
Nonmonotonic Abductive Inductive Learning

Oliver Ray

Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK

Abstract

Inductive Logic Programming (ILP) is concerned with the task of generalising sets
of positive and negative examples with respect to background knowledge expressed
as logic programs. Negation as Failure (NAF) is a key feature of logic programming
which provides a means for nonmonotonic commonsense reasoning under incomplete
information. But, so far, most ILP research has been aimed at Horn programs
which exclude NAF, and has failed to exploit the full potential of normal programs
that allow NAF. By contrast, Abductive Logic Programming (ALP), a related task
concerned with explaining observations with respect to a prior theory, has been well
studied and applied in the context of normal logic programs. This paper shows how
ALP can be used to provide a semantics and proof procedure for nonmonotonic
ILP that utilises practical methods of language and search bias to reduce the search
space. This is done by lifting an existing method called Hybrid Abductive Inductive
Learning (HAIL) from Horn clauses to normal logic programs. To demonstrate
its potential benefits, the resulting system, called XHAIL, is applied to a process
modelling case study involving a nonmonotonic temporal Event Calculus (EC).

1 Introduction

Inductive Logic Programming (ILP) [38] is a branch of Artificial Intelligence
(AI) concerned with the generalization of positive and negative examples with
respect to prior background knowledge expressed in a logic program formalism.
Compared to other AI representations, logic programs are expressive and easy
for humans to understand. Moreover, Negation as Failure (NAF) [6] gives
logic programming a nonmonotonic inference mechanism for reasoning with
defaults and exceptions under incomplete information. Since incompleteness
is an inherent feature of any learning problem, effective utilization of NAF is
potentially a major strength of the ILP paradigm.

Email address: oray@cs.bris.ac.uk (Oliver Ray).

Preprint submitted to Elsevier 24 October 2008

To date, most ILP research has been aimed at Horn programs that exclude
NAF. While several approaches have been proposed for normal programs with
NAF, as in [4,19,7,25,28,5,51,13,39,1,43,49,56] and more recently in [50,40,12],
these impose strong restrictions on the learning setting or they lack efficient
strategies for guiding the computation. As a result, practitioners are forced
to apply Horn systems to normal problems, for which they are not intended,
often with no guarantees of soundness or completeness and usually without
the ability to fully exploit NAF. For example, by various transformations
[33,31,41,42] Horn systems can be made to learn action theories in which
NAF is used to model the persistence of properties through time. But the
limitations of such approaches, discussed later, only highlight the need to
develop semantically and procedurally well-founded nonmonotonic learners.

This work aims to realise a practical ILP approach that generalises successful
techniques of language and search bias from Horn clauses to normal programs.
It is based on the premise that such biases are even more essential in the
nonmonotonic case, where the search space is much larger and traditional
pruning techniques are not applicable. The proposal is to exploit techniques
from a closely related branch of AI, called Abductive Logic Programming
(ALP) [21], which grew from efforts to provide a semantics and proof procedure
for NAF [8]. Although simple forms of abductive reasoning have been used in
ILP for learning rules with predicates not defined by the examples [37,32], the
correspondence between ALP and NAF can potentially be exploited to even
greater effect by enabling the learning of normal logic programs.

This paper shows how a method called Hybrid Abductive Inductive Learning
(HAIL) [44], which integrates ALP and ILP in a common reasoning framework,
can be lifted from Horn clauses to normal programs. The technique is based on
the construction and generalization of a preliminary ground hypothesis called a
Kernel Set [44] that bounds the search space in accordance with user specified
language and search bias. The result is a three-stage process where abduction
and deduction are used, respectively, to compute the head and body literals
of a Kernel Set, which is then generalised by a subsumption-based inductive
search technique. This paper shows how these three stages can all be specified
as executable ALP tasks in order to provide a formal semantics and concrete
proof procedure, called XHAIL, for nonmonotonic ILP.

The rest of the paper is structured as follows. Section 2 introduces the key
notation, terminology, and background material. Section 3 shows how each
phase of the XHAIL procedure can be formalised as a nonmonotonic ALP task.
Section 4 discusses some of the theoretical and practical implications. Section 5
illustrates XHAIL with a biologically motivated process modelling case study.
Section 6 compares the approach with related work and Section 7 concludes.
This paper extends the abstract in [45] with a more detailed description of
the method, a larger case study, and further discussion of related work.

2

2 Background

This section introduces the key notation and terminology. Section 2.1 reviews
some logic programming definitions [27], recalls the stable model semantics [15]
for normal programs, and outlines the task of ALP [21]. Section 2.2 describes
the task of ILP [38] and introduces two popular forms of language and search
bias called mode declarations and compression [36]. Section 2.3 summarises
the original HAIL approach [44] for learning Horn programs.

2.1 Abductive Logic Programming (ALP)

This paper assumes a standard first order language whose terms are defined
in the usual way. An atom is a predicate p (of arity n) followed by an n-
tuple of terms (t1, . . . , tn). A literal is either an atom a (positive literal) or the
negation of an atom not a (negative literal). A (normal) clause is an expression
of the form a ← l1, . . . , lm where a is an atom (called the head atom) and
the li are literals (called body literals). A fact is a clause of the form a ← ⊤
(often abbreviated to just a) where ⊤ is an atom denoting logical truth. A
constraint is a clause of the form ⊥ ← l1, . . . , lm (often abbreviated to just
← l1, . . . , lm) where ⊥ is an atom denoting logical falsity. A (logic) program
is a set of clauses. A clause or program is Horn iff all of its literals are positive
and is normal otherwise. A (Herbrand) interpretation is a set of ground atoms.
An interpretation I satisfies a positive (resp. negative) ground literal l = a
(resp. l = not a) iff a ∈ I (resp. a 6∈ I). It satisfies a set of ground literals iff
it satisfies each ground atom in the set; and it satisfies a ground clause iff it
satisfies the head atom or fails to satisfy at least one body literal.

A (Herbrand) model M of a program P is an interpretation I that satisfies
every ground instance of every clause C in P . A model M is minimal if no
strict subset is also a model. Moreover, it is stable if M is the unique minimal
model of the Horn program PM obtained from the ground instances of P by
removing all clauses with a negative literal not satisfied in M and removing
all negative literals from the remaining clauses. A program P entails a set
of ground literals L (under the credulous stable model semantics), denoted
P |= L, if at least one stable model of P satisfies L. A goal, or query, G is a
set of literals L = {l1, . . . , ln} that will usually be written ?l1, . . . , ln. A clause
C is said to (θ-)subsume a clause D iff there is a substitution θ such that the
head atom of D is the head atom of Cθ and each body literal of D is in Cθ.
A program P is said to (θ-)subsume a program Q iff for each clause Ci ∈ P
there is a clause Di ∈ Q such that Ci subsumes Di and Di 6= Dj for all i 6= j
(i.e., P is obtained from Q by replacing terms in Q with variables and/or by
dropping individual literals or whole clauses from Q).

3

ALP seeks to find the conditions under which a query G (goal) can be made to
succeed from a program T (theory) composed of facts, rules and constraints.
The ALP task is usually defined as computing a set of ground atoms ∆,
called an explanation, together with a ground substitution θ, called an answer
substitution, such that T ∪ ∆ |= Gθ. The atoms in ∆ are usually restricted
to a set A of predicates called abducibles, which identify concepts for which
only partial information is available in the theory (e.g., potential faults in a
diagnosis task or possible actions in a planning domain). Any pair (∆, θ) which
satisfies these properties is called an abductive solution of G wrt. T and A.

