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Abstract—Networked Cyber-Physical Systems (NCPSs) present
many challenges since they require a tight combination with
the physical world as well as a balance between autonomous
operation and coordination among heterogeneous nodes. These
fundamental challenges range from how NCPSs are architected,
implemented, composed, and programmed to how they can
be validated. In this paper, we describe a new paradigm for
programming an NCPS that enables users to specify their needs
and nodes to contribute capabilities and resources. This new
paradigm is based on the partially ordered knowledge sharing
model that makes explicit the abstract structure of a computation
in space and time. Based on this model, we propose an application
framework that provides a uniform abstraction for a wide range
of NCPS applications, especially those concerned with distributed
sensing, optimization, and control. The proposed framework
provides a generic service to represent, manipulate, and share
knowledge across the network under minimal assumptions on
connectivity. Our framework is tested on a new distributed
version of an evolutionary optimization algorithm that runs on a
computing cluster and is also used to solve a dynamic distributed
optimization problem in a simulated NCPS that uses mobile
robots as controllable data mules.

I. INTRODUCTION

Unlike traditional embedded systems with the emphasis
on the computational elements, Networked Cyber-Physical
Systems (NCPSs) are typically designed as a network of
interacting nodes that sense and affect their environments often
under harsh and dynamic network conditions. Hence, an NCPS
requires the coordination of computational and physical parts
of a system, and a balance between autonomy and cooperation
among nodes that by their nature are unreliable and can be
only loosely synchronized. An NCPS can provide complex,
situation-aware, and often critical services in applications such
as distributed surveillance and control, crisis response, medical
systems, or networked space/satellite missions. General princi-
ples and tools are needed for building robust, effective NCPSs
using individual cyber-physical nodes as building blocks. In
this paper, we propose an application framework for an NCPS
based on a partially ordered knowledge sharing model. We
show how typical applications centered around distributed
sensing, optimization, and control can be implemented in this
framework so that local decisions and actions improve the
solution quality of the overall NCPS.

The distributed and dynamic nature of the problem presents
many challenges in developing a framework for an NCPS.
The system should be able to take advantage of opportunities
for communication and must be robust against delays and
disruptions due to, e.g., mobility, failures, or nodes entering

and leaving the system. Information fusion, optimization, and
control in an NCPS should take place locally at any node, but a
certain degree of global awareness may be needed. A seamless
transition between autonomy and cooperation is needed to
ensure no dependency on the existence or connectivity of
other nodes, so that the local operation can always proceed,
although possibly in a less optimal fashion. Strategies for
local optimization and cooperation must lead to useful anytime
solutions and enable adaptation to new situations based on
newly available information. To enable efficient use of the
distributed computing resources, an NCPS needs to allow the
composition of solutions generated by different nodes.

We address the core problem of distributed sensing, opti-
mization, and control in the NCPS by developing an applica-
tion framework based on partially ordered knowledge sharing
for loosely coupled systems without persistent network con-
nectivity. In our approach, knowledge is semantically mean-
ingful information that can be generated, stored, processed,
aggregated, and communicated to other nodes. It is important
to have a framework that captures and exploits the semantics
of knowledge, the heterogeneous capabilities and resources
of the nodes and the network, the diverse requirements from
applications and users, and the physically limited interactions
among potentially unreliable nodes. Using such a framework,
we can uniformly address the core challenges of the NCPS
by an integrated treatment of system monitoring, balancing of
resources, and adapting to ever-changing situations.

In an NCPS, various kinds of knowledge need to be ex-
pressed including sensor readings at specific locations, results
of information fusion and aggregation, queries for information,
or requests to actuators, and locally computed solutions. The
proposed application framework operates on top of a delay-
and disruption-tolerant network (DTN) model, which makes
minimal assumptions on the network connectivity and avoids
expensive multi-round protocols that are frequently used in
distributed and fault-tolerant algorithms. We implemented a
distributed dynamic optimization algorithm as a test case and
performed a comprehensive analysis of performance, solution
quality, and corresponding trade-offs. Furthermore, thanks to
the randomized nature of our algorithms these solutions are
anytime solutions that are robust under failures and resource
limitations (e.g., individual node/thread failures), making our
approach applicable in a realistic dynamic setting.

This paper presents the following contributions: In Section
II, we describe our partially ordered knowledge sharing model.
Section III illustrates our application framework that provides



a uniform interface to all capabilities of the NCPS. A prototype
implementation and details of the proposed framework are
presented in Section IV. In Section V, our framework is tested
using a simulated NCPS scenario centered around a team
of mobile robots operating as controllable data mules. We
also report on an experimental deployment on PlanetLab to
evaluate the performance in a distributed computing setting.

II. KNOWLEDGE SHARING AS A BASIS FOR DISTRIBUTED
COMPUTING

We use a generalization of a distributed computing model
based on partially ordered knowledge sharing that we have
used in earlier work [1] as the basis for DTN. The knowledge
sharing model is asynchronous and can make explicit the
structure of a distributed computation in space and time, and
hence is less abstract than many other models of distributed
computing, e.g., those abstracting from the network topology
by assuming direct end-to-end channels.

