Client-side Service Composition Using Generic Service

Representative

Mehran Najafi and Kamran Sartipi
Department of Computing and Software
McMaster University
Hamilton, ON, L8S 4K1, Canada
{najafm, sartipi} @memaster.ca

Abstract

Traditionally, composition of web services are
performed at the server-side. This requires
transferring client data among collaborating
web services which may cause data privacy and
security breaches, or network traffic overload-
ing. In this context, we introduce the concept
of "task service” which is a web service that can
process the client data locally at the client-side
using a generic software agent that we call ”ser-
vice representative”. The proposed task service
and service representative allow us to present a
new concept “client-side service composition”
where collaborating web services employ the
service representative to provide a composite
task service at the client side. Therefore the
client is not required to reveal its resources and
hence its privacy and security are maintained.
Moreover, large client data are processed lo-
cally that causes less network traffic. We have
developed a prototype system for the proposed
extended SOA model. We will discuss the ad-
vantages of the proposed approach over tradi-
tional server-side approaches using a case study
in the healthcare domain.

1 Introduction

In Service Oriented Architecture (SOA) the
business functionality of an enterprise is mod-
eled by web services. To achieve more sophis-
ticated functionality, web services should be

Copyright © 2010 Mehran Najafi and Kamran Sar-
tipi. Permission to copy is hereby granted provided the
original copyright notice is reproduced in copies made.

reusable and composable. Different approaches
have been proposed to address web service
composition either statically at design time or
dynamically at run time. Business Process Ex-
ecution Language (BPEL) is an industry-wide
standard that models a business process based
on collaborating web services. Moreover, the
BPEL process is provided as a composite web
service that can be called by a service client.

A traditional simple or composite web ser-
vice processes client’s request completely at the
server-side that requires the client to send its
data as the service parameters to the service
provider. On the other hand, there are sev-
eral cases in the business domain that the client
data should be processed locally at the client-
side such as:

e Client data is confidential and revealing it
to a service provider violates the client’s
privacy and security.

e Client data is large or changes over time,
thus transferring it to a service provider
increases the required bandwidth.

e Real-time and time-critical services, where
transferring client data to a service
provider increases the response time.

Since, traditional web services lack the abil-
ity of client-side processing, they fail to pro-
vide an efficient and secure way to model these
services. As a solution, a service provider
can customize a software agent and send it as
its service response to process client data lo-
cally. However, this solution increases the net-

Service

| Registry |

Task

Service Provider

Task / Data Service Request
<
Al

Data

Service Client

N

Figure 1: The proposed extended SOA reference model, where ”Service Representative” processes
client data based on an assigned ”Task” from the service provider.

work traffic and introduces security and pri-
vacy problems. As an alternative, we propose
a generic software agent that is located at the
client side and can be customized and trained
with the service messages to perform a task
(i.e., processing client’s data). We define this
generic agent as Service Representative, and
the type of services that require client-side pro-
cessing as Task Services. Figure 1 shows the
extended SOA reference model to support task
services. Furthermore, we extend the notion of
task services and service representatives to per-
form composite tasks at the client side. Conse-
quently, client data are processed at the client
side and web services are composed via the ser-
vice representative. As the result, the proposed
model improves the current state of SOA in
terms of maintaining the client privacy and se-
curity, reducing the network traffic as well as
improving the web service interoperability.
The organization of this paper is as fol-
lows. Task services are introduced in Section
2. Client-side service composition is described
in Section 3. The proposed architecture and its
details are discussed in Section 4. The devel-
oped prototype system is described in Section
5. A case study of composite task services is
presented in Section 6. Section 7 presents the
related work to our approach. Finally, conclu-
sions and future work are discussed in Section

8.

2 Task Service

Data service represents a typical web service

that receives client data, processes it entirely at
the server-side, and returns the results as the
service response to the client. The service re-
sponse will be consumed directly by the client.

Task service represents a new type of web
services that process client data partially or
completely at the client-side. According to the
client’s request, a task service first performs the
required server-side processing and then it de-
fines a task for the generic service representa-
tive to perform the client-side processing. The
task will be executed at the client-side and the
client will use the task result as the service
response. A task service returns a task mes-
sage to the client-side with the following com-
ponents:

Task =< Model, Knowledge, Data >

e Task Model specifies a task using an ab-
stract Business Process Model (BPM).

e Task Knowledge provides the required
Business Rules (BR) and Business Actions
(BA) to realize the specified BPM.

e Task Data represent Business Objects
(BO) that are consumed by the busi-
ness rules and actions during the busi-
ness process. Task data consists of two
parts: server-side (provided by the service
provider) and client-side (provided locally
by the service client).

