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Abstract

It is challenging to process transactions in a timely
fashion using fresh data, e.g., current stock prices,
since database workloads may considerably vary due to
dynamic data/resource contention. Further, transac-
tion timeliness and data freshness requirements may
compete for system resources. In this paper, we pro-
pose a novel feedback control model to support the de-
sired data service delay by managing the size of the
ready queue, which indicates the amount of the backlog
in the database. We also propose a new self-adaptive
update policy to adapt the freshness of cold data in
a differentiated manner based on temporal data ac-
cess and update patterns. Unlike most existing work
on feedback control of real-time database (RTDB) per-
formance, we actually implement and evaluate feed-
back control and database workload adaptation tech-
niques in a real database testbed modeling stock trades.
For performance evaluation, we undertake experiments
in the testbed, which consists of thousands of client
threads concurrently requesting database services for
stock quotes, trades, and portfolio updates in a bursty
manner. In these experiments, our database system
supports the desired response time bound and data
freshness, while processing a significantly larger number
of transactions in time compared to the tested baselines.

1 Introduction

Real-time databases (RTDBs) aim to process trans-
actions in a timely manner using fresh temporal data,
e.g., current stock prices or traffic sensor data, rep-
resenting the real world status. RTDBs can reduce
the difficulty of developing data-intensive real-time ap-
plications such as stock trading, agile manufacturing,
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and traffic control, by supporting the logical and tem-
poral consistency of data via transactions. Existing
non-real-time databases are unaware of timing and
data freshness (i.e., data temporal consistency) require-
ments, showing poor performance in these applications
[18, 19].

It is challenging to provide real-time data services,
since database workloads may dynamically vary due to
data/resource contention. Also, transaction timeliness
and data freshness may pose conflicting requirements:
If user transactions are given a higher priority than
temporal data updates, the transaction timeliness can
be improved at the cost of the potential freshness re-
duction [1]. In contrast, the transaction timeliness can
be reduced, if temporal data updates always have a
higher priority than user transactions. Feedback con-
trol has recently been applied to manage RTDB perfor-
mance in the presence of dynamic workloads [2, 8, 13],
producing promising initial results. However, the exist-
ing work on feedback control of RTDB performance is
based on simulations. Generally, most existing RTDB
work is based on simulations [19]. Hence, there are
limitations in modeling real system behaviors. Very
little prior work such as [1, 9, 14] has evaluated real-
time data management techniques in a real database
system.

To address the problem, we have designed and im-
plemented a soft real-time database testbed, called
Chronos [7], in which thousands of clients can send
the database server requests for stock quotes, trades,
and user portfolio updates. We have found consider-
able differences between simulation-based results and
experimental results in a real database system [7].
The Chronos server processes data service requests
from clients, while periodically pulling and updating
3,000 stock prices from Yahoo! Finance [25]1. Chronos

1We consider a pull model, because free-of-charge stock quote
services such as Yahoo! Finance [25] do not usually provide push
services, in which the data source multicasts data to the sub-
scribers.



directly measures the achieved transaction timeliness
and data freshness unlike existing non-RTDB bench-
marks such as TPC (Transaction Processing Perfor-
mance Council) benchmarks [21]. In this paper, we
extend Chronos to generate bursty workloads. We also
develop novel approaches for feedback control of RTDB
performance and adaptive temporal data updates. We
implement and evaluate these approaches in the ex-
tended Chronos testbed. To our knowledge, this work
is the first to design, implement, and evaluate RTDB
feedback control and adaptive update schemes in a real
database testbed.

Although most online transactions are not associ-
ated with individual deadlines, excessive service delays
may cause many clients to leave [22]. Thus, a database
needs to control the response time. To support the
desired service delay bound such as 2s, we develop a
novel database feedback control model managing the
size of the ready queue for data service requests. Gen-
erally, the size of the ready queue increases as the
load increases. In this case, transaction processing is
slower than transaction arrivals due to data/resource
contention inside the database. On the other hand, the
ready queue size decreases when the database is under-
utilized. Based on this observation, we model the rela-
tion between the ready queue length and response time.
Note that the control model developed in this paper is
different from our previous work [13] in that the feed-
back control model of [13] aims to support the desired
CPU utilization, while the feedback control scheme of
this paper intends to support the desired delay bound
for real-time data services.

