
Experimental Program Analysis∗

Joseph R. Ruthruff, Sebastian Elbaum, and Gregg Rothermel†

Abstract

Program analysis techniques are used by software engineers to deduce and infer characteristics of soft-

ware systems. Recent research has suggested that certain program analysis techniques can be formulated

as formal experiments. This article reports the results of research exploring this suggestion. Building

on principles and methodologies underlying the use of experimentation in other fields, we provide de-

scriptive and operational definitions of experimental program analysis, illustrate them by example, and

describe several differences between experimental program analysis and experimentation in other fields.

We also explore the applicability of experimental program analysis to three software engineering prob-

lems: program transformation, program debugging, and program understanding. Our findings indicate

that experimental program analysis techniques can provide new and potentially improved solutions to

these problems, and suggest that experimental program analysis offers a promising new direction for

program analysis research.

Keywords: experimental program analysis, program analysis, experimentation

1 Introduction

Program analysis techniques analyze software systems to collect, deduce, or infer specific information about

those systems. The resulting information typically involves system properties and attributes such as data

dependencies, control dependencies, invariants, anomalous behavior, reliability, or conformance to specifica-

tions. This information supports various software engineering activities such as testing, fault localization,

impact analysis, and program understanding. Researchers who are investigating these and other activities

continue to seek new program analysis techniques that can address software engineering problems cost-

effectively, and continue to seek ways to improve existing techniques.

Researchers for some time have harnessed principles of experimentation to aid program analysis techniques

(e.g., [6, 15, 35, 49].) Zeller recognized that such program analysis techniques might be able to establish

causality relationships between system variables of interest in cases in which standard analyses have not

succeeded [50]. We further argued that such techniques might also be able to more cost-effectively draw

inferences about properties of software systems to characterize them [35].

Anyone who has spent time debugging a program will recognize characteristics that are experimental

in nature. Debuggers routinely form hypotheses about the causes of failures, conduct program runs (in

∗This article is a revised and expanded version of a paper presented at the ACM SIGSOFT International Symposium on

Software Testing and Analysis, July 2006 [37].
†Department of Computer Science and Engineering, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0115, U.S.A.,

{ruthruff, elbaum, grother}@cse.unl.edu

1



which factors that might affect the run other than the effect being investigated are controlled) to confirm

or reject these hypotheses, and based on the results of these “experiments,” draw conclusions or create new

hypotheses about the cause of the fault.

The “experimental” nature of this approach is reflected (in whole or in part) in existing program analysis

techniques aimed at fault localization and debugging. For example, Howcome [49] is a tool intended to help

engineers localize the cause of an observed program failure f in a failing execution ef . Howcome attempts

to isolate the minimal relevant variable value differences in program states in order to create “cause-effect

chains” describing why f occurred. To do this, Howcome conducts an experiment where a subset of ef ’s

variable values are applied to the corresponding variables in a passing execution ep to “test” an hypothesis

regarding whether the applied changes reproduce f . If ep with the applied value subset “fails” this test (by

not reproducing f), then a different value subset treatment is tested. If the subset “passes” the test (by

reproducing f), then a subset of those incriminating variable values is considered. This process continues

exploring different hypotheses until no further subsets can be formed or can reproduce the failure.

While the use of principles of experimentation by program analysis techniques has increased in recent

years, there remain many approaches by which techniques could draw on research in the statistical and experi-

ment design literature to improve their efficiency or effectiveness. These approaches include (1) methodologies

for manipulating independent variables of interest to test their effects on dependent variables, (2) procedures

for conducting and adjusting hypothesis tests in program analysis contexts, (3) strategies for systematically

controlling sources of variation during these tests, (4) experiment designs and sampling techniques to reduce

the costs of experimentation, and (5) mechanisms to generate confidence measures in the reliability and va-

lidity of the results. To date, however, the opportunities offered by such approaches have not been pursued

rigorously, with the support of a theory of experimental program analysis, by the program analysis research

community. As a result, we believe that many program analysis techniques have not advanced to the degree

that they could have.

This article takes a first step in formalizing an experimental program analysis paradigm, and demon-

strating the potential utility of experimental program analysis, through three contributions. First, we argue

that a class of program analysis approaches exists whose members are inherently experimental in nature. By

this, we mean that these techniques can be characterized in terms of guidelines and methodologies defined

and practiced within the long-established paradigm of experimentation. Building on this characterization,

we present an operational definition of a paradigm for experimental program analysis, and we show how

analysis techniques can be characterized in terms of this paradigm.

Second, we demonstrate how our formalization of the experimental program analysis paradigm can help

researchers identify limitations of analysis techniques, improve existing program analysis techniques, and

create new experimental program analysis techniques. We also show that techniques following this paradigm

2



can approach program analysis problems in new ways. These results suggest that our formalization can help

researchers use experimental program analysis effectively in various ways in which it has not previously been

considered.

Third, we examine the applicability and potential cost-effectiveness of experimental program analysis by

considering its use with respect to three well-researched software engineering problems: program transfor-

mation, program debugging, and program understanding. We consider each problem in detail, discuss the

use of experimental program analysis techniques to address that problem, and explain how that use can

help researchers tackle some of that problem’s more difficult challenges. For each problem, we present one

specific experimental program analysis technique in detail, and illustrate the use of that technique through

an empirical study. The results of these studies indicate that experimental program analysis techniques can

contribute to solving these problems in more cost-effective ways.

The remainder of this article proceeds as follows. Section 2 provides an overview of experimentation

and relevant concepts. Section 3 presents our definitions of experimental program analysis, illustrates them

by example, and discusses applications for them in practice. Section 4 discusses several exploitable differ-

ences between experimental program analysis and experimentation in other fields. Section 5 presents three

experimental program analysis techniques, and reports an empirical study investigating each technique’s

effectiveness and applicability. Section 6 describes related work, and Section 7 concludes.

2 Background

The field of empirical research methods is mature, and has been well-discussed in various research mono-

graphs (e.g., [5, 24, 29, 34, 39, 44, 46, 47]). Because experimental program analysis techniques draw on

empirical research methods to conduct their analyses, in this section we distill, from these monographs, an

overview of the empirical method. In this presentation, we focus on material about experiments that is most

relevant to a general understanding of experimental program analysis, and is discussed as being important

to experimentation in the foregoing monographs.1

The initial step in any scientific endeavor in which a conjecture is meant to be tested using a set of collected

observations is the recognition and statement of the problem. This activity involves formulating

research questions that define the purpose and scope of the experiment, identifying the phenomena of interest,

and possibly forming conjectures regarding likely answers to the questions, or limitations on those answers.

Research questions can be exploratory, descriptive, or explanatory – attempting not just to establish causality

but also to establish relationships and characterize a population [24, 29, 34, 44]. As part of this step, the

investigator also identifies the target population to be studied, and on which conclusions will be drawn.

1In practice, experiments take on different forms in different domains. The overview presented is a generalization from the
cited sources, which we later refer to as “traditional experimentation,” and suffices for our subsequent discussion.

3



Depending on the outcome of this first step, as well as the conditions under which the investigation

will take place, different strategies (e.g., case studies, surveys, experiments) may be employed to answer the

formulated research questions. Conditions for selecting strategies may include the desired level of control over

extraneous factors, the available resources, and the need for generalization. These strategies have different

features and involve different activities.

In the case of experiments — the design strategy of interest in this article — scientists seek to test

hypothesized relationships between independent and dependent variables by manipulating the independent

variables through a set of purposeful changes, while carefully controlling extraneous conditions that might

influence the dependent variable of interest. In general, when considering experiments, investigators must

perform four distinct (and often interleaved) activities [29, 34]:

(1) Selection of independent and dependent variables. This activity involves the identification of

the factors that might influence the outcome of the tests that will later be conducted on the identified

population. The investigator must isolate the factors that will be manipulated (through purposeful changes)

in investigating the population and testing the hypotheses; these are referred to as independent variables.

Other factors that are not manipulated, but whose effects are controlled for by ensuring that they do not

change in a manner that could confound the effects of the independent variable’s variations, are referred to as

fixed variables. Variables whose effects cannot be completely controlled for, or variables that are simply not

considered in the experiment design, are nuisance variables. The response or dependent variables measure

the effect of the variations on the independent variables on the population.

(2) Choice of experiment design. Experiment design choice is concerned with structuring variables and

data so that conjectures can be appropriately evaluated with as much power and as little cost as possible. The

process begins with the investigator choosing, from the scales and ranges of the independent variables, specific

levels of interest as treatments for the experiment. Next, the investigator formalizes the conjectures about the

potential effects of the treatments on the dependent variables through a formulation of hypotheses. To reduce

costs, the investigator must determine how to sample the population while maintaining the generalization

power of the experiment’s findings. The investigator then decides how to assign the selected treatments to the

sampled units to efficiently maximize the power of the experiment, while controlling the fixed variables and

reducing the potential impact of the nuisance variables, so that meaningful observations can be obtained.

(3) Performing the experiment. This activity requires the codification and pursuit of specified procedures

that properly gather observations to test the target hypotheses. These procedures are supposed to reduce the

chance that the dependent variables will be affected by factors other than the independent variables. Thus,

it is important that the investigator regularly monitor the implementation and execution of the experiment

procedures to reduce the chances of generating effects by such extraneous factors.

