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Abstract—Dynamic channel assignment (DCA) has been a topic
of intense research for many years, and a variety of DCA algo-
rithms have been proposed. Nonetheless, some important issues
have been neglected because of the complexity involved in their
study. In particular, the impact of user motion on the performance
of DCA systems has not received enough attention. In this paper,
we quantify the impact of motion on the capacity and cost—in
terms of average number of reassignments per call—of a variety of
representative distributed fixed-power DCA algorithms. A novel
adaptive algorithm especially suited for mobility environments
is proposed, which achieves high capacity while controlling the
reassignment rate. We also prove that most of this capacity can be
effectively realized with a reduced number of radio transceivers
per base station. Finally, we evaluate the degradation associated
with the use of estimates of local-mean signal and interference
levels—obtained by averaging instantaneous measurements—in-
stead of the actual local-mean values.

Index Terms—Dynamic channel assignment, mobile communi-
cation, resource allocation, time-division multiple-access (TDMA),
wireless communication.

I. INTRODUCTION

DYNAMIC channel assignment (DCA) for frequency- and
time-division multiple-access (FDMA/TDMA) systems

has been a topic of intense research for many years [1]–[4]. As a
result, a variety of algorithms have been proposed to the extent
that low-tier systems such as CT-2 [5], Personal Handyphone
System [6], and Digital Enhanced Cordless Telecommunications
[7] implement simple DCA algorithms. DCA allows for a much
more efficient use of the available spectrum—an increasingly
scarce and expensive resource—and eliminates the burden of
costly frequency planning, which becomes a formidable task in
systems with a very large number of base stations (BSs). De-
spite the effort devoted to investigating DCA algorithms, some
important issues have been neglected because of the complexity
involved in their study. In particular, the impact of user motion
and the effects of imperfect signal and interference averaging are
topics that have not received enough attention. These questions,
not critical in fixed channel assignment (FCA) systems, have
a direct impact on the performance of DCA schemes. Without
their inclusion, any comparison between DCA and FCA might
be distorted. In this contribution, we address these issues by
means of large-scale computer simulations.

We define capacity as the traffic that can be served per BS
at a certain level of quality—measured in terms of blocking
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and dropping rates—with a given number of channels. In the
literature, blocking and dropping are often conveniently com-
bined into a single metric, but that hides the ratio between the
two. Since the relative importance of either one is subjective, we
prefer to keep them separate and consider dropping to be more
severe than blocking. At the same time, we define the “cost” of
a DCA strategy as the average number of reassignments per call
it requires.

The impact of user motion was investigated in [8] and [9] for
FCA, although without interference considerations, only from
the perspective of the increase in effective traffic caused by
handoff. To the best of our knowledge, a more thorough analysis
such as the one we undertake here has not been presented.

This paper is organized as follows. Section II discusses the
benefits of DCA and justifies the need for both admission and
reassignment control. Section III presents a distributed channel
management approach that intends to perform such functions.
In Section IV, the balance of uplink and downlink is addressed.
Section V describes the simulation models. In Section VI, a per-
formance comparison—including user motion—of several dis-
tributed DCA strategies is presented. Finally, Section VII pro-
poses a novel algorithm especially suited for mobility environ-
ments.

II. THE CHANNEL ASSIGNMENTPROBLEM

The problem of finding the assignment that can serve a cer-
tain distribution of users with the least number of channels for
a given set of constraints has received a great deal of atten-
tion [10], [11]. Unfortunately, this general problem is NP-com-
plete. Mathematical approaches have to either make simplifying
assumptions or focus on solutions that can be computed in a
reasonable time [12]–[15]. As a result, these methods gener-
ally make no distinction between users within a given cell. One
would expect that total or partial knowledge of the position of
every user within its cell could be exploited to achieve much
tighter packing [16].

