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Abstract—It is well known that a Vandermonde matrix gen-
erates an ill-conditioned system matrix when applied with finite
numerical precision. This deficiency affects the Cauchy method
by restricting its application to only lower order systems. This
paper presents innovative, accurate, and robust formulations of
the Cauchy method to rectify this limitation and make the Cauchy
method suitable for the extraction of a high-order microwave
duplexer polynomial model. The techniques employed are: the
change of polynomial basis into the Krylov subspace and the
precondition technique, both acting on the system matrix of the
classic Cauchy method formulation. A novel formulation using the
QR algorithm on the two characteristic functions of the duplexer
and a suitable combination of the QR method and the precondi-
tion technique are then presented. Each of these procedures has
been successfully verified by numerical application examples.

Index Terms—Cauchy method, condition number, microwave
duplexer, numerical analysis, robust modeling.

I. INTRODUCTION

THE generation of reduced-order polynomial models from
frequency sampled data is becoming the subject of more

and more investigations and studies in the microwave commu-
nity. The two most important applications concern: 1) the ex-
trapolation/interpolation of electromagnetic (EM) simulated re-
sponses obtained though computationally expensive numerical
methods and 2) the generation of circuit models from the mea-
sured (lossy) response of microwave networks (typically filters),
suitable for automated tuning procedures.

The Cauchy method is a well-known and effective technique
for generating reduced-order rational polynomial models from
the response of a passive device [1]–[3]. Most of the past works
have concerned group 1) of the above recalled applications; re-
cently, efforts have been directed toward introducing a formula-
tion consistent with the synthesis of equivalent lossless circuits,
starting from lossy measured data, which is a fundamental re-
quirement for computer-aided tuning [4], [5].

It is known that the classic formulation of the Cauchy method
suffers from the limitation of an ill-conditioned Vandermonde
matrix. In order to improve the robustness of the system matrix,
techniques applied to microwave filters have been introduced
[6], [7]. However, to date, these methods have not been applied
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Fig. 1. General structure of a duplexer.

to the extraction of models for more complex multiport systems.
A possible example of such systems is the microwave duplexer,
which is a combining network composed by two passband filters
with the input ports connected through a suitable junction [8].
Since the overall order of a typical duplexer is at least the sum of
the orders of the composing filters, this challenging application
requires a more robust formulation for the Cauchy method.

In this paper, a suitable formulation of the Cauchy method for
generating a rational polynomial model of typical microwave
duplexers is presented; moreover, additional accurate and ro-
bust techniques for the model extraction are introduced. Input
frequency-sampled data can be either lossless (as those coming
from EM simulations) or include losses (in case of computer-
aided tuning applications); in this latter case, a suitable tech-
nique is presented in order to derive an approximate lossless
polynomial model from the lossy data, which can be employed
for the synthesis of the required equivalent circuits [8].

This paper is organized as follows. In Section II, the
complete generation of the rational polynomial model from
frequency-sampled data of a duplexer, using a modified formu-
lation of the Cauchy method, is described. In Section III, two
robust approaches are presented, involving the system matrix
of the classic formulation of the Cauchy method: the change of
polynomial basis (Krylov subspace) and the preconditioning
technique. In Section IV, novel formulations of the Cauchy
method based on the two duplexer characteristic functions are
presented. The algorithm and a suitable combination of
the algorithm and the preconditioning technique have been
employed. Numerical application examples of these formula-
tions are presented in Section V.

II. CAUCHY METHOD: MODEL AND PROBLEM FORMULATION

A. Polynomial Modeling of the Duplexer

The typical configuration of a microwave duplexer is shown
in Fig. 1 [8]. It is constituted by two bandpass filters [transmitter
(TX) and receiver (RX)], connected through the three-port junc-
tion , whose topology depends on the specific technology em-
ployed for the duplexer implementation. It is assumed that the
RX passband is below the TX passband
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). In order to simplify the mathematical approach, it will
be assumed in the following that the junction is a simple shunt
connection of the two filters input ports.

The overall duplexer constitutes a particular kind of three-
port network, which can be characterized, in the low-pass nor-
malized frequency domain , through a polynomial model; in
the domain , it is assumed that the outer passbands fre-
quency limits ( and ) are mapped to and , re-
spectively (various kinds of analytical frequency mapping can
be used to this purpose; the most simple is the classic low-pass
to bandpass transformation used for lumped resonators). Let ob-
serve that the polynomial modeling of a distributed network is
intrinsically approximated (the accuracy decreases with the in-
crease of the frequency span considered); in the case concerned
here, the polynomial modeling gives good performances with
narrow or moderate bandwidth networks.

