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Abstract

The dynamics of bubble coalescence is studied using a robust numerical model for a multiphase flow system
with interfaces. The effects of liquid viscosity and surface tension on bubble coalescence, for which Reynolds
number ranges from 10 to 100 and Bond number ranges from 5 to 50, are investigated. It is shown that the
numerical model used in this study can accurately capture the complex topological changes during the
coalescence. The predicted behaviour of bubble coalescence is in reasonable agreement with our experimental
observation. It is found that with a high Reynolds number (low viscosity) a strong liquid jet formed behind the
leading bubble inhibits the approach of the following bubble. Hence coalescence does not occur or is postponed.
A lower surface tension results in an earlier coalescence because of severe stretching of the interface.

1. Introduction

The dynamics of bubble coalescence plays an important role in many engineering processes. For example, in
mixing, bubbles or drops can generate large changes in interfacial areas through the action of vorticity via
stretching, tearing and folding which facilitates the mixing processes. A good understanding of the fundamental
mechanism of multiple bubble coalescence can be crucial in maintaining the dispersion process. The dynamics of
liquid drop coalescence has been addressed by many researchers, such as Muccucci (1969), Chi and Leal (1989)
and Basaran (1992). Limited theoretical and experimental studies of gas bubble coalescence were done by
Narayanan et al (1974), Bhaga and Weber (1980), Oolman and Blanch (1986), Egan and Tobias (1994) and
Stover et al (1997). Most of their studies focused on the experimental investigation. Stover et al (1997) adopted a
finite-element method to study small bubble coalescence and the simulated results were used to validate their
experimental observation. In their study, they focused on the interfacial dynamics after two bubbles touched.

Discontinuous fluid properties in a flow system can produce a complex flow structure with rich physical length
scales, which presents both computational and experimental challenges. Numerically, a robust algorithm for
solving multi-phase flows with an accurate representation of interfaces is required to accommodate the complex
topological changes in bubble coalescence.

In this paper, gas bubble coalescence has been studied using our modified VOF method (Chen et al. 1996)
associated with a semi-implicit algorithm for Navier-Stokes equations. The effects of liquid viscosity and surface
tension force on the coalescence are also investigated

2. Problem Formulation

Consider two spherical gas bubbles, rising through a viscous liquid (see Figure 1) in a closed cylinder. The two
bubbles are initially stationary and the coalescence of the two bubbles may occur while they are rising due to the
buoyancy force.
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Figure 1: Schematic description of the problem

The motion of the two bubbles can be described by the Navier-Stokes equation, which is written in a non-
dimensional form as
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Note that * is omitted in equations (1) and (2) for convenience. ® denotes the inner product of tensors, U(u,,u ,u.)
is the fluid velocity in x(r,6,z), p the density, p the dynamic viscosity, p the pressure, g(0,0,¢) the gravity vector,
Ry initial bubble radius, and F;, the volume form of the surface tension force. The subscript, ref, stand for a

reference value, and here, liquid properties are adopted as reference properties. Reynolds and Bond numbers are
defined by
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where F is the local volume fraction of one fluid. Its value may be unity in the liquid phase and zero in the gas
phase if a gas-liquid two-phase system is involved. A value between 1 and O indicates a density interface. The
last term of equation (2) is the surface tension force, which exists only at the interface and is modelled by the
continuum surface tension force (CSF) method developed by Brackbill et al (1992). In this model, an interface is
interpolated as a transient region with a finite thickness. Thus the surface tension force localised in this region
can be converted into a volume force with the help of a Dirac delta function concentrated on the surface. The
surface tension force is written as
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from the definition of a unit normal vector to a surface
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where ¢ in the above equations is a colour function and [¢] is the difference of the colour function between two
phases.

It is noted that Equations (5) and (6) represent discontinuous properties of fluid, which imply an interface
between two-phase fluids, and they can be used to monitor the dynamics of the interface. However, when a large
discontinuity is involved, for example a discontinuity of 850 in density ratio exists for a water-air system,
numerical difficulties may arise in identifying an ‘exact’ interface. Thus, instead of solving the density transport
equation directly, the volume fraction of liquid, F, is used to identify an interface. The transport of the F function
is governed by

K V-(UF)=0 (11)
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Also, the colour function, ¢, in Equations (7) and (9) can be replaced by F. Now suitable initial and boundary
conditions are required. In the case studied in this paper, an initially spherical gas bubble is located on the axis of
a vertical cylinder filled with a stationary liquid. The boundary conditions are U =0 at the walls. The bubble is
initially at rest.

