is transferred. The transfer continues until the con-

tents of the designated index register are reduced to zero.

I1-24

64 b m EQUALITY SEARCH (EQS) Search (BP) words, beginning with

the last word

(M) = A: Exit

This instruction searches a list of operands to find one that is equal to the content of

the A register. The number of items in the list is specified by the content of the designated
index register. These items are located in a consecutive list beginning at the location spec-
ified by the base execution address. The search begins with the last operand in the list.
The content of the designated index register is reduced by one for each operand examined.
The search continues until an operand is reached that is equal to the content of the A regis-
ter or until the contents of the designated index register are reduced to zero. If the search
is terminated by finding an operand equal to the value in A, an exit is performed. The ad-
dress of the operand which satisfied the criterion is given by the sum of the base execution
address and the final contents of the index register. If no operand in the list is equal to the
value in A, then a half exit is performed. If b = 0, only the word at m is searched. In the
equality comparison made here, plus zero (that is, all zeros) and minus zero (that is, all

ones) are treated as equal.
65b m THRESHOLD SEARCH (THS) Search (BP) words, beginning with
the last word

(M) > (A): Exit

This instruction searches a list of operands to find one that is greater than the con-
tents of the A register. The number of items in the list is specified by the contents of the
designated index register. These items are located in a consecutive list beginning at the
location specified by the base execution address. The search begins with the last operand

in the list. The content of the designated index register is reduced by one for each operand

II-25

examined. the search continues until an operand is reached that is greater than the con-
tent of the A register or until the contents of the designated index register are reduced to
zero. If the search is terminated by finding an operand greater than the value in A, an
exit is performed. The address of the operand which satisfied the criterion is given by the
sum of the base execution address and the final contents of the index register. If no oper-
and in the list is greater than the value in A, then a half exit is performed. If b = 0, only
the word at m is searched. In the comparison made here plus zero is considered as great-

er than minus zero.
66 b m MASKED EQUALITY (MEQ) Search (BP) words beginning with

the last word

L(Q) (M) = (A): Exit

This instruction searches a list of operands to find one such that the logical product
of the operand and the contents of the Q register (that is, the masked operand) is equal to
the contents of the A register. The number of items in the list is specified by the content
of the designated index register. These items are located in a consecutive list beginning
at the location specified by the base execution address. The search begins with the last
operand in the list. The content of the designated index register is reduced by one for
each operand examined. The search continues until an operand is reached that, when
masked, is equal to the value in the A register, or until the contents of the designated in-
dex register are reduced to zero. If the search is terminated by finding a masked operand
that is equal to the value in A, an exit is performed. The address of the operand which

satisfied the criterion is given by the sum of the base execution address and the final con-
tents of the index register. If no operand in the list satisfies the criterion then a half

exit is performed. If b = 0, only the word at m is searched.

II-26

67 b m MASKED THRESHOLD (MTH) Search (BP) words, beginning with
the last word

L(Q) (M) > A: Exit

The instruction searches a list of operands to find one such that the logical product
of the operand and the contents of the Q register (that is, the masked operand) is greater
than the contents of the A register. The number of items in the list is specified by the con-
tents of the designated index register. These items are located in a consecutive list be-
ginning at the location specified by the base execution address. The search begins with the
last operand in the list. The content of the designated index register is reduced by one for
each operand examined. The search continues until an operand is reached that, when
masked, is greater than the value in the A register or until the contents of the designated
index register are reduced to zero. If the search is terminated by finding a masked oper-
and that is greater than the value in A, an exit is performed. The address of the operand
which satisfied the criterion is given by the sum of the base execution address and the final
contents of the index register. If no operand in the list satisfied the criterion then a half

exit is performed. If b = 0, only the next word at m is searched.
70 b m REPLACE ADD (RAD) [an) + #)]~Me A

This instruction replaces the quantity specified by the execution address with its
original value plus the value in the A register. The resultant sum is left in the A register
at the end of the operation. An overflow condition produces an interrupt (if selected) and

sets an indicator which may be sensed by an external function instruction.

