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Second-Order Comparison of Gaussian Random
Functions and the Geometry of DNA Minicircles
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Given two samples of continuous zero-mean iid Gaussian processes on [0, 1], we consider the problem of testing whether they share the
same covariance structure. Our study is motivated by the problem of determining whether the mechanical properties of short strands of
DNA are significantly affected by their base-pair sequence; though expected to be true, had so far not been observed in three-dimensional
electron microscopy data. The testing problem is seen to involve aspects of ill-posed inverse problems and a test based on a Karhunen—
Loeve approximation of the Hilbert—Schmidt distance of the empirical covariance operators is proposed and investigated. When applied to
a dataset of DNA minicircles obtained through the electron microscope, our test seems to suggest potential sequence effects on DNA shape.
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1. INTRODUCTION

The understanding of the mechanical properties of the DNA
molecule constitutes a fundamental biophysical task, as impor-
tant biological processes, such as the packing of DNA in the
nucleus or the regulation of genes, can be affected by properties
such as stiffness and shape (Vilar and Leibler 2003; Tolstorukov
et al. 2005). The study of these properties can focus on differ-
ent scales, and accordingly involves a variety of mathematical
models and techniques. At a coarse-grained level, the behav-
ior of short (of the order of 150 base pairs) strands of DNA is
likened to that of a continuous elastic rod. By means of a re-
action called cyclization, two ends of this elastic rod bend and
twist and bind together to form a loop called a DNA minicir-
cle. These three-dimensional cyclic structures are an excellent
specimen for examining the elastic properties of DNA since a
minicircle is in a naturally stressed state without the applica-
tion of external forces. Furthermore, the short length of these
strands will amplify the dependence of the mechanistic behav-
ior on intrinsic factors such as the specific base pair sequence.

Such sequence-dependent shape characteristics are of special
interest as they potentially reveal a dual purpose of the DNA
base-pair sequence: in addition to holding the genetic code,
the sequence may influence the geometric properties of the
molecule. While in principle certain particular subsequences
are expected to have a strong effect on the mechanical proper-
ties of DNA, empirical detection of this effect on stereological
data acquired through the electron microscope has been elusive
(Hagerman 1988; Amzallag et al. 2006). A specific example
is that of a subsequence called the TATA box, which promotes
gene transcription. It is thought that the mechanical properties
of this subsegence are intimately related with its function, and
that its presence in a DNA minicircle will enhance its flexibility.
Nevertheless, exploratory comparisons between reconstructed
minicircles from microscope images containing TATA boxes
with reconstructed minicircles with no TATA box did not re-
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veal any effects due to the presence of the sequence (Amzallag
et al. 2006).

Motivated by the need of two-sample comparison of loops,
as exemplified in DNA minicircle experiments, this article con-
siders the problem of second-order comparison of two samples
of random functions, within a functional data analysis frame-
work. In particular, given realisations of n; and n, independent
copies of two continuous zero mean Gaussian processes X and
Y on a compact set, we consider the problem of testing the hy-
pothesis Hy: %x = Xy against the alternative Hy : Zx # Xy,
where the covariance operators Zx, Zy are not necessarily sta-
tionary. The literature on hypothesis testing for functional data
is mostly concentrated on tests pertaining to the mean func-
tion (Fan and Lin 1998), as encountered, for instance, in func-
tional linear models (Cardot et al. 2003; Cuevas, Febrero, and
Fraiman 2004; Shen and Faraway 2004) or functional change
detection (Berkes et al. 2009). Hall and Van Keilegom (2007)
studied the important issue of the effect that the data smooth-
ing step may have on two-sample testing. Second-order tests
for functional data analysis pertaining to serial correlation were
also investigated (e.g., Gabrys and Kokoszka 2007; Horvath,
Huskovd, and Kokoszka 2010). Although the seeds of func-
tional two-sample covariance tests can be found in Grenan-
der (1981), the problem of second-order comparison of func-
tional data has—interestingly—so far received relatively little
attention. A related recent article by Benko, Hirdle, and Kneip
(2009) proposed two-sample bootstrap tests for specific aspects
of the spectrum of functional data, such as the equality of a sub-
set of the eigenfunctions, or—assuming that the eigenfunctions
are shared—equality of a subset of eigenvalues.

In this article, we consider the difficulties associated with
this testing problem, and it is seen that the extension of
finite-dimensional procedures can lead to complications, as the
infinite-dimensional version of the problem constitutes an ill-
posed inverse problem. As an alternative solution, we propose
a test based on the approximation of the Hilbert—-Schmidt dis-
tance of the empirical covariance operators of the two samples
of functions based on the Karhunen—Loéve expansion. The as-
ymptotic distribution of the test statistic is determined and its
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performance is investigated computationally. The application
of our methodology to an electron microscope dataset of two
groups of minicirles characterized by the presence or absence
of a TATA box suggests the potential existence of significant
differences in the two groups, which eluded previous analy-
ses as these focused on the mean (the shape of the minicircle),
whereas we detect the differences in the covariance structure
(the flexibility/stiffness).

The article is organized as follows. The next section de-
scribes the three-dimensional functional dataset of DNA mini-
circles, from acquisition to registration, and includes a prelimi-
nary exploratory analysis. The first part of the third section then
provides some functional data analysis background. Section 3.2
introduces our spectral test statistic and develops its asymptotic
distribution, while Section 3.3 treats the problem of tuning the
amount of regularization. In Section 4 the power and level of the
test under various scenarios is investigated by means of simula-
tion. Section 5 presents the results of a two-sample analysis of
the DNA minicircles through the spectral test statistics, and the
article concludes with a short discussion.

2. DNA MINICIRCLE DATA

The dataset of interest was reconstructed from electron mi-
crographs imaged by Jan Bednar at the Laboratory of Ultra-
structural Analysis of the University of Lausanne, Switzerland.
A total of 99 DNA minicircles of 158 base-pair length were
vitrified and imaged under two different angles, yielding two
projected images of the same specimen, which were then used
to reconstruct three-dimensional structural models (Jacob et al.
2006). The reconstructed data consist of 99 closed curves (DNA
minicircles) in R? of two types: both types have identical base
pair sequences, except for a 14 base-pair window where 65
curves contain the TATA sequence, while the remaining 34 con-
tain a different sequence, called a CAP sequence. Biophysical
considerations suggest that the presence of a TATA box will
have a significant effect on the geometry of the minicircle, and
the goal is to compare these two groups to probe for such an
effect.

