
The Overture Initiative

Integrating Tools for VDM

www.overturetool.org

Peter Gorm Larsen
Aarhus School of Engineering, Denmark

e-mail: pgl@iha.dk

Nick Battle
Fujitsu, UK

e-mail: nick.battle@uk.fujitsu.com

Miguel Ferreira
Software Improvement Group, Netherlands

e-mail: m.ferreira@sig.nl

John Fitzgerald
Newcastle University, UK

e-mail: john.fitzgerald@ncl.ac.uk

Kenneth Lausdahl
Aarhus School of Engineering, Denmark

e-mail: kel@iha.dk

Marcel Verhoef
Chess, Netherlands

e-mail: Marcel.Verhoef@chess.nl

Abstract

Overture is a community-based initiative that aims to de-
velop a common open-source platform integrating a range of
tools for constructing and analysing formal models of systems
using VDM. The mission is to both provide an industrial-
strength tool set for VDM and also to provide an environ-
ment that allows researchers and other stakeholders to ex-
periment with modifications and extensions to the tools and
language. This paper presents the current status and future
vision of the Overture project.

1 Introduction

Formal methods are mathematical techniques for the mod-
elling, analysis and development of software and sys-
tems [WLBF09]. Their use is motivated by the expectation
that, as in other engineering disciplines, performing an ap-
propriate mathematical analysis can promote early discovery
of defects and contribute directly to the increased reliability
and robustness of a design.

The Vienna Development Method (VDM)1 is one of the
most mature formal methods [Jon99, FL09]. The method
focuses on the development and analysis of a system model
expressed in a formal language. The language’s formality
enables developers to use a wide range of analytic tech-
niques, from testing to mathematical proof, to verify the
consistency of a model and its correctness with respect to
an existing statement of requirements. The VDM modelling
language has been gradually extended over time. Its most
basic form (VDM-SL), standardised by ISO [LH+96] sup-
ports the modelling of the functionality of sequential systems.
Extensions support object-oriented modelling and concur-
rency [FLM+05], real-time computations [MBD+00] and dis-
tributed systems [VLH06]. There is consequently a need to
provide a common basis for supporting the analytic tools
covering all these extensions.

1http://www.vdmportal.org/

Currently, the most feature-rich tool available is VDM-
Tools [ELL94, FLS08], a commercial product which includes
syntax- and type-checking facilities, an interpreter to support
testing and debugging of models, proof obligation generators
that produce formal specifications of integrity checks that
can not be performed statically, and code generators. From
the perspective of modern Integrated Development Environ-
ments (IDEs), VDMTools has some weaknesses, including a
relative lack of extensibility.

The Overture project aims to provide at least as much
functionality as VDMTools, but built on an open and exten-
sible platform based on the Eclipse framework. An alterna-
tive VDM tool, VDMJ [Bat09], provides many of the features
of VDMTools. It is small, relatively fast, pure Java and open
source but has only a command-line interface. These char-
acteristics make it suitable for integration with the Eclipse
IDE and allow it to be distributed freely with the Overture
project.

This paper provides a report on the current state of Over-
ture, and plans for its future development. It provides a short
introduction to Eclipse (Section 3) and to the Overture plug-
in architecture (Section 4). Section 4 then provides a short
introduction to the features that currently exist in Overture.
Section 5 explains the development strategy for the Overture
tool. Finally Section 6 describes future development plans.

2 VDM

A VDM model describes data and functionality. User-defined
data types are built from base types and constructors defin-
ing compositions such as record and union types, and col-
lections such as sets, sequences and mappings. Types may
be constrained by invariants which are arbitrarily complex
logical predicates that all elements of the defined type re-
spect. Persistent data is modelled as state variables, again
restricted by invariants.

Functionality in VDM is expressed as operations over state
variables or as referentially transparent functions over the

1

ACM SIGSOFT Software Engineering Notes Page 1 November 2010 Volume 35 Number 1

DOI: 10.1145/1668862.1668864 http://doi.acm.org/10.1145/1668862.1668864



available data types. Functionality can be defined explic-
itly by means of simple algorithms or implicitly by means
of postconditions characterising the required relationship be-
tween the results and the inputs. In either style, the assump-
tions under which a function or operation may be called are
recorded as logical preconditions. Since functionality can be
defined implicitly, and given the expressiveness of the logic
for defining functionality, VDM models are not necessarily
executable. There is, nevertheless, a large executable subset
of the modelling language, allowing validation of models by
dynamic testing.