In addition, we develop a new self-adaptive up-
date policy [8] to efficiently manage the freshness of
temporal data. Our approach balances update and
user transaction workloads considering user data needs
and the current service delay by differentiating the
freshness among temporal data. This approach can
significantly improve the transaction timeliness un-
der overload compared to the existing approach for
adaptive temporal data updates [8] and the other ap-
proaches [19], in which a temporal data in a RTDB is
updated at a fixed rate regardless of data access pat-
terns. When the system is severely overloaded, admis-
sion control is also applied to incoming transactions.
We apply admission control after freshness adaptation
to improve the success ratio, i.e., the fraction of the
submitted transactions finishing within the desired de-
lay bound for data services.

For performance evaluation, we create thousands of
client threads, which send data service requests to the
Chronos server. As soon as a client thread finishes
sending a data service request to the database server,

it starts to measure the response time, while waiting
for the transaction or query processing result from the
server. After receiving the service, a client waits for an
inter-request time that exists between most trade or
quote requests. In this paper, we fix the number of the
client threads and shorten the range of the inter-request
time in the middle of an experiment to randomly create
additional workloads ranging between 25% and 100%.
In the stock market, this may happen especially when
the market status is volatile. Given the bursty work-
loads, our approach can support the desired response
time and data freshness, while significantly improv-
ing the success ratio compared to the tested baselines.
Overall, our performance analysis shows the feasibility
of feedback control in a real database system.

The remainder of this paper is organized as follows.
Section 2 describes the Chronos architecture and feed-
back control system. It also gives a detailed description
of the adaptive update policy. Our control modeling
and tuning process is discussed in Section 3. Perfor-
mance evaluation results are presented in Section 4.
Related work is discussed in Section 5. Finally, Sec-
tion 6 concludes the paper and discusses future work.

2 RTDB Architecture and Feedback
Control Overview

In this section, the architecture of Chronos and feed-
back control procedure are discussed. Moreover, fresh-
ness adaptation and admission control in the feedback
loop are discussed. Figure 1 shows the architecture of
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Figure 1. Chronos Architecture

Chronos that consists of the feedback control, adap-
tive update (AU), admission control (AC), transaction
scheduling (TS), concurrency control (CC), and per-
formance monitoring components. The performance
monitor computes the response time error, i.e., the dif-
ference between the desired response time bound and
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the response time measured at every sampling period.
Based on the error, the feedback controller computes
the required ready queue size adjustment δq. If the
measured delay is longer than the desired bound, the
ready queue size needs to be reduced and vice versa.
According to δq, the AU and AC modules adjust work-
loads, if necessary, to meet the desired delay bound.
One can configure Chronos to selectively turn on or off
these components for performance evaluation purposes.

To support the data freshness, periodic temporal
data updates scheduled in Q0 in Figure 1 receive a
higher priority than user transactions in Q1, similar
to [18, 8, 24]. Transactions in each queue is sched-
uled in a FCFS manner. As a user transaction arrives,
it is required to finish by the time equal to the sum
of the current time and relative deadline, i.e., the de-
sired service delay such as 2s. For concurrency control,
we currently apply 2PL (two phase locking) provided
by Berkeley DB [3] underlying Chronos. A transaction
can be blocked, aborted, and restarted due to data con-
flicts. Once blocked, it waits in the block queue for the
conflicting transaction(s) to finish. It is reinserted into
the ready queue when the data conflict is resolved.

FCFS and 2PL are the most commonly used
scheduling and concurrency control algorithms in com-
mercial databases. The theme of this work is to show
that feedback control can support the desired delay
bound in a database system without special instrumen-
tation for real-time transaction processing. We take
this approach, since most existing commercial database
systems do not support real-time scheduling or concur-
rency control. Neither do popular operating systems,
e.g., Linux, underlying database systems. Ideally, how-
ever, one can replace FCFS and 2PL with real-time
transaction scheduling and concurrency control mech-
anisms and provide them as a library to address both
performance and deployment issues. A through inves-
tigation is reserved for future work.