Hereafter, φ(T,G,A) will denote the set of all abductive solutions of G wrt. T
and A. Systems for computing such abductive solutions can be classed into two
complementary approaches: top-down ALP methods that extend resolution
inference with the ability to assume literals [21], and bottom-up methods
based on model construction techniques like Answer Set Programming (ASP)
[26]. To ensure termination of these procedures, it is assumed some appropriate
bound is placed on computational resources (e.g., maximum resolution depth
in an ALP system or total execution time in an ASP system).

2.2 Inductive Logic Programming (ILP)

ILP seeks to find a program H (hypothesis) that generalises a set of literals E
(examples) wrt. a program B (background knowledge). In this paper, B and
H are normal programs, while E is a set of ground literals (with positive and
negative literals representing positive and negative examples, respectively).
Given B and E as inputs, the task of ILP is to compute a set of clauses H
such that B ∪ H |= E. 1 The clauses in H are usually constrained by some
form of language and search language bias. This paper employs two popular
forms of bias called mode declarations and compression, both taken from [36].

A mode declaration m is either a head declaration modeh(r, s) or a body
declaration modeb(r, s), where s is a ground literal, the scheme, which serves
as a template for literals in the head or body of a hypothesis clause, and r is
an integer, the recall, which limits how often the scheme is used. An asterisk
∗ denotes an arbitrary recall. A scheme can contain special placemarker terms
of the form #type, +type and −type, which stand, respectively, for ground
terms, input terms and output terms of a predicate type. The distinction
between input and output terms is that any input term in a body literal must
be an input term in the head or an output term in some preceding body literal.

1 In the Horn case, this can be written B∪H |= e+ for all e+ ∈ E+ and B∪H 6|= e−

for all e− ∈ E− where E+ and E− are the sets of unnegated and negated atoms in E,
respectively. In the Horn case, it can also be written B∪H |= P and B∪H∪N 6|= ⊥
where P = {e ← ⊤| e ∈ E+} and N = {⊥ ← e | e ∈ E−}.

4

Each set M of mode declarations is associated with a set of clauses L(M),
called the language of M , such that C = a ← l1, . . . , ln ∈ L(M) iff the head
atom a (resp. each body literal li) is obtained from some head (resp. body)
declaration in M by replacing all # placemarkers with ground terms and all
+ (resp. −) placemarkers with input (resp. output) variables. If m is any
mode declaration, then pred(m) denotes the predicate p at the front of the
scheme s, while schema(m) denotes the literal obtained from s by replacing
all placemarkers with distinct variables X1, . . . , Xn, and type(m) denotes the
sequence of literals t1(X1), . . . , tn(Xn) such that ti is the type of the place-
marker replaced by the variable Xi. If M is a set of mode declarations, then
M+ and M− denote the head and body declarations in M , respectively.

As well as language bias, ILP hypotheses are also constrained by search bias. A
successful method, described in [36], involves maximising a compression score
obtained by subtracting the number of literals in the hypothesis from the
number of examples covered. This helps to avoid over-fitting by preferring the
simplest hypothesis that explains the examples. Another common approach,
also explained in [36], involves using the recall of a mode declaration during
hypothesis construction to bound the number of times its scheme can be used
(with the same input terms) and using the type of a placemarker to determine
which terms can replace it (in any ground instance).

2.3 Hybrid Abductive Inductive Learning (HAIL)

HAIL is a mode-directed ILP approach that integrates abductive, deductive
and inductive reasoning in a common learning framework. Given a background
theory B, examples E, and mode declarations M , it aims to return a highly
compressive hypothesis H, in the language of M , that entails E wrt. B. In the
Horn case [44], hypotheses are constructed incrementally by a covering loop
designed to generalise one selected example, called a seed example, at a time.
Partial hypotheses are successively formed until all examples are covered. For
each seed example e ∈ E, this is done by constructing and generalising a
preliminary ground hypothesis, K, called a Kernel Set of B and e.

Intuitively, a Kernel Set is a maximally specific explanation of the selected
seed example. It is constructed and generalised by a three-phase methodology.
The first phase returns a set of head atoms ∆ (abductive explanations) that
entails e wrt. B. The second phase then adds to each head atom a set of body
atoms (deductive consequences) entailed by B — to give a Kernel Set K.
The third phase finds a compressive hypothesis H (inductive generalisation)
that subsumes K. The main challenge is to exploit language and search bias
when constructing and generalising K. To do this, HAIL uses a multi-clause
extension of a method called Mode Directed Inverse Entailment (MDIE) [36].

5

As formalised below, the key idea underlying the HAIL approach is to use the
abduced literals to seed the formation of an inductive hypothesis.

• abductive phase: first HAIL computes a set of ground facts

∆ =

α1

...

αn

such that B∪∆ |= e and each atom αi in ∆ is a well-typed ground instance
of a clause in the language L(M+) of the head declarations M+ (as defined
in Section 2.2). These atoms are computed by an abductive procedure that
returns an explanation ∆ of the seed example e wrt. the program B using
the type information specified by the head declarations.

• deductive phase: then HAIL computes a set of ground clauses

K =

α1 ← δ1
1, . . . , δ

m1

1

...

αn ← δ1
n, . . . , δmn

n

such that B |= δj
i for all 1 ≤ i ≤ n, 1 ≤ j ≤ mi and each clause αi ←

δ1
i , . . . , δ

mi

i in K is a well-typed ground instance of a clause in L(M). These
atoms are computed by a deductive procedure that finds the successful
ground instances of the queries obtained by substituting a set of input terms
into the + placemarkers of the body declaration schemas.

• inductive phase: finally, HAIL computes a set of clauses

H =

a1 ← d1
1, . . . , d

m′

1

1

...

an′ ← d1
n′ , . . . , d

m′

n′

n

such that B ∪H |= E. This is done by generalising each Kernel Set clause,
in turn, using a top down A*-like search of lattice of clauses which subsume
K to find a maximally compressive clause that is in the language L(M) of
M and is consistent with the other clauses in H.

While MDIE is the basis of many popular Horn systems, such as Progol [36,37]
and Aleph [54], HAIL is shown to be a sound extension of this method that
increases the class of problems soluble in practice [44].

6

3 eXtended Hybrid Abductive Inductive Learning (XHAIL)

This section lifts the HAIL methodology from Horn theories to normal logic
programs. As before, the aim is to make effective use of language and search
bias to guide the computation by constructing and generalising a preliminary
ground Kernel Set. The main challenge is that of generalising the abductive,
deductive, and inductive phases to handle NAF. The approach proposed below
is based on representing each phase as an abductive task in order to exploit the
correspondence between abduction and negation [8]. This has the benefits of
providing a standard abductive semantics [22] for each phase of the procedure
and allows all three phases to be implemented using an off-the-shelf and high-
performance abductive reasoning engine or answer set solver.

The extended procedure, called XHAIL, is specified in Figure 1 and explained
below. The inputs are a background theory B, examples E, mode declarations
M , and an integer depth bound d (which, as in Progol and Aleph, bounds the
number of body literals through which any term is linked to the head atom).
The output is a compressive hypothesis H that falls within the language of M
and entails E wrt. B. Each hypothesis is computed in three phases: P1, P2 and
P3. As detailed below, each of these phases Pi can be defined (in the notation
of Section 2.1) as an abductive task φ(Ti, Gi, Ai) with its own theory Ti, goal
Gi, and abducibles Ai. Each phase will now be described and illustrated with
the following running example from [50]:

B =

bird(X) ← penguin(X)

bird(a)

bird(b)

bird(c)

penguin(d)

E =

flies(a)

flies(b)

flies(c)

not flies(d)

M =

modeh(∗, f lies(+bird))

modeb(∗, penguin(+bird))

modeb(∗, not penguin(+bird))

7

While the focus of this paper is on the formal specification of the three phases
of the extended HAIL procedure, some discussion is also provided, in Section 4,
regarding their implementation using ALP and ASP technologies. The whole
procedure is further exemplified on a more substantial case study in Section 5.