It has been shown in [8] that, starting from four suitably com-
puted polynomials, it is possible to synthesize a lossless du-
plexer, with the topology in Fig. 1, presenting the following scat-
tering parameters:

(1)

Let and be the number of poles
and the number of transmission zeros of the TX and RX filters,
respectively. The following considerations can then be made
concerning the above polynomials.

• The overall number of poles of the duplexer is
[order of ]. also has the same order (i.e., the
number of reflection zeros is ).

• The number of transmission zeros of is
[order of ]; the additional zeros are produced
by the loading of the RX filter at the TX filter input.

• Similarly, the number of transmission zeros of is
[order of ].

The problem concerned with this study consists of the deriva-
tion of the above polynomials, given the scattering parameters in
a specified frequency range (from EM simulations or measure-
ments). In the case of computer-aided tuning, the derivation of
the coupling matrices for the TX and RX filters is also required;
this can be accomplished through the procedures presented in
[8], which allows the evaluation of the characteristic polyno-
mials associated to TX and RX filters. Once the topology of the
two filters is specified, the synthesis methods available in the
literature [9], [10] allow the evaluation of the required coupling
matrices.

However, it must be observed that synthesis methods require
the lossless condition to be satisfied, while the measured data
from a real device actually include losses. It is then necessary
to extrapolate from the lossy measured scattering parameters a
lossless polynomial model. To this purpose, we have extended
the method presented in [4] for two-port filters to the three-port
duplexer structure. It can, in fact, be observed that, also in case

of duplexers, the location of zeros (reflection zeros), ,
and zeros (transmission zeros) are influenced very little
by losses (if losses are not too large); thus, the polynomials

and evaluated from the lossy measured
data are practically coincident with those associated to the same
network without losses. For evaluating these polynomials, the
Cauchy method will be applied to the following characteristic
functions (obtained from the measured data):

(2)

Once and have been computed,
is obtained by imposing the unitary condition on the consid-
ered scattering parameters ( and ), which can be
expressed as follows (Feldtkeller equation):

(3)

The complex roots of the left-hand side of (3) are in pairs with
an opposite signed real part. Selecting those with a negative real
part, the poles of the lossless model for the considered duplexer
are then obtained, as well as the polynomial . A lossless
polynomial model can then be extrapolated from lossy mea-
sured data, which is suitable for the synthesis of lossless equiv-
alent circuits.

It worthwhile to remark that, following the above procedure,
the set of computed polynomials is fully compatible with
the lossless condition; obviously this condition poses also
constraints on the other scattering parameters ,
which can be univocally determined only after the synthesis of
the overall duplexer network.

Another aspect to be considered is how the choice of the ref-
erence section at the duplexer input port affects the derived poly-
nomial model; to this purpose, let observe that this choice has
no influence on the position of reflection and transmission zeros
so the estimation of the characteristic functions and

does not change practically when the phase reference
of the measured data is varied. The performance of the extracted
polynomial model to reproduce the magnitude of the consid-
ered scattering parameters is then practically independent on the
choice of the reference sections. A good match of the measured
phases is also possible by adding a frequency linearly varying
term (with a suitable slope) to the phase of and
computed from the polynomial model.

B. Formulation of the Cauchy Method

As above observed, the polynomials and
can be derived using the Cauchy method, which will be briefly
recalled in the following.

Let us define and as follows:

(4)
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Imposing that the equations in (4) are satisfied for a set of
not necessarily equally

spaced frequency points, a system of linear equations can be
obtained, as shown in (5), at the bottom of this page, where
is a decreasing-power th-order Vandermonde matrix defined
as

...
...

. . .
...

...
...

(6)

and is the system matrix.
System (5) can be solved using the total least squares (TLS)

method [11]. The coefficients and , as well as the
polynomials and are obtained. Note that
all the coefficients must be further normalized to satisfy the low-
pass prototype feasibility [8].

Imposing (3) and taking the roots with a negative real part, the
duplexer poles are then computed and the complete polynomial
model of the overall duplexer is finally defined.