When the number of channels is a given, the traditional FCA
approach is to establish a reuse pattern determined by a reuse
distance selected a priori [17]. FCA does not take advantage of
user positioning, and thus the channels get assigned to cells and
not to users. The reuse distance is conservatively chosen to en-
sure that any set of cochannel users can coexist with high prob-
ability regardless of their location. To exploit mobile positions
with FCA, the concept of reuse partitioning can be adopted [18].
Reuse partitioning consists of dividing the total set of channels
into several disjoint groups so that every group is reused with a
different distance and every cell is assigned a number of chan-
nels from each group. Users with strong signal levels can tol-
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erate higher interference and are thus assigned to a group with a
small reuse distance, whereas users with lower signal levels are
assigned to a group with a larger distance for better protection.
If necessary, users can be reassigned to a different group. Reuse
partitioning FCA achieves a much tighter packing than regular
FCA, although it requires an increasing number of group reas-
signments at growing levels of mobility. With only two parti-
tioning groups, an inner core area and an external ring, reuse
partitioning increases the number of channels available to each
cell by about 33%. With three groups, an inner core and two con-
centric rings, the increase is on the order of 50%. In the limit,
the bandwidth available to every cell doubles [9].

With DCA, all channels are placed in a common pool and dy-
namically assigned according to some strategy. Traffic-adaptive
DCA algorithms assign channels to different cells depending on
their respective loads and hence can alleviate traffic hot spots,
but they fall short of exploiting user location [19]. Reuse dis-
tances are still fixed a priori. Interference-adaptive algorithms,
on the other hand, collect signal and interference measurements
that relate to the position of users. By adjusting their reuse dis-
tances according to that information, they can push capacity to
higher levels. With interference-adaptive DCA, reuse distances
are variable, and thus the channel assignment algorithms them-
selves have to protect active users from new assignments. There-
fore, the problem of finding the most appropriate channel for a
new user can be broken down into two distinct problems.

1) Admission control problem:The system has to determine
the subset of idle channels on which the new user can
coexist with the users already on those channels. To do
so, the mutual path gains for the entire set of cochannel
usersincludingthe new candidate user have to be known
for every channel. This problem can only be resolved by
centralized algorithms, which are impractical [20]–[22].

2) Selection problem:The system has to select—based on
some strategy—a channel from those, if any, that meet
the admission criterion. Knowledge of signal and interfer-
ence levels at the new user’s location suffices, and hence
distributed approaches are feasible.

In distributed DCA algorithms, which constitute the focus of
our interest, BSs and mobiles make autonomous decisions
based only on their own measurements and history. These
algorithms do not have enough information to solve the admis-
sion problem. With power control, distributed schemes have
been devised where new users probe candidate channels at
increasing power levels. By tracking the changes in interference
resulting from the reaction of active users, the feasibility of
the admission can be determined [23] and [24]. This probing
process, however, might have a prohibitively long convergence
time, especially if a large number of channels are to be probed
[25] and [26]. In fixed-power distributed systems, nonetheless,
probing is not practicable, and, in fact, there is no strict solution
to the admission control problem.1 To perform distributed
admission control, it is desirable that, when a set of cochannel
users cannot coexist with the addition of a new one, the car-

1In a sense, by adjusting its powers, every station can interact with the rest of
the system and get feedback information from the reaction of other users to that
adjustment [24]. With fixed powers, such interaction is not possible.

rier-to-(interference and noise) ratio (CINR) of that new user
itself fall short as an indication. To that purpose, a reasonable
approach seems to be the enforcement on new users of a CINR
admission threshold higher than the levels at which existing
users need to operate. The higher the admission threshold,
however, the higher the blocking probability, so a compromise
has to be found. In any case, since this policy does not strictly
solve the admission problem, reassignment mechanisms must
be provided for displaced users. This admission policy works
well if the interference created by a new user onto existing
ones relates closely to the interference received by that new
user from the existing ones.2 To achieve that objective, it will
prove essential that distributed DCA algorithms organize users
in structured reuse patterns.