71bm REPLACE SUBTRACT (RSB) [(M) - (A)] —~M&A

II-27

This instruction replaces the quantity specified by the execution address with its
original value minus the value in the A register. The resultant difference is left in the A
register at the end of the operation. An overflow condition produces an interrupt (if select-

ed) and sets an indicator which may be sensed by an external function instruction.
72 b m REPLACE ADD ONE (RAO) [(M) 4 1] ~M&A

This instruction replaces the quantity specified by the execution address with its orig-
inal value plus one. The resultant quantity is left in the A register at the end of the oper-
ation. The original A register contents are destroyed by this operation. An overflow con-
dition produces an interrupt (if selected) and sets an indicator which may be sensed by an

external function instruction.
7T3bm REPLACE SUBTRACT ONE (RSO) [(M) - 1] - M& A

This instruction replaces the quantity specified by the execution address with its
original value minus one. The resultant quantity is left in the A register at the end of the
operation. The original A register contents are destroyed by this operation. An overflow
condition produces an interrupt (if selected) and sets an indicator which may be sensed by

an external function instruction.

T4jy EXTERNAL FUNCTION (EXF) j = 1-6: activate channel j
j = 0 select condition y
ji="T on condition y exit or

half exit

This instruction has eight sub-instructions which are used to control the transfer of

II-28

information between the computer and peripheral equipments. The index registers are not
used for address modification in this instruction. The designator is used to specify one of
eight external functions to be performed.

The sub-instructions and the operation performed for each are as follows:

74 0 y - Select external equipment or internal condition, y

T4 1y - Activate communication channel one

74 2 y - Activate communication channel two

74 3 y - Activate communication channel three

74 4 y - Activate communication channel four

74 5y - Activate communication channel five

T4 6 y - Activate communication channel six

74 7Ty - Sense external or internal condition, y

Sub-instructions 74 1 y through 74 6 y are used to begin buffering a block of data be-
tween the computer and a previously selected peripheral equipment. The base execution
address is used to designate the starting address in the computer central storage. This ad-
dress is automatically recorded in the upper address position of the appropriate special
storage location (00001-00006). The terminal address (plus one) of the block of data must
have been previously recorded, by the program, in the lower address position of the ap-
propriate special storage location prior to the execution of this external function instruction.

Sub-instructions 74 0 y and 74 7 y are used to provide the selection (74 0 y) and sensing
(74 7 y) of a multiplicity of internal and external conditions or modes of operations. The 24

bit instruction is interpreted as follows:

6 bits 3 bits 3 bits 3 bits 9 bits
OP Code 0 = Select 0 = Internal Equipment Condition or
74 7 = Sense 1-6 = Channel 6-7 Mode 000-777

II-29

Sub-instructions 74 0 y and 74 7 y may be used as either upper or lower instructions.
The Select sub-instruction (74 0 y) will yield the same result in either case. However, the
Sense sub-instruction (74 7 y) causes a skip or a wait depending upon its position in the 1604
Computer word.

When used in the upper position, a 74 7 y is a skip instruction. That is, the lower
instruction is skipped if the condition given by the EF code is present, but the lower in-
struction is executed if the condition given by the EF code is not present. In the first case,
the 74 7 y "exits' to the next pair of instructions. In the second case the 74 7 y "half
exits' to the lower instruction.

When the 74 7 y is used in the lower position, it is not a skip instruction. Instead the
sense is executed repeatedly until the condition given by the EF code occurs. At this time
an exit is performed to the next pair of instructions. Until the condition given by the EF
code is present, the instruction simply half exits to repeat itself. A 74 7 y in the lower
position is therefore a means of awaiting the occurrence of a specified condition.

Throughout the list of sense codes below, the term ''exit" and "half exit' applies as
indicated above. An exit is performed if the stated condition is present; if not present, a

half exit is performed.

Internal Condition

Internal Select

74 0 00010 - Select interrupt on channel 1 inactive
74 0 00011 - Remove selection

74 0 00020 - Select interrupt on channel 2 inactive
74 0 00021 - Remove selection

74 0 00030 - Select interrupt on channel 3 inactive

I1-30

Internal Select (cont.)

74 0 00031 - Remove selection

74 0 00040 - Select interrupt on channel 4 inactive

74 0 00041 - Remove selection

74 0 00050 - Select interrupt on channel 5 inactive

74 0 00051 - Remove selection

74 0 00060 - Select interrupt on channel 6 inactive

74 0 00061 - Remove selection

74 0 00070 - Clear arithmetic faults

74 0 00100 - Select interrupt on arithmetic fault

74 0 00101 - Remove selection
74 0 01000 - Start clock

74 0 02000 - Stop clock

Internal Sense

74 7 00010 - Exit on channel 1 active
74 7 00011 - Exit on channel 1 inactive
74 7 00020 - Exit on channel 2 active
74 7 00021 - Exit on channel 2 inactive
74 7 00030 - Exit on channel 3 active
74 7 00031 - Exit on channel 3 inactive
74 7 00040 - Exit on channel 4 active
74 7 00041 - Exit on channel 4 inactive
74 7 00050 - Exit on channel 5 active