The VDM modelling language has a formal semantics, al-
lowing users to conduct more sophisticated static analyses
than regular syntax and type checking. For example, it is
possible to analyse models to detect violations caused by
potential misuse of partial operators (e.g. indexing out of
range) or by potential violation of invariants. The conditions
for a consistent model are recorded as proof obligations which
are logical predicates that can be proven to hold using the
mathematical semantics of the language. Such proof obliga-
tions cannot be checked completely automatically in general
because of the expressiveness of the modelling language, but
they can be proved using modern proof technology or manual
inspection.

The VDM extensions that support object-oriented struc-
turing use concepts common to UML and so there is scope for
integrating the tools that support formal analysis of VDM
models with graphical views of the models via UML class di-
agrams, for example. Other VDM extensions to support con-
currency, distribution and real-time systems open the possi-
bility of providing tools that allow exploration of complex
run-time behaviours, again via graphical representations.

3 Eclipse

Eclipse is intended to serve as a common platform that
“blends separately developed tools into a well designed
suite”2. The Eclipse platform user interface is based on edi-
tors, views, and perspectives. A perspective defines an appro-
priate collection of views, their layout, and applicable actions
for a given user task. A view is a workbench part that can
navigate a hierarchy of information or display properties for
an object. Figure 2 shows a screenshot of the Overture IDE
built on Eclipse.

4 Overture Architecture and Fea-
tures

Overture uses a plug-in architecture consisting of compo-
nents that supply core functionality and components that
interact directly with the user through the Eclipse GUI. The
dependencies between these components are quite complex
but it is notable that most of the components depend on the
abstract syntax trees (ASTs) generated from the parsing of

2http://help.eclipse.org/

Figure 1: Overture Tool Components

a VDM model. The current and envisaged Overture compo-
nents are shown in Figure 4. The remainder of this section
describes each of the main components in more detail.

4.1 Overture Parsers and ASTs

VDM models are input in plain text using a standard con-
crete syntax. A parser is therefore required to transform
the textual model into an AST that all plug-ins may use to
access the model. The parser developed for Overture is gen-
erated directly from the VDM grammar using the JFLEX
and BYACC/J tools. The VDM tools that Overture seeks
to integrate also have their own legacy parsers. For example,
as a matter of convenience, the VDMJ parser is used to mark
the syntax problems highlighted in the Overture editor plug-
in. This parser also permits VDM source to be embedded
within a LATEX document.

4.2 Overture IDE

The basic Overture IDE [MT09] is illustrated in Figure 2.
The Explorer view (on the left of the figure) allows the user
to create, select, and delete Overture projects and navigate
between the files in these projects. The panel to the right
of the Explorer is the editor area. Since there are currently
several dialects of VDM, the particular editor that opens in
the panel depends on the dialect of VDM being used in the
current project. The Outline view, to the right of the editor,
summarises the content of the file currently selected in the
editor, displaying declared classes, instance variables, values,
types, functions, operations etc. The Problems view, shown
here at the bottom of the window, displays information gen-
erated by Overture, such as warnings and errors relevant to
the current project.

Most of the other features of the workbench, such as the
menu or the toolbar are similar to those of other familiar
applications. There is also a special menu with Overture-
specific functionality. One convenient feature is a toolbar of

2

ACM SIGSOFT Software Engineering Notes Page 2 November 2010 Volume 35 Number 1

DOI: 10.1145/1668862.1668864 http://doi.acm.org/10.1145/1668862.1668864



Figure 2: Overture IDE

shortcuts to switch between different perspectives that ap-
pears on the right side of the screen; these vary dynamically
according to context and history.

4.3 Type Checking

Static type checking is performed automatically as a model
is entered via the Overture editor. The simplest errors are
often typographical in origin and are readily detected, for
example entering the type of a parameter incorrectly, so that
the type name used cannot be found. More subtle errors can
indicate semantic problems with the model, such as when
trying to compose mappings where the domain and range of
the operands do not match. Warnings are also generated for
unused variables, obviously unreachable code, and so on.