2.1 Feedback Control Procedure

Our feedback controller shown in Figure 2 aims to
support the desired response time bound Ds. Suppose

that the database system started to operate at time
0 and let SP represent the sampling period, e.g.,
1s, for feedback control. The kth (k ≥ 1) sampling
period is the time interval [(k − 1)SP , kSP ] and the
kth sampling instant is equal to kSP in the time
domain. The performance monitor computes the
error e(k) = Ds − d(k) where d(k) is the average
response time of the transactions and queries finished
in [(k − 1)SP , kSP ]. At the kth sampling instant,
the controller computes δq(k), which is the queue size
adjustment needed to support Ds in [kSP , (k+1)SP ],
based on e(k). A description of the overall feedback
control procedure follows.

Step 1. At the kth sampling instant, the delay con-
troller computes the service delay error e(k) = Ds −
d(k).
Step 2. After computing e(k), the controller computes
the control signal δq(k) based on e(k). δq(k) will be ap-
plied to existing transactions and transactions arriving
at the RTDB in the time period [kSP , (k + 1)SP ].
Under overload, δq(k) < 0 and Chronos needs to re-
duce the backlog due to data/resource contention. If
δq(k) ≥ 0, jump to Step 4. A detailed discussion of the
controller design is given in Section 3.
Step 3. If δq(k) < 0, apply the adaptive update policy
to a subset of cold data whose update frequencies are
higher than their access frequencies. As a result, the
period p[i] of a cold data item i can be increased to
the new period p[i]new. Accordingly, increase δq(k) by
(p[i]new − p[i])/p[i], since the update period extension
has a similar effect to reducing the service request rate.
Repeat this step until δq(k) ≥ 0 or no more freshness
adaptation is possible. A detailed discussion of the
adaptive update policy is given in Section 2.2.
Step 4. The new ready queue size to support Ds

in the time interval [kSP , (k + 1)SP ] is: q(k) =
q(k − 1) + δq(k). Thus, the ready queue size will de-
crease when δq(k) < 0 and vice versa. We apply the
anti-windup technique [23] to bound the queue size be-
tween 0 and the max qsize defined by the database
system; that is, if q(k) < 0 we set q(k) = 0. Also, we
make q(k) = max qsize if q(k) > max qsize. Chronos
applies admission control to transactions arriving in
[kSP , (k + 1)SP ]. Hence, incoming transactions will
be dropped upon their arrivals, if the queue length is
already equal to or larger than q(k) due to the backlog.

2.2 Freshness Adaptation

Under overload, update workloads can be reduced
based on the notion of flexible validity intervals [8] to
gracefully relax absolute validity intervals [18] designed



to maintain the temporal consistency of data. If data
di’s absolute validity interval is avi[i], its update period
p[i] = 0.5avi[i] to support the freshness of di [18]. For
cost-effective temporal data updates, the access update
ratio AUR[i] is computed for each temporal data di

based on the update frequency, i.e., 1/p[i], and access
frequency [8]:

AUR[i] =
Access Frequency[i]
Update Frequency[i]

(1)

di is hot if AUR[i] ≥ 1; otherwise, it is cold.
In this paper, we develop a novel self-adaptive fresh-

ness management policy activated by temporal data
update and access patterns as well as the system sta-
tus. Our adaptive update policy can converge to the
balance where AUR[i] = 1 for an arbitrary temporal
data di in the database; that is, di is updated just as
often as it is accessed. By achieving the balance, tem-
poral data updates are optimized by naturally differ-
entiating the freshness of temporal data according to
user transaction needs. If a data is frequently accessed,
it will be updated frequently and vice versa. Also, this
approach is not specific to a single application but ap-
plicable to general real-time data services. A detailed
description of the adaptive update policy follows.

Under overload, we increase the update period of a
cold data di:

p[i]new = min
( p[i]

AUR[i]
, Pmax

)
(2)

where Pmax is the update period relaxation bound that
can be determined by an administrator of an applica-
tion such as stock trading. As AUR[i] < 1 for cold
data di, its update period will increase to p[i]/AUR[i]
as long as p[i]/AUR[i] ≤ Pmax according to Eq 2. We
consider Pmax, since an application administrator may
want the update period of cold data di to be below
Pmax to avoid that the update period of di increases
with no bound when it is rarely accessed. This ap-
proach can quickly react to time-varying freshness re-
quirements, for example, when previously cold stock
items become popular due to market status changes. In
Eq 2, we take the minimum between p[i]/AUR[i] and
Pmax to ensure that p[i]new ≤ Pmax. In this paper, we
set Pmax = 5s to ensure that every stock price is up-
dated at least every 5s. After the update period of di

increases, Chronos adjusts the fvi (flexible validity in-
terval) for di: fvi[i]new = 2p[i]new where fvi[i] = avi[i]
initially. Further, avi[i] ≤ fvi[i]new ≤ 2Pmax. Sim-
ilarly, when the system is underutilized the freshness
can be upgraded for hot data. In this paper, we only
evaluate the freshness degradation, since we mainly
consider overload conditions. In the future, we will

analyze the performance impact of freshness upgrades
too.