3.1 Abductive Phase

The first phase, P1, computes a set of ground atoms ∆ =
⋃n

i=1 αi such that
B ∪∆ |= E and each αi is a well-typed instance of a clause in L(M+). This
is a straightforward abductive task. Since each abduced atom will go in the
head of a Kernel Set clause, the abducibles A1 are obtained from the set of
predicates p/n appearing at the front of some head declaration scheme. But, to
ensure any abduced atoms satisfy the required bias, for each such predicate, a
clause is created of the form p(X1, . . . , Xn) ← p∗(X1, . . . , Xn), p′(X1, . . . , Xn)
containing two fresh predicates p∗/n and p′/n. In effect, p′ is just an abducible
proxy for p, while p∗ identifies the ground instances of p that satisfy the
head declarations. For each head declaration m ∈ M+, a clause is created
whose head atom is obtained by starring the predicate in schema(m) and
whose body atoms are those in type(m). These additional clauses allow to
distinguish abduced instances of p from implied instances of p; and they ensure
all (minimal) solutions are well-typed instances of the mode declarations. As
shown in Figure 1, a set of head atoms is obtained from each explanation W
by replacing any occurrence of p′ with p. Each set of atoms ∆ produced in
this way is then generalised by the deductive and inductive phases, below.

Example: In the running example, E contains three positive examples and
one negative example which must all be explained. M+ contains a single head
declaration m = modeh(∗, f lies(+bird)), so that pred(m) = flies/1 and
schema(m) = flies(X) and type(m) = bird(X). Thus, there is one abducible
predicate flies′/1 and one type predicate flies∗/1 defined by the two clauses
flies(X) ← flies∗(X), f lies′(X) and flies∗(X) ← bird(X). The former
states that it is possible to assume X flies if X has the correct type; and the
latter states that X has the correct type if X is a bird. Note that, if there
had been other head declarations for flies/1, these would have contributed
alternative definitions to flies∗/1. But, as there are not, only one abductive
explanation exists in this case: i.e., W = {flies′(a), f lies′(b), f lies′(c)}. Thus,
replacing each new predicate p′ by the original predicate p, gives

∆ =

flies(a)

flies(b)

flies(c)

8

INPUTS: logic program B (background), ground literals E (examples),
mode declarations M , and positive integer d (depth bound)

% — Abductive Phase (P1) — %
let A1 be the set of predicates containing one fresh predicate p′/n for each

predicate p/n = pred(m) in the scheme of some head declaration m ∈M+

let T1 be the set of clauses obtained by adding to B one clause
p(X1, . . . , Xn) ← p′(X1, . . . , Xn), p∗(X1, . . . , Xn) for each predicate p′/n ∈
A1 and one clause p∗(t1, . . . , tn) ← r1(v1), . . . , rq(vq) for each head declara-
tion m ∈M+ with schema p(t1, . . . , tn) and types r1(v1), . . . , rq(vq)

let W be any explanation in φ(T1, E,A1)
let ∆ be the set of ground facts obtained by replacing each abduced atom

p′(t1, . . . , tn) ∈ W with the corresponding fact p(t1, . . . , tn)

% — Deductive Phase (P2) — %
let A2 be the empty set of predicates ∅
let T2 be the program obtained by adding to B each fact in ∆
for each fact αi ∈ ∆

let mi be any head declaration in M whose schema subsumes αi

set ni to the set of terms in αi corresponding to + placemarkers in mi

set ki to the fact αi

repeat up to d times
let Q be the set of goals ?type(m)σ, schema(m)σ where m ∈ M− is a

body declaration and σ is a substitution binding all input variables
(i.e., all variables that replaced a + placemarker) in m to a term in ni

let R be the set of ground literals of the form schema(m)σθ where
schema(m)σ appears in a goal G ∈ Q and θ is an answer substitu-
tion in φ(T2, G,A2)

add to the body of ki all literals in R (not already in ki)
add to ni all (new) terms in R corresponding to − placemarkers

let k′

i be the clause obtained from ki by replacing all distinct terms
corresponding to + and − placemarkers with fresh variables

let K ′ (resp. K) be the set of clauses {k′

1, . . . , k
′

n} (resp. {k1, . . . , kn})

% — Inductive Phase (P3) — %
let A3 be the singleton set of predicates {use/2}
let T3 be the program obtained by adding to B one clause α′

i ←
use(i, 0), try(i, 1, δ′′1i) . . . try(i,mi, δ

′′mi

i) for each k′

i = α′

i ← δ′1i . . . δ′mi

i ∈
K ′ and two clauses try(i, j, δ′′ji) ← use(i, j), δ′ji and try(i, j, δ′′ji) ←
not use(i, j) for each literal δ′ji in the clause k′

i with variables δ′′ji
let U be any explanation in φ(T3, E,A3)
let H be the program obtained from K ′ by removing every body atom δ′ji for

which the abducible use(i, j) is not in U , and removing every clause whose
head atom α′

i does not have a corresponding atom use(0, i) in U

OUTPUT: logic program H (hypothesis)

Fig. 1. XHAIL Specification

9

3.2 Deductive Phase

The second phase, P2, computes a ground program K =
⋃n

i=1 αi ← δ1
i , . . . , δ

mi

i

where B ∪ ∆ |= δj
i for all 1 ≤ i ≤ n, 1 ≤ j ≤ mi and each clause αi ←

δ1
i , . . . , δ

mi

1 is a well-typed ground instance of a clause in L(M). To do this, each
head atom is saturated with body literals using a nonmonotonic generalisation
of the Progol level saturation method [36]. For this, the abductive system is
made to behave as a deductive query answering procedure by declaring an
empty set ∅ of abducibles. Each head atom is then processed by choosing a
head declaration mi to initialise a growing set of input terms ni which are
substituted into the + placemarkers of the given body declarations M− to
generate a set Q of goals G whose successful ground instances, obtained from
φ(B ∪∆, G, ∅), result in a set of literals R which can be added into the body
of the clause ki with head atom αi. Additionally, any new output terms are
inserted into ni. The clause ki resulting from each abducible αi is then added
to the Kernel Set K.

Example: In the running example, ∆ contains three atoms that must each be
generalised (in turn or in parallel). The first one, α1 = flies(a), is subsumed
by the schema of just one head declaration m1 = modeh(∗, f lies(+bird))
giving one initial input term a. The atom flies(a) is initialised to the head
of the clause k1 and the input term a is substituted into the schema of the
first available body declaration m = modeb(∗, penguin(+bird)), with schema
penguin(X) and type bird(X), to give the goal ?bird(a), penguin(a) using a
substitution σ that binds the input variable X to the input term a. Conversely,
the other body declaration gives the goal ?bird(a), not penguin(a). Since only
the latter goal succeeds (with the empty answer substitution θ = ∅), the
literal not penguin(a) is added to the body of k1. As no new output terms
are introduced by θ, no more goals are formed and no other body literals are
added to k1. Thus, processing all of the head atoms in this way, gives

K =

flies(a)← not penguin(a)

flies(b)← not penguin(b)

flies(c)← not penguin(c)

Whereupon, replacing all input and output terms by fresh variables, gives

K ′ =

flies(X)← not penguin(X)

flies(Y)← not penguin(Y)

flies(Z)← not penguin(Z)

10

3.3 Inductive Phase

The third phase, P3, computes a compressive theory H =
⋃n′

i=1 ai ← d1
i , . . . , d

m′

i

i

that subsumes K and entails E wrt. B. This is done by deleting from K ′ as
many literals (and clauses) as possible while ensuring correct coverage of the
examples. The abductive system is prepared for this by a transformation in-
volving two fresh predicates try/3 and use/2. For every clause k′

i ∈ K ′, each
body literal δ′ji is reduced to its variables δ′′ji and wrapped inside an atom of the
form try(i, j, δ′′ji). Then, an extra atom use(i, 0) is added to into the body of ki

and two clauses try(i, j, δ′′ji) ← use(i, j), δ′ji and try(i, j, δ′′ji) ← not use(i, j)
are created for each δ′ji ∈ k′

i. These clauses are added to the theory along with
those in B. Then, putting use/2 as the only abducible means each explanation
U of the examples E will be a set of ground atoms use(i, j) indicating that the
corresponding literals δ′ji from K ′ should be kept in H while all of the other
literals from K ′ should be deleted.