Service representative is a generic and client-
side software agent that can be employed by a

Task Model

‘ G Start }—vE:we BuvAdvicHCwe Sell Advice }—.{ @ End

Task Knowledge

For each b & provider. buyltem
If (not exist p & client. portfolio A
p.shareName = b.shareName)
requiredCash = p.percentage * client. holdingValue;
Action I shareNo = min (requiredCash, client.cash) / b.sharePrice;
Print *“ Buy” + shareNo + “of” + p.shareName;

Condition I

Give Buy
Advice
Condition II

For each b & provider. buyltem
If (exist p € client. portfolio A
p.shareName = b.shareName A
p. percentage < b.minPercentage)

Action II

requiredCash = (b.minPercentage — p.percentage) * client. holdingValue;
shareNo = min (requiredCash, client.cash) / b.sharePrice;
Print * Buy” + shareNo + “of” + p.shareName;

Give Sell Condition

For each s e provider. sellltem
If (exist p e client. portfolio A
p.shareName = s.shareName A
Advice p. percentage > s.maxPercentage)

Action

shareNo = (p.percentage - s.minPercentage) * client. holdingValue / s.sharePrice;
Print “Sell” + shareNo + “of”’ + p.shareName;

Task Data

Client-side: portfolio [shareName, shareNumber, percentage], holdingValue, cash
Provider-side: buyltem [shareName, minPercentage, sharePrice], sellitem [shareName, maxPercentage, sharePrice]

Figure 2: A task service to personalize general financial advice based on the client personal infor-
mation at the client site. Conditions are expressed using First Order Logic (FOL) and actions are
defined using Java statements. In each step of the task model, the corresponding rules and actions

are applied.

service provider to perform different task ser-
vices. For this purpose, the service representa-
tive uses the received task components to cus-
tomize and train itself in order to perform the
client-side processing of the web service on the
client data (i.e., client-side task data). Task
components are messages that can be trans-
mitted efficiently over the network. Conse-
quently, the proposed “generic service repre-
sentative and its assigned task” relieve a ser-
vice provider from sending the entire “special-
ized agent” each time. Moreover, the client de-
termines both the local data that the service
representative can access and the computer re-
sources (e.g., CPU time, storage, and memory)
that the service representative requires. There-
fore processing client data using service rep-
resentative improves the security, privacy, and
efficiency features of traditional web services
(data services) and mobile agent approaches.

Figure 2 illustrates different components of
a task service that provides personalized finan-
cial advice without asking the client to send

its personal information. This service receives
client’s general preferences such as: category
of investment (stock, option, or mutual fund);
term duration (short term or long term); and
risk level (low, medium, or high). However, the
client keeps the sensitive information local and
private, such as financial information (portfo-
lio, saving, debt, and salary). This task service
has both server-side and client-side processing
as follows.

e Server-side processing: the service
provider generates a set of general fi-
nancial advice (e.g., stock buy and sell
advice) according to the client’s prefer-
ences. Moreover, it specifies a task for
the service representative to personalize
the generated general advice based on the
local client’s financial information.

o (lient-side processing: service represen-
tative receives the task, which allows it
to customize and train itself in order to
perform the task. According to the task

Task Service #3

©

| Task Service #1 | | Task Service #2 |

Figure 3: An example of a composite task ser-
vice.

model, service representative applies Give
Buy Advice and Give Sell Advice business
rules on both client-side and server-side
task data and returns the generated per-
sonalized advice as the service response to
the client.

3 Composite Task Service

In the context of our approach, “client-side
composite task service” (or simply composite
task service) is defined as a combination of task
services over a designated flow structure that is
performed by the service representative at the
client side. The service representative plays the
role of a service orchestrator that coordinates
the execution of the involved web services (both
data and task services). The incorporating web
services are not aware that they are taking part
in a higher-level business process. An example
of a composite task service is shown in Figure
3.

For each composite task service, the corre-
sponding ”composite task model” and ”task
data schema” are published on the service reg-
istry. The client obtains the service description
from the service registry. The client forwards
the composite task model to the service rep-
resentative, and uses the task data schema to
provide the required client-side task data to the

- Task Service Call

— Set Locall Data Provider Parameters
\§> Invoke Locall Data Provider
= Set Task Service Parameters
& Invoke Task Service

\S> Invoke Local Task Executer

@®

Figure 4: The required step for invoking a task
service in a BPEL model.

service representative. The service represen-
tative calls each involved task service accord-
ing to the model and uses the received task
message to customize and train itself to exe-
cute that task. FEach executed task modifies
the client data that are made available to the
service representative, which collectively repre-
sent the service provided to the client by the
composite task service.

3.1 Composite Task Model

A campsite task model specifies the exact or-
der in which participating task services should
be invoked, either sequentially or in parallel.
Moreover, conditional behaviors can be ex-
pressed.

‘We use BPEL to model a composite task ser-
vice that allows us to define complex business
processes in an algorithmic manner including
loops, variables, and fault handlers. We con-
sider two local services for the service represen-
tative: local data provider to read client data
and local task erecutor to execute a received
task. The required steps to call and execute a
task service are shown in Figure 4.

