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ABSTRACT
Automated photo tagging is essential to make massive un-
labeled photos searchable by text search engines. Conven-
tional image annotation approaches, though working rea-
sonably well on small testbeds, are either computationally
expensive or inaccurate when dealing with large-scale photo
tagging. Recently, with the popularity of social network-
ing websites, we observe a massive number of user-tagged
images, referred to as “social images”, that are available on
the web. Unlike traditional web images, social images often
contain tags and other user-generated content, which offer
a new opportunity to resolve some long-standing challenges
in multimedia. In this work, we aim to address the chal-
lenge of large-scale automated photo tagging by exploring
the social images. We present a retrieval based approach for
automated photo tagging. To tag a test image, the proposed
approach first retrieves k social images that share the largest
visual similarity with the test image. The tags of the test
image are then derived based on the tagging of the similar
images. Due to the well-known semantic gap issue, a reg-
ular Euclidean distance-based retrieval method often fails
to find semantically relevant images. To address the chal-
lenge of semantic gap, we propose a novel probabilistic dis-
tance metric learning scheme that (1) automatically derives
constraints from the uncertain side information, and (2) effi-
ciently learns a distance metric from the derived constraints.
We apply the proposed technique to automated photo tag-
ging tasks based on a social image testbed with over 200,000
images crawled from Flickr. Encouraging results show that
the proposed technique is effective and promising for auto-
mated photo tagging.
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1. INTRODUCTION
Due to the popularity of digital cameras, digital photos

can be easily created in our daily life. The massive unlabeled
photos have posed a huge challenge for image retrieval tasks.
One solution is to automatically annotate images with key-
words or social tags. With the auto-annotations, an image
retrieval problem is converted into a text retrieval problem,
which enjoys both efficient computation and high retrieval
accuracy.

In general, the objective of an automated image annota-
tion task is to assign a set of semantic labels or tags to a novel
image, based on some pre-trained models. A conventional
approach usually consists of two steps: (1) extracting vi-
sual features for image representation [19], and (2) building
classification models from a collection of manually-labeled
training data [3]. In literature, numerous studies have been
devoted to automated image annotation and object recogni-
tion tasks [17, 24].

Despite encouraging results in recent years, conventional
image annotation approaches, which usually work well on
small-sized testbeds with high quality labels, often fail to
handle large scale real world photo tagging applications.
One major challenge faced by large-scale photo annotation is
primarily due to the well-known semantic gap between low-
level features and high-level semantic concepts. Besides, it
is also expensive and time-consuming to collect a large set
of manually-labeled training data in the conventional meth-
ods. Hence, it has become an urgent need to develop new
paradigms for automated photo tagging beyond the conven-
tional approaches.



Recently, with the popularity of social networking web-
sites, we have witnessed the generation of massive user-
tagged images on the web, which we refer to as “social im-
ages”. Unlike traditional web images, social images often
contain tags and rich user-generated content, which offer a
new opportunity to resolve some long-standing challenges in
multimedia, for instance the semantic gap. In this paper,
we investigate an emerging retrieval-based paradigm [29] for
automated photo tagging by mining massive social images
freely available on the web. The basic idea of the retrieval-
based paradigm is to first retrieve a set of k most similar
images for a test photo from the social image repository, and
then to assign the test photo with a set of t most relevant
tags associated with the set of k retrieved social images.

The key of the retrieval-based photo tagging paradigm is
to accurately identify and retrieve the set of top k (seman-
tically) similar photos, which generally relies on two key
components: (1) a feature representation scheme to extract
salient visual features, and (2) a distance measure method
to effectively calculate distances for the extracted features.
In this paper, we focus our main efforts on tackling the sec-
ond challenge. In particular, by assuming features are rep-
resented in vector space, our goal is to learn an optimal
distance metric for distance measure, which is often known
as “distance metric learning” (DML) [32].

Many studies have been devoted to DML due to its im-
portance for many applications. Existing DML studies often
assume the learning task is provided with explicit side in-
formation given in the form of either class labels [30, 16] or
pairwise constraints [32, 1] where each pairwise constraint
indicates whether two examples are similar (“must-link”) or
dissimilar (“cannot-link”). The side information can be col-
lected from users in some environments, such as relevance
feedback log in CBIR [13]. Besides the explicit side informa-
tion, regular DML studies usually assume perfect side infor-
mation. Such assumptions make regular DML techniques
difficult to be applied in our web application. This is be-
cause in our case, most images are labeled by a number of
tags (some of them may be noisy). As a result, we often
find a partial overlap between two images in their assigned
tags, which makes it difficult to decide if two images form
a must-link constraint. The side information derived from
the tags and other rich content of social images, referred to
as uncertain side information, leads to a new challenge in
DML as opposed to the conventional set where “hard” side
information is available.