In a nutshell, we assume NCPSs containing a finite set of
so called cyber-nodes that provide computing resources, can
have volatile and/or persistent storage, and are all equipped
with networking capabilities. Cyber-nodes can have additional
devices such as sensors and actuators, through which they
can observe and control their environment to a limited degree,
including possibly their own physical state, e.g., their orienta-
tion/position. Cyber-nodes can be fixed or mobile, and for the
general model no assumption is made about the computing or
storage resources or about the network and the communication
capabilities or opportunities that it provides. Hence, this model
covers a broad range of heterogeneous technologies (e.g.,
wireless/wired, unicast/broadcast) and potentially challenging
environment conditions, where networking characteristics can
range from high-quality persistent connectivity to intermit-
tent/episodic connectivity. The cyber-physical system is open
in the sense that new nodes can join and leave the network
at any time. Permanent or temporary communication or node
failures are admitted by this model. As a consequence, many
forms of network dynamics — including partitioning, merging,
message ferrying, group mobility — are possible.

In the following, we give an informal characterization of an
individual cyber-node that will be sufficient for our purposes.
First, each cyber-node has a unique name, which in practice
can be generated locally by a random choice if we ensure that
uniqueness holds with very high probability. Each cyber-node
has a local clock, which increases monotonically by at least
one unit in each instruction and is loosely synchronized with
other nodes in the network whenever admitted by the network-
ing conditions. Each implementation of time synchronization
must satisfy Lamport’s axioms of logical time. We also assume
that each node has access to a source of randomness with a
uniform distribution, with the idea that typical applications of
this model make heavy use of randomization techniques.

Locally, each cyber-node uses a computationally universal
event-based model that is conceptually sequential (i.e., without
an explicit notion of thread or process). The model is based

on the dual notions of local events and distributed knowl-
edge. Two key services are provided by each node. First,
timed events can be posted, i.e., scheduled to be activated at
any (possibly randomized) local time in the future. Second,
knowledge can be posted, i.e., submitted for dissemination
in the network. All local computation is event-based, where
corresponding to the two services above, events include timed
events and knowledge events, with the latter representing the
reception of a new unit of knowledge. Timed events and
units of knowledge have the following attributes. They are
equipped with a creator (i.e., the name of the creating node),
the creation time, an application-defined activation time (the
earliest time when they should be handled), and an expiration
time (after which they become obsolete and are discarded,
even if they have not been handled). Additional local services
can be provided by attached devices that also use an event-
based interface. Similar to existing middleware frameworks for
messaging or group communication, knowledge dissemination
can take place independently in different logical cyber-spaces,
but a unit of knowledge is a more state-like entity that should
not be confused with the notion of a message. Furthermore, no
reliability, delivery order, or atomicity guarantees are provided
to the applications, because they would severely limit the
scalability of the model in terms of the network size.

Partially ordered knowledge sharing is asynchronous and
each node may use some of its storage as a cache, which we
also refer to as a knowledge base. Implementations based on
network caching allow the system to support communication
even if no end-to-end path exists at a single point in time.
Different from a shared-memory model, partially ordered
knowledge sharing allows each node to have its own (typically
partial and delayed) view of the distributed state of knowl-
edge. Different from an asynchronous message-passing model,
knowledge is not directed toward a particular destination.
Instead, each node decides based on the knowledge content (or
its embedded type) if it wants to use the unit of knowledge.

Epidemic and (spatial) gossiping techniques can be used
to implement knowledge sharing, but unlike (synchronized)
gossiping, which is often based on the exchange of cache sum-
maries, knowledge sharing can also be implemented by single-
message protocols based on unidirectional communication [1].
Besides, epidemic computing covers a very broad class of
algorithms, whereas partially ordered knowledge-sharing is a
more restricted model that makes specific use of the abstract
semantics of knowledge that is given in a very specific way,
namely in terms of partial orders. The consideration of the
partial-order semantics of knowledge by all (and in particular
intermediate) nodes is of key importance for scalable imple-
mentations, because it enables the implementation to discard
information in a semantically meaningful way, e.g., to bound
the amount of knowledge that needs to be stored at each node.
The use of a partial order is the reason why knowledge-sharing
is fundamentally different from asynchronous/unreliable or
even epidemic/probabilistic broadcast.

Specifically, we assume an application-specific partial order
≤ on all knowledge items together with its induced equiva-



lence relation. We refer to ≤ as the subsumption order given
that the intuitive meaning of K ≤ K ′ is that K ′ contains at
least the information contained in K. With this interpretation
the induced equivalence K ≡ K ′, defined as K ≤ K ′ and
K ≥ K ′, means that K and K ′ have the same semantics, even
if they are represented in different ways. In this situation, that
is, if K ≡ K ′, the knowledge sharing model may (but does not
have to) discard K ′ without delivering it to the application, if
K has already been delivered. In addition to ≤, we assume an
application-specific strict partial order ≺ that is compatible
with ≤ and we refer to it as replacement order, with the
intuition that K ≺ K ′ means that K ′ replaces/overwrites K,
and hence if K has not been delivered yet to the application,
the knowledge sharing model may (but does not have to)
discard it, if K ′ has already been delivered. Similar partial
orders can be specified for events, but the case of knowledge
is far more interesting due to its distributed nature.

Our model generalizes the knowledge-based networking ap-
proach of [1], because instead of specific types of knowledge,
e.g., to support routing decisions, knowledge becomes an
entirely application-defined concept. Further details, including
a formal definition of the partially ordered knowledge sharing
model, can be found in [2]. The model can be specialized
by imposing local and global resource bounds as well by
more specific environment (and hence network) models. The
abstract dynamic network model and the wireless model that
we discuss in Section IV are such examples.