3.2 Client-side vs Server-side
Service Composition

The proposed client-side service composition
approach does not intend to replace the tra-
ditional server-side service composition. How-
ever, when collaborating web services require
processing confidential, large, or dynamic client
resources, composing them at the client side
can improve the following SOA features.

e Privacy: the confidential and sensitive
client data are kept local and processed at
the client side.

e Security: the service representative func-
tionality is under client control and it can
not perform malicious behavior.

e [nteroperability: task services can be com-
posed efficiently using well-known forms of
task model, knowledge, and data.

e Ffficiency: large client data are processed
locally that reduces the required band-
width.

e Response Time: realtime and variable
data are processed offline that reduces the
response time.

4 Architecture

In order to develop task services that are ex-
ecuted and composed by the service represen-
tative an architecture is required. In this sec-
tion, we extend the typical architecture of SOA
implementations to enable service providers to
employ the generic service representative at the
client side. The proposed architecture (Figure
5) includes three main components as follows.

4.1 Service Client

Each service client (or “client” for short)
consists of a client application and a commu-
nication channel as follows.

Client Application. It is a traditional
client application that sends a data or task
service request to a service provider. Moreover,
the client application puts the required client
data for a task service into a communication

channel based on the schema received from the
service registry. The client application receives
the service response directly from the service
provider (data services) or indirectly from the
service representative (task services).

Communication Channel. It consists of
a number of ports that are connection links to
the client data, as well as the means for the
client application to receive the task service re-
sult through the service representative. The
client grants permission to the service repre-
sentative to read/write a number of its data
through these ports where ports can be in-
put, output, or bi-directional (from the client
point’s of view). Moreover, each port is as-
signed a scope as public or private. The con-
tent of a public port can be sent to a service
provider as service parameter while the content
of a private port can only be used locally by the
service representative. In addition to typical
descriptions for data services, the service reg-
istry must include the required communication
channel schema for each task service.

4.2 Service Provider

An enterprise system provides a number
of services for its client where each service
executes one or more business processes of
the enterprise. Each business process applies
business rules and performs business actions on
internal (server-side) and external (client-side)
business objects in a defined order. Therefore,
an enterprise can be modeled by a collection
of business components which are business
processes, rules, actions, and objects. On the
other hand, a business process can have server-
side and /or client-side processing. Accordingly
the proposed service provider has two layers:
processing layer performs the server-side
processing of a web service while the task layer
defines a task for the service representative
to perform the client-side processing of the
web service at the client side. Therefore, the
enterprise business components are divided
between these two layers. While, the process-
ing layer applies the business components, the
task layer sends them to the client-side to be
applied by the service representative.

Service Provider 1

Service Provider n

| Task Specifier |

g A A A
3 Serialized Serialized Serialized
= BPM BR & BA BO
] '
(= rvice Representativ

U Task Task Task Service Request St SRIESSNtative

Model Knowledge Data

Knowledge Base
- —
Task Service Response Service 1 1 Task
. nternal
i | Business Process Engine | (Model, Knowledge, Data) Task Manager
i 'y y i v Components “
= BR
= BPM BO
A BA " ‘Q Business Process
E . L o‘b‘ﬁ; Engine
%
& | Workflow ‘ | Logic ‘ ‘ Entities | Bl % B TakDam Tesk RLsulti
i

Communication Channel

Client Application

Service Client

Task Service Request

ff—

Task Service Response

Figure 5: Proposed extended SOA architecture to perform a client-side service composition. Each
service partner generates a three-segment task message to customize the generic service representa-
tive to perform a sub task of the composite task.

the task model, knowledge, and data compo-
nents, respectively. Since, business components
in this layer are sent to the client side, they
must be serializable. Task specifier provides

Service Interface. It supports the
communication contracts (message-based
communication, formats, protocols, security,
exceptions, and so on) for the services.

Processing Layer. Server-side business
processes, rules and actions, and objects are
stored into the business workflow, logic, and
entities components, respectively. The busi-
ness process engine executes the corresponding
business process with each service. If the ser-
vice only requires server-side processing, this
layer responds to the client by a single-segment
response message (i.e., called data message).
Moreover, the business process engine can
modify the business components in the task
layer, if the requested task depends on the
server-side processing.

Task Layer. Client-side business processes,
rules and actions, and objects are stored into

the required model, knowledge, and data for
each task request to be sent by a three-segment
response message (i.e., called task message) to
the client.

4.3 Service Representative

The proposed service representative is modeled
by a software agent whose components are in-
troduced below.

e Input: inputs client data through the com-
munication channel.

e QOutput: outputs task response to the client
through the communication channel.

o Knowledge Base: stores internal and
domain-based business rules and actions

to relieve the service provider from sending
them each time.

Business Process Engine: executes a task
instance by applying business rules and
performing business actions. Moreover,
it executes BPEL processes representing
composite task models.

Task Manager: supports the entire life cy-
cle of a task instance (i.e., from creation
to termination) that is divided into three
phases as follows.