The literal use(i, j) literally means ‘use’ the jth literal in the ith clause of K ′

(where 0 is the head atom and 1..mi are the body atoms). The intuition is
that, in order for a head atom α′

i from K ′ to contribute towards the satisfaction
of an example e in E, each of the body atoms try(i, j, δ′ji) must be satisfied.
Thanks to the two rules added for this atom, its truth can be ensured in one
of two ways: by simply assuming not use(i, j); or by abducing use(i, j) and
proving δ′ji . The former effectively ignores δ′ji as if it were not there, while
the latter solves δ′ji as if it had been part of the clause. Similarly, the atom
use(i, 0) determines if the ith clause is included in the hypothesis, or not.

Example: In the running example, K ′ contains three clauses that must be
generalised. The first gives rise to the three transformed clauses shown below

flies(X) ← use(1, 0), try(1, 1, X)

try(1, 1, X) ← not use(1, 1).

try(1, 1, X) ← use(1, 1), not penguin(X).

The other clauses in K ′ produce nearly identical transformations, which can
in fact be omitted (since variants of the same clause in K ′ can be merged at
the only risk of increasing the size of the smallest ∆ from which a given H may
be computed). Either way, all of the minimal abductive explanations, such as
{use(1, 0), use(1, 1)}, result in the same final hypothesis

H =
{

flies(X) ← not penguin(X)
}

11

4 Discussion

The extended HAIL procedure differs from its monotonic predecessor in some
key respects which are designed to avoid the unsoundness and incompleteness
that would result if standard Horn clause pruning heuristics and incremental
covering methods were applied in the normal setting where hypotheses in-
tended to cover earlier examples could be invalidated by hypotheses intended
to cover later examples. For this reason, XHAIL has the ability to process all
of the examples in E in one go and to generalise all of the clauses in K at the
same time. This also means that the system is not dependent on the order
of the examples and will always be able to find a globally optimal hypothesis
with maximum compression.

Another key aspect of XHAIL is that the body literals of a Kernel Set K
are not entailed by the theory B alone (as in earlier versions of HAIL), but
also by the explanation ∆ of the examples E. This is significant because it
overcomes an inherent incompleteness of MDIE shown by a famous problem
[57] of finding the hypothesis H = {odd(s(X)) ← even(X)} for examples
E = {odd(s(s(s(0)))), not even(s(s(s(0))))} and theory B = {even(0)} ∪
{even(s(X)) ← odd(X)}. Given declarations M = {modeh(∗, odd(s(+)))} ∪
{modeb(∗, even(+))} this task cannot be solved by mainstream systems like
Progol or Aleph because more than one instance of the hypothesis is needed
to prove the example [57]. But this hypothesis is easily returned by XHAIL as
it subsumes the Kernel Set K = {odd(s(0))← even(0)} ∪ {odd(s(s(s(0))))←
even(s(s(0)))}. While one existing Horn clause system [14] and two full clausal
systems [59,18] have been developed to avoid this incompleteness in monotonic
logic programs, none of them support NAF and they are all considerably more
complex than XHAIL, even on this simple example.

As in the task above, a Kernel Set K often has the property that B ∪K |= E.
But this is not a requirement of K, as its real purpose is to provide a syntactic
and semantic bias that delimits a region of the search space likely to contain
hypotheses. Strictly speaking, this role is not played by K but by the non-
ground theory K ′ which (even in the Horn case) may not be a hypothesis (as
it could violate integrity). In any case, the search procedure is responsible for
finding a correct generalisation by dropping literals as necessary. For example,
if B = {b ← e} and E = {e}, then K = {e ← b} is now a Kernel Set of B and
e, but the only hypothesis which subsumes K and which would be returned
by XHAIL is H = {e}. Of course, it is possible to ensure that B ∪K |= E by
requiring all the body literals in K to be satisfied in a model of B consistent
with ∆ (as described in [45] previously). But this would have the effect of
including in K all facts now believed false, excluding from K all facts now
believed true, and would also sacrifice completeness of the new procedure.

12

The semantic correctness of XHAIL follows directly from the soundness of the
abductive procedure used to compute φ(T3, E,A3) in the inductive phase, P3,
which ensures T3 ∪ U |= E, where U is a set of ground atoms of the form
use(i, j). This means there is a stable model I of T3 ∪ U which satisfies E.
It can then be shown that the subset J ⊆ I obtained by removing from I all
atoms with the predicates use/2 and try/3 is a stable model of B ∪ H that
satisfies E. Thus, B ∪ H |= E. Syntactic correctness follows partly from the
inductive phase, P3, which ensures each hypothesis clause hi ∈ H is a subset of
some clause k′

i ∈ K ′, and partly from the abductive phase, P2, which ensures
k′

i is in the language L(M) of M . The linking of input and output variables
is not strictly enforced in H but, if necessary, can be ensured through the
introduction of additional constraints stating that certain literals may not be
used unless some other literals are.

Many abductive systems have a built-in preference for explanations with fewer
abducibles. If such a bias is used by XHAIL’s abductive engine, it will favour
Kernel Sets with fewer clauses and will return hypotheses with fewer literals.
However, because some maximally compressive hypotheses, especially those
involving some form of recursion, may not subsume a minimal cardinality
Kernel Set, an iterative deepening strategy is desirable — at least in the
abductive phase. It should also be remarked that the approach is only complete
for computing minimal hypotheses with finite Herbrand models. For instance,
the task of finding the hypothesis H = {int(s(X)) ← int(X)} for the example
E = {not max} and theory B = {max ← int(X), not int(s(X))} ∪ {int(0)}
would technically require an infinite Kernel Set.

Two implementations of the XHAIL procedure have been evaluated: the first
one using a top-down ALP system to perform the abduction; and the second
one using an bottom-up ASP solver as the computational engine. Preliminary
experiments suggest the latter ASP approach achieves greater performance on
problems that utilise numerical functions, integrity constraints, and cyclic or
recursive definitions; but that the former ALP approach can be applied more
easily to problems that exploit list operations, standard Prolog libraries, and
potentially infinite domains.

While a full description of the implementation is beyond the scope of this
paper, it is worth remarking that the results in the next section were obtained
using an ASP version of XHAIL with an iterative deepening strategy that
computes Kernel Sets having progressively more clauses until a subsuming
hypothesis is found. ASP was used because it was found to outperform ALP
in this domain. Iterative deepening was used because experience shows that
the number of abductive explanations (and hence the number and size of
possible Kernel Sets) grows quickly with the number of abducibles [46,2]; but
there are usually very few minimal explanations and these are the ones which
tend to produce compressive theories that do not overfit the examples.

13

5 Case Study

This section illustrates the XHAIL procedure on a nonmonotonic learning task
that uses a temporal formalism called the Event Calculus (EC) [24] to induce a
simple model of metabolic regulation for the bacterium E. coli [20]. This study
reveals many advantages of XHAIL: including its ability to learn hypotheses
for predicates not in the examples (i.e., it performs non-Observation Predicate
Learning [37]) and its ability to reason through logical cycles with negated
atoms (i.e., it handles locally unstratified programs [3]) while making extensive
use of language and search bias to bound the search space.