In its reconstructed form, each curve is represented as a com-
bination of periodic B-spline basis functions taking values in
R3. To perform a functional data analysis of the minicircles it
is required to register the data. Each curve has thus been cen-
tered and scaled, so that the center of mass is at zero and the
length of the curve is one. The nature of the experimental setup
in single-particle electron microscopy requires that the minicir-
cles be imbedded unconstrained in the aqueous solution, so that
the reconstructed curves are not aligned: the original (x, y, z)-
coordinates for the different curves are not directly comparable
as each curve was subjected to a random unobservable orthog-
onal transformation. It is thus necessary to align the curves.
Landmark alignment methods (e.g., Gasser and Kneip 1995)
are not applicable as the exact DNA sequence is not detectable
from an electron micrograph. On the other hand, more flexi-
ble methods such as warping (e.g., Gervini and Gasser 2004;
Tang and Miiller 2008) are inappropriate since nonrigid align-
ment will alter the second-order properties that are of princi-
pal interest. As an alternative, we rigidly align curves by their
intrinsic characteristics: each curve was individually aligned
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using the coordinate system induced by its moments of iner-
tia tensor (e.g., Arnold 1989), which is described as follows.
Consider an object in three dimensions described by a mass
distribution pu—for example, for a DNA minicircle, u will be
the uniform measure supported on the curve. Suppose that the
object is rotating around an axis, which without loss of gen-
erality, is given by span(u) := {Au: A € R} for some u € S%.
Let r(u,x) := ||(I — uu")x| denote the distance of a point x
from the subspace span(u). The moment of inertia of the object
around the axis u is given by

S (u) = / r (u, X (dx) = / 10— wuD)x | (dx).
R3 R3

Given a coordinate system defined by an orthonormal basis, say
the canonical basis (eg, >, e3), we can use only these basis vec-
tors to compactly represent the moment of inertia with respect
to any other axis passing by the origin. Define the inertia matrix
as

J= { / XT(eiTejI—eiejT)xu(dx)}
R3 ij

Notice that the diagonal elements of the above matrix are the
moments of inertia with respect to the axes of the coordinate
system. The moment of inertia around any unit vector u can
now be recovered as _#Z (u) = u'" Ju. Since the tensor is sym-
metric, it possesses real eigenvalues and orthonormal eigenvec-
tors forming a basis, which admit the following interpretation:
the first eigenvector, say wi, determines the axis (first principal
axis of inertia, PAI1) around which the curve is most difficult
to rotate, in the sense that the corresponding angular moment
is maximized: WTJW[ > u' Ju for any other u € S?. The pro-
jection on the plane orthogonal to wj is “most spread” in this
sense. The second eigenvector determines the axis within the
first principal plane around which the projected curve is most
difficult to rotate. That is, within the first principal plane, the
projection on the line orthogonal to PAI2 is most spread. Hence,
PAI3 carries the most spatial information, whereas PAIl con-
tains the smallest amount of information. Then, for each curve,
the starting point was determined as the point where the projec-
tion on the first principal plane intersects the horizontal (PAI2)
positive semi-axis and the orientation was chosen as counter-
clockwise in this plane (i.e., at the beginning the PAI3 coordi-
nate increases from zero and PAI2 is positive).

The projections onto the principal axes of the minicircle
curves are depicted in Figures 1 and 2. The data appear to be
well aligned, and seem to be elliptical on average within the
principal plane of inertia. Deviations from this principal plane,
on the other hand, seem to be lacking systematic structure. The
effectiveness of this alignment method is of crucial importance,
as we will not be able to otherwise proceed with the testing
problem (procrustean alignment of the curves will require us to
optimize a sum of squares criterion with respect to 99 orthogo-
nal transformations).

A visual inspection reveals five curves (plotted with dashed
lines) that appear to be “standing out” of the rest—outliers in
a broad sense. Judging whether or not a curve (an infinite di-
mensional object) is an outlier or not can be far trickier than
in the vector case. In particular, it can be that there are fur-
ther “outlying curves” that do not appear to stick out of the
crowd, but are nevertheless intrinsically different from the rest.
For this reason, we pursue a robust analysis for the mean curve
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Figure 1. Projection of DNA curves on the first principal plane. Five removed outlying observations plotted in dashed lines. The mean curves

(in white) are computed without outlying observations.

using a functional median introduced in Gervini (2008). The
idea is simple: an iterative robust procedure will assign weights
to each curve, and we can then detect outlying curves by look-
ing at small weights. The method confirms our visual intuition,
and reveals no further outliers. The outlying observations are
removed, and after this preprocessing stage we are left with 94
aligned smooth curves.

Principal Axis 3, TATA

Principal Axis 2, TATA

3. METHODS
3.1 Background: FDA and Karhunen—Loéve Expansions

We adopt a functional data analysis perspective (Ramsay
and Silverman 2005; Ferraty and Vieu 2006) and model each
curve as the realization of a stochastic process indexed by
the closed interval [0, 1] and taking values in R (but every-
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Figure 2. Coordinates of DNA curves on the principal axes of inertia. Five removed outlying observations plotted with dashed lines. Mean

curves (in white) are computed without outlying observations.
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thing readily extends to the case of RY). In particular, we as-
sume that we have two independent collections X, ..., X,
and Yi,...,Y,,, of iid Gaussian processes on [0, 1], con-
sidered as random elements of the Hilbert space £2[0, 1] of
coordinate-wise square- integrable R3-valued functions with the
inner product (f, g) fo f(r)"g(t)dt. Here, ()T represents
the transpose of the vector-valued function f(r) € R3. Assum-
ing, without loss of generality, that the mean functions are
zero, the processes are characterized by their respective co-
variance kernels Ry (s, 1) = cov(X;(s), X;(?)) = E{X,‘(S)X;r 0},
and Ry (s, 1), respectively. Associated with the covariance ker-
nel is the covariance operator %y :L*[0,1] — £2[0, 1] de-
fined as Zx(£)(r) = cov((X;, ), X;(1) = [, Rx(1, )f(s)ds.
Throughout the article, we will be assuming Ry to be contin-
uous, so that Zx is bounded and the X process is continuous
(resp. the Y process).

Inference for iid collections of infinite-dimensional random
elements is often carried out in practice by an “optimal” re-
duction to a finite-dimensional setting, using finitely many ap-
propriately chosen contrasts in a functional principal compo-
nent analysis (e.g., Ramsay and Silverman 2002, 2005; Hall
and Hosseini-Nasab 2006; also see Dauxois, Pousse, and Ro-
main 1982 for distributional asymptotics). This procedure ex-
ploits the Karhunen—Loeve theorem (e.g., Adler 1990), which
allows for a representation of the process by a stochastic Fourier
series with respect to the orthonormal eigenfunctions {(pg) }]?'il
of the operator Zy,

Xi(t) = Z Weiol o),

where {)M(’)}‘X’1 is the nonincreasing sequence of correspond-
ing eigenvalues and {§;} is an iid array of standard Gaussian
random variables. Convergence of the series is in mean square,
uniformly in 7 € [0, 1].

