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Herbert Simon is fond of arguing that the social sciences are, in fact,
the "hard" sciences.] For one, many crucially important social

processes are complex.They are not neatly decomposable into separate
subprocesses-economic, demographic, cultural, spatial-whose isolat-
ed analyses can be aggregated to give an adequate analysis of the social
process as a whole. And yet, this is exactly how social science is orga-
nized, into more or less insular departments and journals of economics,
demography, political science, and so forth. Of course, most social scien-
tists would readily agree that these divisions are artificial. But, they
would argue, there is no natural methodology for studying these
processes together, as they coevolve.

The social sciences are also hard because certain kinds of controlled

experimentation are hard. In particular, it is difficult to test hypotheses
concerning the relationship of individual behaviors to macroscopic reg-..

ularities, hypotheses of the form: If individuals behave in thus and such
a way-that is, follow certain specific rules-then society as a whole will
exhibit some particular property. How does the heterogeneous micro-
world of individual behaviors generate the global macroscopic regulari-
ties of the society?2

Another fundamental concern of most social scientists is that the

rational actor-a perfectly informed individual with infinite computing
capacity who maximizes a fixed (nonevolving) exogenous utility func-
tion-bears little relation to a human being.3 Yet, there has been no nat-
ural methodology for relaxing these assumptions about the individual.

Relatedly, it is standard practice in the social sciences to suppress real-
world agent heterogeneity in model-building. This is done either
explicitly, as in representative agent models in macroeconomics,4 or
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1. Simon [1987]; the same point has been made by Krugman [1994: xi-xiii].
2. This is to be distinguished from the very different problem of determining what rules

are actually employed by individual humans, a topic studied in experimental economics
and other fields of behavioral science.

3. A recent statement of this basic concern is Aaron [1994].
4. Kirman [1992] makes this point forcefully.

t



2 INTRODUCTION
Ii

I,
implicitly, as when highly aggregate models are used to represent social
processes. While such models can offer powerful insights, they "filter
out" all consequences of heterogeneity. Few social scientists would deny
that these consequences can be crucially important, but there has been
no natural methodology for systematically studying highly heteroge-
neous populations.

Finally, it is fair to say that, by and large, social science, especially
game theory and general equilibrium theory, has been preoccupied with
static equilibria, and has essentially ignored time dynamics. Again, while
granting the point, many social scientists would claim that there has
been no natural methodology for studying nonequilibrium dynamics in
social systems.

We believe that the methodology developed here can help to over-
come these problems. This approach departs dramatically from the tra-
ditional disciplines, first in the way specific spheres of social
behavior-such as combat, trade, and cultural transmission-are treat-
ed, and second in the way those spheres are combined.

I
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"Artificial Society" Models

We apply agent-based computer modeling techniques to the study of
human social phenomena, including trade, migration, group formation,
combat, interaction with an environment, transmission of culture, prop-
agation of disease, and population dynamics. Our broad aim is to begin
the development of a computational approach that permits the study of
these diverse spheres of human activity from an evolutionary perspec-
tive as a single social science, a transdisciplinesubsuming such fields as
economics and demography.

This modeling methodology has a long lineage. Beginning with von
Neumann's work on self-reproducing automata [1966], it combines ele-
ments of many fields, including cybernetics (for example, Ashby [1956],
Wiener [1961]), connectionist cognitive science (for example,
Rumelhart and McClelland [1986]), distributed artificial intelligence
(for example, Gasser and Huhns [1989]), cellular automata (for exam-
ple, Wolfram [1994], Toffoli and Margolus [1987], Gutowitz [1991]),
genetic algorithms (for example, Holland [1992]), genetic programming
(Koza [1992, 1994]), artificial life (for example, Langton [1989, 1992,
1994], Langton et al. [1992], Brooks and Maes [1994]), and individual-

based modeling in biology (for example, Haefner and Crist [1994] and
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Crist and Haefner [1994]). However, there have been very few attempts
to bring these literatures to bear on social science.5

The first concerted attempts to apply, in effect, agent-based computer
modeling to social science explicitly are Thomas Schelling's. In a classic
series of papers-"Models of Segregation" [1969], "On the Ecology of
Micromotives" [1971a], and "Dynamic Models of Segregation"
[1971b]-and later in the book Micromotivesand Macrobehavior [1978],
Schelling anticipated many of the themes encountered in the contem-
porary literature on agent-based modeling, social complexity, and eco-
nomic evolution. Among other things, Schelling devised a simple
spatially distributed model of the composition of neighborhoods, in
which agents prefer that at least some fraction of their neighbors be of
their own "color." He found that even quite color-blind preferences pro-
duced quite segregated neighborhoods.6