By increasing the update period under overload, one
can reduce potential data/resource contention between
temporal data updates and user transactions too, expe-
diting overload management. This phenomenon is ob-
served in our performance evaluation in Section 4. To
degrade the freshness under overload, Chronos needs to
linearly search the first cold data item in the database
and increase its update period according to Eq 2. Thus,
the worst case time complexity is O(N) where N is the
number of the temporal data in the database.

Our approach contrasts to the previous work [8] in
which data are sorted in descending order of AUR and
the update period of the cold data with the lowest AUR
is increased first by a fixed, systemwide amount. This
is repeated to the next lowest AUR data and so on.
Hence, the time complexity of the approach proposed
in [8] is O(NlogN) for sorting AUR values. Further,
freshness degradation is not differentiated considering
update and access patterns.

In this paper, we consider an example RTDB
QoS specification QoS-SPEC = {Ds = 2s, Do =
2.5s, Dt = 100s, Pmax = 5s} that can be specified by
an administrator of a real-time data service applica-
tion such as e-commerce. According to the QoS-SPEC,
the service delay needs to be smaller than or equal to
Ds = 2s. An overshoot, if any, is the transient re-
sponse time longer than Ds. It is desired that Do is
smaller than or equal to 2.5s. Supporting Do ≤ 2.5s
is challenging in a database, potentially involving se-
vere data and resource contention. The settling time
Dt is the time taken for Chronos to handle an over-
shoot, if any, and decrease the delay back to Ds. In
this paper, the settling time Dt is desired to be shorter
than or equal to 100s. In general, an overshoot and
settling time have trade-off relations [15]. In this pa-
per, we aim to support a small overshoot. If an over-
shoot is small, a relatively long settling time can be
acceptable. In Section 4, we show Chronos can closely
support this stringent QoS specification given bursty
workloads. In the future, we will also consider other
QoS specifications to further evaluate the performance
of our database QoS management scheme consisted of
feedback control, adaptive updates, and admission con-
trol.

3 RTDB Modeling and System Identi-
fication

In this section, we take a systematic approach to
designing and tuning the data service delay controller.
Due to the systematic modeling and tuning described



in this section, we can meet QoS-SPEC via feedback
control. Section 3.1 discusses our open-loop database
model via the relation between the ready queue size
and service delay. In Section 3.2, system identifica-
tion (SYSID) techniques [15, 6] are applied to derive
the model parameters. Using the SYSID results, the
closed-loop transfer function is derived in Section 3.3.
Using the closed-loop transfer function, the controller
is tuned via the Root Locus method [15] to support
the desired average and transient service delay speci-
fied in QoS-SPEC, while supporting the stability of the
closed-loop system.

3.1 Queue Length vs. Response Time

In this paper, we derive a RTDB model in the dis-
crete time domain using the ARX (Auto Regressive
eXternal) model [15, 6], which is widely used to iden-
tify computational system dynamics [6, 10, 11]. Specif-
ically, we model the relationship between the data ser-
vice delay d(k) and the delay d(k − i) and queue size
q(k − i) measured in the kth and previous sampling
periods:

d(k) =
n∑

i=1

{aid(k − i) + biq(k − i)} (3)

where n(≥ 1) is the system order determining the size
of the historical system dynamics data used for SYSID.
The unknown model parameters ai’s and bi’s in Eq 3
can be derived via system identification [15, 6].

3.2 System Identification

The objective of our SYSID is to minimize the sum
of the squared errors for the data service delay predic-
tion based on the ready queue size. For SYSID, 2,400
client threads concurrently send data service requests
to Chronos for one hour. Each client sends a service
request and waits for the response from Chronos. After
receiving the transaction or query processing result, it
waits for an inter-request time. The inter-request time
is randomly selected in a range [1s, 3s]. Note that this
is a large operating range: If every client has a 3s inter-
request time, the clients submit 800 tps (transactions
per second) in total. They submit 2,400 tps if all of
them have a 1s inter-request time. In this way, we can
model high performance real-time data services dealing
with widely varying workloads. Our control modeling
and tuning are valid in this operating range. Beyond
the operating range, a feedback controller may or may
not support the desired performance [15, 6]. Analyzing
the robustness of our feedback controller for workloads
outside the operating range is reserved for future work.