Notice that, with DCA, a valid channel arrangement may no
longer be valid as soon as anybody moves. Accordingly, the
capability to reassign users becomes essential. In fact, when
motion is considered, emphasis should shift from admission
control onto reassignment mechanisms. Whereas, with no mo-
tion, strict admission control can ensure—without any reassign-
ments—that no users are dropped, with motion, channel reas-
signments are required. In principle, the best strategies are those
that permit everyone to be rearranged—if necessary—to accom-
modate a new user. This is ultimately equivalent to solving a
new global channel assignment problem every time an admis-
sion is requested. Since such schemes would involve a great deal
of computation and a large number of reassignments, practical
algorithms only try to rearrange a limited number of users.

III. DCA CHANNEL MANAGEMENT

A control channel (CCH) facilitates the implementation of
DCA and becomes a reference resource for the entire system
[3]. It also allows mobiles to locate BSs for initial access and
handoff. Therefore, we construct our algorithms with the as-
sumption that a CCH exists. In addition, system-wide synchro-
nization is desirable with DCA, for it simplifies the structuring
of the CCH [3]. Accordingly, synchronization to the slot level is
assumed throughout this paper.3 With that, our analysis holds
for both time- and frequency-division duplexed systems, and
a traffic channel (TCH) corresponds to a pair of specific car-
rier/slot combinations for uplink and downlink

A fundamental limitation of TDMA lies in the fact that when
a mobile is active on a given slot, it cannot monitor other TCHs
corresponding to that same slot and possibly to the adjacent ones
[3] without temporarily suspending the active communication.4

Our system has 128 TCHs organized in 16 carriers and eight
slots, three of which are blind to active users. The system ar-
chitecture as far as modulation, coding, etc., is abstracted by
a CINR level considered sufficient for reliable operation.
All signal, interference, and CINR values are local-mean with
the fast-fading component averaged out.

2In that case, a new user that would create excessive interference will also
receive excessive interference, and hence it will not be admitted in the first place.

3Most of the algorithms we discuss could be applied to an asynchronous
system, but the results presented correspond to a slot-synchronous scenario.

4It is assumed—realistically—that mobiles have a single radio and that syn-
thesizers are usually unable to switch frequencies between consecutive slots.
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Calls are set up with directed retry [27]. The mobile scans the
downlink CCH and finds the BS with the strongest signal. If the
connection attempt fails, the mobile tries again through the next
strongest BS, and so forth. A total of three BSs are explored,
after which the call is blocked and cleared. For a channel to be
assigned, its uplink and downlink CINRs have to be above an
admission threshold , chosen to regulate admissions while
offering a protection margin above . If no such channel is
found, the call is blocked at that BS.

If the CINR of an active user (either link) falls below , the
system tries to reassign that user to another channel within the
same cell. The readmission threshold is to favor ex-
isting users over new ones. If the reassignment fails, the mobile
stays on its current channel and new attempts are made—while
the condition prevails—until the user is either dropped or suc-
cessfully reassigned. Handoff is not attempted as long as the
current BS remains the strongest one. If a user cannot be reas-
signed and its CINR falls below some level for five con-
secutive seconds, the call is dropped.

While active, a mobile constantly monitors the downlink
CCH of neighboring BSs. If one of them exceeds the level
of the serving one by a hysteresis margin of 4 dB, a handoff
attempt is triggered. If handoff fails, the user stays connected to
the old BS and new attempts are periodically triggered. Since
the processing delays associated with channel reassignment
and handoff tend to be—at the speeds of interest—small with
respect to the coherence time of the local-mean metrics (signal,
interference, and CINR), such delays are neglected.

To determine whether a given user meets the required up-
link and downlink threshold for initial access, reassignment, or
handoff, interference measurements are performed by BS and
mobile on the specific TCH and compared against the signal
level. As the signal level is obviously unavailable on the TCH
before the assignment, it has to be mapped from the CCH.5

Blind-slot channels are unavailable for reassignment or handoff
because their downlink interference cannot be examined. This
effect is included in all our simulations. Notice that upon initial
access, there are no blind slots.