But Schelling's efforts were constrained by the limited computational
power available at that time. It is only in the last decade that advances
in computing have made large-scale agent-based modeling practical.
Recent efforts in the social sciences to take advantage of this new capa-
bility include the work of Albin and Foley [1990], Arifovic [1994],
Arifovic and Eaton [1995], Arthur [1991, 1994], Arthur et al. [1994],
Axelrod [1993, 1995], Carley [1991], Danielson [1292, 1996], Gilbert
and Doran [1994], Gilbert and Conte [1995], lIolland and Miller [1991],
Kollman, Miller, and Page [1992, 1994], Marimon, McGrattan, and
Sargent [1990], Marks [1992], Nagel and Rasmussen [1994], Tesfatsion
[1995], and Vriend [1995]. Additionally, computer scientists interested
in questions of distributed artificial intelligence (DAI), decentralized
decisionmaking, and game theory have been actively researching multi-
agent systems. Important work here includes that of Huberman and
coworkers (Huberman [1988], Huberman and Glance [1993, 1996],
Glance and Huberman [1993, 1994a, 1994b], Huberman and Hogg
[1995], Youssefmir and Huberman [1995]), Maes [1990], Miller and
Drexler [1988], and Resnick [1994]. Biologists have even built models
in which a population of agents representing humans exploits ecological
resources (Bousquet, Cambier, and Morand [1994]).

In what follows we shall refer to agent-based models of social pro-
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5. An important exception is Steinbruner's The Cybernetic Theory of Decision [1974].
6. Related work includes that of Vandell and Harrison [1978].
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cesses as artificialsocieties.?In this approach fundamental social structures
and group behaviors emerge from the interaction of individuals operat-
ing in artificial environments under rules that place only bounded
demands on each agent's information and computational capacity. We
view artificial societies as laboratories,where we attempt to "grow" cer-
tain social structures in the computer-or in silico-the aim being to
discover fundamental local or micro mechanisms that are sufficient to

generate the macroscopic social structures and collective behaviors of
interest. 8

In general, such computer experiments involve three basic ingredi-
ents: agents, an environment or space, and rules. A brief word on these
may be in order before discussing the particular artificial society pre-
sented in this book.

Environment

r

Life in an artificial society unfolds in an environment of some sort. This
could be landscape, for example, a topography of renewable resource
that agents eat and metabolize. Such a landscape is naturally modeled as
a lattice of resource-bearing sites. However, the environment, the medi-
um over which agents interact, can be a more abstract structure, such as
a communication network whose very connection geometry may
change over time. The point is that the "environment" is a medium sep-
arate from the agents, on which the agents operate and with which they
interact.

t
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Rules

Agents
I
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Finally, there are rules of behavior for the agents and for sites of the
environment. A simple movement rule for agents might be: Look
around as far as you can, find the site richest in food, go there and eat
the food. Such a rule couples the agents to their environment. One
could think of this as an agent-environmentrule. In turn, every site of the
landscape could be coupled to its neighbors by cellular automata (see
below) rules. For example, the rate of resource growth at a site could be'"
a function of the resource levels at neighboring sites. This would be an
environment-environment rule. Finally, there are rules governing agent-
agent interactions-mating rules, combat rules, or trade rules, for
example.

Agents are the "people" of artificial societies. Each agent has internal
states and behavioral rules. Some states are fixed for the agent's life,
while others change through interaction with other agents or with the
external environment. For example, in the model to be described below,
an agent's sex, metabolic rate, and vision are fixed for life. However,
individual economic preferences, wealth, cultural identity, and health
can all change as agents move around and interact. These movements,
interactions, changes of state all depend on rules of behavior for the
agents and the space.

Object-Oriented Implementation

Our socioeconomic system is a complicated structure containing millions of interacting units, such
as individuals, bouseholds, and finns. It is tbese units wbicb actually make decisions about spend-
ing and saving, investing and producing, marrying and baving children. It seems reasonable to
expect tbat our predictions would be more successful if they were based on knowledge about
these elemental decision-making units-how they behave. bow they respond to changes in tbeir
situations, and how tbey interact.

Contemporary object-oriented programming (OOP) languages are par-
ticularly natural ones for agent-based modeling. Objects are structures
that hold both data and procedures. Both agents and environmental
sites are naturally implemented as objects. The agent's data fields (its
instance variables) represent its internal states (for example, sex, age,
wealth). The agent's procedures (methods) are the agent's rules of behav-
ior (for example, eating, trading). This encapsulationof internal states and
rules is a ,defining characteristic of OOP and greatly facilitates the con-
struction of agent-based models.9

7. This term apparently originates with Builder and Banks [19911; see also Bankes [19941.

8. So-called micro-simulation techniques, developed by social scientists at the dawn of

the modern computer era. are philosophically similar to agent-based approaches insofar as

both attempt to model social phenomena in a highly disaggregated way. An early pio-
neering work of this type is Orcutt et al. [1961], who wrote:

In comparison to agent-based modeling. micro-simulation has more of a "top-down" char-

acter since it models behavior via equations statistically estimated from aggregate data. not
as resulting from simple local rules.

i~ I
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9. For more on the software engineering aspects of artificial societies. see Appendix A.
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Social Structures Emerge
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Typically, we release an initial population of agent-objects into the sim-
ulated environment (a lattice of site-objects) and watch for organization
into recognizable macroscopic social patterns. The formation of tribes or
the emergence of certain stable wealth distributions would be examples.
Indeed, the defining feature of an artificial society model is precisely that
fundamental socialstructuresand group behaviorsemergefrom the interaction
of individual agentsoperating on artificialenvironments under rules that place
only boundeddemands on each agent's information and computationalcapacity.
The shorthand for this is that we "grow" the collective structures "from
the bottom up."