III. CYBER-FRAMEWORK

From a software engineering perspective, the major chal-
lenges of an NCPS include (i) the design of an underlying
software architecture with the most appropriate primitives
for communication that can shield the applications from
the complexities of dealing with dynamic topologies, de-
lays/disruptions, and failures of all kinds, (ii) the careful design
of APIs that are simple, flexible, and platform-independent, but
at the same time easily extensible to capture the wide range
of capabilities provided by cyber-physical devices, and (iii)
the identification of typical application patterns that exploit
the capabilities of the architecture to solve problems that
involve the distributed and dynamic composition of the node
capabilities to satisfy high-level global objectives, given the
underlying hardware and network limitations. As a first step
toward (iii), we show how a common pattern of distributed
optimization and control can be expressed in the framework.

A. Preliminaries

We informally described the knowledge sharing model as a
basis for distributed computing in Section II. Here, we present
the cyber-application framework as one possible implementa-
tion of this model. We define the terminology and assumptions
underlying our approach followed by the architecture of the
proposed framework with its API and services.

The cyber-application framework (cyber-framework) con-
sists of cyber-hosts, cyber-engines, cyber-nodes, and cyber-
applications as depicted in Figure 1. A cyber-host and a cyber-
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Fig. 1. Cyber-framework presented as a hierarchy of cyber-hosts, cyber-
engines, cyber-nodes, CP (cyber-physical) devices (e.g., sensor, actuator), and
cyber-applications.
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Fig. 2. Partially ordered knowledge sharing in a locally event-driven
paradigm. Knowledge is stored redundantly in local knowledge bases (KBs)
providing applications with the abstraction of a distributed network cache.

engine correspond to a specific machine and a process on
which cyber-applications are running, respectively. A unique
identifier is randomly generated by each cyber-engine and is in
turn used to generate unique identifiers for all (virtual) cyber-
nodes that it is managing. Each cyber-application runs on a
cyber-node, i.e., the smallest managed computational resource
with or without attached cyber-physical devices (e.g., sensor,
actuator). For example, a cyber-application for a mobile robot
that needs to take a picture at a specific location could
be decomposed into a parent cyber-application that contains
the local decision and control logic, and two children, e.g.,
camera and positioning applications, that only manage the
corresponding devices, as depicted by dotted lines in Figure
1. The camera application runs on a node that manages
the camera device, and in the simplest possible case it just
provides an abstract knowledge-based interface to the exposed
device capabilities. Similarly, a positioning application uses
the resources of its underlying node to manage the positioning
device, e.g., to post position updates as knowledge and react to
knowledge that represents positioning goals. One advantage of
using knowledge-based interfaces is the potential for a logical
interpretation in terms of facts and goals [3], which can lead
to a better understanding and a more principled treatment of
an NCPS, even if they are not developed in a declarative
paradigm.



Applica'on	
  Layer	
  

Knowledge	
  Dissemina'on	
  Layer	
  

Physical/Network	
  Layer	
  

Cyber	
  Framework	
  

Declara've	
  Control	
  

Neighbor	
  Discovery	
  
e.g.,	
  Registry	
  Service	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Protocols	
  
e.g.,	
  Determinis'c	
  Flooding,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  Probabilis'c	
  Reflec'on	
  

Simula'on	
  World	
  
(e.g.,	
  DTN,	
  Stage)	
  	
  	
  

Real	
  World	
  
(e.g.,	
  Ad-­‐hoc	
  Network,	
  Internet)	
  

Cyber	
  API	
  

Distributed	
  Compu'ng	
  

Fig. 3. Layered architecture of the cyber-framework.

As described in Section II, the computational model of
each cyber-node is based on events and knowledge with
corresponding equivalence and ordering relations. Each event
is local in the sense that it is not distributed to other cyber-
nodes, whereas knowledge is globally shared. Events can
be posted by a device (e.g., for a sensor reading) or by a
cyber-application (e.g., to schedule a local action) and will
be handled by corresponding handlers. On the other hand,
knowledge can be posted only by a cyber-application. In
Figure 2, two cyber-hosts are sharing their knowledge. Cyber-
host 1 has two cyber-engines. Each cyber-engine can have
multiple cyber-applications with separate or shared knowledge
bases, which serve as a network cache to enable opportunis-
tic knowledge sharing with intermittent connectivity so that
sender and receiver are completely decoupled.

B. Architecture

In an NCPS, information about the physical world (e.g.,
wireless signal strength, sensor readings) is usually acquired
via physical devices, which can be geographically scattered.
Hence, the management of an NCPS entails the integration
between a physical layer, which includes the underlying phys-
ical devices as well as the network, and a higher layer, which
includes the knowledge dissemination layer and the application
layer that is designed to achieve global objectives. Figure 3
depicts the layered architecture of the cyber-framework.

To deal with uncertainty, complexity, and resource con-
straints in both communication and computation, the cyber-
framework is concerned with decisions at each layer. For
example, assume an application operating a networked team
of mobile robots, i.e., mobile computational resources with
sensors and actuators. At the application layer, it needs to
decide when to perform a local action (e.g., move forward,
sense the temperature of a certain area) to achieve local
goals, which are typically obtained by decomposition from
higher-level goals. Local computations are also needed for
tasks such as information fusion, based on which new goals
may be triggered. In [3], we presented a declarative approach
to avoid low-level programming by combining distributed
reasoning and asynchronous control. In this paper, we present
a case study of a dynamic distributed optimization and control
problem that is not solved using a distributed logic but directly
built on top of the proposed cyber-framework in Section V.

At the knowledge dissemination layer, a specific strategy
(e.g., deterministic flooding) is chosen to propagate knowledge

on top of the underlying physical network layer. The global ob-
jective needs coordination among the nodes. Knowledge about
local solutions needs to be disseminated through the network
to improve overall solution quality. What kind of knowledge
and how often the knowledge should be disseminated depends
on the specific application and its objectives.