3. Numerical Method

A control volume technique is used to discretise the PDEs. The computational domain is divided into a number
of non-overlapping control-volumes and all variables are defined at the centre of the control volume. Such a
collocated arrangement of the grid may reduce the discretization accuracy of the diffusive term, but it has
advantages, such as an accurate representation of flux and source terms.

The diffusion terms are discretized by a second-order central differencing scheme. The convection terms are
discretised with a third-order upwind-biased scheme and implemented with the deferred-correction method.
Generally, when a single bubble rises due to the buoyancy force, a tongue of liquid jet is induced that pushes into
the bubble from below. Deformations of the bubble occur. For multiple bubbles, similar behaviour is expected.
The use of a higher-order convection scheme is necessary to catch the liquid jet accurately with a moderate
number of grid points. Comparing the conventional first-order hybrid scheme with the third-order scheme, it has
been found that the upwind-biased scheme gives a better resolution of the liquid jet behind two bubbles. The flux
at the faces of a control volume is calculated by the Rhie-Chow’s interpolation. This technique effectively
overcomes the difficulty of the decoupling between pressure and velocity raised by a linear interpolation and
guarantees a global mass conservation. The surface tension force is linearised by a 27-point stencil for a three-
dimensional surface. The detail of numerical implementations can be found in Chen et al (1996, 1997).

To capture the sophisticated dynamics of an interface, an accurate technique is needed to solve equation (11).
There are many different algorithms to solve this equation, for example, the Lagrangian finite-element method of
Unverdi and Tryggvason (1992) and the MAC-type technique of Rider et al (1995). However, the VOF method
pioneered by Hirt and Nichols (1982) is still widely used due to the simplicity in its implementation. In this
study, a modified line constant VOF method is used (see Chen et al. 1996).

A semi-implicit scheme is used to solve equation (2) for the velocity field and the SIMPLE method is adopted
for the velocity-pressure coupling. The resultant non-symmetrical system of linear equations arising from the
momentum equation is solved by SIP. The symmetric system due to pressure correction is solved by the
Conjugate Gradient method with the Incomplete Cholesky preconditioning.

4. Results and Discussion

A grid-independent test was carried out on the axisymmetric rise of a single bubble in a liquid with three
different meshes (N, by N,): 54 by 17, 108 by 34 and 216 by 68, which correspond to 145, 578 and 2312 grid
points in the rectangle containing the hemisphere region. It was found that the 108 by 34 mesh produces a nearly
grid-independent solution. This grid size will be used in all other runs.

4.1 The Behaviour of Bubble Coalescence

Generally, when a single bubble rises due to the buoyancy force, the pressure at the lower surface of the bubble
is higher than that at the top surface of the bubble. A vortex sheet developed at the surface of the bubble has a
sense of rotation, which induces a tongue of liquid that pushes into the bubble from below. Deformations of the
bubble occur. For multiple bubbles, similar behaviour is expected but the deformation and fragmentation of
surfaces are much more complex.



The behaviour of bubble coalescence in a viscous liquid is shown in Figure 2 with parameters: Re=12, Bo=5
and p¢/p,=1000 and uy/u,~100, which gives an equivalent Morton number (M = Bo’/Re?) of M=4.1x107. This is
just above the critical Morton number for bubble coalescence (Bhaga and Weber 1980). This figure plots the
velocity field and three contour lines of function F, 0.1, 0.5 and 0.9. When they start to rise, two bubbles become
ellipsoids due to a pressure difference between the top and bottom surfaces of the bubbles. The liquid jet formed
behind the leading bubble induces a severe deformation of the following bubble, giving it a pear-like shape
(Figures 2a, b). Once two bubbles are approaching (Figure 2b), the following bubble accelerates. As time
progresses, the two bubbles start to touch, as may be seen in Figure 2c, leaving a mushroom-like structure. The
surface tension force is decreased, and then a further fragmentation occurs. A larger spherical cap is obtained, as
may be seen in Figure 2d. A detailed study of the motion of such a single bubble in a viscous liquid, such as the
formation of a toroidal bubble, can be found in Chen et al (1998).