The Sugarscape Model

While the "bottom-up" approach to social science is quite general-as
discussed at greater length in our concluding chapter-the primary focus
of the present work is a particular instance of the artificial society con-
cept that has come to be known as The SugarscapeModel. A brief sum-
mary of each chapter follows.

Life and Death on the Sugarscape
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In Chapter II we introduce the sugarscape, a spatial distribution, or land-
scape, of generalized resource that agents like to "eat." The landscape
consists of variously shaped regions, some rich in sugar, some relatively
impoverished. Agents are born onto the sugarscape with a vision, a
metabolism, and other genetic attributes. In Chapter II their movement
is governed by a simple local rule. Paraphrasing, it amounts to the
instruction: "Look around as far as your vision permits, find the spot
with the most sugar, go there and eat the sugar." Every time an agent
moves, it "bums" some sugar-an amount equal to its metabolic rate.
Agents die if and when they bum up all their sugar.

A remarkable range of phenomena emerges from the interaction of
these simple agents. The ecological principle of carrying capacity-that a
given environment can support only some finite population-quickly
becomes evident. When "seasons" are introduced, migration is
observed. Migrators can be interpreted as environmental refugees,
whose immigration boosts population density in the receiving zone,
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INTRODUCTION 7

intensifying the competition for resources there-a dynamic with
"national security" implications. Since agents are accumulating sugar at
all times, there is always a distribution of wealth-measured in sugar-
in the agent society. Does the wealth distribution mimic anything
observed in human societies? Under a great variety of conditions the dis-
tribution of wealth on the sugarscape is highly skewed, with most agents

having little wealth. Highly skewed distributions of income and wealth
are 'also characteristic of actual human societies, a fact first described

quantitatively by the nineteenth-century mathematical economist
Vilfredo Pareto.lO Thus we find the first instance of a qualitative similar-

ity between extant human societies and artificial society on the
sugarscape.

A CompuTerrarium

As a practical matter, if such highly skewed wealth distributions are
immutable laws of nature, as some have claimed, then there is little

hope of greater economic equity in society. A tool like Sugarscape can
function as a kind of laboratory-a CompuTerrarium-where we alter

agent behavioral rules, such as those governing trade or inheritance, in
order to see how immutable this kind of distribution-really is. .

Agent Social Networks

Humans can be connected socially in various ways: genealogically, cul-

turally, and economically, for example. Indeed, one of the things that
makes humans complicated, conflicted, and interesting is that they can
belong to many different communities, or social networks, at once.
These networks change over time. And, most interestingly, group loyal-
ties can come into profound conflict, as when brothers (members of a
family group) fought each other (as members of competing political
groups) in the American Civil War. One theme that runs through this
entire book is socialconnection.In each chapter the local rules governing

agent behavior permit us to define certain kinds of agent social net-
works. We represent such networks as graphs and track their evolution
over time and space. In particular, Chapter II explores social networks of
neighbors.

10. See Persky [1992] for an overview of the so-called Pareto law.
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Up to this point, collective phenomena have emerged from interac-
tions within a singlepopulation of agents. In Chapter III we "grow" dis-
tinct populations-cultural formations-of agents.

,
1
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Sex, Culture, and Conflict: The Emergence of History
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Indeed, the aim of Chapter III is to "grow" an entire history of an artifi-

cial civilization-a proto-history, as we call it. The storyline is as follows:

In the beginning, a small population of agents is randomly scattered

about a landscape. Purposeful individual behavior leads the most

capable or lucky agents to the most fertile zones of the landscape; these

migrations produce spatially segregated agent pools. Though lessfortu-

nate agents die on the wayside, for the survivors life is good: food is

plentiful, most live to ripe old ages, populations expand through sexu-

al reproduction, and the transmission of cultural attributes eventually

produces spatially distinct "tribes." But their splendid isolation proves

unsustainable: populations grow beyond what local resources can sup-

port, forcing tribes to expand into previously uninhabited areas. There

the tribes collide and interact perpetually, with penetrations, combat,

and cultural assimilation producing complex social histories, with vio-

lent phases, peaceful epochs, and so on.

This, then, is the social story we wish to "grow," from the bottom up. We
will need a number of behavioral ingredients, each of which generates
insights of its own.