III. MODIFICATION OF THE SYSTEM MATRIX:
ENHANCING THE PERFORMANCE

A. Change of Polynomial Basis

The previous method presents serious limitations when fi-
nite numerical precision is used. This drawback arises from the
fact that the Vandermonde matrix , as in (5), is extremely ill
conditioned [12], [13], especially when its dimensions (i.e., the
number of data points or the model order) are moderately
high. As a consequence, is also very ill conditioned.

To address the problem of the ill conditioning due to the Van-
dermonde matrix, some studies has been introduced [6], [7].
Here, these studies are reviewed and modified.

To deal with the numerical rank deficiency problem of the
Vandermonde matrix, a new orthonormal polynomial basis is
generated. This basis spans the same space as the columns
(colspan) of the Vandermonde matrix.

From the definition of a Vandermonde matrix (6), it can be
observed that the th column (with ) of is

, where and
. Therefore, the columns of generate

a Krylov subspace, i.e., [14].

The Arnoldi process builds an orthonormal basis for a Krylov
subspace for an assigned matrix. The implicit restarted Arnoldi
(IRA) process with correction proposed by Daniel, Gragg,
Kaufman, and Stewart (DGKS) [15] has been chosen (see
the Appendix). The Arnoldi process produces the following
factorization with a computational cost of flops and

storage (where is the number of iterations, i.e.,
the number of obtained eigenvalues):

(7)

where has orthonormal columns (i.e., )
that spans and is an upper Hessenberg
matrix with strictly positive subdiagonal elements.

Since is a skew-symmetric matrix , then must
also be. Therefore, has to be a tridiagonal matrix, hereinafter
called .

With this new robust basis, a matrix equation analogous to (5)
can be written, namely, (8), shown at the bottom of this page.
This can be solved using the TLS method in the same manner
as the classic formulation of the Cauchy method.

The resulting model is defined by

(9)

where are polynomials of order , which satisfy the dis-
crete orthogonality relation

(10)

Each family of orthogonal monic polynomials is defined by
a three-term recursive expression that outlines the method for
their building [16]. In this case, it corresponds to the following
expression:

(11)

Theoretically, the numerical stability of the process allows a
more accurate solution of the system, a task that was not previ-
ously possible with double precision using the monomial base
and the Vandermonde matrices due to the loss of numerical rank.

(5)

(8)
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B. Preconditioning Matrix

Using the orthonormal basis vectors, the condition number
of the system matrix decreases and the numerical solution
is more reliable. However, this is not the best solution since in-
creasing the number of poles of the filters composing the du-
plexer, i.e., by increasing the whole number of unknowns, it
does not necessarily provides a more reliable solution.

In order to improve the condition number of the system ma-
trix, the whole matrix has to be better conditioned. A new solu-
tion can be formed by using a preconditioning matrix [14]. The
basic idea is to transform the system matrix into a better condi-
tioned one through the following equation:

(12)

where is the (left) preconditioning matrix and is the un-
knowns vector. is any simple matrix that approximates .

is needed, and since is not square, the inverse ma-
trix can be obtained by the Moore–Penrose pseudoinverse [14],
which is the best solution in the least squares sense and is noted
as according to Watkins [14]. In this way, a simple
preconditioning matrix, which approximates the system matrix,
is found.

Note that, since the system (12) is homogeneous, it is not
necessary to multiply the term vector by , as in the classic
method. This decreases the number of multiplications required
to solve the system.

The TLS method can be used to solve the system (12).

IV. ALGORITHM FOR THE TWO DUPLEXER

CHARACTERISTIC FUNCTIONS: A FAST

AND ACCURATE SOLUTION

A. Algorithm

The algorithm is a widely used technique in numerical
analysis. The algorithm decomposes a matrix as a product
of an orthogonal matrix and an upper triangular matrix .
In particular, the factorization with column pivoting [13],
which is backward stable, is employed in this formulation.
Using the algorithm, a new formulation of the Cauchy
method for the duplexer model extraction can be achieved. This
procedure avoids the unpleasant presence of blocks of zeros in
the system matrix.

Starting from the matrix equations of the two characteristic
functions,

(13)

and

(14)

a suitable decomposition can be realized over the two
system matrices, as in the following equations:

(15)

(16)

Now, both characteristic functions must have common reflection
zeros; therefore, the following system is obtained:

(17)

A further decomposition of the previous system equation
can be executed as follows:

(18)

resulting in the reduced system (17) expressed as

(19)

This again reduces the size of the system matrix, but preserves
the eigenvalues of the system, and thus, a computed solution can
be quickly achieved.