Overture supports type checking with “possible” seman-
tics. An expression is considered type correct if there is an
assignment of values that yields a result of the correct type,
regardless of whether there are other assignments that could
be type incorrect. For example, consider a function with
a return type composed of natural numbers constrained by
an invariant to be less than 10. If the function has a body
that returns a real number, this is considered correct by the
checker because a real number is possibly a natural number
less than 10. There is a risk that, at run time, the real value
is actually not a whole number, or is less than zero or greater
than 10. The VDM run-time system performs dynamic type
checking which catches such errors. By contrast “definite”
semantics for type checking raises errors in all cases where
there might be a run-time error, regardless of whether this
is guarded against.

4.4 Proof Obligation Generation

As indicated above, static type correctness does not guaran-
tee freedom from run-time errors. The formality of VDM’s

semantics makes it possible to generate, for a model, a set
of logical assertions that must be true if that model is to be
dynamically type correct and semantically consistent. We
call these assertions proof obligations. Both VDMTools and
VDMJ provide tools that automatically generate proof obli-
gations for a given model [Ber97].

Proof obligations are generated for a range of properties
relating to the internal consistency of a model. These include
obligations checking for potential run-time errors caused by
misapplication of partial operators, consistency of results
with postconditions and termination of recursion [Rib08]. In
our type checking example from Section 4.3, proof obliga-
tions would be generated that state that, whenever a real
number is returned as a result of the function, the real value
satisfies the invariant of the return type. The obligations
will take account of the context in the model, so for exam-
ple a result returned from within nested if or else clauses
would yield a proof obligation that was qualified with the
same tests as the if-expressions which lead to the returned
result.

Proof obligations can be verified to different levels of con-
fidence using a range of techniques including manual inspec-
tion and formal mathematical proof.

4.5 Proof Support

The highest level of confidence in the validity of proof obliga-
tions can be gained by constructing machine-verifiable formal
proofs. The production of such proofs manually is a complex
and error-prone process, but it is susceptible to automated
support. There is currently no VDM-specific theorem prover,
but it is possible to exploit off-the-shelf proof technology. A
model can be translated into a theory (in the prover’s lan-
guage) that captures its semantics, and the proof obligations
can be set as proof commands. Along with the translation,
the connection to the theorem prover is complemented with

3

ACM SIGSOFT Software Engineering Notes Page 3 November 2010 Volume 35 Number 1

DOI: 10.1145/1668862.1668864 http://doi.acm.org/10.1145/1668862.1668864



a set of VDM-specific theorems and proof tactics.
The viability of this approach to automated verification

in VDM was established some time ago [AF97]. More re-
cently, an automated proof support system was developed in
the Overture context [Ver07]. A VDM prototype model of
a translator tool was developed, converting VDM to HOL.
The interaction between the proof obligation generators, the
translator tool (automatically generated from the VDM++
prototype) and HOL was later implemented in a Java proof
component that integrates all this functionality. Integrating
the proof component in Eclipse is now a question of improv-
ing interaction and usability of a tool which design is stable.
This is a part of the future work in Overture.

4.6 Interpreter/debugger

Automatic verification of proof obligations is an extremely
powerful analytic technique, but it is also time consuming,
even with tool support. However, a great deal of value can
still be gained from less formal analysis of a model. For
example, proof obligations may be discharged by informal
inspection. The simplest level of validation for a VDM model
is to run a simulation using an interpreter, and in the case
of problems, to step through the evaluation of expressions
using a debugger.

Overture provides an interpreter for all of the VDM lan-
guage dialects, allowing the evaluation to be stepped through
using the normal Eclipse debugging views, i.e. setting break-
points, inspecting local and state variables, call stack etc.
Typically, a model is provided with abstract data to repre-
sent the world being modelled, and functions or operations
are evaluated over that data to produce abstract results rep-
resenting the outcome of the action performed by the model.
If the interpreter results are as expected, confidence in the
model is strengthened. If the results are not as expected, the
debugger can be used to find out why.