C. Cyber-API — Bridging the Gap

The rationale behind the API of our cyber-application
framework is that it (i) should support simulation and analysis
of systems in the context of suitable environment models as
well as real-world implementations based on the same code;
(ii) is reusable across a wide spectrum of platforms, network-
ing technologies, and cyber-physical devices; (iii) is based
on a sound mathematical foundation that enables reasoning
about the complex dynamics of the composition of cyber- and
physical components; and (iv) provides a suitable abstraction
to implement robust strategies for distributed optimization and
control, which are of key importance for nearly all NCPSs.

We briefly introduce the core interfaces of our API with
some simplifications to focus on the key ideas. The full
version is available from http://ncps.csl.sri.com.
The API supports three different flavors of code organized
in a sandwich-like approach: (i) at the lowest level, we have
simulation code defining simulation models including local
and global models, (ii) in the middle, we have application code
extending application classes that cannot distinguish between
simulated and real-world operation, (iii) at the top, simulation
set-up code instantiates, composes, and configures simulation
models and applications.

Each cyber-application runs on top of a cyber-node. The
CyberNode interface gives applications access to the node’s
name and local time. The parentname is a way to exploit a
hierarchy between nodes, e.g., several nodes that are physical
subcomponents of a larger component. A cyber-node pro-
vides services to post events and knowledge (postEvent and
postKnowledge, respectively). The CyberNode interface has a
method addApplication to allow cyber-applications to register
with their underlying cyber-nodes. The CyberApplication in-
terface requires applications to define the local initialization
and event/knowledge handling functions.
public interface CyberNode
{

double time();
String name();
String parentname();

void postEvent(ApplicationEvent e);
void postKnowledge(ApplicationKnowledge k);

void addApplication(CyberApplication app);
}

public interface CyberApplication
{

void initialize();
void handleEvent(ApplicationEvent e);
void handleKnowledge(ApplicationKnowledge k);

}

A cyber-application may have access to additional services
provided by attached cyber-physical devices. For example, the
positioning device of a mobile robot may have the following



Position interface. Similar to CyberNode, the application needs
to register with the device using addApplication. The position-
ing device provides access to its current position by posx and
posy methods and supports the asynchronous initiation of a
position change through the move service. The corresponding
PositionApplication simply needs to implement a handler
handlePositionUpdate, which is called when a position update
occurs.
public interface Position
{

String name();
String parentname();

double posx();
double posy();
void move(double newx, double newy);

void addApplication(PositionApplication app);
}

public interface PositionApplication extends CyberApplication
{

void handlePositionUpdate();
}

In addition to initializers and handlers, applications need
to specialize the abstract ApplicationKnowledge and Applica-
tionEvent classes to make use of the corresponding services.
For example, PositionKnowledge can be posted by a cyber-
node that is equipped with a positioning device by extending
ApplicationKnowledge. Knowledge can be local (used by
one application) or global (shared by multiple applications),
whereas events are always local to applications. As explained
in Section II, knowledge and events have a creator, a creation
time, an activation time, and an expiration time. For activation
and expiration of knowledge and events, we use a relative
delay from current local time. Most importantly, applications
need to specify subsumption and replacement orderings for
knowledge and events by overwriting subsumes and replaces.
public abstract class ApplicationKnowledge
{

public ApplicationKnowledge(CyberApplication app,
double activationDelay, double expirationDelay);

public String creator();
public double creationTime();
public double activationTime();
public double expirationTime();

public boolean subsumes(ApplicationKnowledge k);
public boolean replaces(ApplicationKnowledge k);

}

public class ApplicationEvent extends Event
{

public ApplicationEvent(CyberApplication app,
double activationDelay, double expirationDelay);

...
}

Finally, the top-level simulation setup is defined by extend-
ing the SimWorld class of the cyber-framework. The following
SensorWorld example instantiates five mobile robots that are
each composed of two instances of SimNode, a robot robot
and a subnode posnode. Here, SimNode is used as a simulation
model for a cyber-node. We also define posdev, an instance
of SimPosition, a simulation model of a robot positioning and
localization device. At the end of the loop, a robot application
is instantiated to run on the corresponding node robot, and
similarly a positioning application is instantiated to run on
posnode and utilizes the device posdev.

class SensorWorld extends SimWorld
{
public SensorWorld()
{
for(int i = 0; i < 5; i++)
{
SimNode robot = new SimNode(this,"RobotNode"+i);
SimNode posnode =

new SimNode(this,robot[i],"PosNode"+i);
SimPosition posdev =

new SimPosition(this,posnode,"PosDev"+i);
new RobotApp(robot);
new PositionApp(posnode, posdev);

}
}

}

In a similar way, the RealWorld class can be extended to
utilize the same application code with actual physical devices
and knowledge dissemination on top of an actual network.
Note that decomposing a robot into several nodes means that
all communication between them must take place uniformly
by means of the knowledge-based paradigm, but it does not
require that these (virtual) nodes be mapped on different
physical processors.

IV. SYSTEM IMPLEMENTATION

In describing our current prototypical implementation of the
cyber-application framework, note that, although our current
implementation is based on Java, implementations in other
languages such as C or C++ are possible and of potential
interest for better performance or for resource-constrained
devices.