Once the coefficients have been obtained by the TLS
method, the coefficients and can then be found using
the relationships (15) and (16), namely,

(20)

where the operator is the left matrix divide.
Imposing the unitary condition (3), the coefficients can

then be found and, therefore, the overall duplexer model can be
realized.

B. Preconditioning and the Technique

In Section IV-A, it has been observed that the preconditioning
technique is able to reduce the condition number of the system
matrix and, therefore, increase the accuracy of the solution.
Moreover, the powerful algorithm is able to decrease
the computational time because it reduces the system matrix
size while preserving the singular values, and thus, the same
condition number. Here, a formulation that suitably combines
these two techniques is presented.

Starting from the general system, as in (5), see (21), shown
at the bottom of this page, the preconditioning technique is first

(21)
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applied, scaling the system matrix into a better conditioned one
, which is expressed by

(22)

where , i.e., the Moore–Penrose pseudoinverse [14].
The algorithm is then applied to the new system matrix ,
resulting in

(23)

Even if the condition number is obviously the same because the
matrix has the same singular values of the original matrix ,
the system can be solved faster because is an upper triangular
matrix. Hence, the following system:

(24)

can be solved using the TLS method and its coefficients
can be computed both in an efficient and accurate

fashion.
This formulation is more efficient because it preserves the

condition number obtained by the preconditioning techniques,
but using the decomposition reduces the computational
time.

V. NUMERICAL EXAMPLES

A. Synthesized Test Duplexer

To test the performance of the new formulations of the
Cauchy method, the scattering parameters of a suitably syn-
thesized duplexer have been used. The four characteristic
polynomials of this duplexer have been determined following
the techniques described in [8]; from these polynomials, the
response of the synthesized duplexer is evaluated and used in
the various formulations of the Cauchy method investigated
here for reconstructing the same polynomials. The performance
of the novel proposed formulations can then be assessed by
comparing the synthesized and the reconstructed polynomials.

In the example, each of the filters in the duplexer has ten
poles, three assigned zeros, and a return loss of 23 dB. The syn-
thesis of the duplexer is carried out in a normalized frequency
domain, as in [8]; the RX filter passband spans from 1 to

0.14 and transmission zeros are placed at ;
the TX filter passband spans from 0.14 to 1 and the transmis-
sion zeros are placed at . The number of
complex unknowns of the system is 49, and the number of fre-
quency points is 50.

As said above, what we wish to stress with this example is
the ability of the proposed algorithms to accurately extract the
duplexer polynomials; moreover, the ability in reproducing the
original duplexer response is also considered.

Fig. 2 presents the duplexer response together with the one
obtained from the polynomial model extracted by the classic for-
mulation of the Cauchy method. It can be noted that the classic

Fig. 2. Attenuation and return loss of the duplexer RX and TX filter’s responses
(solid line: synthesized polynomials; dashed lines: polynomial model obtained
by the classic formulation of the Cauchy method).

Fig. 3. Attenuation and return loss of the duplexer RX and TX filter’s responses
(solid line: synthesized polynomials; dashed–dotted lines: polynomial model
obtained using the orthonormal polynomials).

formulation (dashed lines) fails to accurately reproduce the du-
plexer response in the out-of-band regions; this is due to the
ill-conditioned Vandermonde matrix, which determines an inac-
curate solution even with moderately high-order systems (such
as the duplexer considered here).

Fig. 3 presents the duplexer response compared with the one
obtained with the first new method investigated (IRA). It can
be observed that the accuracy offered by this technique is even
worse than that obtained with the classic formulation of the
Cauchy method. However, it must be said that the change of the
polynomial basis into the Krylov subspace has given good re-
sults in case of low-order systems (as pointed out in the literature
[7]); in case of higher order systems (as the duplexer structure
considered here), it offers performances that are not so good.

The other methods investigated here present much better per-
formances in reproducing the synthesized duplexer response;
in fact, the responses obtained from the polynomials computed
with all the considered methods are practically indistinguishable
from the original one, as depicted in Fig. 2. As a consequence,
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TABLE I
PERFORMANCE COMPARISON AMONG THE PRESENTED TECHNIQUES

these formulations appear to be more robust than the classic for-
mulation of the Cauchy method.