To this end, this paper presents a novel probabilistic dis-
tance metric learning (PDML) framework, which aims to
learn effective metrics from uncertain side information with
application to automated photo tagging. In general, the
proposed framework consists of two steps: (1) a graphical
model learning approach to discover probabilistic side infor-
mation from hidden side information contained implicitly
in rich user-generated content of social image data; and (2)
a probabilistic metric learning method to find an optimal
distance metric from probabilistic side information. To the
best of our knowledge, this is the first probabilistic approach
to learn an optimal metric from uncertain side information.

As a summary, the key contributions of this paper include:
(1) a novel probabilistic DML framework to learn distance
metrics from uncertain side information; (2) an effective
algorithm, i.e., probabilistic Relevant Component Analysis
(pRCA), to learn an optimal metric from probabilistic side

information; (3) a new solution using the PDML technique
to an emerging important application, i.e., automated photo
tagging; (4) extensive experiments to compare our method
with a number of state-of-the-art DML algorithms, in which
very encouraging results were obtained.

The rest of this paper is organized as follows. Section 2
reviews related work and background. Section 3 presents
an overview of our probabilistic DML framework. Section 4
presents a graphical model approach to find probabilistic
side information from a social image repository. Section 5
proposes an efficient algorithm to learn distance metrics
from probabilistic side information. Section 6 discusses an
application of our technique for exploring the social image
repository in automated photo tagging tasks. Section 7 dis-
cusses experimental results, Section 8 discusses limitations
of our work, and finally Section 9 concludes this work.

2. RELATED WORK AND BACKGROUND
Our work is mainly related to two groups of research. One

group is the work on exploring web images and photos for au-
tomated image/photo annotation and object recognition [21,
26, 33, 31]. The other group is the work related to distance
metric learning (DML) research [32, 1, 23, 6]. Due to lim-
ited space, we briefly review some most representative and
relevant studies in both sides.

2.1 Automated Photo Tagging
Our work is related to automated image/photo annota-

tion that has been actively studied over the past decade in
multimedia community. Among a variety of conventional ap-
proaches, a widely-studied paradigm is the supervised clas-
sification approach, in which classification models, such as
SVM [8], are trained from a collection of human-labeled
training data for a set of predefined semantic concept/object
categories [3, 4, 7, 28]. Besides, semi-supervised learning
methods are also explored in recent literature [18, 12].

Recently, there is a surge of emerging interests in exploring
web photo repositories for image annotation/object recog-
nition problems. One promising approach is the retrieval-
based (or termed “search-based”) paradigm [21, 29, 26, 27].
Russell et al. [21] built a large collection of web images with
ground truth labels for helping object recognition research.
Wang et al. [29] proposed a fast search-based approach for
image annotation by some efficient hashing technique. Rege
et al. [20] utilized visual and text modalities simultaneously
in clustering images. Wen-Yen et al.[5] proposed the combi-
national collaborative filtering model for personalized com-
munity recommendation. Torralba et al. [26] proposed ef-
ficient image search and scene matching techniques for ex-
ploring a large-scale web image repository. These work usu-
ally concerned more on fast indexing and search techniques,
while we focus on learning more effective distance metrics.
Yan et al. [33] investigated a learning based method for im-
proving the efficiency of manual image annotation with the
hybrid of tagging and borrowing. Different from their work,
we investigate fully automatic photo annotation, which also
can be extended to help manual image annotation. In addi-
tion, we could also apply our effective distance metric learn-
ing and automatic photo annotation techniques to facilitate
some emerging applications in computer graphics, such as
image completion and inpainting by exploring web photo
repositories [11, 25].



2.2 Distance Metric Learning
From a machine learning point of view, our work is closely

related to DML studies. Firstly, we review some basics of
DML. Given a set of n data examples X = {xi ∈ Rd}n

i=1

in d-dimensional vector space, the Mahalanobis distance be-
tween any two examples xi and xj is defined as:

dM (xi, xj) =
√

((xi − xj)>M(xi − xj)) (1)

where M is a positive semi-definite matrix that satisfies the
property of valid metric and can be decomposed as M =
A>A. The goal of DML is to find an optimal Mahalanobis
metric M from training data (side information) that can be
either class labels or general pairwise constraints [32].

DML can be roughly divided into two major categories.
One is to learn metrics with explicit class labels, such as
Neighbourhood Components Analysis (NCA) [16], which are
often used for classification [9, 10, 30, 34]. The other is to
learn metrics from pairwise constraints for clustering and
retrieval. Examples include Relevance Component Analysis
(RCA) [1] and Discriminative Component Analysis (DCA) [15],
amongst others [32, 14]. Our work is more related to the sec-
ond category, though some methods in the former category
could be converted to the latter.

Unlike most existing DML methods that assume explicit
side information is provided in the form of either class labels
or pairwise constraints, in our DML problem, no explicit side
information is directly given for the learning task. Instead,
our goal is to learn metrics from uncertain side information,
which is hidden in the rich contents of social image training
data in our application.