5.1 Inputs

The EC formalism used in this example is a logical framework for representing
and reasoning about states, actions, and time [35]. For convenience, this study
adopts a well-known logic programming formulation, known as the Simplified
Event Calculus (SEC) [53], which includes three sorts of terms: time-points,
denoted in this paper by integers; events, denoting actions that happen at
various times; and fluents, denoting properties that hold at various times.
There are three axioms (A1-A3) which govern the way events affect fluents.
As formalised in Figure 2, these axioms exploit NAF to model the persistence
of fluents when not affected by any known initiating or terminating events.

The first axiom states a fluent F holds at time T if an event E happened
at an earlier time S that initiated F (i.e., caused F to become true) and no
intervening event clipped F (i.e., terminated F , thereby causing it to become
false). The second axiom states that a fluent F is clipped between times S
and T if an event E happens at some intermediate time R that terminates F .
The third axiom states that a fluent F holds at time T if F was initially true
(i.e., was true at time 0) and no intervening event clipped F . The fluents and
events, along with their initiating and terminating conditions, are defined in
order to represent the following highly simplified model of E. coli metabolism.

In brief, E. coli is a well studied micro-organism that lives in the human
gut. Ordinarily, this bacterium prefers to feed on the simple sugar glucose
but, if necessary, it can feed on the complex sugar lactose by producing extra
enzymes that break down lactose into glucose. But, to conserve energy, E. coli
has evolved an efficient control mechanism which ensures these extra enzymes
are only produced when lactose is available as a food source but glucose is
not. The object of the exercise is to infer the existence of this mechanism from
observations describing how the availability of lactose and glucose varies in
response to the addition of these sugars to the growth medium.

14

% — Background Theory (B) — %

holdsAt(F,T) ← happens(E,S), S<T, initiates(E,F,S), not clipped(S,F,T). (A1)

clipped(S,F,T) ← happens(E,R), S<R, R<T, terminates(E,F,R). (A2)

holdsAt(F,T) ← initially(F), not clipped(0,F,T). (A3)

time(0..9). (T1)

sugar(lactose ; glucose). (T2)

event(add(G) ; use(G)) ← sugar(G). (T3)

fluent(available(G)) ← sugar(G). (T4)

initiates(add(G), available(G), T) ← sugar(G), time(T). (D1)

terminates(use(G), available(G), T) ← sugar(G), time(T). (D2)

← happens(use(G),T), not holdsAt(available(G), T). (D3)

happens(add(lactose), 0). (N1)

happens(add(glucose), 0). (N2)

% — Examples (E) — %

holdsAt(available(lactose), 1). (E1)

holdsAt(available(lactose), 2). (E2)

not holdsAt(available(lactose), 3). (E3)

% — Mode Declarations (M) — %

modeh(*, happens(use(#sugar),+time). (M1)

modeb(*, holdsAt(#fluent,+time)). (M2)

modeb(*, not holdsAt(#fluent,+time)). (M3)

Fig. 2. XHAIL Inputs (B, E & M)

% — Hypothesis (H) — %

happens(use(glucose),T) ← holdsAt(available(glucose),T). (H1)

happens(use(lactose),T) ← holdsAt(available(lactose),T),

not holdsAt(available(glucose),T). (H2)

Fig. 3. XHAIL Output (H)

15

The ontology of the domain is formalised by type axioms (T1-T4). The first
axiom states the time-line consists of the integers 0 through 9 (where the
notation ‘..’ is a shorthand for an integer range). The second axiom states
that lactose and glucose are both sugars (where the notation ‘;’ is a shorthand
for alternative arguments). The third axiom states that for each sugar, G, there
are two events, add(G) and use(G). The former denotes the action performed
by a scientist when he adds G to the growth medium; while the latter denotes
the action performed by the bacteria when it uses G as its food source. The
fourth axiom states that for each sugar, G, there is one fluent, available(G),
which refers to the availability of G as a food source.

Now, suppose a scientist conducts an experiment on a culture of E. coli, to
which he adds lactose and glucose and measures the availability of lactose in
order to infer the conditions under which this bacterium uses these sugars.
Some initial knowledge is represented by the domain axioms (D1-D3). The
two rules state that adding a sugar G to the medium (resp. using up G)
initiates (resp. terminates) the availability of G; and the constraint states
it is impossible for E. coli to use a sugar which is not available. The two
narrative events (N1-N2) formalise the actions of adding the two sugars at
the beginning of the experiment. The three example observations (E1-E3)
formalise the observation of lactose availability over the next three time-points.

As yet, no information has been given about the situations in which E. coli
might use the sugars lactose and glucose. Instead, our purpose is to learn this
from the examples E in (E1-E3) and the background theory B consisting of the
temporal axioms (A1-A3), type axioms (T1-T4), domain axioms (D1-D3), and
narrative events in (N1-N2). To this end, the mode declarations (M1-M3) state
that hypothesized clauses may have atoms of the form happens(use(g), T)
in their head, where g is a constant (denoting a sugar) and T is a variable
(denoting a time); and may also have literals of the form holdsAt(f, T) and
not holdsAt(f, T) in their bodies where f is a constant (denoting a fluent)
and T is a variable (denoting a time that is mentioned in the head atom).

Given the inputs B, E and M in Figure 2, the XHAIL proof procedure in
Figure 1 will construct a compressive hypothesis H in the language of M
that entails E wrt. B. In this case, XHAIL returns just one hypothesis H
which, as formalised in Figure 3, states that E. coli will use glucose whenever
glucose is available, and that it will use lactose whenever lactose is available
but glucose is not. There is only one solution because the observed change in
the availability of lactose at time 3 must be due the fact that lactose is used
at time 2 but not at time 1. However, the only way time-points 1 and 2 can be
distinguished is by an implicit change in the availability of glucose, which must
be used at time 1 but not at time 2. (Note that an initiating or terminating
effect on a fluent is always felt at the time-point immediately after an event.)

16

5.2 Output

The XHAIL system used in this case study employs an iterative deepening
strategy to automatically construct and generalise Kernel Sets of progressively
increasing size until a solution is found. This is achieved by exploiting the
built-in preference of the abductive engine to compute minimal explanations.
As shown below, several alternative Kernel Sets may therefore have to be
considered before a hypothesis is finally returned.

The head atoms of each Kernel Set are computed by the abductive phase P1.
Here, there is one abducible happens′/2 in A1 associated with the predicate
happens/2 in the only head declaration. Thus, B is supplemented with two
typing clauses in T1: i.e., happens(E, T) ← happens∗(E, T), happens′(E, T)
and happens∗(use(G), T) ← sugar(G), time(T). There is one singleton set
W containing the fact happens′(use(lactose), 2) which results in a minimal ∆
composed of a single head atom happens(use(lactose), 2).

The body literals of a Kernel Set are computed by the deductive phase P2.
Here, A2 is empty and one atom happens(use(lactose), 2) is added to B in T2.
There is one term 2 in n1 and two queries ?fluent(F), time(2), holdsAt(F, 2)
and ?fluent(F), time(2), not holdsAt(F, 2) in Q. These contribute just two
answers holdsAt(available(lactose), 2) and holdsAt(available(glucose), 2) to
R, which results in a Kernel Set K with one clause happens(use(lactose), 2) ←
holdsAt(available(lactose), 2), holdsAt(available(glucose), 2).