Although the responses appear to overlap, it is important
to quantify the accuracy of the results. In order to evaluate
the performance of the presented algorithms, let us introduce
two parameters: the condition number and the relative error.
The condition number is a useful measure of the sensitivity
of the linear system (for its definition, see [13] and [14]). It
gives information about how accurately one can solve the
systems of equations. The condition number depends on the
choice of the norm. Hereinafter we refer to a condition number
computed with the Euclidean 2-norm or spectral norm of a
matrix, i.e., the ratio between the two extreme singular values
(it is worthwhile to note that the condition number is practically
independent of the number of points used to solve the system
equations). With an ill-conditioned matrix, one expected to
lose digits in computing the solution [13], where

is the condition number of the matrix (except under
very special circumstances). According to Higham [17], the
notation “ ” refers to the 2-norm relative error between
the exact polynomial coefficients and the extracted solution for
the parameter . Relative error is connected with the notion
of correct significant digits. It gives information about the
accuracy of an algorithm.

Table I reports the summary of the results. The first column is
relative to the condition number of the system matrix for all the
presented formulations. The following columns refers to the rel-
ative errors of the extracted polynomial coefficients:
and . The last column indicates the computational time of
the algorithm on a 1.73-GHz Intel Pentium Centrino processor.

It can be observed that the classic formulation of the Cauchy
method suffers for the ill-conditioned Vandermonde matrix (its
condition number is very high) and, therefore, the solution is not
very accurate, as seen before (Fig. 2).

The change of the polynomial basis into the Krylov subspace
does not furnish the expected improvement: the solution is again
not accurate (even if its condition number is lower than the
classic formulation) and, moreover, it is a time-consuming al-
gorithm. Therefore, this method is not suited for the duplexer
application concerned here.

The preconditioning technique has, in the considered ex-
ample, the lowest condition number and the lowest relative
errors, which reveal its very good ability to deal with high-order
systems with a high accuracy.

The formulation is able to extract high-order systems
a little less accurately than the preconditioning, but it is much

faster. The preconditioning technique is expected to give a better
accuracy since it yields a lower condition number.

The last algorithm combines the accuracy of the precondi-
tioning technique with an increase in speed due to the algo-
rithm, giving the best compromise between accuracy and com-
putation time.

Finally, it can be expected that the new formulations can fur-
nish even better performance as the system order increases (as
in the case, for instance, of microwave multiplexers).

B. Data From a Network Model of the Duplexer

The proposed algorithms have also been verified with data
coming from the circuit simulation of a designed and optimized
duplexer presenting the following specifications:

• RX Filter: passband 880–918.5 MHz, return loss 16 dB, ten
poles, two transmission zeros;

• TX Filter: passband 924–960 MHz, return loss 20 dB, ten
poles, two transmission zeros.

The two filters have the same inline topology, with two addi-
tional couplings between resonators 2–4 and 6–8 for realizing
the transmission zeros.

The three-port junction (Fig. 1) is constituted by two trans-
mission line sections (of suitable length and characteristic
impedance), which connect the input ports of the two filters
with port 1 of the duplexer.

The circuit model employed for the duplexer representation
includes distributed resonators constituted by short-circuited

transmission line sections resonating with lumped capac-
itors; the couplings are implemented through ideal admittance
inverters. Losses are included in the simulation by assigning a
finite unloaded (2000) to the resonators. The circuit param-
eters have been determined through a synthesis approach [8],
followed by circuit optimization.

The scattering parameters and have been com-
puted at 150 equally spaced frequency points using a commer-
cial circuit simulator; the polynomial model of the duplexer has
been derived by using the method with the above intro-
duced preconditioning. The roots of the computed polynomials
are reported in Table II.

Fig. 4 shows the comparison between the circuit and polyno-
mial responses of the considered duplexer.

Note the very good agreement between the two responses,
even if the input data include losses; this confirms the assump-
tion that, in case of low losses, reflection and transmission zeros
derived from lossy data allow a sufficiently accurate lossless
polynomial model to be computed.
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TABLE II
ROOTS OF THE DUPLEXER CHARACTERISTIC POLYNOMIALS.
THE HIGHEST DEGREE COEFFICIENT FOR N AND D IS 1,
FOR P IS 7.3283 � 10 AND FOR P IS 3.5522 � 10

Fig. 4. Comparison between the circuit response (thick line) and the polyno-
mial response (thin line) of the test duplexer.