The first ingredient of the proto-history is sexual reproduction. Like
other rules that agents execute in the model, the "sex code" is com-
pletely localand very simple. Yet a rich variety of demographic trajecto-
ries is observed. For instance, populations-and population densitieson
the sugarscape-can fluctuate dramatically. Because mating is local,
reproduction can cease and the population can crash if population
becomes too sparse, or thin. Bottom up models such as Sugarscape sug-
gest that certain cataclysmic events-like extinctions-can be brought
on endogenously, without external shocks (like meteor impacts)
through local interactions alone. Scientists have long been fascinated by
the oscillations, intermittencies, and "punctuated equilibria" that are
observed in real plant and animal populations. They have modeled these
phenomena using "top-down" techniques of nonlinear dynamical sys-
tems, in which aggregate state variables are related through, say, differ-
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INTRODUCTION 9

ential equations. Yet we demonstrate that all these dynamics can be
"grown" from the "bottom-up." And, when they are conjoined with the
processes of combat, cultural exchange, and disease transmission, a vast
panoply of "possible histories," including our proto-history, is realized on
the sugarscape.

It is possible to observeevolutionary processes as they alter the genetic
composition of our artificial society. For example, we expect that, over
many generations, selection pressures will operate in favor of agents
having relatively low metabolism and high vision. In fact, precisely this
behavior emerges on the sugarscape. In Chapter III we assign a color to
each agent according to its metabolism, then watch society change
color as selection pressures "weed out" high metabolism individuals
over time. Selection also operates on agent vision. There is a kind of
genetic algorithm (GA) at work here, though we have not specified any
"fitness function" beforehand. The topic of fitness, and the need to
define it in coevolutionary terms, is addressed.

With a sexual reproduction rule in place, it is natural to study geneal-
ogy using social networks. It is very interesting to watch these "family
trees" branch out across the sugarscape.

The next ingredient of the proto-history is tribe formation. How do
tribes form? How does "social speciation" occur? To ~ddress these ques-
tions, we give agents cultural attributes and rules for their local trans-
mission.II Cultural formations then "grow" from the bottom up. We
represent cultural connections as lines between agents who have simi-
lar cultural attributes. These cultural connection networks expand, con-
tract, and deform over time.

Finally, when agents of one cultural "tribe" encounter agents of a dif-
ferent tribe they may engage in a primitive kind of combat. That is,
agents of opposite tribes may plunder one another for sugar. However,
they are not so stupid as to attack agents who are capable of defeating
them, or to attack an agent of a different tribe when there are others
from that tribe in the vicinity who can retaliate successfully. Thus the
combat rule results in agent movement patterns very different from the
standard "eat all you can find" rule. We experiment with a variety of
combat rules in Chapter III.

~

t

t

II. In Chapter IV we let economic preferences depend on these cultural attributes.
Then, when cultural interchange and economic processes are both active, we have a
model in which agent preferences change endogenously. in contrast to the assumption of
fixed preferences standard in economic theory.

,
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Sugar and Spice: Trade Comes to the Sugarscape

In Chapter IV a second commodity-"spice"-is added to the resource
landscape, and each agent is given a corresponding metabolism for spice.
The relative size of an agent's sugar and spice metabolisms determines

its preferencesfor the two resources. The agents move around the land-
scape searching for those sites that best satisfy their preferences. Each
agent must at all times possess positive quantities of both sugar and spice,
or it dies.

Agents are then given the ability to trade sugar and spice. All trade is
conducted in a decentralized fashion between neighboring agents, so-
called bilateral exchange. Each pair of agents engaged in trade "bar-
gains" to a local price and then exchanges goods only if it makes both
agents better off. The main topics investigated in the chapter concern the
relationship of local prices to the formation of a single "market-clearing"
price and the welfare properties of these artificial markets.12 These
issues are investigated for two distinct classes of agents: the idealized
economic agents found in economics textbooks and agents that are non-
neoclassical insofar as they have finite lives and evolving preferences.
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A crucial question is the following: Under what conditions (for example,
rules of agent behavior)will localpricesconvergeto a market-clearing (general
equilibrium) price?We find that an equilibrium price is approached when
our artificial society consists of a large number of infinitely lived agents
having fixed preferences who trade for a long time. However, the
resource allocations that obtain, although locally optimal, fail to be glob-

ally optimal. That is, there are additional gains from trade that our
agents are unable to extract. The reason is that, while bilateral exchange
is pushing the artificial economy toward a globally optimal configura-
tion, production activities (resource gathering) are constantly modifying
this configuration. These two competing processes-exchange and pro-
duction-yield an economy that is perpetually out of equilibrium.

Because trade can simply be turned on or off in models of this type,
we can study the effects of trade on other social variables. In particular,
we find that the carrying capacity of the environment is increasedwhen
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12. On the notion of an artificial economy, see Lane [1993].
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INTRODUCTION 11

agents tradeY However, this salutary result does not come free, for
under some circumstances trade increases societal inequality.

There are further implications for the welfare properties of markets.
The "equilibrium" price that emerges under bilateral trade has a differ-
ent character than the general equilibrium price of neoclassical theory;
it is statisticalin nature. One implication of statistical equilibrium is that
agents having identical preferences and endowments can end up in very
different welfare states through decentralized trade: they encounter dif-
ferent people, bargain to different prices, and trade different quantities,
producing initially small differences in their respective welfare states,
which may be amplified with time. This phenomenon is termed hori-
zontal inequality.