A. Simulation vs. Real World for Physical/Network Layer

Our current prototype of the cyber-framework includes
two types of physical- and network-layer implementations
depicted as simulation (SimWorld) and real world (RealWorld)
in Figure 3, respectively. In the case of SimWorld, we support
communication among cyber-nodes via (i) a DTN simulator
that we previously developed [1] as well as (ii) Stage, a
widely used multi-robot simulator [4] that supports a simple
wireless network model. In the DTN simulator, we use an
abstract topological mobility model instead of a model with
actual coordinates. The DTN network model is a probabilistic
dynamic graph-based model, where each link has a state, e.g.,
up or down, and is characterized by its abstract features such
as bandwidth, latency, and error rate. To utilize the Stage
simulator together with the Java-based implementation of the
cyber-framework, we developed a Stage API using JNI (Java
Native Interface) to control the robots, their devices, and the
environment in the C++-based Stage simulator. In this way,
we have access to the physical device models (e.g., SimPosi-
tionStage, SimCameraStage, SimPowerPackStage) that can be
attached to robots in Stage. The Stage wireless network model
uses the signal-to-noise ratio and interference from other
robots to simulate losses and delays associated with packet
transmissions. As an alternative, we also developed a hybrid
simulation model that bypasses the Stage packet transmission
(i.e., a packet is transmitted using the DTN simulator, yet link
quality information is extracted from the Stage simulator).



Different from SimWorld, the RealWorld class utilizes an
actual network among different cyber-engines to disseminate
knowledge. For minimum overhead, our current protocols have
been developed on top of UDP. Typically, many (virtual)
cyber-nodes are executed by a cyber-engine, which is the
smallest (real) computational resource distinguishable from
outside. We also support multiple cyber-engines on a single
cyber-host by dynamically allocating a different part to each
cyber-engine.

A real-world deployment can run on top of multiple cyber-
hosts, unlike SimWorld that is currently limited to a single
cyber-engine on a single cyber-host. Across the network,
time synchronization becomes an important issue. Currently,
for RealWorld instances we have implemented a loose time
synchronization scheme based on logical time to synchronize
local clocks in different cyber-hosts, but for use in time-critical
cyber-physical systems we plan to investigate protocols that
can utilize clocks of different qualities (an information fusion
problem) and use local adaptation to additionally adjust their
drift rates (a distributed control problem).

B. Neighbor Discovery

To disseminate knowledge via opportunistic links, each
cyber-engine needs to keep track of its immediate neighbor-
hood, i.e., the set of cyber-engines that are currently reachable
in a single hop. Each cyber-engine advertises its presence by
periodically emitting a hello packet that contains its cyber-
engine identifier, IP addresses of all network interfaces at-
tached to its cyber-host, and its port number. This hello packet
is broadcast on the same subnet and additionally unicast to
a set of potential neighbors initially given by a set of user-
defined IP addresses. To enable multi-hop discovery (e.g.,
for bootstrapping when broadcasting is not sufficient), hello
packets can be forwarded until a small user-defined maximum
hop count is reached (without counting subnet broadcasts). To
enable the use of Network Address Translators (NATs), e.g.,
on the edge of private subnets, the receiving cyber-engine will
additionally record the sender’s public IP address.

Each cyber-engine discovers and refreshes its immediate
neighborhood based on the incoming hello packets. Once a
certain expiration time for a neighbor entry is reached, the
corresponding cyber-engine is removed from the immediate
neighborhood, but remains an element of the set of potential
neighbors to which hello packets are sent so that a reconnec-
tion can be quickly detected.

If broadcasting is not available or not sufficient to enable
full discovery, cyber-engines can send their hello packets
(with maximum hop count 2) to one or multiple user-defined
facilitators, i.e., cyber-engines that simply forward it one more
hop, and in particular to those neighbors from which they have
already received hello packets. In this way, potential two-hop
neighbors can become immediate neighbors.

C. Knowledge Dissemination Protocols

At present, two knowledge dissemination protocols are
supported by the framework. Generalizing the traditional no-

tion of acknowledgments, information about the awareness of
nodes regarding units of knowledge, a form of knowledge
about knowledge, is shared in both protocols. First, a simple
optimized flooding mechanism disseminates knowledge to all
neighbors that are not (known to be) aware of the particular
unit of knowledge. Second, we have implemented a protocol
based on a notion of probabilistic refection that we previously
developed [1]. It is a single-message protocol that can operate
under unpredictable dynamic network conditions with very
small windows of communication opportunities. The knowl-
edge dissemination protocols make essential use of the partial
order defined on knowledge, by replacing and hence discarding
a unit of knowledge whenever a unit that is higher in the
ordering is received.

To illustrate the benefits of exploiting the partial-order
semantics of knowledge for scalability, consider a simple
randomized distributed optimization algorithm to find the best
solution, i.e., with maximum fitness value. The knowledge
dissemination layer in the cyber-framework will then replace
and discard all instances of SolutionKnowledge if their fitness
values are less than that of a new unit of knowledge. This
is a very typical use of a total subsumption ordering. For
the purpose of optimization a better solution always has a
higher information content (formally it gives a better bound
for the unknown optimum). Since any SolutionKnowledge with
less optimal fitness value will be absorbed by the knowledge
dissemination at each hop, the amount of knowledge at each
node is bounded, and the algorithm becomes naturally scalable
in number of nodes. Clearly, this is an extreme case, but it
illustrates the possibility of scalable knowledge dissemination
and the importance of the ordering.

In an actual deployment on a network, knowledge is nor-
mally disseminated at the cyber-engine level, since the neigh-
borhood is maintained by each cyber-engine. Within a cyber-
engine, the knowledge will be available to all cyber-nodes,
usually by means of a shared knowledge base as depicted in
Figure 2. Since the framework can also be used for the purpose
of simulation where cyber-nodes are part of a network model,
we additionally implemented the option of using knowledge
dissemination protocols at the cyber-node level (inside a single
cyber-engine).