The thresholds chosen for our implementation were obtained
by an iterative process and are summarized in Table I. Although
the absolute performance of the various algorithms we discuss
shows some sensitivity to the threshold choices, the relative per-
formance is quite robust.

IV. UPLINK–DOWNLINK BALANCE

Since the quality of a link is basically conditioned by its
weakest component, a key aspect of any channel assignment
algorithm is the balancing of uplink and downlink. With a
few exceptions [3], [28], the issue of achieving balanced link
performance has been overlooked in much of the DCA litera-
ture—where the algorithms usually operate on either uplink or
downlink exclusively—and even in the first systems that have
implemented DCA. Besides differences in receiver sensitivity,
transmit power, antenna diversity, etc., the factors contributing

5Even though instantaneous signal levels on channels more than one coher-
ence bandwidth away are uncorrelated, local-mean values are equivalent within
a wide frequency range.

TABLE I
SIMULATION PARAMETERS AND DATA

to link imbalance are as follows.

1) Interference asymmetry resulting from the different po-
sition of mobiles and BSs, which typically benefits the
downlink by 1–2 dB [28].

2) The channel assignment algorithms. If the sensing of can-
didate channels is performed only at one end of the link
(either mobile or BS), the resulting assignment will be
based only on either uplink or downlink, potentially cre-
ating an imbalance. Such imbalance can only be avoided
by a channel assignment process that is jointly performed
by mobiles and BSs.

A proposed implementation of such an algorithm is one where
each BS maintains a database with the state of all idle channels.
Every time a channel has to be assigned, a shortlist containing
the best candidates—according to the uplink—is passed on
to the mobile, which makes the final selection according to the
downlink [3].6 With this approach, the link balance is controlled

6This process could be reversed, although that would place the burden of cre-
ating the list on the mobile.
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by the shortlist size. Good results are obtained with –
channels [3], with shorter lists tending to favor the uplink and
longer ones favoring the downlink.

We present here an improved version of this technique where
the shortlist contains not only thecandidate channels but also
their potential uplink CINR, as determined by the BS. After the
mobile ascertains the corresponding downlink CINR values, the
channels can be ranked according to a combined uplink–down-
link metric. With this scheme, performance and balance increase
steadily with . In the limit, if the list contains the entire pool
of idle channels, maximum balance is achieved. Notice that in
addition to potential imbalance, too short a list will result in
assignment failure if the mobile is unable to find a suitable
channel therein. The longer the list, the higher the probability of
a channel being found. Unless otherwise stated, we set ,
which provides good performance and balance with an accept-
able measurement delay.

Although user motion tends to destroy the balance so
painstakingly obtained, balance is restored at every channel
reassignment and handoff.

V. MODELS

A. System Model

Antennas are omnidirectional with two-branch selection di-
versity (all thresholds are prediversity). BSs do not transmit on
idle channels. Good orthogonality between carriers is assumed,
and thus adjacent channel interference is not considered. Ini-
tially, no limitation in the number of radio transceivers per BS
is considered either.7 The local-mean CINR is defined as

(1)

with the carrier power, the in-band thermal noise, andthe
cochannel interference. Mobiles and BSs have equal receiver
and transmitter performance, with the ratio between transmit
power and noise floor such that the average carrier-to-noise ratio
at a cell corner—with no interference—is 35 dB. Offered traffic
has a uniform spatial distribution with Poisson arrival rates and
exponentially distributed holding times with a mean of 100 s.

B. Propagation Model

The local-mean path gain between two stations (identical for
uplink and downlink) is modeled [17], [29] as

(2)

where is a calibrated constant for the particular environment,
is the distance, is the propagation exponent, andis a shad-

owing log-normal term with standard deviation dB. The
spatial autocorrelation function for the shadowing process is a
polynomial approximation to an exponential function [30] with
a correlation distance m.