~
.
~

Markets of Non-Neoclassical Agents

~

In neoclassical economic theory individual economic agents live forever
and have fixed preferences. We give agents finite lives and the ability to
reproduce sexually (as in Chapter III) and study the effects on econom-
ic behavior. The primary result of adding new agents to our artificial
economy is to add variance to the distribution of trade prices in the sug-
ar-spice market. This occurs because as new agents a~ born it takes time
to have their internal valuations brought into line with those prevailing
in the marketplace. The amount of price dispersion this effect produces
increases as average agent lifetime decreases. Generally, increased vari-
ance in price corresponds to increased horizontal inequality, so the wel-
fare properties of markets are further eroded by finite agent lives.

Preferences are permitted to evolve by coupling them to the cultural
exchange process introduced in Chapter III. This yields several interest-
ing economic phenomena. Agents whose preferences change from one
period to the next find that their accumulated holdings-quite satisfac-
tory in the previous period-may not satisfy their current wants, so they
are more willing to trade than when preferences are fixed. Overall, we
find that total trade volumes are larger with evolving preferences. Too,
there is much more variation in prices under such circumstances, and
the average price follows a kind of "random drift" process. Nothing like

13. In Chapter VI a set of Sugarscape model runs in which this phenomenon plays a cru-

cial role is described. The evolutions of two societies, identical in all respects except that one

engages in interagent trade while the other does not, are compared and contrasted. The

nontraders end up extinct. while the traders are progenitors of a prosperous civilization.
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the equilibrium of neoclassical theory emerges. Of course, the laissez-
faire argument is precisely that markets, left to their own devices, allo-
cate goods and services efficiently. The theoretical case for this is the
so-called First Theorem of welfare economics. However, when markets

fail to arrive at equilibrium, the First Welfare Theorem does not apply,
and this case for laissez-faire is undermined.I I

jl

II
Credit Networks

When agents are permitted to enter into credit relationships with one
another very elaborate borrower-lender networks result. Agents borrow
for purposes of having children. If an agent is of childbearing age but has
insufficient wealth to produce offspring, then it will ask each of its
neighbors in turn if they are willing to loan it the sugar it needs to
become "fertile."14 Prospective lenders assess the borrower's ability to
repay a loan based on the borrower's past income. Once a loan has been
consummated, it is repaid when due unless the borrower has insuffi-
cient accumulation, in which case it is renegotiated.

The credit connections that result from these rules are very dynamic.
In order to study these relationships, graphs of creditor-debtor arrange-
ments are shown in which each agent is a vertex and edges are drawn
between borrowers and lenders. These graphs are updated each tim~
period, thus showing the evolution of credit structures spatially.
Unexpectedly, some agents turn out to be borrowers and lenders simul-
taneously, and this is most effectively displayed as a hierarchical graph,
with agents who are only lenders placed at the top of the hierarchy and
those who are only borrowers positioned at the bottom.
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Social Computation
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Yet another kind of social network is a trade partner graph, in which
each vertex represents an agent and edges are drawn between agents
who have traded with each other during a particular time period. Such
graphs not only represent social relations but also depict the physical
flow of commodities-sugar flows one way along an edge, while spice
gets transferred in the opposite direction. These graphs-webs of eco-
nomic intercourse-link agents who may be spatially quite distant, even
though all trade is local, that is, between neighbors. These networks are

14. As we define this term in Chapter III, "fertility" includes an economic component.
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INTRODUCTION 13

ever-changing with time and are displayed in Chapter IV as animations.
During trade each agent acts to improve its welfare, that is, each par-

ticipant optimizes its own utility function. A main question addressed in
Chapter IV is: To what extent does individual (local) optimality result in
overall social (global) optimality? Consider each agent to be an
autonomous processing node in a computer, the agent society. Individual
agents (nodes) compute only what is best for themselves, not for the

society of agents as a whole. Over time, the trade partner network
describes the evolution of connections between these computational
nodes. Thus there is a sense in which agent societyactsas a massivelypar-
allel computer,its interconnectionsevolvingthrough time. This idea is fleshed
out in Chapter IV.

Another important area where agent-based techniques apply very
naturally is that of public health-epidemiology and immunology. We
study this in Chapter V.

Disease Agents

Humans and infectious parasites have been coevolving for a long time.
Certainly, it would be hard to overstate the impact of.infectious diseases
on human society. William McNeill [1976] has argued that infectious
diseases played crucial roles in the spread of religions, political domin-
ions, and social practices ranging from prohibitions on the consumption
of pork to caste systems of the sort seen even today in India. In our own
time, HIV has obviously had important sociopolitical impacts across a
wide variety of groups on many continents. In light of all this, there is
every reason to include epidemiology in social science. But there is equal
reason to include social science in epidemiology! After all, the Black
Death-Pasteurella pestis-could not have spread from China to Europe
without human technological advances and commercial intercourse,
notably in navigation and shipping. Needless to say, military conquest
and migration have been equally efficient vehicles for the dissemination
of infectious disease agents.