2.3 Relevant Component Analysis
Here we review a well-known and effective DML tech-

nique, i.e., Relevant Component Analysis (RCA) [1]. The
basic idea of RCA is to identify and down-scale global un-
wanted variability within the data. In particular, RCA sug-
gests to change the feature space used for data represen-
tation by a global linear transformation in which relevant
dimensions are assigned with large weights. More formally,
given a set of data examples X = {xi}n

i=1 and a collection of
pairwise constraints indicating whether two data examples
are similar (or dissimilar). RCA forms a set of m “chun-
klets” Cj = {xji}nj

i=1 where j = 1, . . . , m. Each chunklet
is defined as a group of data examples linked together by
similar pairwise constraints (“must-link”).

The optimal transformation by RCA is then computed
as A = Ĉ−1/2 and the Mahalanobis matrix is equal to the
inverse of the average covariance matrix of chunklets, i.e.,
M = Ĉ−1, where Ĉ is defined as follows:

Ĉ =
1

n

m∑
j=1

mj∑
i=1

(xji − µj)(xji − µj)
T (2)

where µj denotes the mean of j-th chunklet, xji denotes the
i-th example in the j-th chunklet and n is the total num-
ber of examples. RCA enjoys a number of merits, such as
being sound in theory, simple, efficient, and easy to imple-
ment. Similar to other conventional DML techniques, RCA
also requires a set of similar pairwise constraints explicitly
provided for the learning task, which thus cannot be directly
applied in our problem unless side information can be dis-
covered/provided. In this paper, we extend RCA techniques
to resolve the DML task from uncertain side information.

3. METRIC LEARNING FRAMEWORK FOR
AUTOMATED PHOTO TAGGING

We first give an overview of the proposed semantic metric
learning framework for learning metrics from social image
data. Figure 1 shows a flowchart illustrating the proposed
framework with application to automated photo tagging.

In the figure, the right panel shows a retrieval-based photo
tagging solution. Specifically, given a novel photo, the idea
of the retrieval-based tagging approach is to firstly perform
a similarity search for finding top k most similar photos from
the social photo repository, and then annotate the novel
photo with top t ranked tags associated with the k retrieved
photos. Our main effort focuses on learning an effective met-
ric to reduce semantic gap for the similarity search process,
which is shown in the left panel of the flowchart. Below we
discuss the main ideas of our metric learning framework.

Since no explicit side information is available, we cannot
directly apply regular DML techniques. Hence, the first step
towards DML is to discover possible side information from
training data, which is essential to DML. In other words,
we wish to find some forms of side information, which could
indicate how likely two social images are similar or dissim-
ilar. One solution is to discover some “chunklets” (similar
to RCA) from training data such that images in the same
chunklets are similar to each other, and images in different
chunklets could be similar or dissimilar, up to the similarity
of the two associated chunklets. Since such chunklets are not
explicitly available (also cannot be easily formed as RCA),
we refer them to as “latent chuklets”. Intuitively, a latent
chunklet can be viewed as a common semantic topic shared
by the social images in the chunklet. Thus, it is possible
that one image belongs to multiple chunklets.

To find the latent chunklets effectively and precisely, we
propose a graphical model approach to estimate the proba-
bilities of an image belonging to the chunklets. We refer to
this step as “Latent Chunklet Estimation” (LCE). By LCE,
we can obtain side information in the form of latent chun-
klets with probabilistic assignments, which we refer to as
“probabilistic side information” or “uncertain side informa-
tion”. Finally, the last step of our semantic metric learning
is to find an optimal metric from the probabilistic side in-
formation output by the graphical model approach. In this
paper, we propose a new probabilistic relevant component
analysis (pRCA) to solve this key task effectively.

Next we first present the LCE process followed by the
proposed pRCA method in the subsequent section.

4. LATENT CHUNKLET ESTIMATION
FOR SOCIAL IMAGE MODELING

Typically a social image contains rich information, such
as tags, title, description, comments, visual content, etc. In
this paper, we propose a graphical model approach to dis-
cover side information of latent chunklets from rich contents
of social images. For simplicity, we focus on exploring two
key types of information, i.e., textual and visual. It is not
difficult to engage additional information in our framework.

4.1 Latent Chunklet Definition
First of all, we assume that there are m latent chunklets

available, each of them represents a hidden topic zi, in which
both visual images and associated textual metadata (e.g.
tags) in the chunklets are generated from the hidden topic.



Figure 1: Flowchart illustrating the proposed metric
learning framework for automated photo tagging

Figure 2: Graphical model for social image modeling

Figure 2 shows the graphical model for social image mod-
eling. The upper part of the graph represents the visual
model. The images can be represented by some local fea-
ture descriptor, e.g. bag of visual words representation [19],
and each visual word a is generated from certain topic za by
a multinomial distribution φz

a. In the left side, θ is a Dirich-
let distribution with hyper parameter α. The lower part of
the graph represents the textual model generating textual
tags, in which w represents the tags. β is the parameter of
the uniform Dirichlet prior on the per-topic word distribu-
tion, and α is the parameter of the uniform Dirichlet prior
on the per-document topic distributions. For simplicity, we
also assume that the tags are generated from a multinomial
distribution φz

w parameterized by the topic zw. Thus, a topic
z contains two parts, i.e., z = [za, zw].