C. Mobility Model

The mobility model is a random walk controlled by a “direc-
tionality” parameter , which determines how often the mobile

7Transceiver limitations are considered in Section VII.

makes a turn. When a call is originated, the user speed is as-
signed, the directionality is selected with uniform probability
in the range 0–0.5, and an initial direction is randomly chosen.
The speed is maintained throughout the entire call. Every 10
s, there is a turning opportunity, and thus the user changes di-
rection or not with probability . When a change of direction
occurs, the new direction is chosen from a triangular distribu-
tion centered on the old direction. This way, small angle turns
are more probable than large ones. Three categories of users are
defined according to their speed.

1) Stationary users:No motion.
2) Pedestrian users:Speed uniformly distributed within 0–5

km/h.
3) Slow vehicles:Speed sampled from a truncated Gaussian

with a maximum of 60 km/h.
Using these categories, in turn, we define three classes of

traffic.

1) Stationary:For applications such as wireless local loop.
2) Pure pedestrian:Shopping centers, campus environ-

ments, etc.
3) Hybrid: 80% pedestrians, 20% vehicles (urban and sub-

urban areas).

D. Computer Simulations

Simulations are performed on a wrapped-around universe
consisting of a 16 16 square grid of BSs with the parameters
summarized in Table I. The universe is created prior to the sim-
ulations, and thus the different algorithms are compared on the
exact same scenario. In any given simulation, data collection
does not start until the system has been brought to steady state.
The confidence interval for all blocking and dropping rates is
approximately 0.1 at 3% with 99% reliability.

VI. PERFORMANCE OFDISTRIBUTED DCA ALGORITHMS WITH

USERMOTION

Using an FCA scheme with a reuse factor of 1/16 as a ref-
erence, we compare the performance of four representative dis-
tributed DCA algorithms when exposed to the three classes of
traffic defined in Section V-C. Although many other schemes
have been proposed [4], [31], most of them are in fact varia-
tions or combinations of the schemes we are about to analyze,
which are chosen to portray distinct types of strategies.

A. Channel Segregation

In a channel segregation algorithm (CSA), each BS stores a
table with a priority value for every channel [32]. Upon an ad-
mission request, the BS evaluates the channel with the highest
priority. If it does not meet the admission threshold, the priority
of that channel is decreased and the next highest priority channel
is examined. If it does meet the threshold, the channel is selected
and its priority increased. The priority of a channel is also de-
creased when a user occupying that channel is dropped. With
this method, each BS acquires its favorite channels by learning
how they are used by the other BSs.

The performance of CSA—originally analyzed in [32] for
stationary traffic only—is presented in Fig. 1. The blocking per-
formance does not degrade with increasing mobility because
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Fig. 1. Blocking and dropping performance of CSA at different levels of
mobility.

every BS is able to resort to channels lower in the priority table.
As a result, nonetheless, the segregation reuse structure is pro-
gressively destroyed, rendering users increasingly vulnerable to
interference. Consequently, dropping increases so rapidly that,
in fact, there is a slight reduction in blocking as busy channels
become available.

B. Interference Minimization

Least interference algorithms (LIAs) are based on selecting
always the most quiet channel [31]. Since they can be regarded
as “greedy,” they are particularly appropriate for open-access
spectrum-sharing, with several operators using a common
pool of channels. However, as minimizing interference results
in large reuse distances, these algorithms are not expected
to be spectrally very efficient. One might expect, however,
that assigning high-quality channels to incoming users would
preclude them from being dropped at the expense of higher
blocking rates, and that is in fact the case in static situations.
With motion factored in, however, blocking affects handoff
users seeking a new BS as well as new users. Consequently,
the dropping rate degradation caused by motion (Fig. 2) is even
more dramatic than in CSA. Clearly, the system is unable to
handle the increase in effective traffic associated with mobility
as reassignment and handoff failure rates grow abruptly. Again,
blocking actually decreases on account of the large number of
dropped users.

C. Interference Maximization (Below Threshold)

The highest interference algorithm (HIA) tries to utilize
the spectrum more compactly by selecting the most interfered
channel below some level determined by the admission thresh-
olds [31]. Evidently, one would expect this strategy to be poorly
suited to high-speed users because of the need to continuously
reassign them as they move. That is indeed the case, as seen in

Fig. 2. Blocking and dropping performance of LIA at different levels of
mobility.