Thus, in a practical setting, the empirical covariance ker-
nel may be used to “optimally” reduce infinite-dimensional in-
ferential problems to multlvanate ones. Lettmg RX stand for
the empirical covariance kernel, RX (s, 1) = n1 (X (s) —
X)) (X;(H) — X)) T, we denote its eigenvalues (or prlnczpal

scores) by {Ak ML

ponents) by {(p];("‘ } |- The finite-dimensional reduction is then

achieved by retammg a finite number of principal components
(X; — X, ?ﬁ];(’"l )}kK:] in lieu of each X;. These are zero mean
and uncorrelated random variables, with corresponding sample
variances ’):éc(m . Similarly, for the second sample, the analogous
quantities are Ry, Zy, A({), (o(}) (and their empirical “hat” coun-
terparts). The dimension reduction afforded by the Karhunen—
Loeve expansion is the tool we will next employ to construct
our test.

| and its eigenfunctions (or principal com-

3.2 Second-Order Comparison of Gaussian Processes

Let {X;}i!, and {Y;};2, constitute two iid random samples
of Gaussian processes indexed by the interval [0, 1] and taking
values in R? (or indeed R?). As mentioned in the previous sec-
tion, these are regarded as random elements of the Hilbert space
L£2[0, 1] of square-integrable R3-valued functions (where inte-
gration is to be understood coordinate-wise). Assuming that the
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covariance operators Zx and Zy associated with the processes
are continuous, we wish to test the hypothesis pair

{Hoiﬂx=%y,
HAZ%)(#%;/.

A natural first approach to developing a test for the hypoth-
esis pair in Equation (1) is to attempt to extend tests developed
for the finite-dimensional version of the problem, which was
extensively studied. The majority of test statistics for the equal-
ity of covariance matrices of Gaussian vectors are based on the
determinant, trace, or maximum/minimum eigenvalues of ma-
trices such as: $;S,S~!, $;S5°1, S2(S1 4+ S2)~! (Roy 1953; Pil-
lai 1955; Kiefer and Schwartz 1965; Giri 1968); here, S; and
S, are the empirical covariance matrices corresponding to each
sample, and S is the pooled empirical covariance matrix. Evi-
dently, such tests cannot immediately be carried over to the case
of Gaussian processes: inversion of an empirical covariance op-
erator will be required, which transforms the construction of the
test statistic into an ill- posed 1nverse problem.

The operator %’X (resp. Z 2) will be of rank at most n;
(resp. np) as its image is the subspace spanned by {X; } ., (resp.
{Y,}lz] ). Therefore, we cannot talk of its inverse, except if we
restrict the operator on span{X,-}?:'1 (resp. span{Y,-}?;l), but the
two spans will not coincide in general and the two empirical op-
erators will not be diagonalized by the same basis. Furthermore,
since the processes are assumed to be second order, the opera-

tors Zx and Zy are necessarily bounded (in fact compact), and
A(k) X(k) k=00

ey

it must be the case that 0, the rate of conver-
gence depending on the degree of smoothness of the Gaussian
processes (the smoother the process, the faster the rate). Thus,
for any finite n; and n, however large, a test statistic employ-
ing an “inverse” of #Zx composed with Zy will be unstable to
perturbations of the Y-data.

In the infinite-dimesional case, we propose the use of a
test statistic based on the norm of the difference of the two
empirical covariance operators. Recall that for trace-class
operators, one may define the Hilbert—Schmidt norm. Con-
sider an integral operator Z:f — fol R(-, s)f(s)ds such that
Jo Jo trace{R(s, /) TR(s, )} dsdt < co. The Hilbert-Schmidt
norm of the operator & is defined as

1,1
% |lus = \// / trace{R(s, 1) TR(s, 1)} ds dt.
0o Jo

Assuming that the covariance operators in question are Hilbert—
Schmidt, a test may be based on the squared Hilbert—Schmidt
distance ||§Z?§(V — 9’?7]}’ ”12-15 of their empirical counterparts. Of
course, the sampling distribution of this latter quantity will de-
pend on the unknown covariance operators even asymptotically.
To be able to “normalize” the test statistic, we employ a very
useful property of the Hilbert—Schmidt norm: for any orthonor-
mal system {e;}°, of £2[0, 1], we have

o
1Z15s =Y |1 Zeill 7. )

i=1
Therefore, we may use a basis to obtain a countable expression
for ||%’N %N ||Hs In practice, one will need to truncate a se-
ries such as the above to obtain an “optimal” finite-dimensional
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reduction, that is, the choice of contrasts {e;} should be such
that the truncated version of Equation (2) retains the bulk of the
norm.

For each of the two empirical operators, the optimal con-
trasts will coincide with their eigenfunctions, as dictated by the
Karhunen—Loeve expansion, but to use the relation in Equa-
tion (2) we need to use a common basis. As a compromise, we
thus choose the eigenfunctions {'(Bl)‘({,v } corresponding to the em-
pirical covariance operator of the pooled sample of N = ny +n»
curves and base our test on

Z 1Y — BP 1%
k=1

which by Parseval’s theorem, may be further approximated by

K K
YN (G - BOGRy Py ). 3)

i=1 j=1

With this quantity in mind, the following theorem, whose proof
may be found in the Appendix, provides the basis for our test:

Theorem 1. Let {X,Z}le1 and {Y,,}Zz=1 be two collections of
zero mean iid continuous Gaussian random functions indexed
by the interval [0, 1] and taking values in R¢, possessing co-
variance operators Zx and Zy with distinct eigenvalues. Let
@;’é‘ and %’ denote the empirical covariance operators based
on {Xn}Z‘:1 and {Y,}2,. For N = nj + ny, let JZ Yy denote

the empirical covariance operator of the pooled collectlon and

{Ak NN W « the corresponding eigenfunctions. Finally, let )”x Xy
)»l;&zy denote the empirical variance of the kth Fourier coef-
ficient of {Xn}Z‘: and {Yn}n |» Tespectively, with respect to
the eigenfunctions {@')’n{(} _ - Assuming that E[[X; ||i2] < 00,

E[||Y1||22] <oo,andn; /N — 60 €(0,1)as N =nj +ny — 00,

it follows that, under the hypothesis Hy : Zx = %y,
nlnz Sy ~i N AN
Tn(K) = ZZ 2y — B PKy - Oy )?)

i=1 j=1

Ni~in in
/((ﬁ)&,;{r"‘ N)‘Y)Z(Y>
(35025

w2
— XK(K+1)/2
as N — oo, for any finite K < rank(Zy) = rank(Zy) < co.

