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In 1936, the Romanian mathematician Dimitrie Pompeiu discovered the following
simple, yet beautiful, result in Euclidean plane geometry [4], [5]:

Pompeiu’s Theorem. Let △ABC be an equilateral triangle, and let M be a point

in the plane determined by it. Then, the lengths MA, MB, and MC form the sides

of a triangle. The triangle formed by these sides is degenerate if and only if M lies

on the circumcircle of △ABC.

A quick proof, by construction, of the first part of this result goes as follows:
consider a rotation of π/3 radians about the point C that maps point A to point B,
and M to M ′. Clearly, △MCM ′ is equilateral and MM ′ = MC. Since MA = M ′B,
we conclude that △MBM ′ has sides equal to MA, MB, and MC (see Figure 1; all
marked angles are equal to π/3 radians).

The theorem is not classical in that not every geometry textbook mentions it.
Nowadays, it is more likely that a student will encounter this theorem as a corollary
of the so-called Ptolemy inequality, named after Claudius Ptolemy, who is credited
with the proof of the corresponding equality in a cyclic quadrilateral, that is, a quadri-
lateral with its four vertices on a circle. A slight drawback, however, of this approach
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is that it does not shed much light on further properties of the (non-degenerate) trian-
gle determined by the sides MA, MB, and MC. Such properties require identifying
the triangle, which, in turn, points to a constructive proof of Ptolemy’s theorem.

Pompeiu established similar results for the square and other regular polygons [3],
[7] (see also [1], [2]). Although he was extremely prolific, and published about 150
articles and books in several areas of mathematics, including geometry, Pompeiu
principally distinguished himself in the field of analysis. He obtained a Ph.D. degree
in mathematics in 1905 with a thesis written under the direction of Henri Poincaré,
and, later, became known to the larger mathematical community for a challenging
conjecture bearing his name [6] dating to year 1929. Upon his return to Romania,
he founded mathematics schools of partial differential equations and mechanics. It
is no surprise, then, that Pompeiu’s original proof of his theorem was via complex
numbers!

In this note, we revisit Pompeiu’s theorem in the realm of arbitrary triangles. We
generalize the result to what is known as Ptolemy’s inequality. We also prove a sym-
metric formula, previously unknown as far as we know, that relates the areas of these
triangles. As a tribute to the mathematical legacy of the Romanian mathematician
we call it Pompeiu’s area formula.

We provide two proofs of the Ptolemy inequality, one, in the spirit of Pompeiu’s
proof, via complex numbers, that seems to be missing from the literature, the other
using synthetic (Euclidean) geometry. The latter proof leads to further introspec-
tion on the properties of certain triangles determined by four given points. Both
our proofs are elementary, are based on simple ideas, and involve straightforward
algebraic computations. The analytic proof requires only rudimentary notions about
complex numbers. The geometric proof, by inversion, is known. We provide a slight
modification of it and include all the details. The interested reader can consult [8],
[9], [10] and the references therein for more on this approach. Furthermore, we will
use this proof to arrive at our symmetric formula for areas.

Our generalization of Pompeiu’s theorem (that is, Ptolemy’s inequality) is

Theorem 1. Given △ABC and a point M in its plane, the lengths MA · BC,

MB · CA, and MC · AB form the sides of a triangle. This triangle is degenerate if

and only if M is on the circumcircle of △ABC.

1. Proof via complex numbers.

Given a point P (x, y) in the plane, we use the complex number p = x + iy to
denote such a point. Three points are said to be collinear if they all sit on the same
line. Three distinct points are said to be concyclic if there is a circle passing through
them.

For the remainder of this proof, we let a, b, c, and m be complex numbers represent-
ing the points A, B, C, and M. Furthermore, we choose a system of xy-coordinates
such that A is identified with the origin, that is, we assume, without loss of generality,
that a = 0.
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Proof 1. From the obvious equality

m(b − c) = −(m − b)c + (m − c)b,

by taking absolute values, we obtain

|m||b − c| ≤ |m − b||c| + |m − c||b|. (1)

In other words,

MA · BC ≤ MB · CA + MC · AB,

so that the lengths considered do form a triangle.
This triangle is degenerate if and only if inequality (1) is an equality. On the other

hand, this happens if and only if

arg((m − b)c) = arg((m − c)b),

or if

(m − b)c

(m − c)b
∈ R.

Setting

(m − b)c

(m − c)b
=

(m̄ − b̄)c̄

(m̄ − c̄)b̄
,

and clearing fractions, yields

mm̄(cb̄ − bc̄) − (|c|2b̄ − |b|2c̄)m + (|c|2b − |b|2c)m̄ = 0.

Note that, since the points 0, b, and c are not collinear, the leading coefficient on the
left-hand side cannot be zero. Therefore,

mm̄ − αm − ᾱm̄ = 0, (2)

where

α =
|c|2b̄ − |b|2c̄

cb̄ − bc̄
.

Consider now the complex equation

zz̄ − αz − ᾱz̄ = 0,

or equivalently,

|z − α|2 = |α|2.

This is the equation of a circle, passing through the origin and with radius |α|.
Substituting and expanding reveals that, in this case, the circle also passes through
the points b and c, and therefore is the circumcircle of △ABC. Equation (2) states
precisely that M is on this circle. This completes the proof of Theorem 1.
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2. Proof via inversion.

