
1

Requirements and Evaluation of Protocols and Tools for Transaction

Management in Service Centric Systems

Changai Sun, Marco Aiello

Department of Computing Science, The University of Groningen,

Blauwborgje 3, 9747 AC, Groningen, The Netherlands

{csun, aiellom}@cs.rug.nl

Abstract
As Service Centric (SC) Systems are being increasingly

adopted, new challenges and possibilities emerge.

Business processes are now able to execute seamlessly

across organizations and to coordinate the interaction

of loosely coupled services. Often it is necessary to

have transactionality for a set of business operations,

but the loosely nature of such systems calls for

techniques and principles that go beyond traditional

ACID transactions. By analyzing existing service

composition languages, tools, and needs on a classical

example, we provide requirements for transactionality

in Service Centric Systems and indications for

developing SC systems transactionally capable.

1. Introduction
The widespread adoption of Web services is feeding

the promises of the new field of Service Centric

Systems. In a SC system, a computation is carried out

by asynchronous messaging among independent

programs which publish their functionalities in a

standard way and are available over a network. In the

case of Web services the format of the messages, of the

description of the functionalities and interactions is

based on XML protocols [13]. Then, one can compose

services to form business processes discovering them,

for instance, on the Internet. In this way, Web services

become a mean to integrate operations and applications

at the inter-enterprise level [11].

 Consider for instance the case of a supply-chain

spanning across independent organizations. By using

Web services it is possible to allow the interaction of

the independent information systems with relative ease,

but the nature of SC systems implies the possibility of

unforeseeable failures and the impossibility of

centralizing the control. If, for instance, one is

assembling a travel package, it makes little sense to

pay for a hotel in Barcelona if no plane is available to

get to the desired location. In other words, some

operations depend on the successful completion of

other operations and should be conducted in a

transactional way.

 If transactions have been extensively studied in the

context of databases, where usually one desires to have

ACIDity (Atomic, Consistent, Isolated, Durable

transactions), in SC systems the desiderata are different.

In fact, having lower control over the operations, their

execution and outcomes, different properties are

possible and desirable.

 In this paper, we identify requirements for

transaction management in SC systems, and evaluate

the satisfaction of them by existing Web service

transaction standards, service composition languages,

and transaction management tools. The analysis does

not only offer a survey but it is useful for developing

new standards, techniques and tools for transaction

management and boost the possibilities offered by SC

systems.

The rest of the paper is organized as follows: in

Section 2 we describe the Drop Dead Order (DDO)

example which we use throughout the paper. In Section

3, we consider the set of transaction requirements for

SC systems. The evaluation of services composition

languages and tools with respect to these transaction

requirements is presented in Sections 4 and 5,

respectively. Discussion of the evaluation, conclusions

and open issues conclude the paper (Section 6).

2. The Drop Dead Order Example
The drop-dead order describes a scenario where a

customer wants to order products from a distributor

under the condition that the products are delivered

before the drop-dead date (Figure 1). The example is

inspired by the example described by Bob Haugen and

Tony Fletcher [10] and extensively refined by other

authors, e.g., [16].

In the scenario, the distributor tries to find a supplier

that has the products available. If he finds such a

supplier, he will search for a carrier that is able to

deliver the products before the drop-dead date. If both

the supplier and the carrier are able to fulfill the

demands of the customer, the distributor reports to the

customer that he can fulfill the order. After the

2

customer has acknowledged, the distributor sends a

confirmation to the supplier and the carrier.

Figure 1. The Drop Dead Order Example

3. Transaction Requirements
In the field of databases, transactions are required to

satisfy the so called ACID properties, that is, the set of

operations involved in a transaction should occur

atomically, should be consistent, should be isolated

from other operations, and their effects should be

durable in time. Given the nature of SC systems,

satisfying these properties may result impossible and,

in the end, not necessarily desirable [11]. In fact, some

features are unique of SC systems:

• Long-lived and concurrent, unlike traditional

transactions where they are usually short and

sequential.

• Distributed over heterogeneous environments.

• Greater range of transaction types due to different

types of business processes, service types, information

types, or product flows.

• Unpredictable number of participants.

• Unpredictable execution length. E.g., information

query and flight payment needs 5 minutes; while e-

shopping an hour; and a complex business transaction

like contracting may take days.

• Greater dynamicity. Computation and

communication resources may change at runtime.

• Greater security and privacy concerns. More

stringent requirements on authentication, information

encryption and non-repudiation.

• Unavailability of undo operations, most often only

compensating actions that return the system to a state

that is close to the initial state are available.