The interpreters in VDMTools and VDMJ both keep track
of how much of the model is covered during an evaluation.
This allows a report to be generated highlighting the parts
of the model that have not been exercised by a set of tests.
The intention is to integrate this with the Overture editor
for immediate feedback in the IDE.

4.7 Combinatorial Testing

The combinatorial testing feature supports the automatic
execution of a large number of test cases generated from
templates provided in the form of trace definitions added to
a VDM++ model. Trace definitions are defined as regular
expressions describing possible sequences of operation calls,
and are conceptually similar to the input provided to model
checkers. A plug-in enabling trace expansion, evaluation and
inspection is developed in two steps: first as a VDM model
prototype and then as an optimised version with direct in-
tegration into VDMJ to speed up the evaluation process of
large test cases [San08, LLB09].

Figure 3: Overture Realtime Log Viewer

4.8 Bi-directional UML mapping

The UML bi-directional mapping [LLL09] feature supports
an automatic connection between the object-oriented dialect
of VDM (VDM++) and UML 2.1, allowing models devel-
oped in both notations to be kept consistent as they evolve.
The feature supports two forms of link: between UML class
diagrams and VDM models, and between UML sequence di-
agrams and VDM trace statements.

The link between class diagrams and VDM models relates
the static structure of the two models. The link is bidi-
rectional so that modifications to the class structure in one
models are reflected automatically in the other.

The link between UML sequence diagrams and VDM trace
statements enables a test scenario to be specified in a UML
sequence diagram and then transformed into a VDM trace
statement which enables the Combinatorial Testing feature
to evaluate the test scenario specified in the UML sequence
diagram.

4.9 Realtime Log Viewer

The VICE dialect of VDM allows the description of real-
time concurrent processes which can be distributed over a
virtual architecture of CPUs and buses. The interpreter for
this dialect produces a time-stamped log file showing every
internal event (e.g. operation request, activation and comple-
tion), every message handling event on the buses and thread
events such as creating, swapping in and out and termina-
tion. The Realtime Log Viewer plug-in for Overture can read
the log file and produce a visualisation of the execution in
terms of the CPUs and BUSes as shown in Figure 3. It is
possible to see both how busy the components are, and the
details of each thread swap in the given scenario. It is also
possible to visualize violations of formally specified timing
requirements directly [FLTV07].

4

ACM SIGSOFT Software Engineering Notes Page 4 November 2010 Volume 35 Number 1

DOI: 10.1145/1668862.1668864 http://doi.acm.org/10.1145/1668862.1668864



5 Overture Development

The Overture project’s main development technologies are
Java and VDM itself. The development code, maintained
under a Subversion repository at SourceForge3, is divided
into:

core The core components such as VDMJ, proof obligation
translation and Realtime log viewer

ide The Eclipse plug-ins which make up the Overture Edi-
tor.

tools Additional build tools e.g. Maven Eclipse build plug-
ins and Maven VDMTools integration plug-in. Tools
such as ASTGen are also located under tools.

The core components are either written directly in Java or
in VDM++ and then code generated to Java. The Apache
Maven4 tool is used for project management and build au-
tomation. The Maven build tool has been extended with
plug-ins to enable building Eclipse plug-ins, enabling an easy
integration of VDMTools code generation as a part of the
Maven build life cycle.

6 Future Plans

The Overture community plans to further develop the plat-
form by extending existing functionality, integration with
other formal methods tools and by integration of more
Eclipse technology to improve ease of use. Regarding other
tools, work on the link to JML [LC05] and Alloy [Jac02] is
in progress. Work to build a VDM-specific theorem prover
is also planned. Regarding better Eclipse integration, style
consistency for VDM (with CheckStyle) and task manage-
ment (with Mylyn) is being considered.

A priority for the VDM community in recent years has
been successful industrial deployment [FL07] and this influ-
enced the priorities for the development of modelling facil-
ities including support for object-orientation, real-time and
concurrency as well as the integration of formal modelling
into industrial development processes. The European Frame-
work 7 project DESTECS (Design Support and Tooling for
Embedded Control Software, www.destecs.org) starting in
early 2010, will develop methods and tools that combine con-
tinuous time models of systems (in tools such as 20-Sim)
with discrete event controller models in VDM through co-
simulation [VVHB07, Ver08]. The approach is intended to
encourage collaborative multidisciplinary modelling, includ-
ing modelling of faults and fault tolerance mechanisms.