1. Customization phase: sets up the
agent configuration (including inputs
and outputs) based on the service de-
scription published on the service reg-
istry and creates an abstract process
based on the model segment of a re-
ceived task message.

2. Training phase: generates a task in-
stance from the abstract process us-
ing internal and external task knowl-
edge.

3. Ezecution phase: passes the task in-
stance with the relevant task data
(i.e., received from the input compo-
nent and task data segment) to the
business process engine to be exe-
cuted. Finally, service representative
passes the task results to its outputs
to be passed to the communication
channel.

e Service Orchestrator: supports the client-
side service composition as follows.

1. Creates a communication port (i.e.,
a service stub) for each collaborating
service as well as the local services
based on the composite task model.

2. Sends the BPEL model to the busi-
ness process engine to be executed.

3. Business process engine invokes ser-
vice partners through the service
stub; the received task messages will
be given to the task manager to per-
form the client-side processing.

5 Prototype System

To evaluate the effectiveness and feasibility of
our model, we developed a prototype system of
the proposed architecture including the service
representative, two-layer service provider, and
service client. This prototype, namely Enter-
prise Representative version 1.1 (EntRep v1.1),
is implemented based on J2EE 1.5 technologies
and Apache tomcat 6.0 application server. As
Business Process Engine, service representative
includes Apache ODE 1.2 to run BPEL process
and Drools 5 to apply business rules and exe-
cute business actions. Moreover, communica-
tion channel is implemented by an array where
each of its ports has a pointer to client data
stored in a MySQL database.

EntRep v1.1 supports production rules as
the form of task knowledge where each busi-
ness rule is defined as follows:

when

< conditions >
then

< actions >

Conditions can be expressed by First Order
Logic or SQL, and actions are defined using
a Java function or inline Java code. Drools
APIs are used by the service provider to de-
sign business process models (task model) and
define business rules and actions (task knowl-
edge). Moreover, Drools rule engine matches
task data against production rules in a defined
order to infer conclusions, which result in ac-
tions based on forward chaining strategy. En-
tRep v1.1 encodes these rules by PMML (Pre-
dictive Model Markup Language) v3.0 [7] to
be sent to the client side. EntRep v1.1 is pro-
vided as two Java packages: TaskService and
ServiceRep that can be imported into any ser-
vice provider and client applications as follows.

e TaskService package: provides graphical
APIs and widgets for a service developer to
develop a task service where the developer
just needs to define the task components
using APIs in this package.

e ServiceRep package: provides APIs for a
client application developer to call a task
service. The developer just needs to cre-
ate one instance of the service representa-
tive and communication channel and then

Communication Channel

Port1 Port2 Port3
p——
Name: Patient Name: Visit Name: Recommendations Load Channel
Type: Read Type: Read Type: Write
Scope: jLabel17 Scope: Public Scope: Public
Content (" Content Content

Composite Task Service

! Model Knowledge Data

<process>
<nodes>

<start id='1" name='Start' />
<end id="2" name="End’ />

</nodes>
<connections>
<connection from="3
<connection from='1
</connections>
</process>

Name: Recommend Therapy WS
Status: Completed

pT— | ar—
Load BPEL Execute Task

<ruleSet id='3" name='"RecommendTherapy' rulef|

Component Task Services

Model Knowledge Data !

V2 Visit(medication=="Amoxicillin' || medicat
then

v.setDose(500mg every 24h hours for 14 day,
end

rule Recommend Dose Four ruleflow-group dos

p: Patient(age > 15, age< 60, creatinineLevel

v: Visit(medication=="Amoxicillin' || medicat
then

v.setDose(250mg every 24h hours for 14 dayl_

Model Knowledge | Data |

Recommed Dose WS

CAmoxicillin', 'Floex') (Completed
CAmoxicillin', 'Methotrxate')

CAmexicillin', "Trexal’)

CAmoxicillin', ‘Alimta)

Name: Drug Interaction WS
Status: Running

Figure 6: A snapshot of the prototype service representative manager that is running a composite

task services

passes the client data into the channel ac-
cording to the schema that is obtained
from the service registry.

We also developed Service Representative
Manager v1.1, using ServiceRep APIs, to con-
trol different phases of a composite task execu-
tion. The client can view the content of each
port within the communication channel during
the task execution. Figure 6 illustrates a snap-
shot of the Service Representative Manager ex-
ecuting a sample composite task service. Since
the service representative is defined as a generic
agent, it can be used in different task services
without requiring any change to its design and
implementation.

6 Case Study

There are two types of Clinical Decision Sup-
port Services (CDSS): guideline-based and
model-based [8]. A guideline-based approach
takes patient information and matches it with
the patterns obtained from medical experi-
ments and observations. A model-based ap-

proach initially builds a decision model accord-
ing to the seen data and then applies this model
on the unseen data. Since, each approach has
advantages and limitations, a combined ap-
proach could lead to a more accurate diagnosis.