Our goal is to estimate the hidden distribution P (za|I),
the probability of an image I belonging to a certain topic
za, and the hidden distribution P (zw|d), the probability of
topic zw existing in tag document d. Such conditional prob-
abilities will be further used to predict the inter chunklet
variation and intra chunklet variation. We discuss the gen-
erating process of the graphical model below.

Firstly, θ is the parameter for the topic distribution, which

follows a Dirichlet distribution with parameter α:

θ|α ∼ Dir(α) (3)

Further, given θ, topic z is drawn from a multinomial distri-
bution, and Φa and Φw follow some Dirichlet distributions:

z|θ ∼ Multi(θ), Φa|βa ∼ Dir(βa), Φw|βw ∼ Dir(βw) (4)

Here we denote β = [βa, βw]. Finally, given topic z, both
tags and visual words follow multinomial distributions:

w|zw, Φw ∼ Multi(φz
w), a|za, Φa ∼ Multi(φz

a) (5)

4.2 Inferences
The main idea of the graphical model is to capture the

conditional joint probability of tag document d and image x.
A tag document is modeled by a bag of words d = {w}, and
the image x is represented by a bag of visual words x = {a}.
The joint probability P (z, x, d|α, β) can be written as:

P (z, x, d|α, β) =
∏
a,w

P (z, a, w|α, β) =
∏
a,w

∫

θ

P (z, a, w, θ|α, β)dθ

where a represents a visual word in the social image, and w
represents one of the tags with the social image. Further, ac-
cording to the assumptions, the conditional joint probability
of topic z, visual word a, tag w with respect to parameters
α, β can be expressed as follows:

P (z, a, w, θ|α, βa, βw) ∝
P (w|zw, Φw)P (a|za, Φa)P (z|θ)P (Φa|βa)P (Φw|βw)

To calculate the chain of conditional probability in the above
equation, Gibbs sampling is adopted. Although variational
methods can also be used, we choose the Gibbs sampling for
its simplicity and applicability to our problem. Specifically,
it repeatedly draws a topic z with respect to the conditional
distribution. Then visual words and tags are generated with
the conditional probability given the topic z.

The objective of inference in the Gibbs sampling is to ob-
tain the conditional distribution of hidden topic given the
observed data. The Bayesian estimation of conditional dis-
tributions of tag, visual words, and topics are calculated as:

P (zw,i = j|w)∝
nw
−i,j + βw

n·−i,j + Wβw
, P (za,i = j|a) ∝

na
−i,j + βa

n·−i,j + Aβa

P (x|za,i = j)∝
nx
−i,j + α

nx
−i,· + mα

, P (d|zw,i = j) ∝
nd
−i,j + α

nd
−i,· + mα

where zw,i represents topic z for tag w in the ith sampling,
za,i denotes topic z for visual word a in the ith sampling,
and nw

−i,j is the frequency of tag w assigned to the jth topic

before the ith sampling (and others have similar meanings).
Besides, W is the size of the tag dictionary, A is the size of
the visual word dictionary, and m is the number of topics.

With the above estimations, we can calculate the marginal
by integrating out the parameter θ and sampling the topic
with the distribution below:

P (zw,i = j|zw,−i, w) ∝ nw
−i,j + βw

n·−i,j + Wβw
× nd

−i,j + α

nd
−i,· + mα

P (za,i = j|za,−i, a) ∝ na
−i,j + βa

n·−i,j + Aβa
× nx

−i,j + α

nx
−i,· + mα



Finally, we can calculate the topic relationship given pa-
rameter α and β as follows:

P (zi, zj |α, β) ∝ 1

N2

N∑

k=1

P (zi, xk, dk|α, β)P (zj , xk, dk|α, β)

Here we assume both zw or za are sampled from a large la-
tent chunklet set Z. zi and zj are any two topics from the
set. As a summary, each topic zi represents a chunklet. we
can compute the conditional probability P (zi|x, d) that rep-
resents the relationship between the example and the chun-
klet, and the joint probability P (zi, zj |α, β) that represents
the relationship between the two chunklets. These probabil-
ities can be adopted and explored for DML.

5. PROBABILISTIC DML METHOD
5.1 Problem Definition

In this section, we present a probabilistic DML (PDML)
method for learning metrics from probabilistic side informa-
tion. Unlike regular RCA learning, the latent chunklets are
represented by some probabilistic distributions rather than
“strictly-hard”pairwise constraints. Therefore, the challenge
of PDML is how to exploit the uncertain side information
for optimizing the metric in the most effective way. Below
we present a probabilistic RCA technique, which extends the
regular RCA in a probabilistic metric learning approach. We
first introduce some definitions and notations below.