Acknowledgments
We are grateful to Thomas Christensen, Jens Kielsgaard

Hansen, Hans Kristian Lintrup, Hugo Macedo, David Møller,
Paul Mukherjee, Jacob Porsborg Nielsen, Nico Plat, Augusto

3http://sf.net/projects/overture
4http://maven.apache.org/

Ribeiro, Shin Sahara, Adriana Sucena Santos, Pieter van
der Spek, Christian Thillermann, Sander Vermolen, Carlos
Vilhena and all the other contributors who have helped to
create the Overture platform and tools.

References

[AF97] Sten Agerholm and Jacob Frost. Towards an in-
tegrated case and theorem proving tool for vdm-
sl. In John Fitzgerald, Cliff B. Jones, and Peter
Lucas, editors, FME’97: Industrial Applications
and Strengthened Foundations of Formal Meth-
ods (Proc. 4th Intl. Symposium of Formal Meth-
ods Europe, Graz, Austria, September 1997), vol-
ume 1313 of Lecture Notes in Computer Science,
pages 278–297. Springer-Verlag, September 1997.
ISBN 3-540-63533-5.

[Bat09] Nick Battle. VDMJ User Guide. Technical re-
port, Fujitsu Services Ltd., UK, 2009.

[Ber97] Bernhard K. Aichernig and Peter Gorm Larsen.
A Proof Obligation Generator for VDM-SL. In
John S. Fitzgerald, Cliff B. Jones, and Peter
Lucas, editors, FME’97: Industrial Applications
and Strengthened Foundations of Formal Meth-
ods (Proc. 4th Intl. Symposium of Formal Meth-
ods Europe, Graz, Austria, September 1997), vol-
ume 1313 of Lecture Notes in Computer Science,
pages 338–357. Springer-Verlag, September 1997.
ISBN 3-540-63533-5.

[ELL94] René Elmstrøm, Peter Gorm Larsen, and
Poul Bøgh Lassen. The IFAD VDM-SL Toolbox:
A Practical Approach to Formal Specifications.
ACM Sigplan Notices, 29(9):77–80, September
1994.

[FL07] J. S. Fitzgerald and P. G. Larsen. Triumphs
and Challenges for the Industrial Application of
Model-Oriented Formal Methods. In T. Mar-
garia, A. Philippou, and B. Steffen, editors,
Proc. 2nd Intl. Symp. on Leveraging Applica-
tions of Formal Methods, Verification and Val-
idation (ISoLA 2007), 2007. Also Technical Re-
port CS-TR-999, School of Computing Science,
Newcastle University.

[FL09] John Fitzgerald and Peter Gorm Larsen. Mod-
elling Systems – Practical Tools and Techniques
in Software Development. Cambridge University
Press, The Edinburgh Building, Cambridge CB2
2RU, UK, Second edition, 2009. ISBN 0-521-
62348-0.

[FLM+05] John Fitzgerald, Peter Gorm Larsen, Paul
Mukherjee, Nico Plat, and Marcel Verhoef.
Validated Designs for Object–oriented Systems.
Springer, New York, 2005.

5

ACM SIGSOFT Software Engineering Notes Page 5 November 2010 Volume 35 Number 1

DOI: 10.1145/1668862.1668864 http://doi.acm.org/10.1145/1668862.1668864



[FLS08] John Fitzgerald, Peter Gorm Larsen, and Shin
Sahara. VDMTools: Advances in Support for
Formal Modeling in VDM. Sigplan Notices,
43(2):3–11, February 2008.

[FLTV07] J. S. Fitzgerald, P. G. Larsen, S. Tjell, and
M. Verhoef. Validation Support for Real-Time
Embedded Systems in VDM++. In Bojan Cukic
and Jing Dong, editors, Proc. HASE 2007: 10th
IEEE High Assurance Systems Engineering Sym-
posium, pages 331–340. IEEE, November 2007.

[Jac02] Daniel Jackson. Alloy: a lightweight object
modelling notation. ACM Trans. Softw. Eng.
Methodol., 11(2):256–290, 2002.