CDSSs cannot be developed efficiently and
securely using traditional web services due to
the following reasons. Guideline-based ap-
proaches require transferring patient’s health
information while they are highly sensitive and
disclosure of this information would identify
patients. On the other hand, model-based ap-
proaches do not consider local data to build
their decision models. Consequently, the ob-
tained model may not be matched with the
client data. However, the local data is large
to be transferred efficiently to the services.

Using the proposed methodology and imple-
mented tool (EntRep version 1.1), we mod-
eled and developed a secure and context-aware
CDSS by a composite task service. While
the client passes patient health information
(as client data) to the communication chan-
nel, the service representative generates both
model-based and guideline-based recommenda-

 LocalDB_valid
g

Task Service #1 Task Service #2 L
Recommend Therapy WS Local DB Evaluator WS

§ LocalDB_Has Sufficient Records

Sufficient Local | Insufficient Local =]
Data Data —_ P —
Condition LI | Ese |

£ TaskService3 % TaskServiced

Task Service #3
Decision Model
Builder WS

Task Service #4
Incremental Decision =) Assign_diagnosisReq_To_requestMsg = Assign_diagnoseReq_To_requestMsg
Model Builder WS

[1U9ID PiEAUL

(5) Invoke_LocalDataProvider(requestMsg) \5’ Invoke_LocalDataProvider(requestMsg)

= Assign_diagnosis_To_requestMsg = Assign_diagnosis_To_requestMsg

[_‘_\ 5’ Invoke_DecisionModelBuilderWS(requestMsg) (? Invoke_IncrementalDecisionModelBuilderWS(requestMsg)

Task Service #5 Data Service #1 3 Invoke_LocalTaskExecuter(responseMsg) \57 Invoke_LocalTaskExecuter(responseMsg)
Recommend Dose WS Drug Interaction WS

Figure 7: Composite task model (left) and the corresponding BPEL model (right) of the secure and
context-aware CDSS.

tions without the mentioned problems. The 5. Recommendations (private, write only):
composite task is shown in Figure 7 and dis- receives 1) recommended medication:
cussed in the following subsections. guideline-based ~ (gMedicataion) and

model-based (mMedication), ii) proper
6.1 Service Client dosage: guideline-based (gpose) and

model-based (mDose), and iii) drug to
The client puts its data and resources into the drug interaction warnings from the service
communication channel (Figure 8) with the fol- representative.

lowing ports.

1. Patient health record (private, read only): 6.2 Collaborating Services
contains the health information of the tar-

set patient The composite task model includes five task

services and one data service, as follows:

2. Visit information (public, read only): con-
tains the information that a physician
gathers by visiting the target patient. The
medication and dose fields are filled by the
physician after consulting with the service

1. Recommend Therapy (task service): re-
ceives diagnosis report and returns the cor-
responding medications guidelines.

2. Database Checker (task service): receives

representative. a database schema and returns a task to
3. Patient database (private, read only): con- verify whether the client database matches
tains the patients health records within with this schema. Moreover, this task re-
the organization. ports some statistical information about

the local database.
4. Visit database (private, read only): con-
tains visit information of different patients 3. Decision Model Builder (task service): re-
collected by the healthcare organization or ceives a diagnosis report and returns a
the physicians. task to build and apply a decision model

- allergies
- active medications

Patient Visit Patient DB Visit DB Recommendation

e - patient name Each row contains one | Each row contains one - mMedication
_age - date patient record visit record - gMedication
- weight - diagnosis - mDose
ol - medication - gDose

- dose - warning

Figure 8: Communication channel schema for the secure and context-aware CDSS

Task Model

G Start }—o‘ke(ummend Thempa—b{ [® End |

Task Knowledge

ConditionI | client. patient. age < 17

Action I client. recommendation. medication = ‘cefuroxime’
Recommend Condition Il | client. patient. age > 17
Therapy Action IT client. recommendation. medication = ‘amoxicillin’

Condition ITI | ‘penicillin’ € client. patient. activeMedication

Action III client. recommendation. medication = ‘levofloxacin’

Task Data

Client-side: patient, visit

Figure 9: Recommend Therapy task service where diagnosis equals to ”acute sinusitis”.

based on the client-side patient and visit
databases.

4. Incremental Decision Model Builder (task
service): receives a diagnosis report
and returns a task to rebuild,complete,
and apply an incremental decision model
based on the client-side patient and visit
databases (incremental models can be ad-
justed and modified based on the new
training data).

5. Recommend Dose (task service): receives a
medication and returns the corresponding
dose guidelines.

6. Drug Interaction (data service): receives
a target medication and the list of active
medications and returns warnings if there
is one or more drug to drug interaction.