Fig. 3. Blocking and dropping performance of HIA at different levels of
mobility.

Fig. 3, with significant increases in both blocking and dropping
as mobility grows. Also, since all shortlist channels are chosen
with an uplink CINR very close to the threshold, there is a
nonnegligible probability that the downlink CINRs for all of
them fall short of it. To minimize this probability, the shortlist
is extended to . If the mobile is unable to select any
channel within the first set of , a second set of is
requested.
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Fig. 4. Average channel interference upon initial assignment with ARP at 10
erlangs/cell.

D. Autonomous Reuse Partitioning

The concept of reuse partitioning described in Section II,
so effective with FCA, was extended to distributed systems
in [33]. In the so-called autonomous reuse partitioning (ARP)
algorithm, the channels are tested according to an ordering
common to all cells, and the first idle one to meet the required
threshold for both uplink and downlink is selected. As a result,
the channels are packed according to the set ordering. Channels
considered early in the set are used more frequently—smaller
reuse distance—and have larger interference levels, so they
are assigned only to those users with strong signals, generally
near their serving BS. On the other hand, channels considered
later in the set are used less frequently—larger reuse dis-
tance—and show smaller interference levels. They are assigned
to users with weak signals, typically far from their BS. As
the partitioning is achieved, the coverage area of every BS is
divided into concentric rings—irregular in shape because of
shadowing—each assigned to a distinct channel.

Although apparently not previously recognized, ARP has the
interesting property of utilizing, at every BS, only the minimum
number of channels required to serve all existing users at the re-
quired CINR (Fig. 4). At low traffic values, only a handful of
channels are active and reused by all BSs. As traffic increases,
idle channels are progressively activated until every channel is
used. This point can be easily identified in Fig. 5, at any level
of mobility, by a slope change in the blocking response as well
as a sudden increase in dropping. Beyond that critical point,
the system has serious difficulties allocating additional users,
and thus performance degrades rapidly. User motion causes re-
assignments and forces the system to activate additional chan-
nels earlier, so the critical point slides down.8 Although, like

8Again, we see how motion is often equivalent to an increase in effective
traffic.

Fig. 5. Blocking and dropping performance of ARP at different levels of
mobility.

HIA, ARP would not appear to be very well suited to high-speed
users, it is in fact more robust because of the partitioning struc-
ture. Here, as users move, they roam into immediately adjacent
ring areas corresponding to others channels whose levels of in-
terference are only slightly different.

Since, as in HIA, the channels contained in the shortlist have
an uplink CINR very close to the admission threshold, the short-
list is also extended to .

E. Performance Comparison

The comparative blocking and dropping performances—in
a pedestrian environment—of the algorithms described in the
previous sections are depicted in Fig. 6 along with the FCA-16
reference. Uplink CINR cumulative distributions are shown in
Fig. 7—downlink values show a similar trend—for a load of 10
erlangs/cell. Notice how capacity can be directly related to the
CINR distribution: high-capacity DCA algorithms are able to
accommodate more users by arranging them so that their CINR
is as close as possible to some target value (chosen to provide
a comfortable margin above ). This process is usually re-
ferred to as CINR balancing. Users above target do not expe-
rience any significant advantage, yet they diminish the system
capacity by occupying channels that could have been assigned to
other users in a more detrimental situation. Similarly to power-
control algorithms, which can achieve superior CINR balance
by adjusting their transmit powers [34], fixed-power DCA algo-
rithms can achieve a satisfactory degree of balance by arranging
and rearranging users appropriately.