Let us denote by xi a d-dimensional visual feature vec-
tor of an image, and zk one of m latent chunklets. Fur-
ther, we denote by µk a center (mean) for a latent chunklet
zk, and µ = (µ1, . . . , µm) a matrix of all centers. More-
over, we denote by matrix P = (p1, . . . , pn) the membership
probabilities of associating examples with chunklets, where

pi = (p
(1)
i , . . . , p

(m)
i ) is the probability distribution for the

i-th example and p
(k)
i represents the probability of observ-

ing example xi given chunklet zk, i.e., p
(k)
i = p(xi|zk). In

our approach, we initialize P by a prior probability matrix
P0 = [p(xi|zk)]n×m, which were obtained from LCE.

5.2 Probabilistic RCA
The objective of our DML task is to learn an optimal

metric M in a d-dimensional feature vector space, i.e., M ∈
Rd×d. To exploit latent chunklets in DML, we formulate
a probabilistic extension of RCA, termed as “Probabilistic
Relevance Component Analysis” (pRCA), as follows:

min
Mº0,µ,P

n∑
i=1

m∑

k=1

p
(k)
i ‖xi − µk‖2M − λ log |M | (6)

s.t. ‖P − P0‖2F ≤ γ, (7)∑

k

p
(k)
i = 1, p

(k)
i ≥ 0, i = 1, . . . , n (8)

where parameter γ ≥ 0 constraints the difference between
the prior probability matrix P0 (known from LCE) and the
proxy probability matrix P (unknown), λ is a regularization
constant, and ‖·‖F denotes the Frobenius norm of a matrix.

The above formulation can be interpreted as a robust op-
timization problem with bounded uncertainty on the proba-
bility matrix P . In particular, for the objective function, the
first term is to minimize the sum of squared distances from
examples to their chunklet centers, and the second term is
to prevent the solution M from being obtained by shrinking

the entire solution space. For the constraints, the one in (7)
is to restrict the matrix of desired probability assignments
P without deviating too far from the prior matrix P0, and
the remaining set of constraints in (8) are used to enforce
the probability requirements. The following corollary shows
that RCA can be viewed as a special case of pRCA.

Corollary 1. For the optimization in (6), when fixing
the means of chunklets µ and the matrix of probability as-
signments P (assuming with hard assignments of 0 and 1),
the pRCA formulation reduces to regular RCA learning.

The proof of Corollary 1 can be found in Appendix A.

5.3 Algorithm
We now discuss techniques to solve the optimization of

pRCA. Generally, the problem in (6) is a nonlinear opti-
mization task containing three sets of variables M , P , and
µ, where µ can be easily computed once P is found. It
is often hard to solve the problem with global optima di-
rectly. To address this challenge, we present an iterative op-
timization algorithm by applying alternating optimization
techniques [2], which is widely used to solve multi-variable
nonlinear optimization tasks.

Our iterative optimization algorithm consists of three steps:
(1) fixing P and µ to optimize M ; (2) fixing M and µ to op-
timize P ; and (3) fixing P and M to find µ. According to
Corollary 1, the first step is equivalent to solving regular
RCA, i.e., M = 1

λ
C̃−1, where C̃ is the average chunklet co-

variance matrix with the given P . The last step is straight-
forward, i.e., µ = P>X, where X is a matrix of all training
data. We now focus on the second step. In particular, by
fixing M and µ, the optimization can be rewritten as follows:

min
P

n∑
i=1

m∑

k=1

p
(k)
i ‖xi − µk‖2M +

γ

2
‖P − P0‖2F (9)

s.t.
∑

k

p
(k)
i = 1, p

(k)
i ≥ 0, i = 1, . . . , n

where the constraint in (7) was moved to the objective. The
above problem is a quadratic program (QP), which can be
solved by some existing convex optimization software. How-
ever, for a real web application, the training data size can be
very large, this poses a challenge of huge computation when
solving a large-scale QP problem by a standard QP solver.
To this end, we develop a fast algorithm, which is able to
solve the above optimization efficiently.

To ease discussions, we notice all pi’s are completely de-
coupled in (9) given µk. Thus, we can rewrite (9) into a set
of n independent optimization tasks, one for each pi, i.e.,

min
p∈Rm

m∑

k=1

pk‖xi − µk‖2M +
γ

2
‖p− p0‖22 (10)

s.t.

m∑

k=1

pk = 1, pk ≥ 0, k = 1, . . . , m

It can be easily shown that solving the above problem is
equivalent to solving the problem in (9). We now discuss a
fast algorithm to solve this problem. We first introduce the
Lagrangian of the optimization as follows:

L = f>p +
γ

2
‖p− p0‖22 + ρ

( ∑

k

pk − 1
)
− η · p (11)



Algorithm 1 Probabilistic RCA Algorithm (pRCA)

1: INPUT:
• training data matrix: X ∈ Rn×d

• chunklet assignment probabilities: P0 ∈ Rn×m

• penalty parameter: γ ≥ 0
2: OUTPUT:

• optimized distance metric: M∗

3: initialize P = P0, and µ = P>X
4: repeat
5: (1) compute M by the following formula:

M =
( ∑m

k=1

∑n
i=1 pk

i (xi − µk)(xi − µk)>
)−1

6: (2) find P by solving QP problem in (9) as follows:
7: for i = 1 to n do
8: f> = (‖xi − µ1‖2M , . . . , ‖xi − µm‖2M )
9: f = sort(f ,’descending ’)

10: find ρ by Proposition 1
11: for k = 1 to m do
12: p

(k)
i = max

(
0, p0k − 1

γ
(ρ + fk)

)

13: end for
14: end for
15: (3) update the chunklet means: µ = P>X
16: until convergence

where f> = (‖xi −µ1‖2M , . . . , ‖xi −µm‖2M ), ρ is a Lagrange
multiplier and η is a vector of non-negative Lagrange mul-
tipliers. By differentiating it with respect to pk, we can get
the following optimality condition:

∂L
∂pk

= fk + γ(pk − p0k) + ρ− ηk = 0

By applying the KKT condition, whenever pk > 0, ηk should
be zero. Therefore, if pk > 0, we have the following result:

pk = p0k − 1

γ
(ρ + fk)

Combining the fact that pk ≥ 0, we have the following:

pk = max
(
0, p0k − 1

γ
(ρ + fk)

)
(12)

The next issue is to find the optimal ρ. The following propo-
sition provides a solution to find the optimal value of ρ by
a simple sorting approach.

Proposition 1. Let f ′ denote the vector by sorting f
in decreasing order, the optimal value of ρ to the solution

in (12) can be computed as: ρ = − 1
τ

( ∑τ
k=1(f

′
k−γp0k)+γ

)
,

where τ can be found through a sorting approach, i.e.,

τ = max
k∈[1,n]

{
k : f ′k − 1

k

( k∑
j=1

(f ′j − γp0k) + γ
)

> 0
}

(13)

By Proposition 1, we can solve the QP problem (10) in
O(n log(n)), which is significantly faster than standard QP
solvers with interior point methods that usually requireO(n3)
complexity. Finally, we summarize the pseudo-code of the
pRCA algorithm in Algorithm 1. The following corollary
guarantees the convergence of the proposed algorithm.

Corollary 2. Algorithm 1 converges to the local opti-
mum for the optimization problem of probabilistic relevance
component analysis in (6).

It is not difficult to verify the above corollary by following
the convergence theory of alternating optimization [2].

One of the advantages of pRCA is its robust to missing
tagged images. In original RCA, the constraints are gener-
ated manually, there should be tags indicate which images
should be in the same chunklet. In pRCA the probabilis-
tic constraints as well as the chunklets are generated auto-
matically by a graphical model based on their appearance
features. Thus the model is more robust and automatic.

6. AUTOMATED PHOTO TAGGING
In this section, we discuss the application of pRCA to

the exploitation of social photo repositories for automated
photo tagging tasks. Given a novel photo, the automated
tagging task is to annotate the photo labels or tags, which
often reflect certain semantic concepts/objects. To overcome
the limitation of conventional approaches, we investigate a
retrieval based approach to automated photo tagging tasks
by exploring a huge number of social photos freely available
on the web. We formally formulate our approach as follows.

Let Iq = {xq, Tq} denote a query image for tagging, where
xq represents the visual contents of the image, and Tq de-
notes a set of unknown tags to be found in the tagging task.
In general, a retrieval based tagging approach consists of two
steps: (1) retrieving a set of visually similar social photos,
which are closest to the query photo; and (2) annotating the
query photo by a set of most relevant tags that are associ-
ated with the retrieved similar photos.

For the first step, there are two typical approaches to find
a set of nearest neighbors with respect to a query image. One
is to retrieve the k-nearest neighbors of the query image, i.e.,

Nk(xq) = {i ∈ [1, . . . , n]|xi ∈ kNN list(xq)} , (14)

where n is the total number of photos in the social photo
repository. The other way is to retrieve a set of nearest
photos within certain distance range, i.e.,

Nε(xq) = {i ∈ [1, . . . , n]| ‖xi − xq‖M ≤ ε} , (15)

where ε is a predefined distance threshold. For both ap-
proaches, it is clear that an effective distance metric M is
essential to retrieve the set of nearest neighbors. In this
paper, we adopt the first approach and employ the metric
learned by pRCA to compute the k-NN list.

For the second step, we suggest a simple tag ranking
scheme by slightly adapting the idea of majority voting.
Specifically, we define a set of candidate tags Tw as:

Tw =
⋃

i∈Nk

Ti (16)

where Ti represents the set of tags associated with image Ii.
For each candidate tag w ∈ Tw, we compute its frequency
appearing in the k nearest web photos, denoted by f(w).
We will then incrementally add the best tag w∗ into the tag
set of the query image Tq = Tq ∪ {w∗}, where

w∗ = arg max
w∈Tw∧w/∈Tq

f(w)

avg d(xq, w) + κ
(17)

where avg d(xq, w) represents the average distance between
the query image and those candidate photos that contain tag
w, and κ is a smoothing parameter which is simply fixed to
1 in our experiments. The above formula indicates that we
prefer to assign the query image with a tag of high frequency
and small average distance.