Each Kernel Set is generalised by the inductive phase P3. Here, there is one
abducible use/2 in A3 and B is supplemented with five clauses in T3: i.e.,
happens(use(lactose), T) ← use(1, 0), try(1, 1, T), try(1, 2, T) in addition
to try(1, 1, T) ← use(1, 1), holdsAt(available(lactose), T) and try(1, 1, T) ←
not use(1, 1) as well as try(1, 2, T) ← use(1, 2), holdsAt(available(glucose), T)
and try(1, 2, T) ← not use(1, 2). But, there are no explanations U and hence
no hypotheses H which can be obtained from this Kernel Set.

As a result, XHAIL revisits the abductive phase P1 to look for explanations
∆ with two atoms. One of these contains the facts happens(use(lactose), 2)
and happens(use(glucose), 1), which results in a corresponding Kernel Set K
with the clause happens(use(glucose), 1) ← holdsAt(available(lactose), 1),
holdsAt(available(glucose), 1) along with the clause happens(use(lactose), 2)
← holdsAt(available(lactose), 2), not holdsAt(available(glucose), 2). Now,
when this Kernel Set is generalised it yields the hypothesis H (by dropping
the first literal of the first clause in the corresponding K ′).

A prototype implementation of XHAIL based on the Lparse/Smodels ASP
solver took a couple of seconds to compute this hypothesis on a 1.66 GHz
Centrino Duo laptop PC running Windows Vista with 1 GB of Ram.

17

6 Related Work

Several authors [4,19,7,25,28,5,51,13,39,1,43,49,56] have proposed methods for
nonmonotonic ILP which are reviewed in [50]. Many use a generalisation of
the stable model semantics, known as answer sets [16], for so-called extended
logic programs with both NAF and classical negation. But, since extended
programs are trivially reducible to normal programs via a simple renaming of
classically negated literals [16], these approaches are no more general than the
one presented in this paper. In fact, compared to XHAIL, existing methods
impose strong restrictions on the learning task or they lack efficient strategies
for guiding the computation. Some allow NAF in the hypothesis H but not
in the theory B; which means they not only lose much of the convenience
and power of NAF but they also lose the ability to use the theory B ∪ H
as a subsequent starting theory. Others are restricted to learning stratified
programs [3] or semi-normal default rules [47]. Most can only do Observation
Predicate Learning (OPL) [37], where the predicates defined in H must appear
in E. Initial experiments suggest that, in certain problems, XHAIL overcomes
some of the limitations of these systems while effectively exploiting language
and search bias. For example, in [2] XHAIL has been used to infer requirements
from scenarios in a task that requires non-OPL learning of multiple predicates
over non-stratified programs.

Sakama [50] defines a procedure for inducing extended programs under the
skeptical answer set semantics. His method employs the notions of ‘relevance’
and ‘involvement’ to constrain the search space, but does not exploit language
or search bias as effectively as XHAIL. Unlike XHAIL, which can generalise
all the examples in one go, the procedure in [50] only considers one example
at a time; which introduces a dependency on the order in which examples are
presented. Moreover, it can only learn a single rule in response to each such
example, is limited to OPL learning, assumes the example predicate appears
nowhere in the theory, and imposes an additional restriction, called negative-
cycle-freeness, on the hypothesis. However, all of these conditions are violated
by the temporal modelling task in the previous section. It is mentioned in
[50] that overcoming these constraints would necessitate the use of abductive
reasoning — and indeed this is exactly what XHAIL achieves.

Otero [40] also considers the task of induction under the skeptical stable model
semantics. He gives necessary and sufficient conditions for the existence of a
stable model solution and describes a method for computing the corresponding
models. But his method only returns ground unit hypotheses (i.e., the set of
all ground atoms in a stable model). In fact, each solution returned by Otero’s
procedure can formally be treated as a maximal abductive explanation of the
examples. By contrast, XHAIL prefers minimal abductive solutions, which it
subsequently generalises into non-ground inductive hypotheses.

18

Otero [41] also considers the task of learning temporal action theories from
narratives describing a system’s dynamic behaviour. Like the case study in
the previous section, his narratives comprise a set of known fluents and a set
of known actions. But his theories are expressed in a formalism that combines
various aspects of both the Event Calculus (EC) [24] and another formalism
called the Situation Calculus (SC) [29]. A major concern of his approach is
avoiding the so-called frame problem [53] which, in this context, refers to the
need for many axioms describing the non-effects of actions on fluents. After
showing how this problem is easily avoided by adding a few inertial axioms
with NAF, the author notes how the limitations of earlier nonmonotonic ILP
systems mean they cannot be used in this setting. Thus, Otero proposes a
methodology by which the task of learning positive or negative action effects
for a single fluent can be transformed into a monotonic learning problem. This
transformation is based on distinguishing points at which a fluent is known
to change (which become positive examples), from points at which fluent is
known not to change (which become background knowledge), and from points
at which it is unknown whether the fluent changes or not (which are denoted
by Skolem symbols that are inserted as additional arguments into all action
and fluent literals). He then suggests that the frame problem is avoided by
excluding action effects whose conclusions are contained among their own
preconditions and argues that his method is sound and complete for inducing
the effects of actions without the frame problem.

However, the claims in [41] raise some issues. First, the frame problem, which
results from failure of a representation formalism to provide a compact means
of representing defaults and priorities, cannot be solved by further restricting
any already inadequate language. The frame axioms that Otero disallows are
not the cause of the problem, but merely a symptom; and excluding them
only serves to compound the issue. But a rather more serious criticism of
Otero’s approach concerns the restricted nature of the learning task it tackles.
It is well known that the learning of action theories from partial observations
cannot generally be solved by learning individual state transitions in isolation.
For this reason it is easy to construct partial narratives containing just two
fluents from which XHAIL can learn a correct specification of, say, a divide-by-
two counter, but which Otero’s method cannot. Analogous limitations apply
to the extended version of Otero’s procedure, described in [42], for learning
the indirect effects of actions. Moreover, while Otero’s method is specifically
designed to learn static laws and action effects or preconditions, XHAIL is
a general purpose nonmonotonic ILP system which does not impose any a
priori assumptions on the hypothesis space. Therefore, unlike Otero’s method,
XHAIL can also be used — by suitably extending the language bias and
background knowledge — to learn trigger axioms (as exemplified in the case
study of previous section) in addition to more advanced constructs, such as
release and trajectory axioms, or cumulative effects and cancellation laws,
supported by alternative formulations of the Event Calculus [30,35].

19

Esposito et al. [12] describe a multi-strategy system called Inthelex which
learns and revises normal programs from examples. It uses various operators
to saturate, abstract, abduce, generalise and specialise clauses, respectively.
Unlike XHAIL, which employs abduction to construct hypotheses whose head
predicates may differ from those in the examples, Inthelex uses abduction
only to hypothesise basic facts that might be missing from the description of
each example. This means Inthelex is limited to the OPL learning task. In
addition, Inthelex is restricted to the formalism of hierarchical linked datalog
programs under the so-called object identity (OI) assumption [11], which is not
appropriate for domains like the EC case study of the previous section. For,
while any normal program can be transformed into linked datalog by flattening
function symbols via the introduction of new predicates [48], this does not
always preserve logical entailment [17]; and, while any (hierarchical) datalog
program can be transformed into an equivalent datalog program under the OI
assumption, this is potentially expensive [52]. Furthermore, the restriction to
hierarchical programs means Inthelex is strictly less expressive than XHAIL.
Although more details of its abductive methodology are given in [9] and [10]
some key aspects concerning the Inthelex procedure are a little unclear: such
as what happens when more than one abductive explanation is produced?
Because the current Inthelex release does not support abstraction or abduction
an independent evaluation of these features has not yet been possible.