6.3 Service Representative

The service representative performs the com-
posite task as follows. The physician diag-
noses a disease(i.e., "acute sinusitis” in this

example) in a patient. The service represen-
tative executes the task received from recom-
mend therapy to calculate gMedication (Fig-
ure 9). Then, it verifies local databases us-
ing database checker task service (Figure 10).
If patient database and visit database have
enough records, service representative executes
the task received from decision model builder
to build a decision model completely from local
data (Figure 13). Otherwise, the service repre-
sentative receives an incomplete model from in-
cremental deciston model builder and completes
it based on local databases (Figure 14). Ser-
vice representative applies the decision model
on patient health record to obtain mMedica-
tion. The internal knowledge base of the ser-
vice representative contains the required func-
tions to build and apply decision trees (both in-
cremental and non-incremental). Next, service
representative executes the task received from
recommend dose for gMedication and mMedi-
cation to calculate gDose and mDose (Figure
12). Finally, drug interaction data service is
called for (gMedicine, activeMedication) as well
as (mMedicine, activeMedication) to generate

Task Model

0 Start —bEnsmnce Cuumingj—{ichemu [v.llunt\un)—b@lssing Value Detectloa—i B End

Task Knowledge

Action .
Instance patientdb
Counting .
Action | . b

SET client.localdbInfo patientInstances = SELECT COUNT (*) FROM

SET client localdbInfo.visitinstances = SELECT COUNT (*) FROM

Evaluation

Missing Value | Condition

NOT EXISTS (SELECT * FROM

Schema Condition | INFORMATION_SCHEMA .COLUMNS WHERE TABLE_NAME =
‘visitdb” AND COLUMN_NAME = ‘diagnosis’)

Action | client.localdbinfo status = Invalid

EXISTS (SELECT * FROM visitdb WHERE diagnosis IS NULL OR
medication IS NULL)

Detection

Action | client.localdbInfo status = Invalid

Task Data

Client-side: patientdb, visitdb, localdbInfo

Figure 10: Database Checker task service where schema equals to communication channel schema.

the necessary drug interaction warnings. Tasks
results are stored in the recommendation port
of the communication channel that is shown in
Figure 11.

800

Port Viewer

Recommendation

Field Value

gMedication Amaoxicillin

mMedication Levofloxacin

gDose 500mg tid for 10 days
mDose 500mg every 24h hours fo...
warning Coumadin and Levofloxacin...

Refresh Close

A

Figure 11: The content of the recommendation
port after the service representative completes
the composite task.

6.4 Evaluation

Since patient and visit information are
kept local, the client privacy is maintained.
Moreover, the proposed client-side service com-
position has a better performance compared
to traditional server-side service composition
approaches according to the following metrics.

Service Message Size (SMS) is the total
size of service request and response messages
defined as follows.

SMS(S) = SizeRequest(s) + SizeResponse(s)

Traditional (server-side) service composition
approaches require transferring complete client
data from client to the server. Although they
return small response messages containing fi-
nal decision, the request message has almost
the same length as client data (i.e., patient and
visit databases and records in this case study).
Moreover, the collaborating web services are ei-
ther integrated into a central provider or dis-
tributed over the network. The latter requires
additional sending the client data from the cen-
tral provider to the partner service providers.

On the other hand, the proposed (client-side)
service composition approach processes client
data locally that implies SMS is independent
of the length of client data. Therefore, the re-
quest message is short while the response mes-
sages are quite large containing the task def-
inition. Figure 15 illustrates a comparison of
these approaches in terms of SMS where they
model the presented case study. A logarith-
mic scale is used to show the lower values more
clearly.

Task Model

O start —»Elecnmmend Dosa—b H End

Task Knowledge

Condition I

15 < client. patient. age < 60

Recommend Action [

client. recommendation. dose = *500 mg every 24 hours for 14 days’

Dose Condition Il | 15 < client. patient. age < 60 and 1.4 < client. patient. creatinineLevel < 50

Action II

client. recommendation. dose = ‘250 mg every 24 hours for 14 days’

Task Data

Client-side: patient, visit

Figure 12: Recommend Dose task service where medication equals to ”amoxicillin”.

1024

512 "Server-side Compesition
[Integrated)"

== Server-side Compesition
Z3n: [Distributed)

=& Client-side Composition

128
64

32

15 & i r L i 3 i 3 . ¥
i /—

2] 8 16 32 64 128 256 512 1024
Client Data (Kilobytes)

(saikqoy) az15 adessay amag

Figure 15: Service Message Size comparison.

Service Response Time (SRT) is divided
into two factors: Network time (N) and Process
time (P) defined as follows.

SRT(s) = N(s)+ P(s)

Network time is the amount of time required
to transfer request and response messages that
depends on both network bandwidth and mes-
sage size. Process time is the amount of time
it takes a web service performs its designated
task. Since, servers use more powerful CPUs,
server-side approaches have less process time.
On the other hand, the proposed client-side
approach requires smaller messages causes less
network time.

For this case study, we obtained the pro-
cess time (P(s)) for different size of client data
using a 2.4 GHZ CPU. Moreover, we assume
PServerSide(S) = %PClientSide(s) and a hlgh_

speed bandwidth (1 Mbyte/Sec) connects the
client to the server. Figure 16 shows the re-
sult of comparison between the client-side and
an integrated server-side service composition in
terms of SRT. This result shows the proposed
approach overcomes the traditional approaches
when the client data grows.