One aim of Chapter V, then, is to break down an artificial division

between fields, presenting an adaptive agents model in which the spread
of infectious. diseases interacts with other social processes. We also hope
to advance epidemiology proper, in several respects. First, our treatment
of space differs fundamentally from that found in typical mathematical
models. Also, mathematical epidemiology typically divides society into
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homogeneous subpopulations-compartments such as susceptibles and
infectives within which there is no variation among individuals. In actu-

ality, substantial variation exists; agents are heterogeneous precisely in
that they have different immune systems. We endow every agent with
its own adaptive immune system. Our immunology is, of course, very

simple and highly idealized. Nonetheless, the explicit incorporation of
an immune model into the epidemic model enriches and unifies the

resulting picture. Important phenomena including immunological
memory and the persistence of childhood diseases emerge very natural-
ly. Moreover, since infected agents suffer a metabolic increase in our
model, the epidemic dynamics affect (through the agents' metabolism-

dependent utility functions) their movements and economic behavior.
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A Society Is Born

Over the course of these chapters, the agents' behavioral repertoire

grows to include movement, resource gathering, sexual reproduction,
combat, cultural transmission, trade, inheritance, credit, pollution,
immune learning, and disease propagation. In Chapter VI, we turn on
all these dimensions and explore the complex, multidimensional artifi-

cial society that emerges. The book then concludes with a discussion of
variations on, and extensions of, the current Sugarscape model.

Artificial Societies versus Traditional Models

"
Differences between our approach and certain other methodologies (for

example, game theory) have already been noted. But additional ways in
which artificial societies differ from traditional mathematical models and
work in the field of artificial life (ALife) also merit review.
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Heterogeneous Agent Populations

In a traditional ordinary differential equation model of an epidemic, the

total population is divided into subpopulations of, say, susceptibles and
infectives. These subgroups are homogeneous;nothing distinguishes one
member from another. Similarly, in ecosystem models there are preda-

tors and prey, but homogeneity is assumed within each species. In
macroeconomics the use of representative agents assumes away real-
world heterogeneity.
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INTRODUCTION 15

By contrast, in agent-based models there is no such aggregation. The
spatially distributed population is heterogeneous and consists of distinct
agents, each with its own genetically and culturally transmitted traits
(attributes and rules of behavior). Individual traits can change-adapt-
in the course of each agent's life, as a result of interaction with other
agents, with diseases, and with an environment. And, in evolutionary
time (which can elapse quickly on computers), selection pressures oper-
ate to alter the distribution of traits in populations.

Space Distinct from the Agent Population

In ordinary differential equation models there is no spatial component at
all. Susceptibles and infectives, predators and prey, interact in time but
not in space.IS In partial differential equation models there is a physical
space x, but the state variables representing agent populations (such as
the infection level) are continuous in x.
. By contrast, in Sugarscape the agents live on a two-dimensionallat-
tice, but are completely distinct from it. When diseases occur, they are
passed from agent to agent, but the environment-and the agent's rules
of interaction with it-affects the spatial distribution of agents, and
hence the epidemic dynamics. Likewise, it affects the.dynamics of trade,
of combat, of population growth, of cultural transmission, and so on.

Agent-Environment and Agent-Agent Interactions according to Simple
Local Rules

In the simplest form of our model agents are born with various genetic
attributes, one of which is vision, and their rule of behavior is to look for
the best unoccupied resource location. Their search is local; no agent has
global information. Similarly, when we introduce trade there is no com-
putation by any"agent-or any "super agent" such as the Walrasian auc-
tioneer-of a market-clearing price. Price formation takes place by a
process of completely decentralized bilateral trade between neighbors.
Under some conditions prices converge to a statistical equilibrium. This
artificial economy stands in stark contrast to the neoclassical general
equilibrium formalism, which relies on aggregate excess demand func-

15. These points apply with equal force to aggregate modeling of the system dynamics
type (e.g., Stella, Dynamo).
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16 INTRODUCTION

tions-or some other form of global information-for the existence of and

convergence to equilibrium.

" I Focus on Dynamics

One need not confine one's attention to equilibria, as is done in much of
mathematical social science.16 A social system's rest points, its equilibria,

may be the most analytically tractable configurations, but it is by no
means clear that they are either the most important or interesting con-

figurations. Indeed, in much of what follows it will be the dynamic prop-
erties of the model, rather than the static equilibria, that are of most
interest. In Chapter III, for instance, we study the dynamics of cultural
transmission. Over thousands of time periods we see the sudden appear-
ance of cultural "fads" and their irregular spatial propagation. These out-

of-equilibrium dynamics seem far more interesting than the static
cultural equilibrium into which the system is finally absorbed. With arti-
ficial societies built from the bottom up the transients are no more
difficult to study than the equilibriaY

Beyond Methodological Individualism

Our point of departure in agent-based modeling is the individual: We give
agents rules of behavior and then spin the system forward in time and see
what macroscopic social structures emerge. This approach contrasts
sharply with the highly aggregate perspective of macroeconomics, sociol-
ogy, and certain subfields of political science, in which social aggregates
like classes and states are posited ab initio.To that extent our work can be

accurately characterized as "methodologically individualist." However,
we part company with certain members of the individualist camp insofar
as we believe that the collective structures, or "institutions," that emerge

16. proofs of the existenceof general economic equilibrium, refinements of equilibrium

concepts in game theory (for example, Nash equilibrium), theories of equilibrium selection
when multiple equilibria exist, and methods for evaluating the stability of equilibria are
dominant themes in this literature.