Before giving our second proof, recall that the circle inversion centered at the point
P and of radius r (of power r2) is a transformation that maps the plane into itself and
sends a point X to its inverse point Y on the half-line PX such that PX · PY = r2

(see Figure 2).

Proof 2. We assume that M is in the interior of △ABC; the case when M is not
in the interior can be proved similarly. We perform the circle inversion centered at
A and of radius 1, and denote by B1, C1, and M1 the inverses of points B, C, and M
(see Figure 3). Since A, B, C, and M are not concyclic, the points B1, C1, and M1

cannot be collinear.
Therefore, AB ·AB1 = AM ·AM1 = AC ·AC1 = 1. Since the angle at vertex A is

common, this implies that we have the following pairs of similar triangles: △ABM ∼
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Figure 3. Inversion of ∆BCM

△AM1B1, △ACM ∼ △AM1C1, and △ABC ∼ △AC1B1. The corresponding ratios
of similarity are

BM

B1M1

= AM · AB,
CM

C1M1

= AM · AC, and
BC

B1C1

= AB · AC.

These immediately imply that

B1M1

BM · AC
=

C1M1

CM · AB
=

B1C1

AM · BC
=

1

AM · AB · AC
.

This proves that △B1M1C1 is similar to a triangle having sides BM ·AC, CM ·AB,
and AM · BC.

Figure 3 assumes that the lengths AB and AC are less than 1 (the radius of inver-
sion). All other configurations can be dealt with in a similar manner. Alternatively,
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one can work with a general inversion of radius r that yields the configuration of
Figure 3 and adapt the argument accordingly. This remark applies also to the proof
of Theorem 2 below; see also the comment immediately following the proof of this
theorem.

3. Pompeiu’s Area Formula

A further investigation led us to a beautifully symmetric formula that computes
the area of the triangle proved to exist in Theorem 1.

Theorem 2. Let △ABC be acute with side-lengths a, b, and c and area S0, and let

M be a point in its interior. Denote by S the area of a triangle having side-lengths

MA · BC, MB · CA, and MC · AB and by S1, S2, S3 the areas of △BCM,△CAM ,

and △ABM . Then

SS0 = a2S2S3 + b2S3S1 + c2S1S2.

Proof. We let σ(XY Z) denote the area of △XY Z. With the notation in the second
proof of Theorem 1 (see Figure 3 again), we have

σ(AB1M1) = S3 ·
1

AM2 · AB2
, σ(AC1M1) = S2 ·

1

AM2 · AC2
, and

σ(AB1C1) = S0 ·
1

AB2 · AC2
. (3)

A triangle with sides MA ·BC, MB ·CA, and MC ·AB is similar to △C1B1M1 with
similarity ratio

1

AM · AB · AC
.

Thus

σ(C1B1M1) = S ·
1

AM2 · AB2 · AC2
. (4)

We show that M1 cannot be in the interior of △AB1C1. Suppose it were. Then
∠AM1B1 or ∠AM1C1 would be obtuse. Hence, by similarity, so would ∠ABM or
∠ACM be. This contradicts the hypothesis that △ABC is acute. Therefore, M1

must fall on the exterior of △AB1C1, hence �AB1M1C1 must be a convex quadrilat-
eral.

Using (3) and (4) in the obvious equality

σ(AB1M1) + σ(AC1M1) = σ(AB1C1) + σ(C1B1M1),

we obtain
S3 · AC2 + S2 · AB2 = S0 · MA2 + S

or, if u = MA · BC,

u2 =
a2c2S3 + a2b2S2 − a2S

S0

.

Note that we can repeat the argument above by performing an inversion centered at B
respectively C. Therefore, similar equalities hold for v = MB ·CA and w = MC ·AB.

Substituting these values into Heron’s formula

16S2 = 2(u2v2 + v2w2 + w2u2) − (u4 + v4 + w4),
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and simplifying, we get the desired formula. The proof is complete. �

We remark that the hypothesis that M is in the interior of an acute triangle in
Theorem 2 can be replaced with the assumption that M is in the interior of an
arbitrary triangle such that ∠AMB, ∠BMC and ∠CMA are all obtuse. Indeed, if
we perform an inversion centered at A with r greater than AB and AC, the point
M1 must fall again on the outside of △AB1C1. From this point on, the proof is the
same.

Clearly, Pompeiu’s theorem is an immediate consequence of Theorem 1. And yet
Pompeiu’s name is attached to this corollary and it has become to be known as such
because of his fresh approach to this old plane geometry problem. We name the
following corollary of Theorem 2 after him as well.

Pompeiu’s Area Formula. Let △ABC be an equilateral triangle with area S0, and

let M be a point in its interior. Let S∗ denote the area of a triangle having side-

lengths MA, MB, and MC, and let S1, S2, S3 denote the areas of △BCM,△CAM ,

and △ABM . Then

S∗S0 = S1S2 + S2S3 + S3S1.
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Árpád Bényi, Department of Mathematics, Western Washington University, 516

High St, Bellingham, WA 98225-9063, USA

E-mail address : arpad.benyi@wwu.edu
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