4



(4) Analysis and interpretation of data. An initial data analysis often includes the computation of

measures of central tendency and dispersion that characterize the data, and might help investigators identify

anomalies worth revisiting. More formal analysis includes statistical significance assessments regarding the

effect of the treatments on the dependent variables. Such assessments provide measures of confidence in the

reliability and validity of the results and help interpretation proceed in an objective and non-biased manner.

The data analysis allows the investigator to test the hypotheses to evaluate the effect of the treatments. The

interpretation of the hypothesis testing activity during an interim analysis can lead to further hypothesis

testing within the same experiment, either through the continued testing of current hypotheses or the

formulation of new hypotheses. If more data is needed to evaluate the hypotheses, then the process can

return to the experiment design stage so that such data can be obtained; this establishes a “feedback loop”

in which continued testing may take place during the course of the experiment. If more data is not needed,

then the investigation proceeds to the final stage in the process of experimentation.

The final step when performing any empirical study, regardless of the research strategy utilized, is the

offering of conclusions and recommendations. An investigator summarizes the findings through final

conclusions that are within the scope of the research questions and the limitations of the research strategy.

However, studies are rarely performed in isolation, so these conclusions are often joined with recommenda-

tions that might include guidance toward the performance of replicated studies to validate or generalize the

conclusions, or suggestions for the exploration of other conjectures.

As an overall issue, the actions taken during each step may result in limitations being imposed on the

conclusions that can be drawn from those studies. For example, in experiments, the sample taken from the

population may not be representative of the population for reasons pertaining to sample size or the area

from which the sample was taken, the inferential analysis may be not be appropriate due to assumptions

about the population not being met, the experiment design may not offer enough power to place sufficient

confidence in the conclusions, or the nuisance variables may cause confounding effects that bias the results.

These limitations are formally known as threats to the experiment’s validity. The types of threats that we

consider in this article are those identified by Trochim [44], who provides a general discussion of validity

evaluation and a classification of four types of validity threats:

1. Threats to external validity involve limitations on the ability to generalize the results of the experiment.

They do not concern the validity of the results from the experiment in question – only the applicability

of those results to other settings, contexts, or the population the experiment is investigating.

2. Threats to internal validity, rather than dealing with how the experiment relates to contexts outside

of the investigation as do external validity threats, concern limitations, or confounding and biasing

factors, that can influence the reliability of the results obtained within the experiment.

5



3. Threats to construct validity deal with the adequacy and limitations of an experiment’s dependent

variables. They are directly tied to the sufficiency of the constructs chosen to evaluate the effect of the

manipulations of the independent variables in the context of the sample.

4. Threats to conclusion validity concern limitations on the power or legitimacy of an experiment’s conclu-

sions. These validity threats suggest ways in which a stronger, and perhaps more accurate, experiment

might be designed.

The designer of an experiment must consider these threats when designing each stage of an experiment,

and must interpret the conclusions drawn at the end of the experiment in light of these validity threats.

3 Experimental Program Analysis

We now define and discuss experimental program analysis, drawing on the overview of principles of exper-

iment design presented in Section 2. As a vehicle for our discussion, we illustrate the concepts that we

present through an existing program analysis technique that (as we shall show) is aptly described as an

“experimental program analysis” (EPA) technique – the technique implemented by Howcome [49].

We first descriptively define experimental program analysis:

Experimental program analysis is the evolving process of manipulating program factors under

controlled conditions in order to characterize or explain the effect of the manipulated factors on

an aspect of the program.

In Section 1, we cited the Howcome tool as an example of a concrete technique that fits into our view of

experimental program analysis. With our descriptive definition of the paradigm, this should become clearer,

as Howcome can be related to this definition as follows:

• Howcome operates through an evolving process of systematically narrowing the consideration of vari-

able values relevant to a program failure f , and eliminating those deemed irrelevant.

• The program manipulations that are made during this process are the variable value changes that are

made to program states in ef .

• These manipulations are made in a controlled manner such that only a selected subset of variable

values of interest are manipulated and tested at a specific time.

• In the end, the goal of Howcome is to explain the effect of these manipulations on ef in the form of

a cause-effect chain that relates variable values that are relevant to f .

6



• Despite the controls used by Howcome, validity threats still limit the conclusions that can be drawn

from the technique. For example, the presence of multiple faults in the source code may confound

results by inducing different failure circumstances, while dependencies between variables may cause

extra, irrelevant variable values to be reported in cause-effect chains.

There are several aspects of this descriptive definition that merit elaboration:

• First, one important characteristic of experimental program analysis is the notion of manipulating

program factors. The program factors manipulated by EPA techniques are either concrete represen-

tations of the program such as source code and program input, or factors and byproducts related to the

program’s execution such as environment variables, program executions, and program states. These

manipulations are made to learn about their effect on an aspect of the program that is of interest.

Viewed through the lens of traditional experimentation [29, 34], these program factors correspond to

independent variables that are manipulated during the experiments conducted by EPA techniques to

perform program analysis. Learning about the effect of these manipulations is done (for the purposes

of program analysis) by testing hypotheses regarding the effect of the manipulations on the aspect of

the program of interest, with proper controls on the conditions of these tests. A specific manipulation

being tested can be viewed as a treatment, whose effect on the program is the subject of the hypothesis

and evaluated through hypothesis testing.

• Second, the manipulation of these independent variables occurs under controlled conditions. “Con-

trolled conditions” refers to the idea that experiments require that the manipulated independent vari-

ables be the only factors that will affect the dependent variables, and that nuisance variables do not

confound the effect of the treatments and limit the conclusions that can be drawn from the experiment.

• Third, experimental program analysis is performed to characterize or explain the effect of the

manipulated program factors on an aspect of the program. The outcome of an EPA technique

is a description or assessment of a population reflecting a program aspect of interest (e.g., “what is

the program’s potential behavior?”), or the determination of likely relationships between treatments

and dependent variables (e.g., “what inputs are making the program fail?”). Most EPA techniques,

like experiments in other fields, operate on samples of populations, leading to answers that are not

absolutely certain, but rather, highly probable.

• Fourth, experimental program analysis involves an evolving process of manipulating program factors

as independent variables. For EPA techniques to build a body of knowledge about a program, it is often

necessary to conduct multiple experiments in sequence, changing the design of later experiments by

leveraging findings of prior ones; for example, by re-sampling the population and refining hypotheses.

7



These evolving experiments allow the results of later experiments to converge to a desirable or useful

outcome. An experimental program analysis process is then necessary to manage the experiments’

evolution, including a feedback loop enabling the utilization of previous findings to guide the later

experiments, and the conditions under which they will be conducted.

While our descriptive definition helps us clarify the ways in which techniques like Howcome are exper-

imental program analysis techniques, we also wish to support five key operations related to experimental

program analysis:

• Providing a means for classifying techniques as EPA techniques and facilitating an understanding of

the formal experiments conducted by these techniques.

• Providing a “recipe” for creating new EPA techniques to cost-effectively solve problems that have not

been adequately addressed by traditional program analysis techniques.

• Providing support to help researchers easily assess the limitations of EPA techniques.

• Suggesting opportunities for leveraging advanced procedures for designing and conducting effective and

efficient experiments, thereby supporting the improvement of EPA techniques.

• Exposing features required by experimentation that can be encoded in algorithms, thereby enhancing

automatability within experimental program analysis.

To provide this type of support and further elucidate our descriptive definition of experimental program

analysis, we augment it with an operational definition, which we present in tabular form in Table 1. We

term this definition “operational” because it facilitates the use of experimental program analysis.

Because EPA techniques conduct experiments to analyze programs, Table 1 is organized in terms of the

experimentation guidelines presented in Section 2. The fourth column in Table 1 shows how the Howcome

technique relates to the various “features” in the operational definition. Features whose role in experimental

program analysis can be automated are in gray rows, while features in white rows are manually realized by

the creator of the technique.

In the following subsections, we present each feature of this operational definition in detail. Because these

experimentation features must be implemented in EPA techniques, our presentation is organized in terms

of the tasks that are conducted to realize an implementation of each experimentation feature in a program

analysis context. During this presentation, we also discuss how each feature contributes to the possible

strengths of an EPA technique and, where applicable, a technique’s weaknesses due to the introduction of

validity threats. For each feature in the operational definition, we use the Howcome technique to provide

an example of an EPA technique implementing the feature.

8



Activity Features Role in EPA HOWCOME

Recognition Research Questions about specific aspects “Given execution ep and failure f

and Statement questions of a program. in ef , what are the minimum var-
of the iable values in ef that cause f?”
Problem Population Program aspects that the experi- All program states Sep ∈ ep.

ment draws conclusions about.
Selection of Factors Internal or external program Variable value changes, circumstances
Independent aspects impacting the effect inducing f , number of faults, outcome
and Dependent of the measured manipulations. certainty, unchanged variable values.
Variables Independent Factors manipulated to impact Values of variables in ef at each

variables the program aspect of interest. state s ∈ Sef
.

Fixed Factors that are set (or assumed Variable values that do not change.
variables to be) constant.
Nuisance Uncontrolled factors affecting Multiple circumstances inducing f ,
variables measurements on the program. number of faults, outcome certainty.
Dependent Constructs characterizing the ef- Whether the execution reproduces f ,
variables fect of the program manipulations. succeeds, or has an inconclusive result.