[Jon99] Cliff B. Jones. Scientific Decisions which Char-
acterize VDM. In J.M. Wing, J.C.P. Woodcock,
and J. Davies, editors, FM’99 - Formal Meth-
ods, pages 28–47. Springer-Verlag, 1999. Lecture
Notes in Computer Science 1708.

[LC05] Gary T. Leavens and Yoonsik Cheon. Design
by Contract with JML. Draft, available from
jmlspecs.org., 2005.

[LH+96] P. G. Larsen, B. S. Hansen, et al. Information
technology – Programming languages, their en-
vironments and system software interfaces – Vi-
enna Development Method – Specification Lan-
guage – Part 1: Base language, December 1996.
International Standard ISO/IEC 13817-1.

[LLB09] Peter Gorm Larsen, Kenneth Lausdahl, and Nick
Battle. Combinatorial Testing for VDM++. In
Submitted for publication, July 2009.

[LLL09] Kenneth Lausdahl, Hans Kristian Agerlund Lin-
trup, and Peter Gorm Larsen. Connecting UML
and VDM++ with Open Tool Support. In For-
mal Methods 09, November 2009.

[MBD+00] Paul Mukherjee, Fabien Bousquet, Jérôme De-
labre, Stephen Paynter, and Peter Gorm Larsen.
Exploring Timing Properties Using VDM++ on
an Industrial Application. In J.C. Bicarregui and
J.S. Fitzgerald, editors, Proceedings of the Sec-
ond VDM Workshop, September 2000. Available
at www.vdmportal.org.

[MT09] David Holst Møller and Christian Rane Pay-
sen Thillermann. Using Eclipse for Exploring
an Integration Architecture for VDM. Master’s
thesis, Aarhus University/Engineering College of
Aarhus, June 2009.

[Rib08] Augusto Ribeiro. An Extended Proof Obligation
Generator for VDM++/OML. Master’s thesis,
Minho University with exchange to Engineering
College of Arhus, July 2008.

[San08] Adriana Sucena Santos. VDM++ Test Automa-
tion Support. Master’s thesis, Minho University
with exchange to Engineering College of Arhus,
July 2008.

[Ver07] Sander Vermolen. Automatically Discharging
VDM Proof Obligations using HOL. Master’s
thesis, Radboud University Nijmegen, Computer
Science Department, August 2007.

[Ver08] Marcel Verhoef. Modeling and Validating Dis-
tributed Embedded Real-Time Control Systems.
PhD thesis, Radboud University Nijmegen, 2008.
ISBN 978-90-9023705-3.

[VLH06] Marcel Verhoef, Peter Gorm Larsen, and Jozef
Hooman. Modeling and Validating Distributed
Embedded Real-Time Systems with VDM++.
In Jayadev Misra, Tobias Nipkow, and Emil
Sekerinski, editors, FM 2006: Formal Methods,
pages 147–162. Lecture Notes in Computer Sci-
ence 4085, 2006.

[VVHB07] Marcel Verhoef, Peter Visser, Jozef Hooman,
and Jan Broenink. Co-simulation of Real-time
Embedded Control Systems. In Jim Davies
and Jeremy Gibbons, editors, Integrated Formal
Methods: Proc. 6th. Intl. Conference, Lecture
Notes in Computer Science 4591, pages 639–658.
Springer-Verlag, July 2007.

[WLBF09] Jim Woodcock, Peter Gorm Larsen, Juan Bicar-
regui, and John Fitzgerald. Formal Methods:
Practice and Experience. ACM Computing Sur-
veys, 41(4):1–36, 2009.

6

ACM SIGSOFT Software Engineering Notes Page 6 November 2010 Volume 35 Number 1

DOI: 10.1145/1668862.1668864 http://doi.acm.org/10.1145/1668862.1668864


	Introduction
	VDM
	Eclipse
	Overture Architecture and Features
	Overture Parsers and ASTs
	Overture IDE
	Type Checking
	Proof Obligation Generation
	Proof Support
	Interpreter/debugger
	Combinatorial Testing
	Bi-directional UML mapping
	Realtime Log Viewer

	Overture Development
	Future Plans