(a)t=1.5 (b) t=2.0 (c)t=2.5 (d)T=3.0
Figure 2: Predicted axisymmetric coalescence of two gas bubbles in a viscous liquid
(Re=12, Bo=5M=4.1 x10” 0510, =1000, ps/u, =100, z/Ry=0.36)

It can be seen that the liquid circulation around the bubble produces a jet to push in the lower surface of both
leading and following bubbles and the deformations of the bubbles occur (Figure 2a). Due to the impact of the
following bubble, the vortex around the leading bubble is terminated and instead, a big circulation around two
bubbles as a whole is gradually formed (Figures 2b, ¢ and d). Therefore the liquid jet behind the leading bubble
may be slightly smeared and a spherical-cap-shaped leading bubble is observed (Figure 2b). The liquid jet, in
another words the pressure, behind the leading bubble controls the entrainment of the following bubble by
promoting a slight acceleration and elongation of the following bubble, which eventually causes the coalescence.
After the two bubbles touch, because the surface tension always acts as a force reducing surface energy, the lower
surface of the merged bubble is accelerated and a larger spherical cap is obtained (Figures 2c,d). It seems that the
following bubble has very little effect on the travel of the leading bubble, which can be seen in Figure 3 by the
nearly straight line of the leading bubble position history before the coalescence occurs. (In this figure, the
sudden drop of the leading bubble’s position or the end of the following bubble’s line indicates a coalescence.)
This agrees with Bhaga and Weber (1980). A small acceleration of the following bubble can be seen by its
position plot having a slight upturn at t=0.9. The merged bubble travels faster than the small one, as may be seen
by a bigger slope of the solid line after tT=2.0 in Figure 3. It can also seen that the contour lines of F in Figure 2
show an accurate representation of the bubbles with minimum numerical diffusion.

An experiment was carried out with a glycerin liquid with p;=1220 kgm™, u=0.11 kgm™s™" and 6=0.066 Nm"
to validate the numerical simulation, as may be seen in Figure 4. The experimental method is given in Manasseh
et al (1998). The equivalent radius of a spherical bubble was determined from the acoustic frequency of bubble
oscillation (Manasseh, 1997). These properties give equivalent non-dimensional parameters: Bo=5, M=4.1x10"
and pg/pg~1000 with a 10% error in both density and viscosity estimation. The similarity of the bubble
coalescence between the predicted and experimental results can be seen from Figures 2 and 4. The experimental
result for the average rise velocity, with reference to the leading bubble centre before coalescence, gives 0.3ms™,
while the numerical simulation gives 0.24 ms". This gives an error of 20%. The differences between the
numerical and experimental following bubbles appear mostly in the first two frames. This is due to the different
initial conditions. Given the somewhat different initialisation and uncertain fluid properties in experiment, the
agreement between the results may be considered reasonable.
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Figure 3: The position of the two bubble centres as a function of time
(Re=12, Bo=5M=4.1 x107 0r/0, =1000, /1, =100, 2/Ry=0.36)

(a) t=45 ms (b) t=60 ms (c) T=75 ms (d) =90 ms

Figure 4: Experimental observation of the axisymmetric coalescence of two gas bubbles in a glycerin liquid
(M=4.1x10" Bo=5, p;/p, ~1000)

4.2 The Role of Surrounding Liquid Viscosity on Bubble Coalescence

The effect of liquid viscosity on bubble coalescence is illustrated in Figure 5, by varying Reynolds number from
100 to 10 whilst keeping the remaining parameters unchanged as Bo=5, p#/p,=100 and ugu,=100. These
correspond to Morton numbers of M=1.25x10"® and M=1.25x10 respectively. Here a low density ratio is used
for computational efficiency without losing the physics. Again, velocity fields and three contour lines of function
F, 0.1, 0.5 and 0.9, are plotted for two different Reynolds numbers at various times. For a higher Reynolds
number (small viscosity in Figure 5a), a stronger jet behind the bubbles results which may be seen by comparing
Figures 5a and 5b. A more severe deformation of both leading and following bubbles is obtained. It is the jet
behind a bubble that is responsible for the deformation of a single bubble in a liquid (Chen et al 1998). At a
higher Re number, there are a stronger vortex around the leading bubble and a stronger jet, as may be seen from
Figures 5a at t=1.0, t=1.5 and ©=2.0. This causes a higher pressure in the wake of the leading bubble. Hence the
following bubble is prevented from approaching the leading bubble, precluding coalescence, as may be seen from
the vector plot in Figure 5a. This gives a weak interaction between the two bubbles, and thus no significant
acceleration of the following bubble is obtained. With a high surface tension (Bo=5), the two bubbles travelled
separately. This is shown in Figure 6 by the pair of nearly parallel lines with Re=100 after t=1.5 for the bubble-
centre position histories.