Choice of Treatments Specific instantiations of independ- Difference in variable values between
Experiment ent variable levels that are tested. an ep state and corresponding ef state.
Design Hypothesis Conjectures about treatment ef- Null hypothesis H0 for each treatment:

statement fects on an aspect of the program. “The state changes do not reproduce f .”
Sample Selected unit set from population. Selected program states in ep.
Treatment Assignment of independent variable Compound treatments of variable values
assignment levels to the sampled units. are applied to states in ep.

Performing the Experiment Algorithms to measure and collect Observations are collected for each test
Experiment procedures observations of treatment effects of variable value changes within a

on program. program state.
Analysis and Data Analysis of observations to discover Effects of applying variable value
Interpretation analysis or assess the effects of treatments changes is measured by observing the
of Data on the targeted program aspect. effect on the execution’s output.

Hypothesis Tests to confirm or reject the H0 is rejected if f is reproduced,
testing previously-stated hypotheses based not rejected if ep is reproduced, and

on the data analysis. not rejected for inconclusive outcomes.
Interim A decision whether further tests Form new subsets of variable values
analysis are needed based on the results of (if possible) if H0 was rejected.

the current and previous tests. Otherwise, choose different values
from those remaining (if any).

Conclusions and Validity Limitations or assumptions Dependencies causing extra variable re-
Recommendations threats impacting confidence in results. ports, multiple faults confounding results.

Final Conclusions drawn from the Using the reported cause-effect chain,
conclusions experimental program analysis. or deciding to generate a new chain.

Table 1: Features in EPA techniques. Features are grouped in relation to the experimentation activities
presented in Section 2. The rightmost column uses Howcome to illustrate each feature. Features that can
be automated are in gray rows, while features in white rows are performed by investigators.

3.1 Recognition and Statement of the Problem

The outcomes of this planning activity are (1) the formulation of research questions, and (2) the identification

of the experiment’s population.

Formulation of research questions. This task guides and sets the scope for the experimental program

analysis activity, focusing on particular aspects of a program such as source code or runtime behavior.

Howcome Example: Howcome aims to isolate the variable values relevant to a failure f observed in

a failing execution ef but not a passing execution ep. The research question addressed by the technique is:

“given ep and f in ef , what are the minimum relevant variable values V ∈ ef that cause f?”

9



Identification of population. This task identifies the aspect of the program about which inferences will

be made. The population universe of the experiments conducted by an EPA technique is some set of artifacts

related to representations of the program of interest, or factors related to the program’s execution.

Howcome Example: Howcome draws conclusions about variable values that are relevant to f by

applying those values to program states in ep. Thus, each program state is a unit in the population of all

program states Sep
.

3.2 Selection of Independent/Dependent Variables

The outcomes of this activity are the identification of (1) the aspect of the program to be manipulated by the

EPA technique, (2) a construct with which to measure these manipulations’ effects, and (3) the factors for

which the experiments performed by the technique do not account, that could influence or bias observations.

Identification of factors. The “factors” feature of EPA techniques is any internal or external aspect of

the program that could impact the measurements regarding the effect of the manipulations that are being

measured. An important byproduct of this task is the awareness of potentially confounding effects on the

results.

Howcome Example: Many factors can influence the variable values identified by Howcome as being

relevant to f , including the range of variable values in the program states that can impact the final execution

output; the number of faults, as multiple faults may induce different failure circumstances; and the failure-

inducing circumstances themselves, including non-deterministic or synchronization issues on which failures

may depend.

Selection of independent variables. This task identifies the factors that will be explicitly manipulated by

the EPA technique. The effect of these manipulations on the aspect of the program under study is measured in

order to answer the research questions addressed by the technique. As in traditional experiments, treatments

are ultimately selected as levels from the ranges of the independent variables.

Howcome Example: The independent variable manipulated by Howcome during its program analysis

is the values of the variables in ep at each program state. Changes to these variable values are made in order

to test their relevance to f . The operative notion is that through modification of this variable, Howcome

may find different variable values to be relevant to f . As an example, if the variable x is an 8-bit unsigned

integer, then the range of the independent variable is 0–255, and a treatment from x is one of the 256 possible

values (i.e., levels) of x.

Selection of fixed variables. This task chooses a subset of factors to hold at fixed levels. Fixing factors at

certain levels ensures that these individual variables elicit the same effect on the observations obtained from

the experiment, and that differences seen between observations are not due to these factors alone. As in

10



traditional experiments, EPA techniques are most reliable if every factor that is not manipulated and tested

during the program analysis is fixed to ensure systematic control in experiment conditions. If the proper

factors are not controlled for, it is possible that they will introduce threats to the internal validity of the

EPA technique. This is one way in which EPA techniques, like traditional experiments, reduce threats to

validity – by ensuring that extraneous factors other than the independent variables do not impact results.

Howcome Example: The variable values that are not manipulated by Howcome are kept constant to

control their effect on the program outcome. This attempts to prevent any variable values other than those

in the treatment being evaluated from influencing the execution’s output.

Identification of nuisance variables. This task identifies uncontrolled variables. These factors may

intentionally be left uncontrolled because it may not be cost-effective to control them, or because it is not

possible to do so. In any case, it is important to acknowledge their presence so that an EPA technique’s

conclusions can be considered in light of the possible role of these factors, as uncontrolled nuisance variables

are inherently threats to the internal validity of the technique’s experiments. (As we shall see, improvements

to EPA techniques can come in the form of finding ways to reduce or eliminate the potential impact of these

nuisance variables.)

Howcome Example: The presence of multiple faults, the existence of multiple failure-inducing scenarios

or scenarios for which the outcome is not certain and cannot be classified as passing or failing, and depen-

dencies between variable values are some nuisance variables that can confound, bias, or limit the results that

are reported by Howcome.

Selection of dependent variable(s). This task determines how the effects of the manipulations to the

independent variable (treatments) will be measured. A construct is then chosen that will capture these

measurements in the form of observations that can be analyzed to evaluate the treatments. If this task is not

performed properly, then the construct validity of the technique may be threatened, because the construct

may not capture the effect that it is intended to capture.

Howcome Example: The dependent variable for Howcome measures whether f is reproduced when

manipulations are made to the variable values in program states. The construct for this variable is a testing

function that indicates if (1) the execution succeeded as did the original, unmodified execution ep, in spite

of the variable value changes; (2) f was reproduced by the treatments; or (3) the execution’s output was

inconclusive, as when inconsistent program states occur due to the modification of certain variables.

3.3 Choice of Experiment Design

The outcome of this activity, which formulates the design of the experiment(s) conducted by an EPA tech-

nique, are (1) the treatments that will be investigated in the experiment, (2) the hypotheses associated with

11



those treatments, (3) the set of elements from the population that will be used in the experiment, and (4)

the manner in which treatments will be assigned to the elements in the sample. The choice of experiment

design is crucial for maximizing the control of the sources of variation in the program and the environment,

and reducing the cost of an EPA technique. Features in the choice of experiment design activity can be

automated by the EPA technique.

Design of treatments. This task determines specific levels from each independent variable’s range at

which to instantiate treatments. If there are multiple independent variables, or if multiple levels from the

same variable are to be combined, then this task also determines how the instantiations will be grouped

together to form compound treatments. It is these treatments — instances of specific manipulations made

by a technique — that are evaluated in experimental program analysis using units from the population, and

about which conclusions will be drawn.

Howcome Example:

The experiments conducted by Howcome are crafted through the selection of potential variable values to

apply to a program state in ep. Each variable change is an instantiation of the difference between the variable

in the passing state and the corresponding failing state. These value changes are tested to see whether f

is reproduced. If so, then either the variable value changes will be used to create a cause-effect chain or an

attempt will be made to narrow those values further. The information that is gathered regarding the effect

of these variable value changes on the program is later used to determine those variable value treatments

that should be investigated further (by combining them with a different combination of variable values) and

those that should be discarded.

Formulation of hypotheses. This task involves formalizing conjectures about the effects of treatments on

the aspect of the program of interest. An hypothesis encodes a potential relationship between variables that

is amenable to evaluation after observations are collected about the treatments’ effects so that experimental

program analysis can draw conclusions about the treatments’ impact on the population of interest. We note

that the constitution and later evaluation of the hypotheses may vary considerably depending on the number,

type, and complexity of treatments, measurement construct, and unit of analysis involved. We start with a

relatively simple hypothesis in this section but explore others in Section 5.

Howcome Example: When considering potential variable value changes that are made to a program

state in ep by Howcome, the technique’s experiments assess whether the variable values reproduce f in ep.

A null hypothesis for a particular treatment of variable value differences therefore states that “the variable

value changes do not reproduce f in ep.”

Sample the population. A sample is a set of elements from the population. Collecting observations on a

subset of the population is one way by which experimental program analysis (like traditional experiments)

12



achieves results while retaining acceptable costs. This task defines the sampling process (e.g., randomized,

convenience, adaptive) and a stopping rule (e.g., execution time, number of inputs, confidence in inferences)

to be used to halt the process of sampling. If this task is not completed properly, the external validity of

the experiment may be threatened, as conclusions may not generalize to the population.

Howcome Example: Howcome samples program states from ep so that the variable values from equiv-

alent states in ef can be applied and tested for relevance to f . States at which relevant variable values

are found are used to form the reported cause-effect chain. Note that program states can be continuously

re-sampled in order to draw conclusions about program states that are important to cause-effect chains.