Note also that the accuracy of the polynomial model does not
depend on the actual topology of the three-port junction con-
necting the input ports of the two filters; this is, in general, true
as far as the junction does not introduce additional poles (i.e., it
has a nonresonant nature).

From the computed polynomials of the overall duplexer, with
further suitable manipulations, the characteristic polynomials of
the composing TX and RX filters have been derived [8]; the syn-
thesis of the two filters has then been performed, allowing the
evaluation of the coupling coefficients and the resonant frequen-
cies. The values of these parameters are compared in Tables III
and IV with the original ones employed in the simulated test du-
plexer.

A very satisfactory agreement between the original and ex-
tracted parameters can be observed, even if the extracted param-
eters have been obtained by assuming an ideal shunt connection
of the input ports of TX and RX filters.

VI. CONCLUSION

Innovative formulations of the Cauchy method have been ap-
plied to the modeling of microwave duplexers, even in the pres-
ence of lossy measured data.

TABLE III
COMPARISON OF ORIGINAL AND EXTRACTED COUPLING COEFFICIENTS

TABLE IV
COMPARISON OF ORIGINAL AND EXTRACTED RESONANT FREQUENCIES

(IN MEGAHERTZ)

The Cauchy method can usually only be applied to low-order
models. In fact, this method is limited by the presence of
the Vandermonde matrix, which generates an ill-conditioned
system matrix. This paper has described novel accurate and
robust techniques for high-order duplexer model extraction
using modified versions of the Cauchy method.

The first method considered (basis change into the Krylov sub-
space using orthonormal polynomial basis) has proven to not be
sufficiently accurate for the duplexer structures concerned here.

The other methods have instead offered noticeable improve-
ments with respect to the basic formulation of the Cauchy
method. In particular, the numerical stability of the precondi-
tioning technique and the algorithm allow the solution of
high-order systems, a task that was previously impossible to
solve with the same accuracy using the ill-conditioned mono-
mial basis and the Vandermonde matrix. At the moment, the
preconditioning technique gives the best conditioned system
matrix, while the process furnishes a very fast and accurate
solution. A combination of these two methods gives an accurate
and quite fast solution.

Each procedure has been successfully verified by a numer-
ical application example. A polynomial model has been also
extracted using the scattering parameters from a simulated test
duplexer employing distributed (lossy) resonators; a very good
agreement has been obtained between the original parameters
(coupling coefficients and resonant frequencies) used in the sim-
ulated network and those associated to the synthesized filters
obtained from the extracted polynomial model.

APPENDIX

ARNOLDI PROCESS

An orthonormal basis for colspan can be generated
by the well-known Arnoldi process since matrix
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is symmetric, but not Hermitian [12], [13]. The
Lanczos iteration cannot be used because it can be applied
only to a Hermitian matrix [13], [18]. Moreover, it suffers,
in practice, due to loss of orthogonality of the column basis
vectors, a fact that is closely connected with the convergence
of Ritz values to eigenvalues of . Due to these complexities,
there is no known theorem stating that the Lanczos iteration is
backward stable.

In particular, the -step Arnoldi process [19] gives the fol-
lowing factorization:

(25)

where has orthonormal columns, i.e.,
, and is the identity matrix of size ; and

is an upper Hessenberg matrix with non-negative
subdiagonal elements. Matrix is the orthogonal projection of

into the generated Krylov subspace.
Since is normal (i.e., ), all its eigenvalues are

well conditioned [14] and all eigenvectors are orthogonal [13].
In fact, every normal matrix is unitarily diagonalizable. There-
fore, if the residual of the Arnoldi computation is small (i.e.,

), then the Ritz pair is an exact eigen-
pair of a matrix that is close to (Ritz pairs can be computed
as eigenvalues of the obtained Hessenberg matrix). Thus,
is a good approximate eigenpair of in the sense of backward
error.

Moreover, several Arnoldi algorithms use a reorthogonal-
ization process in order to ensure the orthogonality of the
vectors [14]. In particular, the complete orthogonalization of
the Arnoldi vectors can be achieved using the DGKS correc-
tion [15], which avoids the appearance of spurious or “ghost”
eigenvalues [19], as in the traditional Lanczos process [13].

Further improvement can be achieved using the IRA process,
which also solves the problem on the starting vector [14], [19].
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