These emerging features are distinctive of SC

systems and need to be addressed in new ways.

Blocking protocols, such as the two phase commit,

guarantee atomicity and consistency, but are not

directly usable in SC systems for the following reasons:

• Blocking may result in deadlocks especially when

the number of concurrent transactions is high.

• ACID transactions may be difficult to implement

due to the change in participants and the heterogeneous

environments (especially for long-lived transactions).

• Often, it is not feasible to control dynamic

resources located in another administrative domain.

Given these observations, one is left to wonder what

are then the requirements for transactions in SC

systems. We answer this next by grouping the

requirements with respect to ACID properties and

adding a fifth set of properties which goes beyond

ACIDity. The drop dead order example is used for

illustrating them.

1.0 Atomicity is the property of a transaction to

either succeed successfully or not at all, even in the

event of partial failures. In the DDO example, it should

not happen that the supplier’s resources are committed

while the Carrier is not.

1.1 Rollback is the operation of returning to a

previous state in case of a failure during a transaction.

This may be necessary to enforce consistency. In the

DDO, when the Distributor assigns a Supplier but

cannot assign a Carrier, the changes made with the

Supplier (and Customer) should be rolled back.

1.2 Compensating actions are executed in the event

of a failure during a transaction, all changes performed

before the failure should be undone. If the Distributor

assigned a Supplier and committed it but cannot assign

a Carrier, the changes made with the Supplier (and

Customer) should be compensated.

2.0 Consistency is the property of a transaction to

begin and end in a state which is consistent with the

intended semantics of the system, i.e., not breaking any

integrity constraints. A state in which the Carrier is

committed but has never prepared to commit is

inconsistent.

2.1 Abort is the returning to the initial state in case

of failure or if the user wishes so. When the

Distributor assigns a Supplier but cannot assign a

Carrier, the entire transaction is to abort.

2.2 Adding deadlines to transactions involves giving

timeouts to operations. Suppose that the Customer

needs the goods before a certain time, then the

Distributor and the Carrier need to comply with certain

time constraints, too.

2.3 Logical expressions for specifying constraints

are used for giving unambiguous and semantically

defined rules for guaranteeing consistency. For

instance, the fact that the account of the Distributor

cannot be debited while the account of the Customer is

not credited in the event of a money exchange can be

expressed by debited(distributor) + credited(customer)

= 0.

3.0 Isolation is the property of a transaction to

perform operations isolated from all other operations.

Distribute products

Supply products

Deliver products

Customer
Distributor

Supplier

Carrier

3

One transaction can therefore not see the other

transaction’s data in an intermediate state. The

Customer should not be aware of the state of the

transaction between the Distributor and the

Supplier/Carrier regarding a different order.

4.0 Durability is the property of a transaction to

record the effects in a persistent way. Whenever a

transaction notifies one participant of successful

completion, the effects must persist, even when

subsequent failures occur. When the Supplier is

notified of a successful completion, but somehow the

connection with the Carrier fails, the changes with the

Carrier should still be made.

5.1 Composite transactions are nested transactions.

In the DDO example, the distribution transaction

consists of two sub-transactions, namely, the supply

and the deliver transactions. These transactions depend

on the global outcome, that is, all three succeed or the

whole composite transaction fails.

5.2 Distributed transactions are transactions

between two or more parties executing on different

hosts. The transaction should support transactions

through a network between two different hosts. A

customer can place a drop-dead order at the Distributor

through a network connection.

5.3 Transaction recovery by dynamic rebinding and

dynamic re-composition at runtime is the possibility of

forming a new binding at runtime with a different party

when the current service is not able to fulfill its

promises. Dynamic re-composition is the forming of a

new composition by replacing one or several services

by another composition that fulfils the same function.

Imagine that the first Carrier somehow fails and is

unreachable. If this happens during a transaction, then

automatic re-bind with a service that offers the same

service should take place. Re-composition through re-

binding with a third Carrier through the Supplier is

also a possibility.

5.4 Secure transactions of different types

(Confidentiality, Integrity, Authentication and Non-

repudiation) refer to the fact that participants in a

transaction may be authorized and authenticated. Data

integrity should always be maintained. Also, mutual

agreements cannot be denied after engaging in the

transaction. To support a secure distribution

transaction, such as in the DDO example, an

authentication, authorization or encryption protocol

should be supported by the transaction mechanism.

5.5 Optimistic or pessimistic concurrency control

refers to the support of different types of concurrency

control to enforce consistency. This control could

either be optimistic or pessimistic. The pessimistic

approach prevents an entity in application memory by

locking it in the transaction for the entire time. While

the optimistic simply chooses to detect collisions and

then resolve the collision when it does occur. This

scheme has better performance. When two transactions

are concurrent, they should not both claim the same

supply of goods from one Supplier.