D. Multi-threaded Execution and Simulation

In the cyber-framework, a local computation is triggered by
processing an event from the event queue, which exists per
cyber-engine, i.e., per process. To increase the performance
through parallel processing of those events, we implemented
two versions of multi-threaded execution in our framework.
First, we exploit locality of events by executing each cyber-
node in Figure 1 as a thread with its own event queue. This
approach is appropriate when a relatively small number of
cyber-nodes exists within the same cyber-host. However, as
the number of cyber-nodes increases, thread management over-
head increases, and in practice platform resource-dependent
bounds limit the number of useful threads.



Hence, we alternatively allow each cyber-engine to maintain
a single shared event queue with an associated thread pool.
A thread pool is a fixed collection of threads that can be
dynamically allocated to perform tasks in the background.
Events are placed in the queue until they can be serviced as
threads become available. In this manner, we can decrease
the thread management overhead by avoiding the cost of
creating a dedicated thread for each cyber-node. The thread
pool approach also reduces synchronization overhead when
multiple threads simultaneously attempt to access the event
queue.

In summary, parallel execution can take place in a fine-
grained manner, i.e., by multiple cyber-nodes cooperating in a
multi-threaded way, as well as in a coarse-grained manner, i.e.,
by multiple cooperating cyber-engine processes. As discussed
above the coarse-grained approach can again be used at
different levels (and correspondingly at multiple timescales),
e.g., on a single host (local communication), hosts on the same
subnet (broadcasting), and beyond subnets (unicasting), e.g.,
on a computing grid. The cyber-framework supports all those
configurations as well as arbitrary combinations.

E. Probabilistic Analysis

To analyze the behavior of NCPS (e.g., in terms of prop-
erties and other discrete or continuous observables) in a
probabilistic sense, the cyber-framework implements various
approximation algorithms. The generic approximation algo-
rithm [5] provides a technique to constrain the error probability
of an answer by calculating the sufficient sample size (i.e.,
number of obervations) from the given error bound (ε) and
confidence interval (δ). Under mild boundedness conditions,
the optimal (ε, δ)-approximation algorithm [6] uses a number
of samples that can be proven to be optimal, i.e. within a
constant factor relative to the minimum sample size. Given
a property, the sequential probability ratio test [7] continues
sample generation until its answer about accepting or rejecting
the hypothesis can be guaranteed to be correct within the
required error bounds. Black-box testing [8] instead computes
the statistical significance (p-value) for a given number sam-
ples without having any control on the execution. In our recent
work [9] we extended the quantitative approach of [10] by an
on-demand sample generation that can compute the sample
size sufficient to reach confidence in the normality of data,
and then utilize the normal distribution to obtain the error
bound and confidence interval for quantitative analysis.

With all of the above-mentioned approximation algorithms
implemented, the cyber-framework can be used to quantify
statistical performance (e.g. execution times) with a specific
confidence and to verify properties (e.g. classical invariants
such as mutual exclusion), which may only be satisfied in a
probabilistic sense.

V. CASE STUDY

To demonstrate the applicability and performance of cyber-
framework, we focus on a specific case study in the context
of distributed sensing, optimization, and control. In this case

study, we assume that various wireless sensors are deployed
in space yet isolated in the sense that the sensors can not
communicate directly with each other due to limited energy
(e.g., small battery and long lifetime), which requires mobile
robots to take the role of data collectors. This problem is
representative of a class of challenging problems, since the
network is highly dynamic and in the presence of uncertainties,
delays, and failures it requires cooperation among mobile
robots to achieve a globally approximate optimal solution.

We use a mapping into the multiple Traveling Salesman
Problem (mTSP) [11], a well-known NP-complete problem.
Multiple mobile robots attempt to find the most cost-efficient
route assignment visiting all sensor locations and returning
to a common starting point. In our case study, a robot can
also encounter other robots on its traversal and exchange up-
to-date information about each robot and about the sensors
already covered, which leads to a dynamic version of mTSP
with opportunistic knowledge sharing. The algorithm should
be executed in a fashion that can adjust load distribution
among robots in a fully decentralized manner to cope with
failures of all kinds.

As an approach that can be naturally distributed, we use a
quantum evolutionary algorithm (QEA) [12], which is based
on the concepts borrowed from quantum computing such as
the notions of quantum bit and superposition of states. The
key ideas of QEA lie in the concept of a Q-bit individual, a
compact probabilistic representation of an entire set defined
as a string of Q-bits, and the operation of a Q-gate, designed
to probabilistically adjust the Q-bit individual. However, it
should be noted that we are not aiming to devise a better
QEA for a specific problem. Instead, we developed a parallel
and distributed version of an existing QEA implementation as
a sample application of our framework to explore its perfor-
mance, robustness, and scalability. Our current implementation
of QEA can be further optimized and equipped with adaptive
capabilities, which is beyond the scope of this paper.