2500

2300 "Server-side Compasition

2100 |Integrated)"”

T .
1900 + Client-side Composition

1700 T
1500 T
1300

1100

(puosasijy) awy asuodsay anasag

2 4 8 16 32 64 128 256 512 1024
Client Data (Kilobytes)

Figure 16: Service Response Time comparison.

Average Response Time (ART) extends
the SRT metric when multi clients invoke a ser-
vice simultaneously. ART for service s where it
has n simultaneous clients is defined as follows.

ART(s,n) = 1 « Z SRT(S;)
i=1

To compute ART for the traditional ap-
proaches, we consider a non-preemptive queue
for the server processor that results as follows:

PServerSide(sa n) =nx PServerSide(s)

Task Model

i_)‘ Start eci;inn Model Eui\din%—b&)ecisinﬁ Model Applyingj—i [® End
Task Knowledge
CREATE VIEW trainingSet
Training Set Action AS SELECT ppID, age, weight, creatinLevel, allergies, medication
Construction FROM client.patientdb AS p, client.visitdb AS v
_ WHERE p.pID = v.pID AND v diagnosis = ‘acute sinusitis’

D&%(Sile(in Action decisionModel = BuildDecisionTree (trainingSet, provider. type,

Building provider fields, provider.target)

Decision client. recommendation. medication= AskDecisionTree (decisionModel,

Model Action | client.patient)
Applying

Task Data

Client-side: patientdb, visitdb

Provider-side: type = ‘C4.5° , fields = [‘age’, ‘weight’,

‘creatinLevel’, “allergies’], target = ‘medication’

Figure 13: Decision Model Builder task service

where diagnosis = acute sinusitis. The external task

knowledge are highlighted and C4.5 is the type of decision tree.

where P(s,i) represents the process time of
service s when 7 clients call the service simul-
taneously. The comparison result is shown in
Figure 17. In the proposed approach, service
clients have their own service representatives
that process client data simultaneously, there-
fore the ART is improved significantly.

Server-side Composition
2300 {Integrated)
=& Client-side Composition

(puodasyi) awiy asuodsay afeiany

Client Number

Figure 17: Average Response Time compari-
son.

7 Related Work

One of the strengths of web services is their ca-
pacity to be composed into high-level business
processes. Several approaches have been pro-
posed to address service compositions in dif-
ferent ways. Orchestration and choreography
describe two aspects of organizing web services
in a composite web service [3]. While orches-
tration requires a central process to coordinate
sending and receiving messages among web
services, the collaborating web services com-
municate directly in choreography. Moreover,
static composition takes place during design-
time while dynamic composition selects collab-
orating services at the run-time [10]. While all
traditional approaches compose web services at
the server side, the proposed framework intends
to compose services at the client side to im-
prove security, privacy, and efficiency of com-
posite services in some applications.

In context-aware service composition, con-
textual information is considered for selecting
and binding service components in a compos-
ite service [4]. These approaches use seman-
tic descriptions of services and contexts to pro-
vide adaptive composite services [15]. There-
fore, more service metadata and analysis are

Task Model

‘ 2 start }—vﬁrnwng Set Cons(ruction’!mNﬂl Model m‘tlﬂhza{lﬂf‘)—bﬁﬂ:remenml Model CnmpletianDe:isinn Maodel App\vmgj—bl W End

Task Knowledge

CREATE VIEW trainingSet
Training Set Action AS SELECT p.pID, age, weight, creatinLevel, allergies, medication
Construction FROM client.patientdb AS p, client.visitdb AS v
WHERE p.pID = v.pID AND v.diagnosis = ‘acute sinusitis’
Incremental
Model Action incrementalModel = RebuildDecisionTree (provider. type, provider. fields,
Initialization provider. target, provider. treeNodes)
Incremental
Model Action | decisionModel = CompleteDecisionTree (incrementalModel, trainingSet)
Completion
Decision client. recommendation. medication= AskDecisionTree (decisionModel,
Model Action | client patient)
Applying

Task Data

Client-side: patientdb, visitdb

Provider-side: type = ‘IDI’ , treeNodes, fields = [‘age’, ‘weight’, ‘creatinLevel’, ‘allergies’], target = ‘medication’

Figure 14: Incremental Decision Model Builder task service where diagnosis = acute sinusitis. The
external task knowledge are highlighted and IDI is the type of incremental decision tree.

required. Since, client’s context is processed
locally in our approach, the service client re-
ceives customized services. In other words, we
propose context-aware services while service re-
sponses are context-free that facilitates service
composition.

A software agent is a piece of software that
acts on behalf of an agency to serve a user [6].
Software agents have been integrated into web
services [12] and used to facilitate SOA related
tasks such as service composition [14]. Inte-
gration of agents and web services is proposed
to model the business aspects of enterprise sys-
tems, where each role or major function of an
enterprise system is considered as an agent [13].
In this paper, we assign a new role (i.e., service
representative) to software agents to model en-
terprise agents in business domain.