For the Drop Dead Order example, we see that all

these requirements are necessary with the exception of

5.4 and 5.5. Existing transaction protocols are based on

pessimistic concurrency control (locking). But let us

look at this in more detail by considering, first existing

standards and composition languages, and then tools

referring to the just listed requirements.

4. Transaction Standards and Service

Composition Languages
WS-Transactions [3,4] and Business Transaction

Protocol (BTP) [14] are the two most representative

standards that directly address the transaction

management of Web service-based systems, while for

representing compositions of services the Business

Process Execution Language (BPEL) [7] and the

Choreography Description Language (WS-CDL) [18]

are most widely known and adopted.

WS-Transactions consists of two coordination

protocols: WS-AtomicTransaction (WS-AT) [3] and

BusinessActivity (WS-BA) [4] which live in the WS-

coordination framework [5]. WS-AT provides the

coordination protocols for short-lived simple

operations, while WS-BA provides the coordination

protocols for long-lived complex business activities.

The WS-coordination framework is extensible and

incremental. That is, WS-coordination can enhance

existing SC systems with transaction properties by

wrapping them with a specific coordination.

On the other hand, BTP [14] is a model for long-

lived business transaction structured into small atomic

transactions, and using cohesion to connect these

atomic operations. Its motivation is to optimize the use

of resource involved in a long-lived transaction under

loosely coupled Web service environments and

avoiding the use of a central coordinator.

BPEL [7] provides the facilities to specify

executable business processes with references to

services’ interfaces and implementations. It does

handle some basic issues of transactions, such as

compensation, fault and exception handling, but other

transaction requirements are not managed.

WS-CDL [18] provides the infrastructure to describe

cross-enterprise collaborations of Web services in a

choreographic way. The transactions are not explicitly

addressed, but some facility can be used to satisfy

some basic transaction properties, as we see next.

Let us now consider the proposed protocols that take

the transaction and the business perspective of SC

systems with respect to the requirements identified in

4

Section 3 (for further details we refer to [16]). In Table

1 we summarize the results of the evaluation for all

requirements—each row—and for all protocols—each

column—by denoting the satisfaction with the ‘y’

symbol, the partial satisfaction with ‘p’, and no support

with ‘n’.

Table 1. Evaluation Results

Reqs BTP
WS-

AT

WS-

BA
BPEL

WS-

CDL

1.0 y y n p p

1.1 y y p p y

1.2 n n y y p

2.0 y y p p p

2.1 y y y y n

2.2 n y y p y

2.3 n n n y y

3.0 n y y y y

4.0 y y y y p

5.1 y y y y y

5.2 y y y y y

5.3 n n n y n

5.4 n n n p p

5.5 n n n n y

First, we remark that WS-Transaction actually

consists of two different protocols with different

properties, which we analyze separately. WS-AT is a

traditional protocol which satisfies the basic ACID

properties. WS-BA, on the other hand, renounces to

atomicity to accommodate long-lived transactions.

BTP has included confirmsets. These confirmsets let

the application element choose which operations with

parties in the transaction are to be cancelled and which

are to be confirmed. In this way, the application

element is able to contact more services which perform

the same task and to choose the best option.

Unfortunately, BTP is not part of the WS-Stack, which

limits its compatibility with other Web service

technologies. In addition, BTP does not support long-

lived transactions. There is also a difference in

granularity between the above transaction standards.

WS-AT contains simple two phase commit protocols,

WS-BA contains non-blocking protocols and BTP

consists of a sequence of small atomic transactions.

As for security, WS-Security [15] can be combined

with WS-Transaction as well as with BTP.

Dynamic rebinding is supported only by BPEL,

though only at the implementation level. WS-CDL

supports most requirements, while its major

disadvantage is that the large players in the field do not

support it and that no implementation is available.

We can further draw the following conclusions in

terms of extensions to the traditional transaction model.

WS-AT is a very conservative business transaction

model especially with respect to blocking. WS-BA is

more appropriate for services, by renouncing to the

concept of the two-phase commit. BTP places itself in

the middle (two phase commit is followed in a relaxed

way). As for BPEL and WS-CDL they address the

business process perspective with limited transaction

support.

5. Transaction Management Tools
As the standards and protocols for Web services

become more popular and stable, the number of tools

supporting them increases. When such a tool is

integrated into a service composition platform, usually

one requires that it is complete, standalone (to be easily

integrated), and open source. It should also have

sufficient documentation and maintenance.