There are two more differences between Inthelex and XHAIL. First, in the
former approach, one example is processed at a time and is represented by a
ground rule with a single head literal and zero or more body atoms. But this
is equivalent, in the latter approach, to adding the body atoms of the selected
example into the background theory. Second, in the Inthelex approach, clauses
are revised by generalisation and specialisation operators. But these can be
simulated, in the XHAIL approach, with some simple program transforms
that exploit the nonmonotonicity of NAF. Indeed, the removal of literals from
a clause can be achieved by the same technique used earlier in the inductive
phase of the XHAIL procedure; except that not del(I, J) may be used in place
of use(I, J) in order to minimise the number of literals deleted, as opposed to
the number of literals used. Moreover, the addition of literals to a clause can be
achieved by a variation of the method commonly used to learn the definition
of an abnormality predicate newly inserted to the clause body. For example,
a clause fly(X) ← bird(X) to be refined is first represented fly(X) ←
bird(X), not ab(X) so that learning ab(X) ← penguin(X) gives the revised
clause fly(X) ← bird(X), not penguin(X). In general, the final clause is
obtained by adding the complement of one body literal from each abnormality
clause. If exactly one specialisation is required, then a restriction must be
placed on the number of body literals in each abnormality clause (as zero
means the clause will be deleted, and more than one means several clauses
will be added). But more analysis of this technique is surely needed.

20

Tamaddoni-Nezhad et al. [55] describe how the non-OPL system Progol5 [37]
can be applied to the prediction of enzyme inhibitions in biological networks.
The authors propose a simple logical theory that uses NAF to model the effects
of enzyme inhibition and non-inhibition on the concentration of compounds
in a metabolic network. They go on to explain how possible inhibitions can be
inferred from observed metabolite fluctuations by running the Progol5 system
twice: the first time to generate a set of abducibles that explain the examples
and the second time to generate a set of rules that generalise the abducibles.
While the first invocation of Progol5 gives a similar result to the abductive
phase of XHAIL, the latter overcomes several limitations of the former. In
particular, Progol5 cannot abduce more than one atom in response to each
example, is unable to abduce atoms that must be used more than once in
a proof of the example, and has no way of reasoning abductively through
programs with negation [44]. To compensate for this limitation, the authors
must rewrite their logical model to exclude NAF before running Progol by
adding an explicit truth value to some of the atoms. However, this rewriting is
only possibly because their initial model was a very simple stratified program.

Moyle and Muggleton [33] describe an application of Progol5 to the task of
learning EC initiates and terminates axioms. But the limitations of Progol5
noted above necessitate a rewriting of the EC axioms to express the initiates
and terminates axioms in terms of a single flips predicate with reified truth
values. It also calls for ad-hoc transformations to ‘decouple’ the learning of
initiating and terminating effects by creating artificial constraints to specify
time intervals in which fluents are not clipped [32]. Moyle [31] describes an
application of the ILP system Alecto to the learning of EC domain axioms from
narratives. This system can be seen as a generalisation of Progol5 that uses a
more powerful abductive procedure called SOLD resolution [58] to pre-process
the examples. However SOLD resolution is also restricted to definite clauses
and positive only examples. Thus, in order to learn EC theories, Alecto was
extended by some as yet unspecified mechanism for handling negation. Since
the current Alecto release (included in the latest Aleph distribution [54]) does
not support abduction through negation an independent evaluation of these
claims has not been possible.

Mueller [34] describes a method for rewriting a class of projection, planning,
and model construction tasks in a Discrete Event Calculus (DEC) [35] to
propositional satisfiability solving. This system cannot perform learning of
DEC theories, while XHAIL can. Kakas and Riguzzi [23] describe a system for
inductively learning abductive logic programs. But their system only performs
OPL learning of target concepts that do not appear in the theory, and is only
sound for the generalised partial stable model semantics, in which the truth
of some literals may be undefined. Inoue [18] and Yamamoto [59] propose
hypothesis finding systems which are sound and complete for full clausal logic.
However, these systems only deal with monotonic classical negation.

21

7 Conclusions and Future Work

This paper introduced a general purpose nonmonotonic learning system, called
eXtended Hybrid Abductive Inductive Learning (XHAIL), which exploits the
full representation and reasoning power of Negation as Failure whilst using
traditional forms of language and search bias to bound the search space. To
do this, XHAIL integrates abductive, deductive, and inductive inference in
a logical framework for the construction and generalisation of a preliminary
ground Kernel Set. In this way, XHAIL allows for the non-observational multi-
predicate learning of non-stratified programs. As an example of its utility,
XHAIL was applied to the learning of temporal theories in a nonmonotonic
Event Calculus. Since the task of modelling state and event based processes
from observations is likely to gain importance, it is reasonable to suppose that
systems like XHAIL will become increasingly useful in practical applications.
However, the limitations of the proposed approach must be studied in greater
detail and validated on some more realistic problems.

Acknowledgments

The author is grateful to Dalal Alrajeh, Krysia Broda, Domenico Corapi and
Alessandra Russo for useful discussions. Helpful comments were also provided
by Peter Flach, Antonis Kakas and Ramon Otero. This work was supported
by a Research Councils UK fellowship in Exabyte Informatics.

References

[1] H. Adé and M. Denecker. AILP: Abductive Inductive Logic Programming. In
14th International Joint Conference on Artificial Intelligence, pages 1201–1207.
Morgan Kaufmann, 1995.

[2] D. Alrajeh, O. Ray, A. Russo, and S. Uchitel. Extracting Requirements from
Scenarios with ILP. In 16th International Conference on Inductive Logic
Programming, volume 4455 of LNCS, pages 63–77. Springer, 2007.

[3] K. Apt and R. Bol. Logic programming and negation: A survey. Journal of
Logic Programming, 19/20:9–71, 1994.

[4] M. Bain and S. Muggleton. Non-monotonic learning. In Machine Intelligence
12, pages 105–119. OUP, 1991.

[5] F. Bergadano, D. Gunetti, M. Nicosia, and G. Ruffo. Learning logic programs
with negation as failure. In L. De Raedt, editor, Advances in Inductive Logic
Programming, pages 107–123. IOS Press, 1996.

22

[6] K. Clark. Negation as failure rule. In H. Gallaire and J. Minker, editors, Logic
and Data Bases, pages 293–322. Plenum Press, 1978.

[7] Y. Dimopoulos and A. Kakas. Learning non-monotonic logic programs:
Learning exceptions. In 8th European Conference on Machine Learning, volume
912 of LNAI, pages 122–138. Springer, 1995.

[8] K. Eshghi and R. Kowalski. Abduction compared with negation by failure.
In 6th International Conference on Logic Programming, pages 234–254. MIT
Press, 1989.

[9] F. Esposito, N. Fanizzi, S. Ferilli, T. Basile, and N. Di Mauro. Multistrategy
operators for relational learning and their cooperation. Fundamenta
Informaticae, 69(4):389–409, 2006.

[10] F. Esposito, S. Ferilli, T. Basile, and N. Di Mauro. Inference of abduction
theories for handling incompleteness in first-order learning. Knowledge and
Information Systems, 11(2):217–242, 2007.

[11] F. Esposito, A. Laterza, D. Malerba, and G. Semeraro. Refinement of Datalog
programs. In Proceedings of the MLnet Familiarization Workshop on Data
Mining with Inductive Logic Programming, pages 73–94, 1996.

[12] F. Esposito, G. Semeraro, N. Fanizzi, and S. Ferilli. Multistrategy Theory
Revision: Induction and Abduction in INTHELEX. Machine Learning,
38(1/2):133–156, 2000.

[13] L. Fogel and G. Zaverucha. Normal programs and multiple predicate learning.
In 8th International Workshop on Inductive Logic Programming, pages 175–184.
Springer, 1998.