Since it is basically traffic adaptive, CSA does not pursue
CINR balance, and thus its capacity gain over FCA-16 is only
moderate (twofold at 3% blocking). Despite being interference
adaptive, LIA seeks maximum CINR imbalance to maximize
link quality for a limited number of users. Not surprisingly, its
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Fig. 6. Algorithm comparison in a pedestrian environment.

capacity falls even below that of CSA. Both HIA and ARP,
on the other hand, achieve good CINR balance as expected.
ARP, however, shows a much larger capacity, especially in terms
of dropping. That is a direct result of the structured manner
in which ARP packs users, which greatly reduces the proba-
bility that incoming users create excessive interference to active
users [35]. Altogether, ARP outperforms all other algorithms
presented, especially in terms of dropping.

Shown in Table II is the average number of reassignments per
call in a pedestrian environment. With LIA, the reassignment rate
is very low. With CSA, the rate is also low, although it shows fast
growth with traffic, confirming that the established segregation
structure isbeing increasinglyviolated.HIArequiresmultiple re-
assignments per call to sustain its nonstructured CINR balance,
whereas ARP shows a moderate stable rate of reassignments.

VII. A DAPTIVE DISTRIBUTED REUSEPARTITIONING

ARP and related distributed reuse partitioning algorithms
had previously been studied only in stationary environments
[33]–[36], and their superior performance in those conditions
has been reported [37]. In the previous section, it was shown
that these techniques are robust and behave well also in mobility
environments. In those conditions, however, it may be possible
to further improve their performance.

With no user motion, the partitioning structure is only dis-
turbed by the arrival and departure of users, which cause a lim-
ited amount of distortion in the partitioning patterns.

Fig. 7. Uplink CINR cumulatives at 10 erlangs/cell in a pedestrian
environment.

TABLE II
AVERAGE NUMBER OF REASSIGNMENTSPER CALL IN A PEDESTRIAN

ENVIRONMENT. FOR ADRP, THE ADAPTIVE 
 THRESHOLDIS ALSO

SHOWN. FOR ALL OTHERS, 
 = 18 dB

With motion, the pattern distortion is much more severe,
and users are likely to roam out of the partitioning ring corre-
sponding to their channel. Reassignments, however, are only
triggered when , that is, when the CINR drifts toward
too low a value. A more aggressive channel management
policy could preserve the partitioning patterns by reassigning
users every time they roam onto an adjacent ring regardless of
whether that corresponds to a CINR drift toward too low or
too high a value. According to this idea, we propose an adap-
tive distributed reuse partitioning (ADRP) algorithm, which
triggers a reassignment whenever (either link) or

(both links). This algorithm performs the necessary
reassignments to keep the system constantly balanced as users
move, attempting to maintain their CINR between and

. By reducing , system capacity can be traded for an
increased reassignment rate. In our implementation, a value of

dB is chosen.
On the other hand, it has been shown that when ARP operates

below its critical point—at low or moderate traffic values—it
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only utilizes a portion of the available channels. According to
Fig. 4, the usage is 82% at 10 erlangs/cell in a pedestrian en-
vironment. Intuitively, if the system can sustain that traffic at
a given CINR with a limited number of channels, it should be
able to support that same traffic at a higher CINR with the en-
tire channel set. In other words, the system can be forced to uti-
lize additional channels by increasing the admission thresholds.
In doing so, the protection margin increases and the number of
reassignments required to maintain users abovecan be re-
duced. With more channels in use, the same amount of interfer-
ence is distributed over a broader bandwidth.9 In our ADRP al-
gorithm, every BS periodically adjusts its own admission thresh-
olds by monitoring the activity on the lowest channel in the set
as follows.

1) If no interference is detected on that lowest channel, the
admission and readmission thresholds are increased by

dB; otherwise, they are decreased by
dB.

2) A maximum excursion of 6 dB is allowed (
dB, dB).

The performance of the ADRP algorithm is displayed in Fig. 6
and in Table II along with the other algorithms. Besides some
additional capacity gain with respect to ARP (7–8% at 3%
blocking), the algorithm shows a reassignment rate more
logically related to the system load: at low traffic values,
reassignments are occasional (0.34 reassignments per call
at 6 erlangs/cell), whereas in more congested conditions,
reassignments are more frequent (0.87 at 14 erlangs/cell). Also
shown in Table II is the adaptive admission threshold used
by ADRP to control the reassignment rate. Also recall that by
tightening the upper threshold , more capacity could be
obtained in trade for an overall higher reassignment rate.