For SYSID, no feedback control, admission control,
or freshness adaptation is applied. Thus, Chronos ac-
cepts all incoming data service requests and updates
each temporal data at the highest frequency. Specif-
ically, each stock price is updated at every 0.5s for
SYSID, which is equal to 6,000 stock price updates per
second in total. The least square estimator predicts the
response time at every 10s based on the queue length
vs. response time statistics data observed in the SYSID
window whose size is determined by the system order
defined in Eq 3. In 10s, approximately 8, 000− 24, 000
transactions arrive at the database. By using a large
number of data for SYSID, we aim to moderate the
stochastic nature of a database as recommended in [6].

We have performed SYSID for the first order to
fourth order system models. To analyze the accuracy
of the SYSID results, we use the root mean square er-
ror (RMSE), which is a common accuracy metric for
SYSID [15, 6]. Unfortunately, in our one hour SYSID,

the RMSE =
√∑360

i=1 e2(i)/360 > 5s for the first or-
der to fourth order system models. The large RMSEs
are unacceptable, since the desired delay bound is 2s in
QoS-SPEC. The large prediction errors are mainly due
to the wide operating range expressed by the range of
the inter-request time as described before.

Since a large number of clients with varying inter-
request times are prevalent in transaction processing,
we consider an alternative approach for more accurate
SYSID. Specifically, we use the square root values of
the performance data, similar to [5]. The correspond-
ing RMSE = 0.66s for the second order model, which
is nearly an order of magnitude better than the RMSE
values of the previous SYSID results using the raw
queue size and response time values. Another accuracy
metric R2 = 1 − variance(response time prediction error)

variance(actual response time) =
0.79. Usually, a model with R2 ≥ 0.8 is considered
acceptable [6]. Considering the RMSE and R2, the
SYSID results using the square root values of the ready
queue size and response time can be considered accept-
able.

We rejected the first order model due to its poor
RMSE and R2 values. The third and fourth order
models can only improve the RMSE and R2 by ap-
proximately 0.02 compared to the second order model.
Thus, we choose the second order model due to the
relatively low complexity. The derived second order
model is:

d(k) = 0.507d(k − 1) − 0.089d(k − 2) +
0.115q(k − 1) + 0.009q(k − 2) (4)

where d(k) is the delay predicted to be observed in the
kth SYSID period based on the actual delay and queue



length values measured in the (k − 1)th and (k − 2)th

SYSID periods.

3.3 Data Service Delay Controller

To design the response time controller, we derive the
transfer function of the open-loop Chronos database
by taking the z-transform [15, 6] of Eq 4 to represent
the relationship between the ready queue length and
service delay in an algebraic manner:

D(z) = 0.507z−1D(z) − 0.089z−2D(z) +
0.115z−1Q(z) + 0.009z−2Q(z) (5)

where D(z) is the z-transform of d(k) and Q(z) is the
z-transform of q(k) in Eq 4. After some algebraic ma-
nipulation, we get the following transfer function:

G(z) =
D(z)
Q(z)

=
0.115z + 0.009

z2 − 0.507z + 0.089
(6)

Given the transfer function in Eq 6, we design the
data service delay controller using a PI (proportional
and integral) controller. We select a PI controller, since
a P controller by itself cannot remove the steady state
error [15, 6]. An I controller can eliminate the non-zero
steady-state error when combined with a P controller
[15, 6]. We do not use a derivative controller, because
it is sensitive to noise [15, 6] and real-time data ser-
vice workloads potentially involve bursty transaction
arrivals and data conflicts. An efficient PI control law
used by our response time controller to compute the
control signal q(k) at the kth sampling instant is:

q(k) = q(k − 1) + KP [(KI + 1)e(k) − e(k − 1)] (7)

where the error e(k) = Ds − d(k) at the kth sampling
period as shown in Figure 2. Given that, δq(k) =
q(k) − q(k − 1) is the queue length adjustment needed
to support the desired response time Ds in [kSP ,
(k + 1)SP ]. The transfer function of a PI controller
can be obtained by taking the z-transform of Eq 7 to
describe the relation between the controller input e(k)
and the controller output δq(k):

C(z) =
α(z − β)

z − 1
(8)

where α = KP (KI + 1) and β = 1/(KI + 1). We
need to carefully choose KP and KI to support the
desired average and transient performance specified in
QoS-SPEC.