Assign treatments to sample. This task involves assigning treatments to one or more experimental units

in the sample. Some assignment possibilities include random assignment, blocking the units of the sample

into groups to ensure that treatments are better distributed, and assigning more than one treatment to each

experimental unit. The result of this task is a set of units of analysis from which observations will be obtained

to evaluate the treatments during experimental program analysis. If this task is not performed correctly, the

experiment could suffer from conclusion validity problems, as its conclusions may not be powerful enough

due to issues such as having insufficient replications for each treatment. An attempt to avoid these types of

problems can be made by choosing a methodology that is appropriate in terms of the conceptual relationship

between treatments and the sample, and also ensures that quantitative information of sufficient power will

be gathered to adequately address the research questions investigated by the technique.

Howcome Example: The variable value differences between ef and ep that are selected as treatments

by Howcome are applied to the appropriate program states in ep. This is performed so that Howcome

can observe whether these treatment variable value changes reproduce f in ep.

3.4 Performing the Experiment

This activity is primarily mechanical and has a single outcome: a set of observations on the sampled units

that reflect the measured effect of the independent variable manipulations (treatments) according to exper-

imental procedures. With EPA techniques, the procedures governing the collection of these observations

are automated, which is an important characteristic of experimental program analysis because it grants

techniques the scalability required to be applicable to large problems.

Execute experimental procedures. In experimental program analysis, experimental procedures can be

represented algorithmically and can be automated; this differentiates experimental program analysis from

experiments in some other fields, where the process of following experimental procedures and collecting ob-

servations is often performed by researchers — risking the intrusion of human factors that might confound

results — and where an algorithmic representation is sometimes not as natural for representing the experi-

13



mentation processes. During this task, the observations collected according to the dependent variable should

capture only the isolated effects that follow from the manipulations of the independent variables. If this

task is not performed correctly, the experiment’s internal validity may be affected due to extraneous factors

influencing the observations obtained.

Howcome Example: An observation is collected for each test of variable value changes to a state. The

process of conducting such a test within an experiment involves running ep, interrupting execution at the

program state si under consideration, applying the treatment variable values from ef to ep at si, resuming

the execution of ep, and determining whether (1) ep succeeded, (2) f was reproduced, or (3) the execution

terminated with an inconclusive result. The outcome of this test is an observation collected.

3.5 Analysis and Interpretation of Data

The outcomes of this activity are (1) a data analysis used to test hypotheses, (2) the actual testing of those

hypotheses, and (3) an interim analysis that determines whether further data needs to be collected in order to

draw conclusions from the experiments. To ensure that conclusions are objective when a population sample

has been used, statistical measures can assign confidence levels to results, helping control the effectiveness

and efficiency of the experiment. These tasks can be automated by EPA techniques.

Performing data analysis. This task involves the analysis of collected observations for the purpose of

evaluating hypotheses. This can include inferential analyses to determine the appropriateness of the decision

made regarding an hypothesis. This also include checks on assumptions regarding the underlying unit

distributions. If this task is not performed properly, or if the assumptions made by underlying statistical

analyses for the data are not met, the conclusion validity of the experiment can be threatened.

Howcome Example: Hypotheses are evaluated based on whether the dependent variable indicated that

the variable value treatment caused f to be reproduced, or whether it caused an inconclusive result.

Testing and evaluating hypotheses. Hypothesis testing assesses the effect of the manipulations made

by the investigator, or, in the case of experimental program analysis, by the automated process managing

the experiment.

Howcome Example: Using observations from the tests of applying variable values from ef into ep, the

null hypothesis H0 is rejected if the variable value treatment reproduces the original failure, indicating that

the technique should try to find minimally relevant variable value differences within this treatment. As

such, the rejection of H0 guides the manipulations of the independent variable (i.e., guides the design of

future treatments) by determining whether the particular treatment variables should be refined during the

remainder of the analysis.

Performing interim analysis. After the hypotheses have been tested, a decision must be made about

14



whether further treatments need to be evaluated or different experimental conditions need to be explored.

EPA techniques determine automatically, based on the results of previous experiments, whether to continue

“looping” (i.e., making further manipulations to the independent variables), or whether the experimental

program analysis has reached a point where the technique can conclude and output results.

Howcome Example: If H0 (for the treatment variable value differences) was rejected, indicating that

those treatments reproduced f , then new experiments will be designed from those values to further minimize

the variable values relevant to f (if further minimizations are possible). Otherwise, if different sets of variable

values remain that have not yet been tested via experiments, they will be evaluated as treatments next. When

no variable values remain to be tested, the cause-effect chain is reported by combining the isolated variable

value differences into a sequential report explaining the causes of f .

3.6 Conclusions and Recommendations

The outcomes of this activity are (1) an assessment of the validity threats of the EPA technique’s experi-

ment(s), and thus the program analysis the technique conducts; and (2) the conclusions obtained from the

experimental program analysis in the context of the limitations placed on them by validity threats.

Assessment of validity threats. As indicated throughout our discussion of the features in our operational

definition, various threats to the validity of the experiments conducted by EPA techniques arise. Because

some threats can be reported through automated mechanisms, this task is represented by a gray row. For

example, power analyses could estimate the power of the experiment and quantify threats to conclusion

validity, estimating the size of the sample could help to quantify threats to external validity, and estimating

the number or severity of uncontrolled nuisance variables could help to quantify threats to internal validity.

Howcome Example: A cause-effect chain may not contain the true minimally relevant variables due to

dependencies between tested variable values, or due to the initial variable value combinations tested, which

influences the future combinations that are tested and the “minimal” set of variables thus found. Cause-

effect chains can also be biased and confounded by multiple software defects interacting and influencing the

report about the failure described by the chain.

Drawing final conclusions. This task results in the final conclusions that are drawn from experimental

program analysis in the context of the EPA technique’s validity threats. Final conclusions are made when

the analysis is complete and no further experiments are needed or can be performed.

Howcome Example: a cause-effect chain can be used by engineers to track the root cause of the failure

through its intermediate effects and ultimately to the failure itself, or to select different passing and failing

executions to provide to Howcome.

15



4 Discussion of Experimental Program Analysis Traits

There are many opportunities for EPA techniques to utilize their distinguishing traits to address research

questions in unique ways. Also, due to characteristics of the program analysis setting, EPA techniques have

advantages available to them that are not as readily available to more traditional uses of experimentation.

We now comment on several of these distinguishing traits, and specific benefits that they may bring to EPA

techniques.

4.1 Replicability and Sources of Variation

Program analysis activities are not subject to many of the sources of spurious variations that are common

in some other fields. For example, program analysis is conducted on artifacts and is usually automated,

reducing sources of variation introduced by humans (as subjects or as experimenters), which are among the

most difficult to control and measure reliably. We have also observed that some typical threats to replicability

must be reinterpreted in the context of experimental program analysis. For example, the concept of learning

effects (where the behavior of a unit of analysis is affected by the application of repeated treatments) should

be reinterpreted in the program analysis context as residual effects caused by incomplete setup and cleanup

procedures (e.g., a test outcome depends on the results of previous tests). Also, a software system being

monitored may be affected by the instrumentation that enables monitoring, and this resembles the concept

of “testing effects” seen in some other fields.

However, EPA techniques are susceptible to other sources of variation that may not be cost-effective

to control. For example, non-deterministic system behavior may introduce inconsistencies that lead to

inaccurate inferences, and should be cast as threats to internal validity. Controlling for such behavior (e.g.,

controlling the scheduler) may threaten the generality of an EPA technique’s findings, which is an issue that

investigators should think of as threats to external validity. Still, experimental program analysis has the

advantage of dealing with software systems, which are not material entities and are more easily controlled

than naturally occurring phenomena.

4.2 The Cost of Applying Treatments

In most cases, the applications of treatments to software systems have relatively low costs — especially in

comparison, say, to the cost of inducing a genetic disorder in a population of mice and then applying a

treatment to this population. Systems may thus be exercised many times during the software development

and validation process. This is advantageous for experimental program analysis because it implies that

multiple treatment applications, and multiple hypothesis tests, are affordable, which can increase the power

of EPA techniques’ conclusions and offers many directions for future work in this area.

Two factors contribute to this trait. First, in experimental program analysis, applying treatments to

16



experimental units is often automated and requires limited human intervention. (This impacts the cost of

treatment application, but EPA techniques are still likely to draw conclusions — i.e., produce results —

that will likely need to be examined and comsumed by humans, and assessments of techniques will need

ultimately to consider this.) Second, there are no expendable units or treatments; that is, the aspects of the

system that are being manipulated, or the sampled inputs, can be reused without incurring additional costs

(except for the default operational costs). Experiments in program analysis settings also avoid ethical issues

that arise in other scientific domains such as those involving humans, livestock, wildlife, or the environment.

EPA techniques can leverage these traits by using increased sample sizes to increase the confidence in, or

quality of, the findings, and adding additional treatments to their design to learn more about the research

questions. We note, however, that the affordability of treatment application must be balanced with an

analysis that takes into consideration the adjustments to confidence and test power required to reduce the

possibilities of threats to conclusion validity.