74 7 00051 - Exit on channel 5 inactive

II-31

74 7 00060 - Exit on channel 6 active
74 71 00061 - Exit on channel 6 inactive
74 7 00110 - Exit on divide fault

74 7 00111 - Exit on no divide fault

74 7 00120 - Exit on shift fault

74 7 00121 - Exit on no shift fault

74 7 00130 - Exit on overflow fault

74 7 00131 - Exit on no overflow fault
74 7 00140 - Exit on exponent fault

74 7 00141 - Exit on no exponent fault

External Equipment

External Clear

74 0 10000 - Clear all channel 1 selections
74 0 20000 - Clear all channel 2 selections
74 0 30000 - Clear all channel 3 selections
74 0 40000 - Clear all channel 4 selections
74 0 50000 - Clear all channel 5 selections

74 0 60000 - Clear all channel 6 selections

Console Select

74 0 11100 - Keyboard entry and no interrupt on carriage return
74 0 11140 - Keyboard entry and interrupt on carriage return
74 0 11200 - PT reader and no interrupt on end -of -tape

74 0 11210 - PT reader and end-of -tape indicator

74 0 11220 - PT reader and interrupt on end-of-tape

74 0 21100 - Print assembly mode

74 0 21110 - Print character mode

74 0 21200 - Punch assembly mode

74 0 21210 - Punch character mode

74 0 21240 - Turn punch motor off

Console Sense

74 7 11100 - Exit on keyboard carriage return
74 7 11101 - Exit on no keyboard carriage return
74 7 11140 - Exit on keyboard lower case

74 7 11141 - Exit on keyboard upper case

II-32

Console Sense (cont,)

74 7 11200 - Exit on PT reader, end-of-tape

74 7 11201 - Exit on PT reader, no end-of-tape

74 7 11210 - Exit on PT reader, assembly mode
74 7 11211 - Exit on PT reader, character mode
74 7 21200 - Exit on punch, end-of-tape

74 7 21201 - Exit on punch, no end-of-tape

1607 Magnetic Tape System - Select

Typically, the 1607 Magnetic Tape System is connected to channels 3 and 4.
Thus the channel selection code is 3 or 4, The variable ''n" is used to specify
one of the four tape units by being assigned a value 1 through 4. The codes are
so arranged that tape unit n is selected for an input or output channel operation
on the initial selection only; subsequent selector sense operations on the unit do
not require the n designator. The n designator is required when changing cpera-
tions from one tape unit to another, Various conditions, including errors aris-
ing in the operation of the tape system, may be sensed by the external sense

codes,

74 0 32001 - Read selected tape, binary

74 0 32002 - Read selected tape, coded

74 0 32004 - Interrupt when selected tape ready
74 0 32005 - Rewind selected tape

74 0 32006 - Backspace selected tape

74 0 32007 - Rewind selected tape with interlock
74 0 320nl - Select read tape n, binary

74 0 320n2 - Select read tape n, coded

II-33

74 0 42001 - Write selected tape, binary

74 0 42002 - Write selected tape, coded

74 0 42003 - Write end-of-file mark on selected tape
74 0 42004 - Interrupt when selected tape ready

74 0 42005 - Rewind selected tape

74 0 42006 - Backspace selected tape

74 0 42007 - Rewind selected tape with interlock

74 0 420n1 - Select write tape n, binary

74 0 420n2 - Select write tape n, coded

1607 Magnetic Tape System - Sense

74 7 32000 - Exit on ready to read

74 7 32001 - Exit on not ready to read

74 7 32002 - Exit on read parity error

74 7 32003 - Exit on no read parity error

74 7 32004 - Exit on read length error

74 7 32005 - Exit on no read length error

74 7 32006 - Exit on end of file mark

74 7 32007 - Exit on no end of file mark

74 7 42000 - Exit on ready to write

74 7 42001 - Exit on not ready to write

T4 7 42002 - Exit on write reply parity error
74 7 42003 - Exit on no write reply parity error
74 7 42004 - Exit on write reply length error

74 7 42005 - Exit on no write reply length error

II-34

1607 Magnetic Tape System - Sense (cont.)
74 7 42006 - Exit on end-of-tape marker

74 7 42007 - Exit on no end-of-tape marker

1605 Adaptor - Select
The condition interpretation codes used with the 1605 Adaptor, select and
control the operation of the various IBM equipments connected to the Adaptor.
m_n

The channel selection code is 5 or 6, The variable ''n" is used to specify one

of a number of similar units of a single class.