Under the alternative hypothesis, the test statistic will con-
verge to a sum of K(K + 1)/2 dependent shifted chi square ran-
dom variables.

Our proposed test procedure is thus to reject the hypothesis
Hy: %x = Zy at level a, whenever the test statistic exceeds the
corresponding critical value,

2
IN(K) = Xik(k+1)/2,1-a

Of course, conducting the test requires the selection of a spec-
tral truncation level, K. This choice must be made judiciously,
as it has a direct bearing on the power of the test:
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1. Conservative choices of K [i.e., choosing K <«
rank(%Zyx) A rank(Zy)] may result in Type II error due to
differences in the higher frequency covariance structure,
especially in situations where the two covariances share
the same eigenfunctions, but have different eigenvalues at
higher frequencies.

2. Greedy choices of K [choosing K > rank(Zx) A
rank(Zy)] will inflate the variance of the test statistic
since an element of ill-posedness will enter when dividing
with the empirical eigenvalues of higher order terms.

In the latter sense, the test can also be thought of as an L2
regularized test. These aspects are further considered quanti-
tatively in Section 4. It should be noted that the problem of
choosing K is directly analogous to the choice of a cutoff point
in principal component analysis and the choice of a bandwidth
in a nonparametric problem; thus we deal with it using empir-
ical eigenvalue scree-plots as well as penalized goodness-of-fit
criteria (see Sections 3.3 and 5.1).

A more user-friendly expression for the test statistic 7 can

be given if we introduce some additional notation. Let A;J( /)V(Y =

PG ~
(R Py Oy =i i(Xi — X, 9y) (Xi — X, @yy) be the
empmcal covariance of the ith and jth Fourier coefﬁcients of

the X-curves, with respect to the basis {¢ Pxy Mis1 (resp y xy)

For simplicity, we also write )»{,J( Xy = A XY (resp. e Y. XY) Then
we may re-express the test statistic as

1]N
YXY))

Ty(K) = 52 ZZ((AS’”N(Y

i=1 j=1

n n2~in
/((N)‘;( xr t+ ﬁ)‘lr,rzrr)

ni=~jn ~,n
X <N}‘x,)lof + N )‘y >2(y>)

If for some reason, we a priori know the eigenfunctions of Zx
and Zy to be equal, then the following test statistic may be used
instead of T

(Axxy — )”};,XY)2
N 2((n1 /NYIEN + (na/NYASN)2

The motivation for this statistic is that when the eigenfunctions
coincide, then

K
> @y -
k=1

It follows as an immediate corollary to Theorem 1 that, under
H), the statistic T is asymptotically chi-square distributed with
K degrees of freedom [assuming n1 /N — 0 € (0, 1)]. One may
also wish to consider modified versions of the test statistics T
and 77, obtained via suitable variance-stabilizing transforma-
tions. In the case of the test statistic 7, we apply a log trans-
formation to the diagonal terms of the sum in Equation (3), and
Fisher’s z-transformation to the off-diagonal terms to obtain a

—no )Ak N

2
Pxy ||52 ~ Z()‘x xy Ay, xy)
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test statistic with the same asymptotic distribution as 7 (an im-
mediate corollary to Theorem 1),

K ~kN 2
T — Z niny (logAy xy — 10g)‘Y XY)
N 2
k=1
[N N“KN | kN
+ Z <llog Axyrxy +Xxxy
<j<k<K N 2 )JN%‘({,V )J}?gy
_llog )JN)\kN—i_}LJ){()];/Y)z
2 [NINSGN kN )
k )\. _)‘YXY

A variance-stabilized alternative to 77 may also be similarly
constructed by retaining only the first component of 7* (the
diagonal terms), yielding

-~ ,N
. i niny (log )\'lx,xy 10g)‘y xy)2
= 5 )

J=1

The latter statistic is approximately y2-distributed with K de-
grees of freedom. Simulations conducted in Section 4 seem to
suggest that the modified tests achieve a level closer to the nom-
inal level, and consequently, may provide higher power.

In the infinite rank case, one might wish to let K to grow
along with N, allowing for the comparison of progressively
finer and finer differences (located at the extreme tails of the
operator spectra) as sample size increases. As noted previ-
ously, any such attempt will necessarily lead to instabilities:
due to the fast decay of the eigenvalues, we are attempting
to compare extremely small quantities, based on the empir-
ical tails of the spectra, which are highly unstable. This in-
stability will manifest itself through the very large integrated
mean squared errors involved when estimating higher order
eigenfunctions, whose available bounds grow for fixed N de-
pending inversely on the rate of decay of the spectrum (see
also Bosq 2000, lemma 4.3); the ill-posedness is especially se-
vere for smooth processes. Controlling the rate of growth of
K with respect to both N and the rate of decay of the true
eigenvalues will thus be necessary—decreasing the amount of
regularization requires an increase in sample size, depending
also on the spectral decay properties. Modifying the test sta-
tistic to obtain a central limit theorem as Ky — oo will re-
quire a very slow rate of growth of Ky with respect to N
since:

1. Although the truncation level grows as Ky, the number of
summands in the test statistic grows like KIZ\,.

2. While these KI%, summation terms do become independent
as N grows (allowing for a CLT phenomenon), no mixing
concept applies. In effect this means that one has to look
at the convergence in distribution to independence of a
random vector of increasing dimension (= KI%,). For any
fixed dimension the required weak convergence will be at
a rate of N~!/>—therefore Ky must grow slow enough
to allow the N~!/? rate to compensate for the Klz\, rate of
increase of the dimension.
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3. The required global convergence to independence is reg-
ulated by the convergence of the empirical eigenfunctions
to the true ones; this in turn depends on the spacings be-
tween the true eigenvalues. For K components, the rate
of convergence of the Kth empirical eigenfunction decays
like N™'2 max{(Ax_1 — Ax) ™', (Ax — Ags+1)"'}. There-
fore, when we let Ky grow, it has to be at a rate slow
enough to annihilate the blow-up of the inverse spacing
of order Ky.

The study of these intricacies is rather technical, and further
development is contained in the supplement.

3.3 On the Selection of Truncation Level

By analogy to finite-dimensional principal component
analysis (PCA), the choice of a truncation parameter K can
be made on the basis of scree plots and cumulative variance
plots. A visual inspection of the scree plots can be employed
to identify inflection points, which combined with the informa-
tion provided by the cumulative variance plots, can suggest an
appropriate truncation level K for use in testing. Note that the
decrease of the scores I;@V(Y and 37;,1;/“, is not monotone, since
the basis {?ﬁ;{,v } does not correspond to the eigenbasis of either
of the two groups of curves. Therefore, a little more care needs
to be taken, although the basic idea still holds.