To tune KP and KI , we need to derive the closed-
loop transfer function. One can derive the closed
loop transfer function using the transfer functions of

the controller and the controlled system such as the
database [15, 6]. Given the Chronos transfer function
G(z) (Eq 6) and PI controller transfer function C(z)
(Eq 8), the closed loop transfer function F(z) can be
obtained in a standard way [15, 6]:

F(z) =
C(z)G(z)

1 + C(z)G(z)
(9)

In this paper, we set the sampling period SP = 1s,
because several hundreds to thousands of transactions
per second arrive at Chronos in our experiments. Thus,
Chronos has to quickly react to support the desired
response time bound. Given F(z) and SP = 1s, via
the Root Locus method in MATLAB [15], we locate
the closed-loop poles−the roots of the denominator in
Eq 9−inside the unit circle to support the stability of
the closed loop system, while supporting Ds, Do, and
Dt of QoS-SPEC. The selected closed loop poles are
0.496 and 0.282±0.354i. The corresponding KP = 1.29
and KI = 2.01.

4 Performance Evaluation

In this section, we evaluate our approach and several
baselines to see whether they can support QoS-SPEC
described in Section 2. We describe experimental en-
vironments and settings followed by the average and
transient performance results.

A Chronos server runs in a Dell laptop with the 1.66
GHz dual core CPU and 1 GB memory. Clients run in
two Dell desktop PCs. One PC has the 3 GHz CPU and
2GB memory, while the other one has the same CPU
and 4 GB memory. Every machine runs Linux with
the 2.6.15 kernel. The clients and server are connected
via a 100 Mbps Ethernet switch and they communicate
using the TCP protocol. Each client machine runs 900
client threads. Therefore, 1800 client threads continu-
ously send service requests to the Chronos server. For
60% of time, a client thread issues a query about stock
prices, because a large fraction of requests can be stock
quotes in stock trading. For the other 40% of time, a
client uniformly requests a portfolio update, purchase,
or sale transaction at a time. A transaction accesses
between 50 and 100 data. Initially, each temporal data,
i.e., stock price, is updated at every 0.5s.

One experiment runs for 15 minutes. To generate
bursty workloads, we vary the load described in Sec-
tion 3.2 as follows. At the beginning of an experi-
ment, the inter-request time is uniformly distributed
in [2.5s, 3s]. Thus, approximately 600 − 720 trans-
actions per second arrive at the Chronos server. At 5
minutes, the range of the inter-request time is suddenly
reduced to [1.5s, 2s] to model bursty workload changes.



Table 1. Tested Approaches
Open Pure Berkeley DB
AC Ad-hoc Admission Control
FC-C Feedback Control AC
FC-CU Feedback Control AC + AUP

Hence, 900 − 1, 200 transactions per second arrive at
the database server. As a result, the workload ran-
domly increases by 25%− 100% at 5 minutes and it is
maintained until the end of an experiment at 15 min-
utes. An alternative approach for generating bursty
workloads is to increase the number of client threads,
while using a fixed range of inter-request time. In this
paper, we choose to change the inter-request time, be-
cause it has less overhead than creating a larger num-
ber of client threads on the fly. As a result, it can give
more immediate impacts to the workload applied to the
database server.

For performance comparisons, we consider the four
approaches shown in Table 1. Open is the basic Berke-
ley DB [3] without any special performance control fa-
cility. Thus, it represents a state-of-the-art database
system. Under overload, AC applies admission control
to incoming transactions in proportion to the response
time error. FC-C applies admission control to incom-
ing transactions according to the control signal com-
puted in our feedback loop. However, it does not apply
adaptive temporal data updates. FC-CU applies both
adaptive temporal data updates and admission control
according to the control signal computed in our feed-
back loop. Except Open, the tested approaches close
the connection with a client thread after sending a busy
message to the client thread, if the TCP connection es-
tablishment itself takes longer than Ds. This approach
is reasonable, because it is impossible to support Ds

in this case. Five experimental runs are performed for
each tested approach with different seeds for uniform
random number generation. In this section, the average
of 5 runs is presented with 90% confidence intervals.