7. EXPERIMENTS
This section presents our experimental results on auto-

mated photo tagging tasks.

7.1 Experimental Testbed
We collected a large social photo testbed with 205,442

photos crawled from Flickr, in which most photos contain
user-tags and other metadata. We split the whole dataset
into three disjoint partitions: a training set, a test set, and a
database set. We describe the details of the three partitions,
respectively.

The training set is used for semantic metric learning. In
particular, we randomly sampled 16,588 photos associated
with tags from the whole photo testbed. We did not make
any refinements on the associated tags. To provide visual
words for training the graphical models, we construct the
bag-of-visual-words representation by extracting local fea-
tures from the training photos using SIFT descriptor [19].

The test set is used for evaluating the photo tagging per-
formance. In particular, we randomly picked 2,000 photos
from the whole photo testbed as the query images to test the
photo tagging performance. To improve the quality of test
data, we created the annotation ground truth by manually
removing some clear noises to refine the original tags. Since
the retrieval by local feature is too time consuming and im-
practical for large scale dataset, we only adopt the simple
global feature for retrieval and annotation experiments.

Finally, the rest social photos in the testbed are engaged
as the database set, which serves the base of social photo
repository for tagging. Finally, for the photos in both test
and database sets, we extract a set of effective and compact
visual features, including: (1) grid color moments, (2) edge
direction histogram, (3) Gabor textual features, and (4) Lo-
cal binary pattern histograms. In total, a 297-dimensional
feature vector is used to represent each photo. All experi-
ments were run on a PC with 2.8GHz CPU with Matlab.

7.2 Compared Schemes
To examine the effectiveness of our technique, we com-

pare the proposed pRCA algorithm with some baseline and
a number of state-of-the-art DML methods, including (1)
a baseline that simply adopts Euclidean distance, regular
RCA [1], Discriminative Component Analysis (DCA) [15],
Information-Theoretic Metric Learning (ITML) [6], Large
Margin Nearest Neighbor (LMNN) [30], Neighbourhood Com-
ponents Analysis (NCA) [16], and Regularized Distance Met-
ric Learning (RDML) [23]. Note that we excluded other
DML methods in our comparison mainly due to their com-
putational infeasibility for such large-scale applications. For
example, the well-known DML method in [32] is only appli-
cable to a very small dataset.

Since no explicit side information is available for tradi-
tional DML, in training stage, we performed clustering on
training photos using both visual features and tag co-occurrence
information. Photos that have similar visual contents and
share common tags will be grouped together. Finally, we
generate side information from the resulting clusters (after
removing trivial clusters) as the inputs for DML.

7.3 Experimental Setup and Protocols
Regarding parameter settings, for the pRCA learning, we

assume there are m (m = 500) latent chunklets for the N
(N = 16, 588) training examples, and generate an m × N

matrix of probabilistic latent chunklets distribution by the
graphical model as the probabilistic side information, which
is used as the prior probability matrix P0 for metric learn-
ing. For the extraction of visual words in LCE, we set the
number of visual words A = 1, 000, and the number of tags
W = 2, 000. The parameter γ of pRCA was simply fixed to
0.5 for all experiments. For other DML methods, we adopt
the same settings, i.e., 500 chunklets for producing the side
information. For their parameters, we chosen them accord-
ing to the suggestions/empirical results in the original work.

To evaluate the automated photo tagging performance by
different methods, we employ the proposed retrieval-based
annotation solution presented in Section 5. Firstly, for each
query photo in the test set, top k (k = 30) nearest photos
from the database are first retrieved as the set of candidate
images. Then, we annotate the query photo by assigning
top t (t = 1, · · · , 10) tags ranked by the function in (17).
Finally, we adopt standard average precision and average
recall at top t tags as performance metrics to evaluate the
automated photo tagging performance.

7.4 Experiment I: Numerical Evaluation
Figure 3 and Figure 4 show average precision and aver-

age recall at top t annotated tags, respectively. For these
results, we fixed the number of nearest neighbors k to 30 for
all compared methods. In both figures, the horizontal axis
denotes the number of top tags t that ranges from 1 to 10.

Figure 3: Average precision at top t annotated tags

Figure 4: Average recall at top t annotated tags
From the figures, we can draw several observations. First

of all, we found that most DML techniques outperformed
the baseline by simple Euclidean distance. This shows that
DML techniques are beneficial and critical to the retrieval-
based photo tagging tasks. Second, we found that for some
cases, some DML methods did not perform well, which could
be even worse than the Euclidean method. For example,
for the case of top-1 annotated tag, we found that DCA
performed slightly worse than Euclidean. We believe this is
mainly due to the noisy side information issue. This again
shows that it is important to develop some effective and



robust method in our problem. Further, we observe that
the proposed pRCA algorithm considerably outperformed
other approaches in most cases. For instance, for the case of
top-1 tag, pRCA achieved average precision of about 31%,
which improves the baseline approach over 40% and over
RCA about 20%. Finally, Figure 5 shows precision-recall
curves. Similar observations were found. These results again
validate the efficacy and significancy of our technique.
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Figure 5: Comparisons of the precision-recall curves

7.5 Experiment II: Evaluation of Varied k

We also notice that the parameter of the number of near-
est neighbors k can influence the annotation performance.
To evaluate its impact, we examine the annotation perfor-
mance by varying the value of k. Figure 6 shows the average
precision results of the proposed pRCA annotation approach
by varying the value of k from 10 to 50.