The truncation of the Hilbert—Schmidt norm expansion effec-
tively induces smoothing upon the curves, and can be regarded
as a choice of a regularization tuning parameter. Consequently,
potentially more automatic criteria can be based on tuning the
amount of smoothing so as to minimize a penalized goodness-
of-fit error. Concentrating on the X-curves, a natural definition
of goodness-of-fit error is,

K 2

D (X

k=1

PEx(K) := Z

AkN AkN *
o Oxy )0xy — X,

LZ

nj
= > IXu(K) = X370

n=1

where X:" is the ith mean-corrected curve. Of course, the above
criterion is nonincreasing in K since it accounts only for the fit,
and there is no penalty for the “complexity” of in (K). Such
a penalty is often based on the norm of the image of fin (K)
through a suitably chosen differential operator (in the spirit
of Ramsay and Silverman 2005, section 5.3.3). The choice of
penalty reflects the qualitative specification of what “parsimo-
nious” is in a given context. In the present scenario, a sample of
curves is available, and so the penalty can be made to be data-
dependent, by penalizing deviations from the average smooth-
ness properties of the observed curves. These smoothness prop-
erties are naturally reflected by the norm of the reproducing
kernel Hilbert space (RKHS) generated by the empirical co-
variance operator of the X-sample, @X, yielding the penalized
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fit criterion,

ni
PFCx (K) = ) _ 11X, (K) — X1| 7%,

n=1

GOFx (K)

ZZ 1)‘/N ny n
j=

”ZZA,N XK. 95"’

nljl

“

PENy (K)

When the null hypothesis is true, we expect to have ’(&’XN

Xy, this essentially reduces PFCyx (K) to the Gaussian pseudo-
likelihood-based Akaike information criterion (AIC) employed
by Yao, Miiller, and Wang (2005a) (see also Yao, Miiller, and
Wang 2005b). The analogous quantity PFCy(K) can similarly
be defined for the Y-curves. Since the sample size for the two
groups are not equal, the natural choice of K is then given
by minimizing the sum of goodness-of-fit terms [GOFy(K)
and GOFy(K)] plus the convex combination of the smoothness
penalties [PENy (K) and PENy(K)]:

arg mlgn{GOFx(K) + GOFy(K)

+ "L PENY (K) + 22 PENy (K)
N oK N

In practice, the number of terms taken in the sum comprising
the penalty may be less than n;, to avoid dividing by terms that
are numerically zero. A variant of this selection criterion can
be based on the leave-one-out cross-validated prediction error,
where one whole curve is left out at a time (Rice and Silverman
1991). The performance of the selection criterion is investigated
in simulations presented in the next section.
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4. A SIMULATION STUDY

To assess the behavior of the proposed tests under the null hy-
pothesis and under various alternatives we carry out a number
of simulations. We consider one situation with equal covari-
ance functions (simulation scenario A) and several alternative
configurations (scenarios B-I). The two test statistics 7 and T*
introduced in the previous section are considered under vari-
ous choices of K, the truncation level, and for the automatic
selection K* given by the penalized fit criterion. The number
of observations in each sample is 50. The tests are replicated
5000 times under Hyp and 1000 times under Hy, respectively, at
the 5% nominal level of significance using the asymptotic x>
approximation.

In the first eight scenarios, the Gaussian processes in both
samples are of the form

3
> EV2sin@mj(t + 6))

J=1

3
+ Y gV2cos2mj(t+ 1)),
J=1

te[0,1],

where the coefficients &;, ¢; are independent Gaussian random
variables with mean zero and var(§;) = v;, var(§;) = w; (the
variance terms where chosen so as to induce “elbow” effects
as one expects to see in practice). Various values of v, wj, §;,
n;j used in A-H are reported together with the corresponding
results in Table 1 (the shift parameters §;, 7, are reported only
for F, the only case where they are nonzero). The last scenario
deals with rough processes (infinitely many components).
Results for scenario A show that the true level for all variants
of the test is close to the nominal level, provided the number of

Table 1. Empirical rejection probabilities on the nominal level 5%, sample size n| = ny = 50, number of replications 5000 for A, 1000 for
B-I. Here, u* = (vX, wX) (resp. u?) and K* is the automatic truncation choice given by the penalised fit criterion

K

Parameters Test 1 2 3 4 K*
A u¥ =(12,7,0.5,9,5,0.3) T 0.045 0.049 0.044 0.044 0.047
u’ =(12,7,05,9,5,0.3) T* 0.051 0.056 0.057 0.056 0.059
B u¥ =(14,7,05,6,5,0.3) T 0.422 0.264 0.185 0.150 0.148
u!' =(8,7,05,6,5,0.3) T* 0.443 0.315 0.223 0.174 0.175
C uX = (15, 10,0.5, 4, 3,0.3) T 0.186 0.331 0.218 0.169 0.167
u’ =(11,6,0.5,4,3,0.3) T* 0.201 0.366 0.269 0.207 0.208
D wX =(12,7,05,9,3,0.3) T 0.040 0.204 0.836 0.973 0.962
u’ =(12,7,05,2,5,0.3) T* 0.047 0.221 0.848 0.984 0.980
E u¥ =(12,7,0.5,9,3,0.3) T 0.047 0.246 0.644 0.964 0.962
uf =(12,7,0.5,3,9,0.3) T* 0.055 0.267 0.686 0.976 0.975
F w¥ =u? =(12,7,4,0.5,0.3,0.1) T 0.257 0.693 0.909 1.000 1.000
X —(0.15,0.15,0.15) T* 0.273 0.706 0.916 1.000 1.000
G wX =(12,7,05,8,6,0.3) T 0.042 0.040 0.054 1.000 1.000
u? =(12,7,0.5,8,0,0.3) T* 0.047 0.048 0.068 1.000 1.000
H u¥ =(12,7,0.5,9,5,0.3) T 0.044 0.140 0.500 1.000 1.000
u?' =(12,7,0.5,0,5,0.3) T* 0.049 0.154 0.520 1.000 1.000
1 Brownian motion versus T 0.719 0.608 0.483 0.377 0.493
Ornstein—Uhlenbeck process T* 0.731 0.644 0.532 0.443 0.546
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components K does not exceed the effective complexity of the
covariance operator (which is 4 in this case). The slight conser-
vatism of T is removed by variance stabilizing transformations
used in 7*. Indeed, the stabilized statistics seem to be prefer-
able because they also provide slightly higher power (as is seen
in the remaining simulations).