4.1 Average Performance

The average response time for each approach is
shown in Figure 3. Open’s average response time is
4.02 ± 0.53s. The average response time of AC is
3.56 ± 0.83s. FC-C and FC-CU achieve 3.22 ± 0.87s
and 1.26 ± 0.42s, respectively. From these results, we
observe that only FC-CU can support the desired re-
sponse time bound Ds = 2s specified in QoS-SPEC.
By accepting all incoming transactions (and queries),
Open becomes overloaded, failing to support Ds. AC
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Figure 3. Average Response Time

shows the better response time than Open. Via sys-
tematic feedback control, FC-C provides a shorter re-
sponse time than AC and Open; however, it cannot
support Ds. From this, we observe that admission
control by itself is insufficient for managing database
overloads, involving not only physical resource but also
data contention. In FC-CU, adaptive temporal data
updates can reduce data/resource contention between
user transactions and stock price updates, resulting in
more effective overload management as discussed be-
fore. The cost of the adaptive update policy in FC-CU
is the freshness reduction. In average, 60% − 84% of
the update periods are extended to 1s − 4.3s in our
experiments, while the remaining stock price data are
updated at every 0.5s. Thus, Pmax = 5s in QoS-SPEC
is supported.
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Figure 4. Normalized Number of the Commit-
ted Transactions and Queries

As shown in Figure 4, FC-CU processes the largest
number of transactions among the tested approaches.
It has processed more than 434,000 transactions in 15
minutes. Out of the committed transactions, more
than 366,000 transactions are processed within Ds.
Thus, in FC-CU, approximately 84% of the committed



transactions finish within the desired delay bound. Fig-
ure 4 shows the total number of the committed trans-
actions and the number of timely transactions finishing
within Ds normalized to the corresponding numbers for
FC-CU. In the figure, FC-CU significantly outperforms
Open, AC, and FC-C. AC processes fewer transactions
in time than Open does. FC-C’s performance is close
to Open, but much worse than FC-CU’s. From these
results, we observe that admission control is insufficient
for overload management in Chronos as discussed be-
fore. Ad hoc admission control is even less effective.
We have observed that it admits either too many or
two few transactions, showing oscillating performance.

4.2 Transient Performance
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Figure 5. Transient Performance of FC-CU

In this subsection, we present the transient perfor-
mance of FC-CU and the tested baselines. Figure 5(a)
and Figure 6 show the transient response time of the
tested approaches, which is measured at every 1s sam-
pling period. FC-CU substantially outperforms the
baselines in terms of the transient response time as
shown in the figures. The response time overshoot of
Open is 55.32s and its transient response time is over
15s for more than half of the experiment as shown in
Figure 6(a). AC and FC-C in Figures 6(b) and 6(c)
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Figure 6. Transient Response Time of the
Baselines

considerably reduce the transient response time com-
pared to Open, but they frequently violate the desired
delay bound by large amounts.

At the beginning in Figure 5(a), the response time
is high mainly due to database initialization overhead
involving a lot of disk accesses and data structure ini-
tialization. From 170s, however, its transient response
time is below 2s, i.e., the horizontal bar in Figure 5(a),
for most of the time. There are two relatively large
overshoots in the time period between 600s−700s, but
these overshoots decay in less than three sampling pe-
riods, satisfying Dt ≤ 100s in QoS-SPEC.

Figure 5(b) shows FC-CU’s transient success ratio
measured by the number of timely transactions per sec-
ond (ttps), which denotes the number of transactions
finishing within Ds at every second. Also, the transient
ready queue length of FC-CU is plotted in Figure 5(c).
In Figure 5(b), the success ratio is relatively low during
the database initialization. As a result, the ready queue
builds up, increasing the transient response time at the
beginning as shown in Figures 5(b) and 5(c). Note
that this may not be a serious problem, since a real
stock trading database may choose to not accept ser-
vice requests during the initialization phase. Further,



the initialization takes less than 3 minutes in Chronos
as shown in Figure 5(a). After the initialization, FC-
CU achieves the generally increasing success ratio until
200s, while processing the backlog accumulated during
the initialization as shown in Figure 5(b). In the fig-
ure, its success ratio ranges between 370 ttps − 563
ttps in [170s, 900s]. The tested baselines achieve much
lower success ratios compared to FC-CU due to widely
oscillating transient response time shown in Figure 6.
The maximum transient success ratio of Open is 332
ttps. AC’s maximum success ratio is only 202 ttps,
while FC-C’s maximum success ratio is 290 ttps. Note
that FC-CU’s maximum success ratio is over 560 ttps
as described before.