[14] K. Furukawa. On the completion of the most specific hypothesis computation
in inverse entailment for mutual recursion. In 1st International Conference on
Discovery Science, volume 1532 of LNCS, pages 315–325. Springer, 1998.

[15] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic
Programming. In 5th International Conference on Logic Programming, pages
1070–1080. MIT Press, 1988.

[16] M. Gelfond and V. Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9(3/4):365–386, 1991.

[17] K. Hirata. Flattening and implication. In 10th International Conference on
Algorithmic Learning Theory, volume 1720 of LNAI, pages 157–168. Springer,
1999.

[18] K. Inoue. Induction as Consequence Finding. Machine Learning, 55(2):109–135,
2004.

[19] K. Inoue and Y. Kudoh. Learning extended logic programs. In 15th
International Joint Conference on Artificial Intelligence, volume I, pages 176–
181. Morgan Kaufmann, 1997.

23

[20] F. Jacob and J. Monod. Genetic regulatory mechanisms in the synthesis of
proteins. Journal of Molecular Biology, 3:318–356, 1961.

[21] A. Kakas, R. Kowalski, and F. Toni. Abductive Logic Programming. Journal
of Logic and Computation, 2(6):719–770, 1992.

[22] A. Kakas and P. Mancarella. Generalized Stable Models: a Semantics for
Abduction. In 9th European Conference on Artificial Intelligence, pages 385–
391. Pitman, 1990.

[23] A. Kakas and F. Riguzzi. Abductive concept learning. New Generation
Computing, 18(3):243–294, 2000.

[24] R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4:67–95, 1986.

[25] E. Lamma, F. Riguzzi, and L. Pereira. Strategies in combined learning via logic
programs. Machine Learning, 38(1-2):63–87, 2000.

[26] V. Lifschitz. Action languages, answer sets and planning. In K. Apt, V. Marek,
M. Truszczynski, and D. Warren, editors, The Logic Programming Paradigm: a
25 year perspective, pages 357–373. Springer, 1999.

[27] J. Lloyd. Foundations of Logic Programming. Springer, 1987.

[28] L. Martin and C. Vrain. A three-valued framework for the induction of
general logic programs. In L. De Raedt, editor, Advances in Inductive Logic
Programming, pages 219–235. IOS Press, 1996.

[29] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint
of artificial intelligence. Machine Intelligence, 4:463–502, 1969.

[30] R. Miller and M. Shanahan. Some alternative formulations of the event calculus.
In A. Kakas and F. Sadri, editors, Computational Logic: Logic Programming
and Beyond, Essays in Honour of Robert A. Kowalski, Part II, pages 452–490.
Springer-Verlag, 2002.

[31] S. Moyle. Using theory completion to learn a robot navigation control program.
In 12th International Workshop on Inductive Logic Programming, volume 2583
of LNAI, pages 182–197. Springer, 2002.

[32] S. Moyle. An investigation into theory completion techniques in Inductive Logic
Programming. PhD thesis, University of Oxford, UK, 2003.

[33] S. Moyle and S. Muggleton. Learning programs in the event calculus. In
7th International Workshop on Inductive Logic Programming, volume 1297 of
LNAI, pages 205–212. Springer, 1997.

[34] E. Mueller. Event calculus reasoning through satisfiability. Journal of Logic
and Computation, 14(5):703–730, 2004.

[35] E. Mueller. Commonsense Reasoning. Morgan Kaufmann, 2006.

24

[36] S. Muggleton. Inverse Entailment and Progol. New Generation Computing,
13(3-4):245–286, 1995.

[37] S. Muggleton and C. Bryant. Theory Completion Using Inverse Entailment. In
10th International Conference on Inductive Logic Programming, volume 1866
of LNCS, pages 130–146. Springer, 2000.

[38] S. Muggleton and L. De Raedt. Inductive Logic Programming: Theory and
Methods. Journal of Logic Programming, 19,20:629–679, 1994.

[39] P. Nicolas and B. Duval. Representation of incomplete knowledge by induction
of default theories. In 6th International Conference on Logic Programming and
Nonmonotonic Reasoning, volume 2173, pages 160–172. Springer, 2001.

[40] R. Otero. Induction of Stable Models. In 11th International Conference on
Inductive Logic Programming, volume 2157 of LNAI, pages 193–205. Springer,
2001.

[41] R. Otero. Induction of the effects of actions by monotonic methods. In
13th International Conference on Inductive Logic Programming, volume 2835
of LNCS, pages 299–310. Springer, 2003.

[42] R. Otero. Induction of the indirect effects of actions by monotonic methods. In
15th International Conference on Inductive Logic Programming, volume 3625
of LNCS, pages 279–294. Springer, 2005.

[43] L. De Raedt. Interactive Theory Revision: An Inductive Logic Programming
Approach. Konwledge-based Systems. Academic Press, 1992.

[44] O. Ray. Hybrid Abductive-Inductive Learning. PhD thesis, Department of
Computing, Imperial College London, UK, 2005.

[45] O. Ray. Using abduction for induction of normal logic programs. In ECAI’06
Workshop on Abduction and Induction in Artificial Intelligence and Scientific
Modelling, pages 28–31, 2006.

[46] O. Ray. Inferring process models from temporal data using abduction and
induction. In 1st International Workshop on the Induction of Process Models,
2007.

[47] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.

[48] C. Rouveirol. Flattening and saturation: Two representation changes for
generalization. Machine Learning, 14(1):219–232, 1994.

[49] C. Sakama. Some properties of inverse resolution in normal logic programs. In
9th International Workshop on Inductive Logic Programming, volume 1634 of
LNCS, pages 279–290. Springer, 1999.

[50] C. Sakama. Induction from answer sets in nonmonotonic logic programs. ACM
Transactions on Computational Logic, 6(2):203–231, 2005.

25

[51] J. Seitzer. Stable ILP: exploring the added expressivity of negation in the
background knowledge. In IJCAI’95 Workshop on Frontiers of Inductive Logic
Programming, 1997.

[52] G. Semeraro, F. Esposito, D. Malerba, N. Fanizzi, and S. Ferilli. A logic
framework for the incremental inductive synthesis of datalog theories. In 7th
International Workshop on Logic Programming Synthesis and Transformation,
volume 1463 of LNCS, pages 300–321. Springer, 1997.

[53] M. Shanahan. Solving the Frame Problem: A Mathematical Investigation of the
Common Sense Law of Inertia. MIT Press, 1997.

[54] A. Srinivasan. The Aleph Manual (version 4). Machine Learning Group, Oxford
University Computing Lab, 2003.

[55] A. Tamaddoni-Nezhad, R. Chaleil, A Kakas, M. Sternberg, J. Nicholson, and
S. Muggleton. Modeling the effects of toxins in metabolic networks. Engineering
in Medicine and Biology Magazine, 26(2):209–230, 2007.

[56] K. Taylor. Inverse resolution of normal clauses. In 3rd International Workshop
on Inductive Logic Programming, pages 165–178. Joseph Stefan Institute, 1993.

[57] A. Yamamoto. Which hypotheses can be found with Inverse Entailment? In
7th International Workshop on Inductive Logic Programming, volume 1297 of
LNAI, pages 296–308. Springer, 1997.

[58] A. Yamamoto. Using Abduction for Induction based on Bottom Generalisation.
In P. Flach and A. Kakas, editors, Abduction and Induction: essays on their
relation and integration, volume 18 of Applied Logic Series, pages 267–280.
Kluwer, 2000.

[59] A. Yamamoto. Hypothesis finding based on upward refinement of residue
hypotheses. Theoretical Computer Science, 298:5–19, 2003.

26