Mobile agents [2] can physically travel across
a network and perform tasks on different nodes.
There are several security and privacy issues
to be considered in mobile agent computing.
Mobile agent architectures (e.g., Concordia [11]
and Mole [1]) also suffer from low efficiency as
they need to send the entire computer program
or process. In contrast, we propose to employ
generic resident agents and customize them us-

ing service messages as opposed to send mobile
agents to the client.

Finally, [9] introduces a framework for data
and knowledge interoperability where it en-
ables knowledge (i.e., medical guideline) to be
transferred in association with data (i.e., pa-
tient EMR). In [5], we propose a framework for
context-aware services where a resident generic
agent at the client side has access to client’s
context and provides customized services by
applying customization knowledge on the gen-
eral service responses (both received from the
service provider). In this paper, we extend
these works by introducing task services as well
as the generic service representative to perform
them at the client side.

8 Conclusions

This paper proposes a new computational
model for SOA client-server computing when
service provider processes the server part and
defines a task for the generic service repre-
sentative to perform the client part. Next,
we equipped the service representative with a
service orchestrator to call different task ser-
vices in a defined order to address an approach

for the client-side service composition. Con-
sequently, the client is not asked to trans-
fer its confidential or large data and resources
to the service provider and hence the secu-
rity, privacy, and efficiency features of enter-
prise systems will be improved. We plan to
extend the SOA reference model with other
generic components such as collaboration su-
pervisor to support client-side service compo-
sition. Finally, the proposed approach requires
short messages to process client resources that
matches well with mobile devices requirements,
therefore we are working to develop a light ver-
sion of the service representative to be installed
on mobile devices and perform task services.

References

[1] J. Baumann, F. Hohl, K. Rothermel,
M. Schwehm, and M. Strasser. Mole 3.0:
a middleware for java-based mobile soft-
ware agents. In The International Con-
ference on Distributed Systems Platforms
and Open Distributed Processing, pages
355-370, London, UK, 2009. Springer-
Verlag.

[2] P. Braun and W. Rossak. Mobile Agents:
Basic Concepts, Mobility Models, and the
Tracy Toolkit. Morgan Kaufmann Publish-
ers Inc., San Francisco, USA, 2004.

[3] C.Peltz. Web services orchestration and
choreography. Computer, 36(10):46-52,
2003.

[4] L.Bastida, F.Nieto, and R.Tola. Context-
aware service composition: a methodol-
ogy and a case study. In The interna-
tional workshop on Systems development

in SOA environments, pages 19-24, New
York, USA, 2008. ACM.

[5] M. Najafi and K.Sartipi. A Framework
for Context-Aware Services Using Service
Customizer. In The IEEE International
Conference On Advanced Communication
Technology., volume 2, pages 1339-1344,
Phoenix Park, Korea, 2010.

[6) H. Nwana. Software
Overview. Knowledge

Review, 11(3):205-244, 1996.

Agents:An
Engineering

[7]

[10]

[11]

[14]

[15]

S. Raspl. PMML Version 3.0 - Overview
and Status. In The ACM Workshop
on Data Mining Standards, Services and
Platforms, pages 18-22, Philadelphia,
USA, 2004.

R.Greenes. Clinical Decision Support:
The Road Ahead. Academic Press, Inc.,
Orlando, USA, 2006.

R.Kazemzadeh and K.Sartipi. Interop-
erability of data and knowledge in dis-
tributed health care systems. In The IEEE
International Workshop on Software Tech-
nology and FEngineering Practice, pages
230240, Washington, USA, 2005. IEEE
Computer Society.

S.Dustdar and W.Schreiner. A survey on
web services composition. International
Journal of Web and Grid Services, 1:1-30,
2005.

D. Wong, N. Paciorek, T.Walsh, J.DiCelie,
M.Young, and B.Peet. Concordia: An
infrastructure for collaborating mobile
agents. In The International Workshop on
Mobile Agents, pages 86-97, London, UK,
1997. Springer-Verlag.

M. Wooldridge and N. Jennings. Intelli-
gent agents: Theory and practice. Knowl-
edge Engineering Review, 10(2):115-152,
1995.

L. Xiang. A Multi-Agent-Based Service-
Oriented Architecture for Inter-Enterprise
Cooperation System. In The Interna-
tional Conference on Digital Telecommu-
nications, pages 22—-32, Silicon Vally, USA,
2007.

Y.Yamato, H.Ohnishi, and H. Sunaga.
Study of Service Processing Agent for
Context-Aware Service Coordination. In
The IEEE Conference on Service Comput-
ing, pages 275-282, Hawaii,USA, 2008.

Y.Yamato and H.Sunaga. Context-
aware service composition and compo-
nent change-over using semantic web tech-
niques. The IEEE International Confer-
ence on Web Services, 0:687-694, 2007.