We propose a framework for comparing transaction

management tools, which consists of a list of concerns

indicating important aspects one needs to consider

when integrating or reusing the tool. The tools

evaluated include commercial products and open

source software. Some tools are standalone transaction

managers while others are integrated into application

server containers. In Table 2 we summarize the

evaluation results (see [16] for more details). The rows

of the table consist of the following distinctive features.

Functionality: which transaction protocols are

supported, such as WS- AT, WS- BA, and BTP.

Status: which indicates the maturity of the tool.

Platform: support at the level of Operating System,

Programming Language, Container, etc.

Documentation: the availability and quality of

installation instructions, tool architecture design

descriptions, and developer guidelines.

Integrability: the degree to which the tool can be

easily integrated and how well are the APIs described.

Support & Maintenance: the degree of industrial or

community support for the tool.

Cost: under which license is the tool released.

Others factors: other features which describe the

qualities of the tool include extensibility, reliability,

usability, scalability, performance.

 The columns of Table 2 represent the most adopted

and best-known tools available today and are: Apache

Kandula [2] whose aim is to provide an open-source

implementation of WS-Coordination, WS-AT and WS-

BA based on Apache Axis. IBM WS-AT for WAS [8]

provides transactional support for Web service

application requests that are compliant with Java

Specification Requests and made using SOAP/HTTP.

It supports WS-AT based on the WebSphere

Application Server. JBoss Transactions [9] is a solid

platform for distributed transactions. It has full support

5

for WS-Coordination, WS-AT and WS-BA. It can be

integrated into the JBoss Application Server or used as

a stand-alone transaction manager for Java applications.

OpenWS-Transaction [12] implements the WS-

Transaction standards. It is part of a thesis project at

the University of Georgia. Choreography’s Cohesions

[6] is a Business Transaction Management (BTM) tool

suite enabling the management and coordination of

loosely coupled applications in heterogeneous

environment. ActiveBPEL Engine 2.0 [1] is an Open

Source implementation of a BPEL engine.

6. Discussions and Open Issues
Given the requirements for transactions in service

centric systems and the evaluation of protocols and

tools, we conclude that WS-Transaction should be

selected as a model, BPEL as a service composition

language, and JBoss Transactions as transaction

management tool. The most notable reasons for these

choices are the following ones. WS-Transaction is

preferred since it supports long-lived transactions and

is part of the WS-Stack. BPEL is preferred because of

its industrial support and wide adoption. JBoss

Transactions is preferred because it is a complete,

standalone, open source tool, it has sufficient

documentation. Currently, BPEL and WS-Transaction

are independent specifications which strongly need

integration. However, it is still not known how to

integrate the transaction management into the service

compositions.

In [17] we “follow what we preach” and provide a

design, architecture and implementation of transaction

management into a service centric platform according

to the recommendations and evaluations provided here.

By the results presented in this paper and in [17], we

remark that the alignment between the business and the

transaction perspective in SC systems still needs to be

reconciled, but that there is space for integration.

Furthermore, we have been able to identify features for

evaluation and open issues which need further

investigation, such as optimistic concurrence controls

during transactions, introduction of transaction policies,

and adaptation of transaction management tools in the

context of Web services.

Acknowledgements
We thank Dieter Hammer, Gerard Biemolt and Michiel

Koning for fruitful discussion and support in the

presented evaluation. This work is supported by the

EU Integrated Project SeCSE (IST Contract No.

511680): Service Centric Software Engineering.

References
[1] ActiveBPEL, ActiveBPEL Engine 2.0,

http://www.activebpel.org/?googleoss

[2] Apache, Kandula, http://ws.apache.org/kandula/

[3] Arjuna Tech. Ltd., BEA Systems, Hitachi Ltd., IBM,

IONA Tech. and Microsoft, Web Services Atomic

Transaction (WS-AtomicTransaction), v 1.0, August 2005

[4] Arjuna Tech. Ltd., BEA Systems, Hitachi Ltd., IBM,

IONA Tech. and Microsoft, Web Services Business Activity

Framework (WS-BusinessActivity), v 1.0, August 2005

[5] Arjuna Tech. Ltd., BEA Systems, Hitachi Ltd., IBM,

IONA Tech. and Microsoft, Web Services Coordination

(WS-Coordination), August 2005

[6] Choreology, Cohesions, http://www.choreology.com/

[7] IBM, Microsoft, BEAT, SAP and Siebel Systems,

Business Process Execution Language for Web Services v

1.1, 2003

[8] IBM, Web Services Atomic Transaction for WebSphere

Application Server (WS-AT for WAS),

http://www.alphaworks.ibm.com/tech/wsat

[9] JBoss, JBoss Transactions,

http://labs.jboss.com/portal/jbosstm

[10] B. Haugen, T. Flectcher, Multi-Party Electronic

Business Transactions, Version 1.1, December 2002

[11] M. Little, Transactions and Web Services, CACM, Vol.