4.3 Sampling the Input Space

Sampling allows researchers to control experimentation costs while maintaining the meaningfulness of the

experiment by selecting a representative subset of the population. When experimenting with programs, we

are often able to collect very large sample sets because of computing resources and the focus on a software

program, which are not material entities. This can allow the experiments in EPA techniques to operate in

ways that are difficult to achieve with traditional techniques. For example, in the case of EPA techniques

that sample a program’s execution space, it is not possible to sample the (infinite) number of executions

for non-trivial programs. Sampling a limited, yet still sizable, subset of executions would provide these

techniques with scalability as well as investigative power. Furthermore, we may find cases where the size

of the population is small enough that the sample can constitute an important part of the population. We

have even identified cases [51] where the population and sample size may be the same, resembling a census.

Sample quality is also an issue facing experiment designers, and this is no different in experimental pro-

gram analysis; the power of EPA techniques to generalize and the correctness of their inferences is dependent

on the quality of the samples that they use. Although this challenge is not exclusive to experimental program

analysis (e.g., software testing attempts to select “worthwhile” inputs to drive a system’s execution) and

there will always be uncertainty when making inductive inferences, we expect the uncertainty of EPA tech-

niques to be measurable by statistical methods if the sample has been properly drawn and the assumptions

of the method have been met.

17



4.4 Assumptions about Populations

Software systems are not naturally occurring phenomena with distributions that follow commonly observed

patterns. Experimental program analysis data reflecting program behavior is, for example, rarely normal,

uniform, or made up of independent observations. This limits the opportunity for the application of com-

monly used inferential analysis techniques. One alternative is to apply data transformations to obtain

“regular” distributions and enable traditional analyses. However, existing transformations may be unsuited

to handling the heterogeneity and variability of data in this domain. Instead, it may be necessary to explore

the use of “robust” analysis methods — that is, methods that are the least dependent on the failure of

certain assumptions such as non-parametric statistical techniques [38].

4.5 Procedures versus Algorithms

EPA techniques are unique in at least two procedural aspects. First, EPA techniques’ procedures are

commonly represented as algorithms. The representation of these procedures using algorithms allows these

techniques to at least partially avoid many of the human factors that can confound the results of experiments

in some other fields. Furthermore, the algorithmic representation naturally lends itself to both analysis and

automation, which reduces its application costs. Second, these algorithms can be extended to manage

multiple experimental tasks besides the experiment’s execution. For example, our experimental regression

fault analysis technique in Section 5.2 utilizes an algorithm to refine the stated hypothesis within the same

experiment and guide successive treatment applications of changes to a program.

We strongly suspect that other tasks in experimental program analysis, such as the choice of indepen-

dent and dependent variables, design of the experiment, and sampling procedures, can be represented in

algorithmic form and even fully automated as experimental program analysis evolves. This would allow such

EPA techniques to be highly adaptable to particular instances of program analysis problems — without

the intervention of investigators. EPA techniques, however, are still likely to draw conclusions that will be

consumed by investigators, and studies of these techniques will ultimately need to take this into account.

4.6 The Role of Feedback

Traditional experimentation guidelines advocate the separation of hypothesis setting, data collection, and

data analysis activities. This separation helps to make experiments more manageable, to reduce costs, and

to avoid various types of potential bias. However, in the presence of costly units of analysis, these activities

can be interleaved through sequential analysis to establish a feedback loop that can drive the experimental

process [39]. For example, in clinical trials an experiment stops if the superiority of a treatment is clearly

established, or if adverse side effects become obvious, resulting in less data collection, which reduces the

overall costs of the experiment. EPA techniques can take sequential analysis with feedback even further,

18



interleaving not only the sampling process and the stopping rules, but also determining what design to use

and what treatments to apply based on the data collected so far. This enables EPA techniques to scale

in the presence of programs with large populations or a large number of potential treatments, whereas the

application of other program analysis approaches may not be affordable in such cases.

Another possible use of feedback involves the use of adaptive strategies in EPA techniques. Because

they build a body of knowledge about programs during their analyses, EPA techniques can adjust their

experiment parameters to improve the efficiency of their analyses, such as through the use of adaptive

sampling procedures [42] to concentrate on areas of the program that may actually contain faults, based on

the program information gathered thus far, during a debugging activity. Such analyses can allow techniques

to provide more accuracy by narrowing in on the areas of the program showing promising results, and also

to provide cost-effectiveness by not wasting effort on unimporant areas of the program.

5 Three Applications of Experimental Program Analysis

To investigate the capabilities and potential of experimental program analysis, we consider its use with

respect to three software engineering problems: program transformation, program debugging, and program

understanding. Where program transformation is concerned, we present a new EPA technique for performing

program refactoring to improve the maintainability of programs. One unique aspect of this technique is its

ability to handle the complex interactions that can take place between refactorings — the independent

variable of interest — in the presence of a large refactoring space. Where program debugging is concerned,

we present a new EPA technique for analyzing regression faults and reducing the set of source code changes

between two sequential versions that might be responsible for the faults. One unique aspect of this technique

is its ability to turn an optimization problem into a sampling problem. Where program understanding is

concerned, we enhance an existing EPA technique for inferring likely program invariants — Daikon [15] —

with a well-known design from the traditional experimentation literature to improve its cost-effectiveness,

and with statistical tests to improve the reliability of its results.

Together, these three techniques illustrate how an understanding of the experimental program analysis

paradigm can help researchers address various types of program analysis problems. The description of the

experiments conducted by these techniques is provided in Table 2, and is elaborated on in the upcoming

presentation of each technique.

5.1 Experimental Program Refactoring

Program refactorings [17] are semantic-preserving transformations to source code that improve a program’s

maintainability. There are many aspects to the identification, application, and evaluation of program refac-

torings that make this task difficult.

19



Feature Role in EPA Refactoring Regression Faults Fractional Daikon

Research Questions about Given a program P with Given versions vi and Given a program P with
questions specific aspects source code C, what are vi+1, changes C be- execution traces T , what

of a program. the refactorings R tween vi and vi+1, and are the likely program
to apply to C such that execution ef failing in invariants I at program
the maintainability of P vi+1 but not vi, what points M in P ?
is maximized? is a subset C′ ⊆ C such

that C′ applied to vi

(vi(C
′)) reproduces ef ?

Population Program aspects All source code segments All functions in version A model of the program
to draw conclu- S ⊆ C that can be vi of the program. in terms of likely,
sions about. individually refactored. candidate invariants.

Factors Internal/external Target code and their Changed code, fixed Invariant types, points M

program aspects dependencies, depen- code, code dependencies, to infer I at, confidence
impacting effects dencies between change dependencies, level, dependencies in P ,
of manipulations. refactorings. execution ef . outcome certainty, T .

Independent Factors manipu- Refactored code at each Differences C between Points M ′ ∈ M at which
variables lated to affect segment s ∈ S in P . modified functions in to apply data from each

targeted aspects. program. trace t ∈ T .
Fixed Factors that are Code that does not Code that does not Level of confidence for
variables set (or assumed) change or has not been change, execution reported invariants,

to be constant. refactored. environment. invariant types.
Nuisance Uncontrolled fac- Dependencies between Dependencies between Dependencies in P , out-
variables tors affecting code, dependencies code, dependencies come certainty of invar-

measurements. between transformations. between changes. iant holding for a trace t.
Dependent Constructs quan- Cohesion of methods in Whether vi(C′) repro- Testing function deciding
variables tifying effect P ’s classes, abstract- duces ef , does not, if data in t supports

of manipulations. ness of P ’s packages. or is inconclusive. or falsifies an invariant.

Treatments Specific instanti- Instances of refactoring Code differences Cd ⊆ C Trace t ∈ T , and data
ations of indepen- transformations R′ to between functions in therein, to be applied at
dent variable lev- be applied to sampled vi and vi+1 selected sampled program points.
els to be tested. source code. from C by algorithm.

Hypothesis Conjectures about H0 for a treatment is: H0 for a treatment is: H0 for each invariant in
statement treatment effects “The refactorings R′ do “The changes Cd will treatment program points

on an aspect of not worsen the code.” not reproduce ef .” M ′ is: “The invariant
the program. i holds at M ′.”

Sample Selected unit set Selected code S′ ⊆ S Functions in vi to Candidate invariants at
from population. to apply R′. apply Cd. M ′ to apply t.

Treatment Assignment of Apply R′ as compound Apply Cd as compound Trace data is applied to
assignment independent vari- treatment of refac- treatment of changes invariants at “neediest”

able levels to torings to applicable to applicable sampled 50% of program points
sampled units. sampled S′ code. vi functions. M ′ covered in t.

Experiment Using algorithms Get observations by Get observations by run- Get observations regard-
procedures get observations measuring lack of co- ning P with Cd, Cd ing whether data in t

measuring treat- hesion of methods and if needed, and adjust supports or falsifies the
ment effects. abstractness. granularity G if needed. invariants at points M ′.

Data Analyzing obser- Test refactorings’ ef- Test effect of Cd to Test whether each invar-
analysis vations to assess fects on cohesion and see if ef was iant i at points M ′ were

treatment effects. abstractness. reproduced. falsified by trace data.
Hypothesis Evaluating hy- Reject H0 if cohesion Reject H0 if Cd re- Reject H0 if invariant
testing potheses about or abstractness lowers, produces ef , and do not i is falsified based on

treatment effects. and do not otherwise. reject otherwise. data in t.
Interim Deciding if more If reject H0, do not If reject H0, test sub- If reject H0, discard i.
analysis tests are needed consider refactorings in sets of Cd; else, test Update coverage of M ′

based on hypoth- future treatments; else, complements, adjust G, so that other points may
esis tests. do so until completed. or report best subset. be selected for next trace.