Under scenario B, both covariance operators are of effec-
tive complexity 4 and possess the same sequence of eigenfunc-
tions (the same set with the same order), but the sequences of
eigenvalues differ (the largest eigenvalue is different). Not sur-
prisingly, the power decreases as K increases because there is
no difference in the components other than in the first one, so
adding them increases the degrees of freedom without any sig-
nificant contribution to the test statistic. Configuration C is sim-
ilar to B, but with the two largest eigenvalues being different.
The highest power is achieved with K =2, as expected. When
compared to the next few scenarios, where there are differences
associated with the eigenfunctions also, the power in B and C
is clearly lower. This is due to the fact that the test statistic
takes the comparison of the eigenfunctions—where there are
no differences—into account, and thus is not as powerful in de-
tecting differences that lie only on the eigenvalues (the diagonal
form of the tests 71 and T’ f‘ will be more powerful in this case).

In scenario D, the effective complexity of the operators is
the same in Equation (4), the operators have the same set of
eigenfunctions (in different order) and different sequences of
eigenvalues. The difference of the covariance operators is not
detected by tests with one component because the largest eigen-
value and the corresponding eigenfunction are the same in both
samples. When the choice of K is close to the true effective
complexity, the power of the tests is very high (this includes the
automatic choice). The same is true for the next four scenarios
as well.

Under scenario E, both operators (of effective rank 4) have
the same sequence of eigenvalues, and the same set of eigen-
functions, but the latter are permuted to correspond to different
eigenvalues. This scenario illustrates a situation where the diag-
onal form of the test statistics (77 and 77) will be inapplicable.
It is interesting to make the comparison with scenario D, where
the sets of eigenfunctions are the same for both samples as well.
In D the sequences of eigenvalues differ also, hence more infor-
mation is on the diagonal.

Scenario F differs from the previous configurations in that
the sets of eigenfunctions are completely different (sines versus
shifted sines). The eigenvalues are the same, and the effective
operator rank is 3 in both cases.

In the next configuration, scenario G, the first three eigenval-
ues and eigenfunctions are the same in both samples. The co-
variance operators have different effective ranks: 4 in the first
sample, 3 in the second sample. Therefore, it is not surprising
that the departure from Hy is not detected by tests with less than
4 components while it is clearly detected by four-component
tests. Note that with the automatic choice K*, the alternative is
always detected.

Configuration H is again a situation with different effective
ranks of operators (4 versus 3) but unlike the previous situ-
ation, only the first eigenfunction and eigenvalue coincide in
both samples. The next two eigenvalues are different and the
corresponding eigenfunctions differ as well. Thus, as of K = 2,
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the tests start detecting the alternative, with highest power for
K =4.

Under scenario I, curves in both samples come from distrib-
utions with covariance operators with infinite rank, namely the
standard Brownian motion W(¢) and the Ornstein—Uhlenbeck
process U (¢) satisfying dU(t) = —0U(t) dt +dW () with 6 = 1.
The covariance operators of the two processes differ in all com-
ponents. The major portion of the difference is captured by tests
with one component, then the power slowly decays.

A general observation when focusing on the behavior of the
tests when the number of components K was selected using the
selection criterion introduced in the previous section is that the
power and level are comparable with those when employing
the true effective rank. Under scenario A, the selection criterion
chose K =4 in 96.3% of simulations and K =5 in 3.7% of
simulations. Doing the same for the alternative configurations,
it turned out that the power is similar to the power of tests with
fixed values of K close to the values most frequently selected
by the selection criterion. Hence this automatic dimension re-
duction technique appears to be useful in practice.

It should be mentioned that the role of the selection crite-
rion is to probe the effective complexity of the data and not
the complexity of the difference between the two samples. The
selection rule is not related to the null hypothesis or the alterna-
tive and does not reflect validity or invalidity of either of them.
This explains the reliability of the post-selection test. Note that
a completely different approach can be based on the selection
of the “most different” components (the most likely alternative)
using a criterion involving the test statistic in the spirit of data-
driven smooth tests (e.g., Ledwina 1994).

5. ANALYSIS OF DNA MINICIRCLES
5.1 Finite-Dimensional Approximation

Figure 3 shows the empirical variance of the scores with
respect to the basis {gof(’f,v } separately for the TATA and CAP
groups (/)L\];(”];](Y and ’)\\1;’1)\2}/, respectively, in the notation used pre-
viously) as well as for the pooled sample (17}’(1;’). The plots
also display cumulative proportions of the total variance ex-
plained by the corresponding components. Separate plots are
constructed for the analysis carried out marginally on each prin-
cipal axis and jointly on the principal plane.

When inspecting the marginal plots for the projections on
each axis of inertia, we observe that four or at most five prin-
cipal components should constitute an adequate choice. When
looking at the marginal plot for the projection onto the prin-
cipal plane of inertia, it seems that setting K =6 or K =7 is
more than adequate (accounting for at least 85% and 90% of
the variance, respectively, and with a clear “elbow” effect).

The reason for placing special emphasis on the principal
plane is that, as one can observe from Figure 2, the DNA mini-
circle curves tend to be planar on average, and the more inter-
esting signal is not to be found in the deviations from the pla-
nar aspect of the structure, but within the planar structure itself
(see the discussion at the end of the next section). The penal-
ized prediction error criterion introduced in Section 3.3 yields
K =7 components in the principal plane.
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Figure 3. Empirical variances (scree plot) and cumulative proportions of variance explained by components for the TATA (circles) and CAP

(diamonds) group and for both groups together (squares).

5.2 First-Order Inference

As was mentioned in the Introduction, a previous exploratory
analysis of the data (Amzallag et al. 2006) that used clustering
of the minicircles with respect to a Procrustean metric did not
reveal any observable differences between the geometry of the
two groups. The clustering distance used (a mean-square-based
pairwise Procrustean distance) induces clustering with respect
to the mean shape of the minicircles, which can be seen to be es-
sentially identical between the two groups (Figure 2). To probe
this finding more formally, we test the hypothesis of equal mean
curves versus a general alternative, based on a variant of the test
proposed by Berkes et al. (2009). We reject the hypothesis of
equal mean curves when the value of the statistic

K > —~J, ~ =~
3o (X, ) — (¥ @2
N priM
XY

j=1

is large compared to a X12< distribution (the approximation em-
ploys results in Dauxois, Pousse, and Romain 1982). The re-
sults of this comparison are displayed in Table 2. The corre-

Table 2. p-values for comparison of mean functions
in the TATA and CAP group for various truncation
levels K, for the full three-dimensional curves, and

their projections onto the prinipal plane of inertia

K PAIL, 2,3 PAI2, 3
1 0.40 0.64
2 0.68 0.69
3 0.85 0.64
4 0.60 0.55
5 0.34 0.58
6 0.46 0.61

sponding values of the test statistic are insignificant and one
cannot reject the null hypothesis; indeed, the results of the test
do not vary much with K.