74 0 54000 - Begin cycle or read selected tape, binary

74 0 54001 - Read selected tape, coded

74 0 54002 - Select read, binary, for read-while-write

74 0 54003 - Select read, coded, for read-while-write

74 0 54005 - Rewind selected tape

74 0 54006 - Backspace selected tape

74 0 54007 - Interrupt when selected unit ready

74 0 54100 - Turn on indicator, selected unit

74 0 54101 - Turn off indicator, selected unit

74 0 54200 - Clear Interrupt Selection

74 0 544n0 - Read tape n, binary

74 0 544nl1 - Read tape n, coded

74 0 544n2 - Select read tape n, binary, for read-while-write
74 0 544n3 - Select read tape n, coded, for read-while-write
74 0 54500 - Begin cycle card reader, binary

74 0 54501 - Begin cycle card reader, coded

74 0 64000 - Begin cycle or write selected tape, binary

74 0 64001 - Write selected tape, coded

I1-35

1605 Adaptor - Select (cont.)
74 0 64004 - Write end-of-file, selected tape
74 0 64005 - Rewind selected tape
74 0 64006 - Backspace selected tape
74 C 64007 - Interrupt when selected unit ready
74 0 64200 - Clear interrupt selection
74 0 64100 - Turn on indicator, selected unit
74 0 64101 - Turn off indicator, selected unit
74 0 644n0 - Write tape n, binary
74 0 644n1 - Write tape n, coded
74 0 64600 - Begin cycle card punch, coded
74 0 64601 - Begin cycle card punch, binary
74 0 64700 - Begin cycle line printer
1605 Adaptor - Sense
The following sense codes are used with the 1605 Adaptor. The indicator is always
received from the selected IBM unit. An indicator from the card reader indicates that the
card feed is empty. From a magnetic tape unit, it indicates either end-of-tape (for a
write operation) or end-of-file (for a read operation). An indicator from the line printer
indicates the end-of-page. No indicator is received from the card punch.
74 7 54000 - Exit on ready to read
74 7 54001 - Exit on not ready to read
74 7 54002 - Exit on parity error
74 7 54003 - Exit on no parity error
74 7 54004 - Exit on indicator from selected umit
74 7 54005 - Exit on no indicator from selected unit

74 7 54006 - Exit on read length error
II-36

1605 Adaptor - Sense (cont.)

74 7 54007 - Exit on no read length error

74 7 64000 - Exit on ready to write

74 7 64001 - Exit on no ready to write

74 7 64002 - Exit on parity error

74 7 64003 - Exit on no parity error

74 7 64004 - Exit on indicator from selected unit

74 7 64005 - Exit on no indicator from selected unit

75jm SELECTIVE JUMP (SLJ) Jump to m

This instruction has eight sub-instructions which cause a jump in program sequence
on specified conditions of operator lever keys. The index registers are not used for ad-
dress modification in this instruction. The index designator in the instruction specifies
which lever key is sampled in determining the jump decision.

The sub-instruction and the operation performed by each when a positive result is
obtained from sampling the appropriate lever key are as follows:

75 0 m - Jump unconditionally

75 1 m - Jump if lever key one is set

75 2 m - Jump if lever key two is set

75 3 m - Jump if lever key three is set

75 4 m - Return jump unconditionally

75 5 m - Return jump if lever key one is set

75 6 m - Return jump if lever key two is set

75 7 m - Return jump if lever key three is set

II-37

76 i m SELECTIVE STOP (SLS) Stop, jump to m

This instruction has eight sub -instructions which cause the program to stop on spec-
ified conditions of operator lever keys. The index registers are not used for address modif -
ication in this instruction. The index code in the instruction specifies which lever key is
sampled in determining the stop decision. A jump to the base execution address occurs re-
gardless of the stop decision.