A. Distributed QEA on the Cyber-Framework

Algorithm V.1: DISTRIBUTED QEA()
INITIALIZE()
{

InitializePopulation(n)
POSTEVENT(delay)
}
HANDLEEVENT()
{

∀Qi ∈ Pr


qi(t)← Observe(Qi(t))
if(fitness(qi(t)) > fitness(qopt(t)))

then

{
qopt(t)← qi(t)
Qopt(t)← Qi(t)

Qi(t)← AdjustQGate(qi(t), qopt(t), Qi(t))
if(SharingCondition)

then POSTKNOWLEDGE(qopt(t), Qopt(t))
POSTEVENT(delay)
}
HANDLEKNOWLEDGE(q(t), Q(t))
{

RandomReplace(q(t), Q(t))
}

Algorithm V.1 describes the overall structure of the dis-
tributed QEA as a cyber-application. In the beginning, an
initial population Pr of fixed size n is generated by each
robot r. Next, an event is scheduled to trigger a computation
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Fig. 4. Performance of distributed QEA on cyber-framework; (a),(b) on varying number of engines and threads per engine (with total population size of 320
that is evenly distributed to each thread), (c) on varying local population size. The best observed fitness value is 213.

after a delay, which bounds the local computational resources
used. The main computation loop at each robot is expressed
by the HANDLEEVENT procedure. Each robot r starts its local
optimization based on its local population Pr and the locally
best solution qopt(t) at time t. An individual solution qi(t)
is obtained by observation (in the quantum mechanical sense)
from Qi(t), the current Q-bit representation of each individual
in Pr, and its fitness is compared with that of qopt(t). If qi(t)
is better than qopt(t), then the algorithm records qi(t) as a best
solution qopt(t). The algorithm updates the individual’s Q-bit
representation Qi(t) by means of the quantum gate, which
amplifies the probability of observing the optimal solution
from Qi(t).

The distributed QEA allows knowledge sharing when con-
nectivity among robots is available. As formulated by the Shar-
ingCondition, when each robot has generated a sufficiently
good solution (i.e., achieves a certain fitness improvement) or
convergence is detected, the application posts knowledge about
its locally best solution qopt(t) with the Q-bit representation
Qopt(t) of its individual. At the end of HANDLEEVENT, an
event is scheduled with delay for the next optimization step.
On the other hand, a random individual of the population will
be replaced when incoming knowledge about the solutions
from another robot arrives by using the same ordering relations
as in the example of Section IV, i.e., suboptimal solutions can
be discarded in favor of better solutions while they are cached
in the network.

B. Experiments and Discussion

We implemented two test scenarios of utilizing our frame-
work for distributed QEA. First, we installed the framework
on PlanetLab, an Internet-wide testbed [13], and executed the
distributed QEA with a RealWorld setup. In this case, the fairly
stable computing cluster could be used as a command post for
robots. Second, the distributed QEA was executed on Stage
robots in a SimWorld setup. Here, robots are moving around
based on knowledge about their progress in the simulated
environment, and autonomy is essential due to intermittent
connectivity. We evaluated the performance of distributed
QEA on PlanetLab in terms of convergence speedup and
fitness improvement in solving mTSP with 3 robots and
20 cities. To demonstrate the impact of multi-threading, we
controlled the amount of parallelism by varying the number
of engines and threads per engine. Each engine operates on

a different cyber-host with a thread pool implementation.
We experimented with fine-grained (i.e., single engine with
multiple threads), coarse-grained (i.e., multiple engines, each
with a single thread), and hybrid (i.e., multiple engines with
multiple threads per engine) setups as discussed in Section
IV-D.

Figure 4(a) shows that, with the same total population
size, parallelism linearly improves convergence speed due to a
smaller population per thread. From the comparison with the
theoretically optimal speedup (as depicted by dashed lines),
we also observe that the speedup due to multi-threading (i.e.,
with a shared memory knowledge base) can be less than the
speedup resulting from distributed execution in spite of the
fact that dual-processor quad-core machines were used in the
experiment. Compared with the optimal case, the executions
with 8 threads per engine achieve lower speedups (from 58%
to 75%) than a single-threaded version with multiple engines
(from 83% to 99%). Some of the performance variation is due
to the use of a shared and heterogeneous testbed. We believe,
however, that further optimizations of the multi-threaded exe-
cution, in particular of the knowledge base representation and
its concurrent access, are possible and worthwhile. Even in
the case with a small local population, our partially ordered
knowledge sharing enables the distributed QEA to achieve
approximately the same fitness value in all configurations
as shown in Figure 4(b). Without knowledge sharing, the
maximally concurrent execution (64 threads) results in a very
poor solution due to the small local population in the bottom
right of Figure 4(b). We also varied the local population size,
which shows how a larger local population leads to higher
fitness at the cost of convergence speed. Knowledge sharing
mitigates the disadvantage of a smaller local population as
illustrated by executions with single versus 16 threads in
Figure 4(c).

For the SimWorld setup, we modified the distributed QEA
to dynamically take into account partial information about
the distributed progress by sharing knowledge on the robot’s
trajectory whenever connectivity is available. When connected,
the robots cooperatively recompute a new solution for the
reduced instance of mTSP reflecting all available knowledge,
i.e., each robot executes the QEA with the union of its assigned
but not yet visited cities according to its current solution
and with their current positions. Robots return to the starting
location after visiting their assigned cities and will repeat



the algorithm if not all cities are known to be covered. In
this manner, uncertainties (e.g., battery depletion may slow
a robot’s movement) and runtime failures (e.g., robots are
physically damaged) can be reflected in a new solution both
during the normal operation and after returning to the starting
location.

VI. RELATED WORK

Different from established and powerful frameworks for
cyber-physical systems such as CybelePro [14] or Ptolemy
[15], our framework is intended as a research tool to explore
the feasibility, the possibilities, and the implications of a new
distributed computing paradigm for NCPSs based on a par-
tially ordered knowledge-sharing model that is loosely coupled
in an extreme sense. This direction of research is motivated by
current trends in networking and by the expectation that with
the exponentially growing number of resource-constrained
devices, issues such as failures, unreliability, and intermittent
connectivity will become the norm rather than the exception
so that new scalable foundations are urgently needed.