17. When a model produces some interesting transient for which no explanation is
immediately available. one can simply recreate the realization in question (by keeping
track of seeds to the random number generators) and then glean data (noiselessly) from

the agent population, data that will serve as the basis for analyses of the observed output.
Or it may be useful to pause the model at some particular point in its execution and query
particular agents for their state information.
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INTRODUCTION 17

can have feedback effects in the agent population, altering the behavior

of individuals. ISAgent-based modeling allows us to study the interactions
between individualsand institutions.19

Collective Structures Emerge from the Bottom Up

A general equilibrium price, when obtained in our model, is an example
of an emergent entity. In the usual general equilibrium story it is assumed
that every agent "takes" a price issued from the top down, by the so-
called Walrasian auctioneer. By contrast we "grow" an equilibrium price
from the bottom up through local interactions alone, dispensing with the
artifice of the auctioneer and the entire aggregate excess demand appa-
ratus. Many other collective structures emerge in our artificial society:
tribes of agents, stationary wealth distributions, and collective patterns of
movement, for example.

Artificial Societies versus ALife

The Sugarscape synthesizes two "threads" from the ALife research tapes-

try. One is the field of cellular automata, or CA. A CA"consists of a lattice
of cells, or sites. At every time, each cell has a value, such as 0 or I, black
or white, "on" or "off," or a color selected from a set of colors, such as
{red, blue, green}. These values are updated iteratively according to a
fixed rule that specifies exactly how the "new" value of every site is com-
puted from its own present value and the values of its immediate neigh-
bors. Although, properly speaking, the pedigree of CAs extends at least as
far back as von Neumann's work on self-replicating automata, the most
familiar example is John Conway's game, "Life."20 Cellular automata

18. Varying positions of methodological individualism are reviewed in Hausman [1992]
and Arrow [1994].

19. The term "bottom up" can be somewhat misleading in that it suggests unidirec-
tionality: everything that emerges is outside the agent. But in models with feedback from
institutions to individuals there is emergence inside the agents as well.

20. The rules of "Life" are very simple:
1. A cell,in state 0 switches to state 1 if three of its eight lattice neighbors are in state

1; otherwise, it stays in state O.
2. A cell in state 1 stays in that state if two or three of its neighbors are in state 1;

otherwise, it switches to state O.

3. Each cell is updated once per time period.
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have been created as models of fluid flow [Doolen et al. 1990], earth-

quakes [Bak and Tang, 1989], clouds [Nagel and Raschke, 1992], forest
fires [Bak, Chen, and Tang, 1990], biological systems [Ermentrout and
Edelstein-Keshet, 1993], and a vast array of other complex spatial

processes. The sugarscape proper-as opposed to the agents-is modeled
as a CA.

Another major line of work in the ALife field does not involve an
explicit space, but rather concerns the interaction of agents in a "soup"-
a (space-less) environment in which each agent may interact directly
with every other agent. The agents-unlike the cells in "Life"-have
many different attributes (e.g., internal states and rules of behavior)
which change through social interaction; see, for instance, Arthur [1994].

Sugarscape agents are very simple by design. In particular, we specify
the agents' behavioral rules and watch for the emergence of important
macro-social structures, such as skewed wealth distributions. The

agents' rules do vary, but only parametrically, not structurally. For
instance, every agent has a utility function. Culturally varying parame-
ters enter into these utility functions, but the algebraicform of the utility
function remains fixed, as does the agent's practice of maximizing the
function. We say, then, that the microrules governing economic behav-
ior adapt parametrically, not structurally. Similarly, agent immune sys-
tems adapt parametrically to new disease strains. The game in this
particular research has been to design the simplest possible agents and
explore what happens when they interact. As we shall see, the analyti-
cal challenges are already formidable. However, this is not the only pos-
sible game.

Instead of giving all agents the same rule, one might begin with a pop-
ulation of agents, each with a different rule, and allow selection pressure
to change the rule distribution over time. In other words, no individual
agent adapts, but (as in evolutionary game theory) those who prosper
replicate and those doing poorly eventually die out. Over time, the rule
distribution evolves. Society "learns" though individuals do not.21

Another modeling avenue is essentially to move the evolutionary
process inside the agent. Here, each individual entertains a number of
behavioral rules. Successful rules are promoted, while failures are
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Under these rules a random initial distribution of black and white sites gives rise to a spec-
tacular world of blinkers, wiggly "snakes," self-replicating "gliders," and stable structures
on the lattice. For more on Life, see Sigmund [1993: 10-15,27-391.