Validity Validity threats and See Section 5.1.1. See Section 5.2.1. See Section 5.3.1.
Threats results’ limitations.
Final Conclusions drawn Use good refactorings R Use reported changes C′ Use non-rejected invariants
conclusions from analysis. to help maintainability. to accelerate debugging. I to better understand P .

Table 2: A summary of the experiments conducted by the three EPA techniques. Bold lines separate tasks
according to the activities in Section 2. Gray rows denote features that can be performed by EPA techniques.

20



The first issue is related to the sheer scale of the problem: there are many types of refactorings (Fowler

[17] introduces approximately 70), and in large programs there are potentially thousands of segments of

source code that could be refactored.

Second, it may not always be advantageous to apply candidate code refactorings to particular segments

of source code. While the effects of multiple beneficial code refactoring instances may be compounded

into a much greater improvement than would be achieved by considering each instance individually, a code

refactoring may also worsen the code, according to some metric of interest, when it is combined with other

refactoring instances with which it does not interact well. Thus, when evaluating the utility of applied

refactorings, designers must consider not only the effect of each individual refactoring but the potential

interaction between refactorings.

Third, the application of one code refactoring may actually prevent other refactorings from being appli-

cable. For example, it may be advantageous to extract a set of methods from a class to create a new class

out of the extracted methods. If, however, a subset of the extracted methods are first moved into a second,

preexisting class, it may no longer make sense to extract the remaining methods into their own class. Thus,

the benefit, or lack thereof, in utilizing refactoring support is dependent on the manner in which particular

code refactorings are applied to a program.

How should such challenges be addressed? In the case of program refactoring, various forms of experimen-

tal program analysis can be used to test potential refactorings (as treatments) applied to (sampled) areas of

the program, and keep those that appear to be the most promising. In this setting, hypotheses can be made

regarding the utility of one or more refactorings, and an experiment can be designed where the effect of those

refactorings is tested for purposes of their evaluation. To explore possible interactions between refactorings

and to avoid an expensive, exhaustive consideration of all combinations of refactorings, one possible strategy

is to form groups of refactorings that can be considered together in an intelligent manner using experiment

designs and procedures that focus on the most promising refactorings, as determined by feedback gleaned

from previous experiments. We present and investigate an EPA technique following this strategy.

5.1.1 New Experimental Program Analysis Technique

Design

Because it is not feasible to examine all possible combinations of individual code refactorings for a program

and keep the best combination — for non-trivial programs, there are likely to be hundreds of individual

refactorings possible, and therefore millions of possible combinations — an alternative approach is needed.

Experimental program analysis can provide such an approach by experimentally applying groups of potential,

promising refactorings to the code, and measuring their effects in order to determine whether they should be

kept or discarded. The feedback accumulated during previous tests of refactoring combinations can then be

21



used to guide the refactorings that should (or should not) be considered further. The intuition behind this

approach is that the set of individual code refactorings that could be applied to a program is manipulated

as an independent variable. Compound treatments of one or more possible code refactorings R′ are applied

to the applicable sampled source code.2

For each compound treatment R′, a null hypothesis H0 is stated as, “The refactorings R′ do not worsen

the code.” Dependent variables measuring the maintainability of the program are used to evaluate this

hypothesis H0 for each treatment R′ after it is applied to the sampled source code S in the treatment

assignment feature. If R′ is detrimental to the program according to the observations collected during the

experiment procedures, then H0 can be rejected during the hypothesis testing, and the treatment refactorings

in R′ can be discarded from consideration during interim analysis. Otherwise, the refactorings in R′ can be

combined with other compound treatments of refactorings until none remain to be tested. In terms of our

descriptive definition, the aim of this technique is to establish causality by measuring the effect of treatment

refactorings on program maintainability.

Threats to Validity in the Experimental Program Analysis Technique

Because this refactoring approach conducts experiments to drive its analysis, there are threats to validity

that must be considered when evaluating both the approach and the final set of refactorings indicated at the

end of experimentation.

In terms of external validity, this experiment’s population is the program’s source code segments, and

sometimes only a subset of the program will be selected for refactoring. In these cases, although individual

refactorings (i.e., a refactoring operation and a location to apply that refactoring) may be beneficial when

applied to some areas of the program, they may not be beneficial when applied as a whole to the program.

If more of the program is sampled for refactoring, however, then this external validity threat is reduced, as

the experiment would then resemble a census.

The refactoring technique also suffers from threats to internal validity due to the interactions and de-

pendencies between individual refactorings. Some refactorings may be chosen, or discarded, based solely on

how they interact with other refactorings, which in many cases may hinder the technique’s ability to choose

the truly optimal set of refactorings.

The dependent variables determine which refactorings will be retained and discarded. Thus, the construct

validity of the results will be threatened if these variables are inadequate (e.g., not properly capturing the

maintainability of the program).

Finally, in terms of the technique’s conclusion validity, the refactorings identified may not be the optimum

2Our approach is to sample all relevant source code segments in the targeted source code. In Section 5.1.2, for example,
we select five classes for program refactoring, and all source code within these classes is sampled for possible refactorings.
An alternative approach not pursued here would be to consider individual samples of source code separately and investigate
different refactorings for different areas of the program.

22



set because the approach does not exhaustively explore all possible combinations of refactorings for the

sampled source code.

5.1.2 Pilot Study

To investigate our experimental refactoring approach we use Siena, a program artifact written in Java with

26 classes and 6,035 lines of source code. (Siena, as well as the artifacts used in the other studies in this

chapter, is available as a part of the Software-artifact Infrastructure Repository (SIR), an infrastructure

supporting experimentation [10].)

The primary goal of this study was to formatively investigate whether our experimental program analysis

approach for refactoring has the potential to effectively address one of refactoring’s inherent difficulties —

namely, selecting a set of refactorings that improves program maintainability — and to gain insights into

the applicability of experimental program analysis to program transformation problems.

Study Design

We utilize two metrics as dependent variables to measure the maintainability of Siena, and the utility of

the refactorings tested against the program.3 Our first dependent variable measures the cohesion of the

methods within classes. Cohesion of methods is a measure of the similarity of the methods in a class in

terms of their internal data usages [11], and is important in object-oriented programming because dissimilar

methods may belong in separate classes. As a dependent variable to measure cohesion, we selected the “Lack

of Cohesion of Methods” (LCOM) metric as defined by Henderson-Sellers [22]. LCOM is represented by a

real number that can be as low as 0.0, which is optimal since the metric measures a lack of cohesion, and

can (theoretically) grow arbitrarily large. Methods within a single class that have very similar internal data

usage exhibit high cohesion, and therefore have an LCOM close to 0.0. As the internal data usage within

class methods diverges, LCOM grows larger.

Our second dependent variable measures the “abstractness” (Abst) of Java packages. This metric is a

ratio of the number of abstract classes and interfaces in the package to the number of concrete classes and

interfaces in the same package. When the Abst value of a package is zero we have a completely concrete

package while a value of one indicates a completely abstract package. Of course, both too little and too

much abstractness can hurt the maintainability of a package, and it is not always the case that one is better

than the other. To investigate the use of experimental program analysis for program refactoring,we assume

a setting where a developer is attempting to decrease package abstractness.

The independent variable manipulated in this study is the approach used for performing refactoring. We

consider three approaches:

3Many metrics can be used to estimate maintainability, our primary goal was not to evaluate metrics but rather to use a
subset of reasonable maintainability metrics as a means for investigating our experimental program analysis methodology.

23



1. As a treatment variable, we consider LCOM and Abst after applying the experimental program

analysis methodology; we label the LCOM and Abst measurements using this first approach LCOM-

EPA and Abst-EPA, respectively.

2. As our first control variable, we consider the initial LCOM and Abst values, denoted by LCOM-

Init and Abst-Init, which are measured without applying any refactorings. As a comparison with

experimental program analysis, this control variable serves as a baseline for evaluating what would

have occurred had no refactorings been applied.

3. As our second control variable, we consider the LCOM and Abst values after applying all possible

refactorings, which we denote by LCOM-All and Abst-All. This control variable considers one

possible refactoring strategy that might be employed, where refactorings are applied without regard

to how they may (or may not) impact other refactorings – a key challenge that we attempt to address

through the use of experimental program analysis. Although we are chiefly interested in evaluating

experimental program analysis as a treatment variable, our presentation of this study’s results will

also discuss how this “blind” approach of applying all refactorings would compare with the baseline of

applying no refactorings at all (i.e., our first control variable).

Our treatment and control variables consider the use of the “Extract Class,” “Extract Method,” and

“Move Method” refactoring operations to identify treatment refactoring instances. We chose these refactoring

operations for two reasons. First, all three operations were identified by Du Bois et al. [11] as having

the potential to improve cohesion, while the Extract Class operation has the potential to improve (lower)

abstractness by increasing the number of concrete classes in the package. Second, the application of instances

of either the Extract Class or the Move Method operations can prevent instances of the other type from

being reasonably applied. For example, creating a new class C2 out of the methods belonging to a separate

class C1 would not be possible if every method from C1 was moved into a third, preexisting class C3. Thus,

choosing these two operations lets us investigate how often situations like this may occur, and how our

experimental program analysis approach handles such situations.