The sub-instructions and the operation performed by each when a positive result is
obtained from sampling the appropriate lever key are as follows:

76 0 m - Stop unconditionally (normal jump)

76 1 m - Stop if lever key one is set (normal jump)
76 2 m - Stop if lever key two is set (normal jump)
76 3 m - Stop if lever key three is set (normal jump)
76 4 m - Stop unconditionally (return jump)

76 5 m - Stop if lever key one is set (return jump)
76 6 m - Stop if lever key two is set (return jump)

76 7T m - Stop if lever key three is set (return jump)

SPECIAL PROGRAMMING FEATURES

Certain of the instructions are more versatile and have greater flexibility than is in-
dicated in the foregoing analysis of the instructions. The following paragraphs, therefore,
elaborate on some of the capabilities of the machine, and present data that will be helpful
in obtaining a more complete understanding of the instructions.

Skip Instructions

Several 1604 instructions, when used in the upper position of a program step, pro-

vide a facility for exits or half exits. These instructions are:

II-38

36 b m Storage Skip

37Tbm Storage Shift

54 by Index Skip

64 b m Equality Search

65 b m Threshold Search

66 b m Masked Equality

67 b m Masked Threshold

47y External Function (Sense external or Internal)

In each case, the instruction exits to the next pair of instructions if a specified con-
dition exists. If the condition does not exist, a half exit to itself is performed to the lower

instruction.

When the 36, 37, 54, (74 7 y) instructions are used in the lower position of

a program step, they provide a means of awaiting the occurrence of a specified

condition., The instruction half exits to repeat itself until the specified condition
occurs, at which time it exits to the next program step. The search instructions

do not half exit when placed in the lower position of a program step.
Jump Instructions

A jump instruction causes the termination of a current program sequence and the

initiation of a new sequence at a different location in storage. Continuity between individual
steps in a sequence is provided by a program address register. This register always con-
tains the storage location of the program step currently being executed. The address in
this register is normally increased by one count at the end of each program step to specify
the location of the next step. In the case of jump instructions the program address register
is cleared, and a new address is entered from the jump instruction. In all jump instruc-
tions the base execution address specifies the beginning address of the new program se-

quence.
1I-39

Most changes in sequence are conditional upon a register value or an operator key
position. If the criterion specified by the individual instruction is satisfied, the jump is
taken and the program sequence altered. If the criterion is not met, the program proceeds
to the next sequential instruction, and the jump address is discarded.

A jump instruction may appear in either the upper or the lower positions in a program
step. If a jump instruction appears in the upper position in a program step, and the jump
is taken, the lower instruction in that step is never executed. If a jump instruction appears
in the lower position in a program step, the upper instruction in that step is executed in a
normal manner.

A normal jump initiates a new program sequence with the upper instruction in the
specified storage location. The location of the program sequence which contained the jump
instruction is not retained.

A return jump initiates a new program sequence with the lower instruction contained
in the specified storage location. The base execution address of the upper instruction at
this specified storage location is replaced with the address of the program step following
the jump instruction in the original program. This allows the new program sequence to re-
turn to the proper point in the original program at a later time.

A program sequence which is entered by a return jump is called a return jump sub-
routine. The upper instruction in the first step of such a sequence is a normal jump in-
struction whichis provided with the exit address when the sequence is entered.

Two Address Jumps

A number of the instructions of the Model 1604 Computer are intended for application
as two-address jump instructions. When used for this purpose, these instructions (36, 37,

54, 64, 65, 66, 67 and 74.7) are located in the upper position of program steps. The lower

II-40

position in such a program step is usually occupied by an unconditional jump instruction,
providing for conditional branching.

Various combinations of these instructions can be used to provide two address logic
where convenient. For example, if a single instruction is to be executed, or not executed,
as a result of a sensing operation, that instruction should be used in the lower position of
a program step with the appropriate sense instruction in the upper position. As another
example, a conditional jump instruction may be used in the lower position to allow a jump
decision based on a second criterion.

Search Instructions

The search instructions (64, 65, 66 and 67) represent an extension of the two-address
jump concept. If these instructions are used with index designator zero, the search is per-
formed on only one operand, located as specified by the base execution address.

If the search instructions (64, 65, 66 and 67) are used with an index designator not
zero or seven, a list of operands is searched for one satisfying the specified criterion.

The search is begun with the last operand in the list and the search address reduced one count
at a time until the search criterion is met or the base execution address reached. If the
criterion is met the designated index register contains the proper increment to be added to
the initial address of the list to obtain the operand which satisfied the criterion. The search
is resumed by returning to the search instruction with the index value thus re-
duced., If the index register designated by b contains positive zero, no words will

be searched, and hence the criterion will not be met.

Masking Instructions

Instructions 44, 45, 46, 47,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>