Knowledge sharing is a well known idea that has been
investigated by Halpern [16] and in many subsequent works.
Understanding knowledge sharing in distributed environments
has lead to a complementary view providing new insights
into distributed algorithms and a logical justification for their
fundamental limitations.

As pointed out earlier, our partially ordered knowledge-
sharing model can be implemented using gossip-style pro-
tocols [17], such as anti-entropy protocols [18] or bimodal
multicast [19], but it provides a higher level of abstraction
that enables many possible implementations with a wide

range of protocols and networking technologies.
Anti-entropy protocols [18] perform pairwise exchanges of

so-called deltas, that is, differences in the local states of the
two peers particpating in an interaction. At the core of the
model it is assumed that each peer has a set of variables
(keys) which not only have a value but also a version number.
The ordering on version numbers is then be used by the anti-
entropy protocol to discard old versions in faviour of new
versions whenever information is merged and cached in the
network. It is noteworthy that the concept of versions with
with their total order is a special case of partially ordered
knowledge sharing.

In contrast to anti-entropy gossip protocols, which are rec-
onciling local state, gossip-based disemination protocols such
as bimodal multicast [19] provide logically a broadcasting
service for streams of messages, which are typically buffered
only for short periods of time so that buffer space is available
for new messages comming in. The network model is critical
in gossip-based dissemination. For instance, network partiting
is usually not considered, and it has been observed that gossip-
based dissemination is not robust under correlated losses [17].

Semantically reliable multicast [20] is designed to make use
of the semantics of messages to discard obsolete messages
in overload situations. To this end the authors assume that
messages are equipped with an obsolesence relation that is

coherent with the causal order of events. As suggested by
the authors this can be implemented by simply tagging each
message at its source with all messages that it makes obsolete.
Different from the general partially ordered knowledge-sharing
model, the obsolesence relation is defined independently for
each stream of messages by the sender. Probabilitic reliable
multicast [21] is a combination of semantically reliable mul-
ticast and gossip-based probabilisitic multicast.

Delay-tolerant networking [22], [23], [24] evolved from
early ideas on an interplanetary Internet architecture [25]
and uses late binding and a store-and-forward appoach (po-
tentially utilizing persistent storage) to deal with episodic
and intermittent connectivity and to overcome delays and
temporary disconnections. Network partitioning and merging
is usually considered part of the normal operation, especially
when nodes (or groups of nodes) are used as data mules or
message ferries [26] to transport stored messages by means
of physcial mobility. A related concept are throw-boxes [27],
which can be placed in the environment as buffers to further
improve temporal decoupling of nodes. More generally, and
in contrast to traditional Internet or MANET protocols, delay-
tolerant networking aims to support communication even if
a simultaneous end-to-end path does not exist. Instead of
operating at the packet level, its units of information are
semantically meaningful bundles (or fragments) of variable
and typically large size. In content-centric networking [28]
the semantically meaningful unit is referred to as content, and
the network is viewed as a content cache which is querried by
the user.

Distributed tuple spaces [29], [30] may resemble our pro-
posed loosely coupled paradigm based on partially ordered
knowledge sharing, but the atomicity properties of tuples
spaces cannot be implemented in highly dynamic environ-
ments and impose strong limits on their scalability. For
instance, the LIME (Linda in a Mobile Environment) [29]
is based on the idea that the tuple spaces of individual
host conceptually merge when they come into contact, which
can partition again when the conneciton is lost. A different
approach is taken in the space-based computing architecture
of [30] which organizes tuple spaces using distributed hash
tables.

Blackbord systems [31] are a well-known paradigm in
multi-agent systems that allows multiple agents to interact
and collaborate by sharing knowledge through a so-called
blackboard. Parallel and distributed implementations have
been proposed in [32] and [33]. Consistency maintenence
among replicated blackboard data and the implementation of
blackboard transactions have been identified as major chal-
lenges in [32]. By explicitly admitting and handing errors,
uncertainty, and temporal inconsistencies as part of the overall
problem solving process, our partially ordered knowledge
sharing model may be regarded as a theoretical and practical
foundation for functionally accurate, cooperative distributed
systems [34], a vision that anticipated many requirements of
NCPS and was already far ahead of its time when published.



VII. CONCLUSIONS

As a first step, we have presented in this paper an appli-
cation framework based on the partially ordered knowledge
sharing model and an API for cyber-physical devices that
enables interaction with the physical world. Key features of
our framework are that it is network independent and that
it enables the same application code to be used in various
environments including simulation models and real-world de-
ployments. As a test case, we have applied it to a quantum
evolutionary algorithm for a dynamic distributed optimization
and control problem. Our experiments on both a multi-robot
simulator and an Internet testbed indicate that the framework
can dynamically adapt to a wide range of operating points
between autonomy and cooperation to overcome limitations
in connectivity and resources, as well as uncertainties and
failures.

In the future, we envision using a multi-robot testbed
similar to that of SRI’s Centibots [35] and Commbots [36] for
realistic experiments. The combination of the cyber-framework
with our distributed logic [3] will facilitate a new style of
distributed, declarative control. The use of the framework
for large-scale distributed simulation and analysis of the
NCPS (beyond our multi-threaded implementation) is an un-
explored possibility and has the potential for better scalability
than conventional simulators due to the locality of events
and immutability of knowledge. Applying the framework to
emerging computing platforms (e.g., manycore architectures,
cloud computing, instrumented smart spaces) as well as to
social computing networking applications that utilize mobile
devices is an interesting direction, especially if such platforms
increasingly become part of NCPS.
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