The goal of this study is to formatively consider the possible benefits of using an experimental program

analysis approach for addressing program refactoring. Thus, as objects of study we selected the five Siena

classes with the worst initial LCOM because these offer the greatest possible opportunity for the refactoring

approaches to improve the program. (Of the 26 Siena classes, 16 began with an LCOM of 0.0, thereby

providing no opportunities for improvement according to this dependent variable.) Siena has only one

package, which we measured as an object of analysis using the Abst dependent variable. We used version

2.5 of the RefactorIt tool [32] within our experimental methodology as an Eclipse plug-in to apply refactorings

to Siena and evaluate them using the LCOM and Abst metrics.

24



Threats to Validity in the Study Design

Where external validity is concerned, we selected Siena as a subject in part because it is a real program

from a software infrastructure repository used by many researchers. However, because only five classes were

considered in this study, there are external validity issues related to sample size. Also, Siena is just one

program written in one particular language; the study of additional programs including programs written in

different languages would be beneficial.

In terms of internal validity, the results observed in this study may be due to particular characteristics

of Siena. Also, our experimental program refactoring methodology may have performed differently had we

chosen refactoring operations other than “Extract Class,” “Extract Method,” and “Move Method,” although

we note that these are three common and well-known refactoring operations.

Where construct validity is concerned, although we considered two established metrics for measuring

the maintainability and organization of programs, many other maintainability metrics are available, and

these metrics might yield different results. Furthermore, even well-established metrics like LCOM have

limitations, and other approaches may be more appropriate in some scenarios. As a possible alternative to

LCOM, for example, Bowman et al. [4] propose object-oriented refactoring based on improving both cohesion

and coupling at the same time. Future studies exploring these alternatives may be insightful. Finally, there

are many methods for computing the LCOM metric in particular. We chose one of the more well-known

methods defined by Henderson-Sellers [22], but others could also be utilized.

Results

To provide context for our results, we begin by providing data on the utility of all individual code refactorings

(Table 3). As the table shows, refactorings were more often judged to be detrimental than beneficial, and

there were many refactorings that, individually, had no effect on the program. Table 3 also shows that there

were nine instances where beneficial or neutral refactorings, when combined, could interact in an undesirable

manner by making the maintainability of the program worse.

To provide further context, we also consider the cost of exhaustively applying and testing all possible

refactorings to find the optimum subset of refactorings, and to obtain insights into the possible savings of

using our EPA refactoring technique instead. As Table 4 shows, our EPA technique provides a substantial

savings in terms of the number of refactorings that must be applied to Siena and evaluated for utility.

We next consider the effects of our approach on our dependent variables. Table 5 summarizes the LCOM

values, according to each construct, of the five selected Siena classes. Perhaps the most encouraging result

from this table is that our experimental program analysis methodology was the best choice for improving

LCOM, as seen by comparing the EPA values with those from Init and All. This study serves as formative

evidence of the potential of an experimental refactoring approach to improve the maintainability of source

25



Individual Utility:
Beneficial 5
Neutral 8
Detrimental 10

Detrimental Interactions:
Between Beneficial 2
Between Neutral 7

Table 3: Summary of the utility of all code refactorings, and interactions between beneficial or neutral
refactorings causing detrimental effects.

Class All EPA
Monitor 4 2
TCPPacketHandler 0 0
SENP 1152 12
HierarchicalDispatcher 128 9
Tokenizer 16 6

Table 4: The number of refactorings that need to be applied and tested using an exhaustive search versus
experimental program analysis (EPA).

Class Init All EPA

Monitor 1.179 1.125 1.095
TCPPacketHandler 1.0 1.0 * 1.0 *
SENP 0.997 1.006 0.996
HierarchicalDispatcher 0.899 0.918 0.896
Tokenizer 0.85 0.684 / 0.889 0.684

Table 5: The Lack of Cohesion of Methods of classes using baseline approaches and experimental refactoring.
The * symbol indicates that no refactorings were identified for this class.

code. Moreover, Table 5 suggests that simply applying all refactorings may not be the best approach, as All

actually hurt the overall cohesion, compared to Init, for two of the classes that we investigated (SENP and

HierarchicalDispatcher).

Table 5 shows that the benefits of applying refactorings experimentally, in terms of the LCOM metric,

were not always dramatic. One class (TCPPacketHandler) experienced no benefit in terms of LCOM from

the experimental methodology, and two classes (HierarchicalDispatcher and SENP) showed less than a

1% improvement. However, the Monitor and Tokenizer classes showed improvements in LCOM of 7%

and 20%, respectively. Based on these results and our own intuitions regarding program refactoring, we

conjecture that the benefits experienced through the use of experimental program analysis to address this

problem will vary from setting to setting. Future work investigating this issue using a larger number of

26



Init All EPA

0.111 0.100 / 0.103 0.100

Table 6: The abstractness of the Siena package using baseline approaches and experimental refactoring.

metrics would be worthwhile.

In investigating these five classes further, we found that there were no possible Extract Method, Extract

Class, or Move Method refactorings in the TCPPacketHandler class, a small class with four methods and

47 lines of code. However, many refactorings were possible in the other four classes. Of particular interest

to us was the Tokenizer class. In this case, two conflicting refactorings (Extract Class and Move Method)

could not be applied together because the application of the Extract Class refactoring would extract the

method that the Move Method refactoring sought to relocate. The All result for Tokenizer in Table

5 reports the first case where only the Extract Class refactoring was applied, as well as the second case

where only the Move Method refactoring was applied. (These two LCOM results are separated by the “/”

character in Table 5.) Of the two possible cases, in the first case All was an improvement over Init (and

equivalent to the cohesion achieved by the experimental approach) while in the other it was worse than the

initial cohesion before any refactorings were applied. Our experimental approach selects this best case by

separately evaluating both the Extract Class and Move Method refactorings, and keeping the Extract Class

refactoring that dramatically improved the class’s cohesion. This example, which is one of four that we

observed in this study, shows how an experimental approach to refactoring can provide guidance as to the

refactorings that should be selected in difficult cases involving interactions between potential refactorings.

Table 6 shows how the abstractness of the Siena package was affected due to different treatment code

refactorings. The Abst of the package was improved for both EPA and All. However, in the case of naively

applying all possible code refactorings, the same, previously-mentioned conflict between Extract Class and

Move Method refactorings in the Tokenizer class faces the All methodology. The experimental program

analysis methodology chose the Extract Class refactoring, which decreased the package’s abstractness as we

desired by adding an additional concrete class.

Discussion: The Benefit of Experimental Program Analysis

Recall that we observed cases in which the application of one refactoring prevented the application of other

refactorings. These considerations illustrate not only why program refactoring can be difficult, but the

difficulty of activities involving program transformation in general. There are many confounding factors,

such as interactions between transformations, that require innovative techniques in order to decide which

transformations to apply in cases where there are many possible combinations to choose from, and when it

may not be feasible to exhaustively try all possibilities.

27



We believe, and the Siena example supports this belief, that experimental program analysis can be

applied not just to refactoring problems, but to transformation problems in general. By incrementally

designing and running experiments to evaluate individual transformations and their interactions, and de-

cide which transformations to retain and discard, experimental program analysis may provide effective and

automated program transformation methodologies.

Given the commonality among program transformation techniques, similar approaches could be applicable

to other activities involving transformation. For example, source code instrumentation can be dynamically

adapted based on the manner in which the program is being executed at any given point by hypothesizing an

efficient instrumentation scheme and then adapting that scheme based on acquired profiling information [23].

5.2 Experimental Regression Fault Analysis

Program analysis is used in debugging for wide-ranging purposes, including to support both explicit fault

localization (e.g., [27, 36, 49]) and other activities that simplify the process of debugging faults (e.g., [7, 51]).

In most cases, debugging is a highly exploratory process where there are many attributes in, or artifacts from,

the program that an investigator may wish to test the effect of. As in the case of the program transformation

problem, we consider examples of the challenges and opportunities that this can present for EPA techniques.

In many debugging activities, the amount of code that debuggers must explore to locate a fault may be

large. We consider one specific type of debugging where this can be the case: localizing regression faults.

A regression fault in a program version vi+k is a fault that was not present in a previous version vi of the

program, and was introduced by one or more modifications between vi and vi+k; hereafter, to simplify our

discussion, we refer to regression faults in the context of two sequential program versions vi and vi+1. In

the general case, a programmer attempting to locate a regression fault may have to consider an arbitrary

number of source code changes between vi and vi+1, and any of these individual changes — or in a more

complicated scenario, any combination of these changes — may be responsible for the fault. Programmers

would clearly prefer to consider as small a set of changes as possible.

To utilize experimentation, EPA techniques systematically manipulate the objects of exploration related

to debugging as independent variables, and conduct hypothesis tests to evaluate the effect of manipulating

these objects. To explore this further, we have developed a technique that uses experimental program

analysis to consider changes in a regression testing setting.