As discussed in the previous section, it seems, in fact, that
the interesting “signal” of the minicircles is effectively planar
(see Figure 2). It is, therefore, interesting to test the hypothesis
that the mean function of the PAI1 coordinate is zero—for this
will suggest that our analysis should concentrate on the prinic-
ipal inertia plane (the projection of the Gaussian processes on
this plane is obviously a Gaussian process). To this aim, we
use the one-sample version of the test statistic used for mean
comparison (which in the one-sample situation, is in fact an ap-
proximate likelihood-ratio statistic; Grenander 1981). For the
TATA group the p-value of the test with K = 4 components is
0.29. For the CAP curves the p-value is 0.30 (also using four
components). Hence the tests show no significant systematic
deviation of the curves from the first principal plane, and their
three-dimensional nature seems to only be due to random vari-
ation around a planar mean shape. For this reason, in the next
section we concentrate on the comparison of the curves pro-
jected onto the principal plane of inertia.

5.3 Second-Order Inference

As the first-order comparison of the two minicircle groups
did not reveal any significant differences, we turn our attention
to the detection of second-order differences. Indeed, since the
scientific hypothesis is that one type of curve (TATA) is more
flexible, it may be intuitively expected that a detectable differ-
ence will lie in the covariance structure rather than the mean
structure.

We test the hypothesis that both groups of curves share the
same covariance operator by employing the test statistic T*.
The results are summarized in Table 3. Marginal tests on each
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Table 3. p-values for the comparison of covariance functions in the
TATA and CAP group on different principal inertia axes using
the test statistic 7* under various truncation levels K

p-value
K PAI3 PAI2 PAII PAI2, 3
1 0.252 0.313 0.976 0.167
2 0.001 0.118 0.823 0.005
3 0.000 0.087 0.782 0.025
4 0.001 0.022 0.886 0.051
5 0.001 0.053 0.555 0.009
6 0.010 0.087 0.327 0.005
7 0.019 0.098 0.360 0.023
8 0.046 0.173 0.148 0.094

inertia axis show that the covariance functions of the projections
onto PAI3 seem significantly different for the two groups (with
either the empirical selection K = 4 or the automatic choice
K =5). Differences of projections onto PAI2 appear marginally
insignificant depending on the choice of K (the empirical choice
is K = 5 and the automatic choice is K = 7). No significant dif-
ference is observed for PAI1, indicating that random deviations
from the first principal plane may have the same covariance
structure in the two groups (which is in keeping with our previ-
ous finding that the deviations from the principal plane can be
thought to be residual). Since the curves appear to be planar on
average, it is the covariance of their planar components where
most structure is to be found. Indeed, when our test is carried

Covariance of PAI3, TATA

PAI3

PAI3
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out for the projection of the curves onto the principal plane of
inertia using K = 6 (empirical) or K = 7 (automatic), it rejects
the null hypothesis of no flexibility differences, at the 1% and
3% significance levels, respectively. In fact, the test based on
T} gives even more significant results, yielding a p-value that is
numerically zero.

In the frequency domain, these differences can already be
seen in the scree plots (Figure 3), where the TATA curves are
seen to be more flexible in the sense that the variances of their
Fourier coefficients are more inflated when compared to the
CAP curves. Since the covariance kernels associated with the
two operators under comparison are matrix-valued functions,
there is no easy way to visualize the detected differences in the
time domain. Figure 4 contains surface and contour plots of
the empirical covariance kernels restricted to the third principal
axis—the axis where the most significant differences were de-
tected. The plot reveals differences both in terms of the norm as
well as in terms of the structure.

6. CONCLUDING REMARKS

Motivated by the problem of comparison of groups of DNA
minicircles, we introduce and study a testing procedure for two
sample-comparison of Gaussian processes with respect to their
covariance structure.

The proposed test function is based on an approximation
of the Hilbert—Schmidt distance between the empirical covari-
ance operators of the two groups, by means of the Karhunen—
Logve representation of the pooled sample. The approximation

Covariance of PAI3, CAP

PAI3

PAI3

Figure 4. Surface and contour plots of the empirical covariance kernels corresponding to the TATA and CAP projections onto the third axis

of inertia.



680

was seen to admit a regularization interpretation, the problem
of testing presenting aspects of ill-posedness. The asymptotic
distribution of the test function was established, and variance-
stabilized variants with similar asymptotic properties were pro-
posed. Finite-sample simulations under the null and various al-
ternatives were used to investigate the performance of the pro-
posed test. It should be noted that the results obtained read-
ily extend to random functions defined over arbitrary compact
Euclidean domains, and taking values in Euclidean spaces of
arbitrary dimension (i.e., random fields).

The test was then carried out for a sample of 94 DNA mini-
circles of two different types. One type is believed to possess
higher flexibility than the other, but this eluded empirical con-
firmation via electron microscopy. Our test rejected the hypoth-
esis that the curves share the same covariance structure on their
principal plane of inertia (the signals are essentially planar),
providing support for the potential existence of differences be-
tween the geometry of the two groups. Interestingly, the differ-
ence was detected in the second-order characteristics, whereas
previous analyses focused on first-order characteristics.

An important aspect of our testing procedure, as is the case
with any spectral truncation regularization procedure, is the
choice of truncation level K for the series representation of
the Hilbert—-Schmidt norm. A careless choice of truncation
can affect the power of the test procedure. Our proposed ap-
proach for the choice of K was through visual inspection of
functional PCA scree plots, combined with penalized predic-
tion error minimization. Interesting further work will be to in-
vestigate LASSO-type component selection. Yet a further ap-
proach will be to consider adaptive modifications of the pro-
posed tests that will automatically choose the level K based
on the data; for example, tests based on statistics of the form
maxg (Ty(K) — BKlog N), for some tuning parameter 8 > 0.

The asymptotic approximations for the distributions of the
test statistics investigated hold for Gaussian processes. Depar-
tures from this assumption will affect the limiting law of the
statistics. In simulations we observed that the test derived under
the Gaussian assumption used in a non-Gaussian case becomes
conservative when the scores have lighter tails than the normal
distribution and anticonservative in the opposite case. Our tests
are based on sums of squares of components which are asymp-
totically normal independent variables. When the data are not
Gaussian, these components have asymptotically a multivari-
ate normal distribution with unknown covariance structure. The
limiting covariance matrix can be estimated and a chi-square
test statistic can be based on the corresponding quadratic form
(see also Horvath, Huskova, and Kokoszka 2010 for a similar
approach in a different context). Some simulations showed that
the convergence to the limiting distribution might be slow and
one has to use only a small value of K, especially for the off-
diagonal test.