How much of the potential of any DCA algorithm can be
effectively realized depends ultimately on the number of radio
transceivers available at every BS. For our ADRP algorithm, we
illustrate the degradation associated with a limited number of
transceivers in Fig. 8. The performance of a system with only
three to four transceivers per BS is very close to that of an ideal
system with one transceiver per carrier per BS.

At the same time, DCA algorithms rely entirely on signal, in-
terference, and CINR local-mean levels, which have to be es-
timated by low-pass filtering their instantaneous values. The
quality of these estimates depends on the mobile speed and
the dimension of the averaging window. This window must be
long enough to average out fast-fading fluctuations, yet suffi-
ciently short to track the shadowing variations. Interestingly, the
shape of the averaging window is not a primary factor [38], and
thus we choose to employ a simple rectangular window. The
optimumspatialwindow length depends basically on mea-
sured in wavelengths and on[38]. Unfortunately, the corre-
spondence between this optimum length and the averagingtime
window is determined by the mobile speed, which is a param-
eter that is very difficult to evaluate. Measuring and tracking the
velocity of mobiles in real time constitutes a topic of active re-
search [39]. If such information were available, the estimation

9Caution must be exercised, nevertheless, not to raise the thresholds exces-
sively, for eventually the system would become noise limited.

Fig. 8. Blocking performance of ADRP versus number of radio transceivers
in a pedestrian environment.

Fig. 9. ADRP performance degradation when exact local-mean levels are
replaced by local-mean estimates with Rayleigh fading and a 500-ms averaging
window at 1.9 GHz. No limit on transceivers.

window could be dynamically adjusted. Otherwise, it has to be
fixed at a compromise value. With the propagation parameters
used throughout this paper and a maximum speed of 60 Km/h,
a compromise value of 500 ms is selected.

In Fig. 9, we quantify the performance degradation of
the ADRP algorithm in a 1.9-GHz pedestrian system with
Rayleigh fading and local-mean estimates used instead of the
actual local-mean values. At 3% blocking, the capacity loss is
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only 6%. Dropping, on the other hand, is basically unaffected
because, when a reassignment fails because of erroneous
estimates, the system simply triggers a new attempt. The
reassignment rates, on the other hand, increase by about 18%.

VIII. C ONCLUSION

This paper has quantified the impact of user motion on the ca-
pacity and cost—in terms of average number of reassignments
per call—of a variety of distributed fixed-power DCA algo-
rithms. Comparative performance analysis of these algorithms
has shown that the concept of CINR balance is essential in order
to exploit the instantaneous position of users to achieve tight
reuse distances and high capacity [34]. Distributed reuse parti-
tioning algorithms are very effective at achieving a good degree
of CINR balance. Within this class of algorithms, we have pro-
posed a novel adaptive algorithm (ADRP) that further increases
capacity by about 7–8% while significantly reducing the reas-
signment rate at low and moderate load levels. With respect to a
conventional FCA system with a reuse factor of 1/16, a capacity
3.7 times higher (at 3% blocking) can be achieved with ADRP
in pedestrian environments.

It has also been shown that most of this capacity can be real-
ized effectively with a reduced number of radio transceivers per
BS, despite the fact that local-mean estimates of signal and in-
terference levels obtained by averaging instantaneous measure-
ments are constrained by necessarily short temporal estimation
windows and thus deviate from their actual local-mean values.

As expected, user motion decreases capacity and significantly
increases the channel reassignment rate. This capacity reduc-
tion, however, can only be properly assessed when dropping
rates are taken into consideration. Capacity analysis in mobility
environments based exclusively on blocking may be misleading.
Since an excessive number of channel reassignments is undesir-
able, the DCA admission thresholds may have to be increased
in systems with a high level of mobility. Our ADRP algorithm,
being inherently adaptive, is well suited to perform in a variety
of environments.
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