Figure 6: Average precision at top t tags using top
k retrieved images by pRCA for annotation.

From the results, we found that when k equals to 30, the
resulting performance is generally better than others. In
fact, if k is too large, e.g. 50, lots of noisy tags may be
included as there may not exist many relevant images in the
database. However, if k is too small, some relevant tags may
not appear, which again may degrade the performance.

7.6 Experiment III: Time Cost Evaluation
The third experiment is to evaluate the time efficiency per-

formance of the proposed DML algorithm. To this purpose,
we compare time performance of our algorithm with other
DML algorithms. Table 1 summarizes the time performance
evaluation results.

The results showed that the most efficient method is the
regular RCA approach, and the worst one is NCA, which is
significantly slower than others. Finally, by comparing with

Table 1: Time cost of different DML methods.

(s) baseline RCA DCA ITML
Time N/A 731.63 865.58 1185.27

(s) LMNN NCA RDML pRCA
Time 1673.23 28989.78 824.81 891.15

other competing algorithms, we found that pRCA is quite
competitive, which is worse than RCA,DCA, and RDML,
but is considerably better than ITML, LMNN, and NCA.

7.7 Experiment IV: Qualitative Comparison
The last experiment is to examine qualitative performance

of the photo tagging solution. We randomly picked 6 query
photos from the test set and showed the qualitative anno-
tation results in Figure 7. From these results, we observe
that our solution generally achieves better qualitative re-
sults than others.

8. DISCUSSIONS AND LIMITATIONS
Despite encouraging results obtained, our scheme has not

yet solved all challenges thoroughly. In particular, we should
address several limitations of our work.

Firstly, our method aims to learn a global distance met-
ric for retrieval and annotation. Although global metric is
more efficient and scalable for large applications, for some
situations, learning a local metric [34] may be more effective.
Future work will investigate more effective DML techniques.

Secondly, for efficiency consideration, we only extract global
features to represent images in the test and database sets.
Global features are usually more effective for some scene
annotation tasks, while local features may be more effective
for some object annotation tasks [19]. Future work should
study the combination of both global and local features.

Thirdly, for the proposed pRCA scheme, the current effi-
cient solution only finds local optima. Although promising
results have been achieved by the current solution, we will
examine the feasibility of finding global optima.

Finally, the current retrieval-based tagging scheme is gen-
erally k-nearest neighbor (k-NN) learning. While k-NN is
good for efficiency, it does have some limitations, e.g., linear
and no explicit classification model. Future work can study
other machine learning techniques, such as kernel methods,
to improve photo tagging performance.

9. CONCLUSIONS
This paper addressed a new challenging research problem,

i.e., probabilistic distance metric learning (PDML) from un-
certain side information that implicitly exists in some real
applications. Unlike conventional DML techniques that work
with explicit side information, PDML is more challenging
given that the side information is explicitly provided. In
this paper, we propose a two-step PDML framework, by
firstly discovering probabilistic side information from the
data using a graphical model approach, and then present
an effective probabilistic RCA algorithm to find an optimal
metric from the probabilistic side information. We applied
the proposed technique for automated photo tagging appli-
cations on a social photo testbest of over 200,000 photos
from Flickr, and extensively compared our technique with
a number of state-of-the-art DML techniques. Encouraging
results showed that our technique is effective and promising.
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Appendix A: Proof of Corollary 1
Proof. By fixing µ and P , the optimization reduces to:

min
Mº0

n∑

i=1

m∑

k=1

p
(k)
i ‖xi − µk‖2M − λ log |M | (18)

By differentiating the Lagrangian with respect to M , we have the
following equality:

n∑

i=1

k∑

j=1

p
(k)
i (xi − µk)(xi − µk)

> − λM
−1

= 0 (19)

Hence, we have the optimal solution as: M = 1
λ Ĉ−1, where the

matrix Ĉ is given as follows:

Ĉ =
n∑

i=1

k∑

j=1

p
(k)
i (xi − µk)(xi − µk)

>
(20)

When p
(k)
i takes only 0 or 1, it can be seen clearly that the solution of

M is almost identical to the solution learned by RCA (up to a global
scale factor). Hence, pRCA reduces to regular RCA learning in this
special case.
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                                                        Figure App2.    Top10 Annotation Results

Figure 7: Examples showing the tagging results by eight different methods. For each row, the first image
is a test image and each following block shows top 10 tags annotated by one method. The correct tags are
highlighted by yellow color.