As shown in Figure 5(c), FC-CU maintains the
queue size in a steady manner except the initialization
period. The maximum queue size from the beginning
to 108s is 149 data service requests as shown in the
figure. It ranges between 26 − 58 requests during the
time period of [109s, 300s]. Note that the queue is
not empty, since the feedback control signal is posi-
tive to accept more requests during this time interval
where the response time is shorter than the desired 2s
bound. After that, the queue length ranges between
49 − 71 requests. The queue size has been increased
at 300s, since the inter-request time is considerably
reduced at 300s in our experiments. From this, we
can observe that our feedback controller can effectively
manage the queue size to support the desired delay
bound. In summary, FC-CU significantly enhances the
average and transient data service performance com-
pared to the baselines by applying feedback control and
efficient workload adaptation techniques.

5 Related Work

Most RTDB work is based on simulations [19]. Very
little prior work on real-time data management [1, 9,
14, 7] has actually been implemented and evaluated in
real database systems. However, no RTDB testbed is
publicly available. As a result, it is hard to perform
RTDB research in a real database system. To address
this problem, we have developed Chronos [7], which is
significantly extended in this paper as discussed before.

Conceptually, our work is closest to the recent work
on feedback control in RTDBs, including [2, 8, 13], aim-
ing to support the specified CPU utilization, deadline
miss ratio, or data and timeliness imprecision in RT-
DBs. In this paper, we develop a new control model
to support the desired response time for real-time data
service requests. Our work is also different from the ex-
isting work in that our work is implemented and eval-
uated in a real database system.

In this paper, we propose a new temporal data up-
date policy, which can efficiently manage the fresh-
ness in a self-adaptive manner different from our pre-
vious work [8]. Adelberg et. al. [1] observe that there
is a trade-off between transaction timeliness and data
freshness. The data imprecision and similarity concept
[2, 4] can be applied to reduce update workloads under
overload. When a certain data value is changed by less
than the specified threshold, the corresponding update
can be dropped under overload. Those approaches are
complementary to our approach. RTDB performance
could be further improved, if our adaptive update pol-
icy is augmented by the data similarity or imprecision
concept. This is reserved for future work.

UNIT [17] and QUTS [16] propose adaptive query
and update scheduling algorithms to optimize the user
preference and profit, respectively. However, they do
not aim to support the delay bound critical for real-
time data services. Schroeder et. al. [20] determine, via
queuing and control theoretic techniques, an appropri-
ate number of transactions allowed to concurrently ex-
ecute in a database system. However, their work aims
to support neither the desired response time bound nor
the data freshness essential for real-time data services.
It lacks a formal discussion of controller design and
stability analysis too.

Feedback control has been applied to manage the
performance of various systems such as a web server
and real-time middleware [10, 12, 11]. These ap-
proaches, however, may not be directly applicable to
RTDBs, because they do not consider RTDB-specific
issues such as the data freshness.

6 Conclusions and Future Work

As database workloads may considerably vary due
to dynamic data/resource contention, it is challenging
for a RTDB to process transactions in a timely man-
ner using fresh data, e.g., current stock prices or traffic
data. Also, transaction timeliness and data freshness
requirements may compete for system resources. In
this paper, we propose a novel feedback control model
to support the desired data service delay by managing
the amount of the backlog in the database. We also
propose a new adaptive update policy to adapt the
freshness of cold data in an efficient way based on tem-
poral data access and update patterns. Unlike most ex-
isting work on feedback control of RTDB performance,
we actually implement and evaluate feedback control
and database workload adaptation techniques in a real
database testbed. In our stock trading testbed exper-
iments, our feedback control system supports the de-
sired response time bound and data freshness, while



processing a significantly larger number of transactions
in time compared to the tested baselines. Thus, in this
paper, we show the feasibility of feedback control of a
real database system. In the future, we will continue to
enhance feedback control, data service quality adapta-
tion schemes, transaction scheduling, and concurrency
control schemes.
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