Of course, testing whether a process is Gaussian is a re-
search project in itself, but informal gg-plots constructed for
the Karhunen-Loeve coefficients of the minicircle data did
not reveal any noteworthy departures from normality. For the
benefit of the doubt, however, we also employed permutation
tests based on our test statistics, with similar results—but with
slightly more inflated p-values (Panaretos and Kraus 2009).
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APPENDIX

Proof of Theorem 1

Introduce the notation Z;f := (X;, £)X; and #;f = (Y;, f)Y;, so that
@;'( =n"1Y, Z;and @’)’, =n~1Y"; #. These are viewed as random
elements of the Hilbert space of Hilbert—Schmidt operators acting on
£2[0, 1]. Under the hypothesis Hy: Zx = Zy, the collections { Z;}
and {#;} are iid random operators with mean Zx = Zy and common
covariance & :=E[Z;® X1 - Zx @ Z%x = El% @ %] - Ry @Ry,
where ® denotes the tensor product, (¢ ® v)w = (v, w)3,u for any ele-
ments v, w, u of a Hilbert space (7, (-, -)7¢). In addition, our moment
assumptions imply that E|| %ll%{s < 0o. We may, therefore, apply the
Hilbert space central limit theorem (e.g., Bosq 2000, theorem 2.7) to
conclude that

V(B — %x) > 2 and

V(R — Ry) 25 % asny,np — oo,

where 2] and 25 are independent Gaussian random operators with
mean 0 and covariance operator &. Now, given i, j, consider the se-
quence of random variables

Wy = (Vnina/N( Ry — By senl @y 0 10%y -
~j,N ~j,N
senl(@Yyy . 0 1%y ).

On the one hand, the strong law in Hilbert space implies that ||Q\gy —

Zx us 2% 0 under the hypothesis Hy. Consequently, convergence
also occurs with probability 1 in the strong operator topology, so that
by Bosq (2000, lemma 4.3)

| senl@yy - 00 1@xy — Bl 2 =30 vh=L@AD

On the other hand, as N — oo with nj /N — 6 € (0, 1) we will have

/r]lv—24/n1@;1 — /Y;V—IA/@@;Z VT 0% —V0%H =%,
(A.2)
with % a zero-mean Gaussian random operator with covariance S.

Combining Equations (A.1) and (A.2) with the Hilbert space Slutsky
lemma establishes that, for all i,j € {1, ..., K},

W]l\}j l) (g(ﬂi, (pl)

For the next step, we note that 2, being a Gaussian process itself, also
admits a Karhunen-Loe¢ve decomposition, with respect to the eigen-
functions of &. These eigenfunctions can be retrieved directly from
the definition of & and the Karhunen—Loeve expansion of the typical
X process, X = Y _; +/Ai&i@;. Defining the operator O;if := (9, No;.
we immediately see that & = Zi,j VAikjEi§i @y and Zx = Zj A
Hence, upon recalling that the {&;} are an iid standard Gaussian array
we may write

G =E[ZX Q@ Z]-ZxQ%x

= Z \ /Ai)»j)\pqu[Eifjgpfq]CDlj ® Pgp — Z)‘i)‘jq)ii ® CDjj
i,,:4:p i
Z Airj @i ® Dji + Z)\j}\,j@ij ® Q) + Z)‘ikj@ij ® Dj
i#f i#] i#]
+Y 0@ B — Y A0 @ Bij— Yy 2ikjPii ® D)

i i i
= ZZMZQ)H ® Qi+ Y Aikj(®y ® Dji + Bjj ® By)),
i i#j

since E[§;§;&&,] is 1 whenever pairs of indices are equal but not all
indices are totally coincident, 3 when all indices are equal, and zero
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otherwise. Regrouping the summation by adding the terms that are
symmetric with respect to their indices, we further obtain

6= QZAlzq%i ® D
i
+ ) hikj(Dy ® ji + By ® By + i ® Byj + Bji @ D)
i<j

=2) A7 ® Pji
i

+ Z)\ikj{

i<j

Qi ® (P4 + Dji) + )i ® (Py + Pji)}

=Y (V202 ® Qi+ Y Aidj(Dij + Dji) ® (B + Bji).

i i<j

It is straightforward to verify that {®;; + ®;;};<; U {®;};>1 consti-
tutes a complete orthogonal system of operators for the Hilbert space
of Hilbert—Schmidt operators acting on LZ[O, 1]. We may, therefore,
represent & in a Karhunen—Log¢ve expansion as

% = «/—Zx;,,(b,,+ZA1/2,\1/2;U(<1>,,+¢],)
i<j

for {CU}OO | aniid array of standard Gaussian variables. Consequently,
we may express the Gaussian process Z ¢y, as

o
Zop =2 2iiile;, 91)9;
i=1

2.1/2
+ZA}/ A;/ §ij((@i, 91)9j + (@), 91)9))

i<j
1/2,1/2
= Vauuor+ Y 0 elon 009
i<j
12,172
+Z)\,’/ )\j/ Lij (9, i) i
i<j
2.1/2 1/2,1/2
= V2o + Y 0 A / -/ ;i + Y A / / Sik®i»
k<j i<k

where we used the fact that {¢;} is an orthonormal system. It follows
that for arbitrary k,n € {1, ..., K}, the random variable (Z ¢y, ¢,)
admits the representation

1/2, 1/2

(Zor. on) = “/—)‘ké‘kk (@k> @) +Z)“ Skil@), @n)
k<j
1/2.,1/2
+ 3 1P dei o)
i<k
\/E)‘kfkk ifk=n
10 b itk <n
e ”%nk itk >n.

It follows that (Z ey, (pk) B~ N (0, 222 1) independently of (Z'¢,,,
) /\/ (0, AmAn), m # n. Consequently, we have

W Zop o) iid o

2 a2 A

independently of

L2 on) +(Z0non) _ (Zomon) o
2 AmAin AmAn I

The continuous mapping theorem now implies that

1 (W2 + (W2
2 AjAj

= ”1"2 ZZ (‘@nl nz)ay)\// q’]).é];l)z
AjAj

i=1j=1

w 2
7 XK(K+1)/2
To complete the proof, we note that

N/\’;’;}YJF g, Lo b+ (1= Oh =g Vke(l,....K),

so that the result follows from the application of Slutsky’s lemma.

SUPPLEMENTAL MATERIALS

Additional plots and tables and detailed study: Additional
plots and tables are available in a supplementary file. In
addition, the supplementary file contains a more detailed
study of the problem of comparing the complete spectrum,
extending the discussion in the last part of Section 3.2.
(Supplement.pdf)

[Received April 2009. Revised December 2009.]
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