46, No. 10, 2003, pp 49-54

[12] I.Vasquez, OpenWS-Transaction,

http://lsdis.cs.uga.edu/~vasquez/index.php?page=2,

[13] M.P. Papazoglou, Web Services Technologies and

Standards, submitted to ACM Computing Surveys, 2007

[14] OASIS, Business Transaction Protocol,

http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=business-

transaction, 2004

[15] OASIS, WS-Security Core Specification 1.1,

http://www.oasis-

open.org/committees/download.php/16790/wss-v1.1-spec-os-

SOAPMessageSecurity.pdf, 2006

[16] C. Sun, D. Hammer, State of the Art on Transaction

Management in Service Centric Systems, Technical Report,

Univ. of Groningen, Aug. 2006

[17] C. Sun, M. Aiello, Transaction Management for SeCSE,

Technical Report, Univ. of Groningen, to appear.

[18] W3C, Web Services Choreography Description

Language, v. 1.0, 2005

6

Table 2. Comparison of Transaction Management Tools

 Apache

Kandula

WS-AT for WAS JBoss Transactions OpenWS-

Transaction

Cohesions Active Engine 2.0

Functionality Support WS-AT

& WS-BA.

Support WS-AT. Support WS-AT, WS- BA

and WS-C.

Support WS-AT,

WS- BA and WS-C.

Support BTP,

WS-C, partially WS-AT

and WS-BA.

No support.

Status WS-AT &WS-C

ready; WS-BA

not ready.

Ready, published by

IBM in September

2003.

Ready, published by JBoss.

Only the prototype

published.

Complete Product

published.

Ready, Published by

ActiveBPEL,

February 2006.

Platform Support

Windows;

Written in Java;

Used with

Apache Axis

and Apache

Tomcat.

Support Windows

2000 & Windows

XP;

Written in Java;

Used with

WebSphere

Application Server,

J2EE, JTA.

Support Windows 2000

Professional/Server,

Windows XP Professional

Sun Solaris 8 (Sparc), HP-UX

and Redhat Linux 7.3;

Written in Java;

Used with webMethods Glue

5, Apache Axis on JBoss ,

WebLogic, SQL Server 2000

or Oracle 8, 9,10.

Support Windows

and Unix;

Written in Java;

Used with Apache

Axis, Apache

Tomcat,

BerkeleyDB,

ActiveBPEL.

Support Windows

2000/XP/2003, Solaris 9

and 10, Red Hat Linux

AS/ES 3.0.

Written in Java;

Used with 2RE1.4.2_02

and Most application

server containers.

Support Windows

and Unix;

Written in Java;

Used with Tomcat

5.5 and Java 1.5.

Documentation Architectural

Design and User

Guide.

Installation

instruction for

Windows.

Installation guide,

Programmer’s guide,

Administration guide,

Javadoc.

Little documentation

and papers available

from author’s

website.

Administrator’s Guide�

Programmer’s Guide,

Integration Guides for

each application

container, JTA and Jini

Integration Guide.

Architecture,

Developer’s guide,

User’s guide, Engine

installation, BPEL

deployment, Tutorial,

Samples.

Extensibility

and

Integration

Interoperable

with other

implementations

, particularly

those by

Microsoft and

IBM.

Integrated with

Websphere

application server

and Interoperate with

Microsoft’s .NET

environment.

Supports pluggable Web

Service transaction protocols;

It can be used as stand-alone

transaction manager or be

integrated with JBoss

Application Server.

Not explicitly

addressed.

Support for many

application server

containers, such as

Apache Axis and BEA

Weblogic, Websphere,

and so on.

Easy to be integrated

or extended.

Support

and

Maintenance

No special

support and two

versions are

released.

Supported by IBM. Professional support,

consulting and training are

available from JBoss.

No support or

maintenance

available.

Support available from

Choreology, Continuous

releases (1.0, 2.0, and

3.0).

Strong support from

Active Endpoints Inc.

Continuous releases

(1.0, 2.0 and 3.0).

Cost Open Source

Software

released under

GPL.

Copyrighted and

licensed by IBM,

Commercial license

is charged.

Open source software

Released under GPL.

Open source, free

download.

Commercial Product. Open source software

released under GPL.