The effect of the leading bubble on the shape development of the following bubble is obvious (Figure Sa at
t=1.5 and 1=2.0). The top of the following bubble expands while it approaches the leading bubble and a hat-type
bubble is obtained (Figure 5a, t=2.5). This is due to the vortex ring in the wake of the leading bubble. On the
other hand, the weak vortex around the leading bubble at a low Re number is easily broken (Figure 5b, t=2.0 and
1=2.5) and the impact of the liquid induced by the following bubble on the jet behind the leading bubble is
relatively significant. As a result, the leading bubble rises slowly, and the top of the following bubble stretches
slowly, leading to coalescence, as may be seen in Figure 6 for Re=10.



(a) Re=100

(b) Re=10
1=2.0 1=2.5 1=3.0 1=3.5
Figure 5:: Velocity field and three contours of F of the values of 0.1, 0.5 and 0.9 with different Reynolds
numbers (a) Re=100 and (b) Re=10 (Bo=5, py/p, =100, y;/u, =100)
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Figure 6 Effect of Reynolds number on the bubble position history (Bo=5, p;/p, =100, us/u, =100)

4.3 The Role of Surface Tension Force on Bubble Coalescence

The effect of Bond number on bubble coalescence is shown in Figure 7 by a three-dimensional plot. The
vertical velocity profile along the z-axis is shown in Figure 8. At a high Bond number (low surface tension), the
two bubbles deformed more while approaching and a slightly stronger liquid jet at the beginning of their rise can
be seen in Figure 8. In this figure, a value of unity of F represents the liquid; a value of zero represents the gas
and in-between represents an interface. The bubbles with a low surface tension (Bo=50, open circles) merge as
early as t=2.0 but with a high surface tension (Bo=5, solid circles) coalescence is postponed to t=3.0.

A high surface tension results in a weak liquid jet behind both bubbles and a slightly slow rise of the two
bubbles. This is shown in Figure 9 by the bubble centre position as a function of time. In addition, the surface



tension force is always trying to maintain a shape having a minimum surface energy, which makes the stretching
of the top surface of the following bubble harder. These effects all lead to a late coalescence.

(a) Bo=50
=1.0 1=1.5 1=2.0 1=2.5
(b) Bo=5

=20 1=2.5 =30 1=3.5
Figure 7: Development of bubble coalescence with different Bond numbers: (a) Bo=50 and (b) Bo=5 (Re=10,
070,=850, 1 u,=100)
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Figure 8: Vertical velocity profile along the z-axis (line) and volume fraction F (circle) for different Bond
numbers (Re=10, p/p,=850, u/u,=100, =1.0)

5. Conclusion

The dynamics of bubble coalescence has been studied using a robust numerical model for a two-phase fluid
system with interfaces. An experimental validation has been carried out, and the predicted behaviour of bubble
coalescence is in reasonable agreement with our experimental observation.

The effects of liquid viscosity and surface tension on the coalescence have been investigated. It has been found
that the interaction between the leading and following bubbles depends mainly on the liquid viscosity. The higher
the liquid viscosity, the easier the bubbles interact. Therefore, bubble coalescence is more likely for high
viscosity. On the other hand, for low viscosity, the liquid jet behind the leading bubble becomes stronger which

7



prevent the bubble interaction. A postponed or non-coalescence is obtained. Regarding the surface tension effect,
high surface tension results in a weak liquid jet, and the resultant high surface tension force prohibits the surface
stretching. Therefore, a late coalescence is obtained.
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Figure 9 Effect of surface tension force on the centre positions of leading and following bubbles
(Re=10, pfp,=850, ufu,=100)
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