21, Examples of this approach in the context of the iterated prisoner's dilemma include
Axelrod [1987], Miller [1989], and Lindgren [1992],
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demoted, so that evolutionary learning occurs "within" the agent;
Arthur [1994] is an example.

Yet more complex are models in which agents, in effect, "invent"
entirely novel behavioral rules. Classifier systems (Holland [1992]) and
neural networks (Rumelhart and McClelland [1986] and McClelland
and Rumelhart [1986]) have been used in such models; see, for exam-
ple, Marimon, McGrattan, and Sargent [1990] and Vriend [1995].

f
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Cellular Automata + Agents =Sugarscape

In any event, if the pure CA is a space with no agents living on it, and
the pure adaptive agents model represents agent kinetics with no under-
lying space, then the Sugarscape model is a synthesis of these two
research threads. There is an underlying space-a "sugarscape"-that is
a CA. But, populations of agents live on the CA.22The agents interact
with one another and they interact with the environment. Interagent
dynamics affect environmental dynamics, which feed back into the
agent dynamics, and so on. The agent societyand itsspatial environment are
coupled.23

T'

t
~

!

t

I

t
t
t

Toward Generative Social Science: Can You Grow It?

The broad aim of this research is to begin the developmentof a more unified
socialscience,one that embeds evolutionary processesin a computational envi-
ronment that simulates demographics,the transmissionof culture, conflict,eco-
nomics, disease, the emergence of groups, and agent coadaptation with an
environment, all from the bottom up. Artificial society-type models may
change the way we think about explanation in the social sciences.

!

1

22. Other models in which agents inhabit a landscape include Holland's Echo [1992:
186-198], Ackley and Littman [1992], Yeager's PolyWorld (Yeager [1994], Wolff and
Yeager [1994: 170-171]), and BioLand of Werner and Dyer [1994].

23. Heuristically, one thinks of an artificial society as a discrete time dynamical system
in which the vector A of all agent internal states and the vector E of all environmental
states interact as a high -dimensional discrete dynamical system of the general form:

A'+l= f(A',E')
E'+! =g(A',E')

where the vector functions f(.) and g(.) map the space of all states at time t to the space
at t+1.
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What constitutes an explanation of an observed social phenomenon?

Perhaps one day people will interpret the question, "Can you explain
it?" as asking "Can you grow it?" Artificial society modeling allows us to
"grow" social structures in silica demonstrating that certain sets of
microspecifications are sufficient to generate the macrophenomena of
interest.24 And that, after all, is a central aim. As social scientists, we are

presented with "already emerged" collective phenomena, and we seek
microrules that can generate them.25 We can, of course, use statistics to
test the match between the true, observed, structures and the ones we

groW.26But the ability to grow them-greatly facilitated by modem
object-oriented programming-is what is new. Indeed, it holds out the
prospect of a new, generative, kind of social science.27
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24. This usage of the term "sufficient" is similar to that of cognitive scientists Newell and
Simon [1972: 13].

25. There may be many microspecifications that will do as well-the mapping from
micro-rules to macrostructure could be many to one. In the social sciences, that would be
an embarrassment of riches; in many areas, any to one would be an advance.

26. Issues of agent-based model validation-objectives, methods, and software tools-
are discussed in Axtell and Epstein [1994].

27. On artificial societies and generative social science, see Epstein and Axtell [1996].
Further discussion of generative social science appears in Chapter VI.
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Life and Death on the Sugarscape
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I n this chapter the simplest version of our artificial world is described.
A single population of agents gathers a renewable resource from its

environment. We investigate the distribution of wealth that arises
among the agents and find that it is highly skewed. It is argued that
such distributions are emergent structures. Other emergent phenomena
associated with mass agent migrations are then studied. Social networks
among neighboring agents are illustrated and their significance is
discussed. Finally, it is argued that artificial societies can serve as
laboratories for social science research.

Inthe Beginning. . . There Was Sugart
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Events unfold on a "sugarscape." This is simply a sp~tial distribution, or
topography, of "sugar," a generalized resource that agents must eat to
survive. The space is a two-dimensional coordinate grid or lattice. At
every point (x, y) on the lattice, there is both a sugar level and a sugar
capacity, the capacity being the maximum value the sugar level can take
at that point. Some points might have no sugar (a level of zero) and low
capacity, others might have no sugar but large capacity-as when agents
have just harvested all the sugar-while other sites might be rich in
sugar and near capacity.

The Sugarscape software system (that is, the computer program
proper) permits one to specify a variety of spatial distributions of levels
and capacities. But let us begin with the particular sugars cape shown in
figure II-I, which consists of 2500 locations arranged on a 50 x 50
lattice with the sugar level at every site initially at its capacity value.

The sugar score is highest at the peaks in the northeast and southwest
quadrants of the grid-where the color is most yellow-and falls off in
a series of terraces. I The sugar scores range from some maximum-
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1. Terms like "peak" or "mountain" are not used to suggest physical elevation, but to
denote regions of high sugar level.

21