5.2.1 New Experimental Program Analysis Technique

Design

Regression faults present a unique opportunity for debugging because the regression faults responsible for a

failing execution ef are by definition caused, at least in part, by one or more specific changes between two

versions vi and vi+1 of a program. We have created an “experimental regression fault analysis technique”

28



that conducts experiments on the changes C between vi and vi+1 in an attempt to isolate the subset of

changes C′ ⊆ C that are actually responsible for the failing execution ef caused by the regression fault. The

intent behind this technique is to reduce the effort required to locate the regression fault.

As depicted in Table 2, the experiments conducted by this technique sample source code at the function

level. The source code changes between vi and vi+1 in the sampled functions are identified and applied within

these functions to test and evaluate their effect. Thus, the range of source code changes in each sampled

function is manipulated as an independent variable, and the changes between vi and vi+1 in each selected

function are applied as treatments to the sampled source code in which those changes occur. Hypothesis

tests are conducted to determine whether the treatment source code changes reproduce the failing execution

ef . If so, then the technique attempts to systematically isolate a subset of those implicated changes (in a

manner determined during an interim analysis) until it has found a small-enough subset, or until no further

subsets lead to a reproduction of ef . In terms of our descriptive definition of experimental program analysis,

this technique attempts to establish causality between the source code changes and their effect on regression

faults in a program.

One difference between this technique and the refactoring technique presented in Section 5.1 is that

refactoring attempts to incrementally build a list of ever-increasing refactorings that could be applied, while

this technique does the opposite – incrementally reducing a list of changes that could be responsible for the

failure. Another difference is that this technique uses the Delta Debugging algorithm [51] to dictate the

manner in which treatments are tested, whereas the refactoring technique uses an experimental design.

There are many granularities at which changes could be considered between sequential versions vi and

vi+1 of a program. For example, changes could be considered by manipulating the entire source files in

which changes occur, manipulating sets of functions forming a component in the program, manipulating

individual functions containing changes, or manipulating the actual changes themselves at the finest source

code granularity possible. We would expect smaller changes, such as those at the statement level, to generally

produce a more precise result, thereby resulting in more useful feedback. However, as the granularity of

change becomes more fine, the number of units of change will increase, thereby increasing the cost by

causing more experiments to be required to isolate an appropriate subset of changes. Also, the use of smaller

changes may increase the possibility of nonsensical changes whose application causes compilation of the

program to fail due to dependencies between applied and non-applied changes. On the other hand, while

using large, coarse-grained levels of change such as entire files of source code may reduce the cost of the

technique, it may be less precise, and therefore of less use to debuggers. Thus, and because our goal is to

demonstrate the capabilities of experimental program analysis in a debugging activity, we elected to test

program changes at the function-level by sampling individual functions with changes between vi and vi+1.

29



Threats to Validity in the Experimental Program Analysis Technique

In terms of external validity, the set of changes tested by the technique may not be complete if areas of the

program where changes have occurred are not sampled.

One threat to internal validity is the possibility of multiple regression faults interacting with each other,

and even masking each others’ effects; both of these cases could influence the changes that are reported by

the technique. The possibility of dependencies between the changes, an uncontrollable nuisance variable that

is another internal validity threat, must also be considered. The granularity level of the changes considered

can be a factor influencing the quality of results. Finally, the possibility of nonsensical changes is also an

internal validity threat, as some combinations of changes will result in compilation or linking errors. This

can result in changes that are not relevant to the regression fault being included so that the program can be

properly compiled and executed.

One obvious threat to conclusion validity involves the changes reported. Because our technique uses

experimental procedures to drive selection of treatment changes for testing and their assignment to areas of

the code rather than exhaustively considering all combinations of changes, it is possible that the reported

changes are not the minimal set. (Because our procedures are patterned after Delta Debugging, we apply

and test program changes within our local area of search, providing an approximation of a “local minimum”

result [51]. Had we exhaustively applied and tested all possible combinations of changes, we could find a

“global minimum” result [51].)

One tool that has already explored a similar (non-experimental) approach is the Chianti change analysis

research tool [33, 41]. Chianti considers atomic changes between two versions of a program and processes

the results of a test suite to estimate the changes that actually affect the program outcome in question.

There are many differences between Chianti and the technique we present in this section. First, Chianti’s

notion of “atomic changes” implies a finer granularity of change than ours. Second, our approach requires

only one (failing) test to provide results rather than a series of passing and failing tests from a test suite.

Third, rather than using call graphs to determine affecting changes, our approach experimentally applies

and tests changes to identify those relevant. Fourth, we report only a subset of changes that should contain

the regression fault, without suggesting the changes that may be more or less likely to be relevant. Still,

the fundamental difference between Chianti and our approach is that we repeatedly apply the changes to

manipulate the program and observe their effect, while Chianti analyzes the changes and testing information

as is – without manipulating the program itself.

5.2.2 Pilot Study

We investigate the potential of the experimental program analysis conducted by this technique using the

flex program as an artifact. flex is a medium-sized program written in C, and contains 15,297 lines of code

30



among 163 procedures. We selected flex because it is a non-trivial, publicly available program with known

(seeded) faults and test suites. The seeded faults and test suites were created by SIR researchers [10] not

involved in the work described in this article. The primary goal of this study was to formatively investigate

whether our experimental program analysis approach for regression fault analysis has the potential to address

some of the problem’s inherent difficulties.

We selected two versions of flex, versions 2.4.3 and 2.4.7, and a single seeded fault within these versions.

In total, 1,329 lines of code had changed within 27 of the 163 procedures in flex between these two versions.

We selected these versions for two reasons. First, versions 2.4.3 and 2.4.7 are sequential versions as provided

by SIR researchers. Second, we did not want to select a fault that was too easy or difficult to detect, as the

former may be easier for debuggers to locate by themselves, while the latter may not be detected by any

test cases, and our technique requires a failing execution to isolate changes. Therefore, we chose a criterion

of a fault detected by at least one test case in a functional specification-based test suite, and by less than

20% of those test cases. Such a fault existed between versions 2.4.3 and 2.4.7.

Study Design

The independent variable evaluated in this study is the approach for performing regression fault analysis.

We consider two approaches:

1. As a treatment approach, we use the experimental regression fault analysis technique just presented.

2. As a control approach, we consider a technique that applies and tests all possible (227) combinations

of changes to find the optimal minimal subset responsible for the regression fault.

With regard to the control approach, the time taken to exhaustively consider each of the 227 changes is

prohibitively expensive – a reason why such a technique is not practical in real-world debugging settings.

Thus, as a heuristic for estimating the size of this global minimum, we exhaustively applied and tested every

combination of change within the local minimum. To estimate the time that would have been taken to apply

and test each of these changes, we extrapolated the time taken by our experimental regression fault analysis

technique to test its subset of changes. While it is possible that this extrapolation will not be a precise

measure of the time that would be taken in the exhaustive case, we were interested in the relative magnitude

in the differences in time between the two techniques in order to investigate the amount of time that might

be saved by the experimental program analysis approach.

We utilize four metrics as dependent variables to measure the cost and the effectiveness of our regression

fault analysis technique:

1. We measure the number of isolated functions containing relevant changes between the two versions of

flex considered in this study.

31



2. We measure the number of isolated lines of code in the isolated functions.

3. We measure the number of “evaluations” made by the approach, where an evaluation is the application

and testing of a set of changes Cd.

4. We measure the time taken to execute the technique and consider all of the evaluations reported by

our third dependent variable.

As objects of analysis, we used the first five test cases in the version’s test suite that reveal the fault and

meet the above criterion. (We selected more than one test case because we did not want the particular test

case selected to be an influencing factor on our results.) We individually ran our technique implemented

through a series of Perl scripts on Linux machines containing Dual Core AMD Opteron 250 2.4 GHz 64-bit

processors with four gigabytes of memory.

Threats to Validity in the Study Design

As with the refactoring study, we selected flex as a subject because it is a real program from a software

infrastructure repository used by many researchers. While this was done with external validity in mind,

internal validity is an issue facing this study because its observed results may be due to particular charac-

teristics of flex, the two versions 2.4.3 and 2.4.7, and the five test cases that were selected. Also, this study

considered only one fault, and different results may be observed using other faults.

In terms of construct validity, the extrapolated estimation of the time taken by an exhaustive technique

may not be completely accurate. However, this measure primarily aims to show the magnitude of difference

between the experimental regression fault analysis technique and an exhaustive technique – not to provide an

exact difference between the cost of the two approaches. Also, in terms of the gathered timing information,

it is possible that times would vary across different machines, or even on the same machine over multiple

runs. To limit these concerns, we ran our techniques on machines with the same hardware specifications,

and ensured that our techniques were the only active user processes on the machines during their execution.

Finally, our measures do not account for costs and benefits related to actual use by engineers of the data

produced by the approach.

Results

Table 7 summarizes the number of isolated changes for each of the five selected test cases t1–t5, as well as

the number of evaluations — compiling changes into the version, running the test case, and analyzing the

execution — required to isolate the changes for each test case. The estimated optimal minimal number of

functions and source code lines that could have been isolated are shown in the “Exhaustive Combination

Search” area, along with the 227 evaluations that would be required to test all combinations of changes

32



t1 t2 t3 t4 t5 Mean

Experimental Regression Fault Analysis
Isolated Functions 8 9 8 7 7 7.8
% Total Functions 29.6% 33.3% 29.6% 25.9% 25.9% 28.9%
Isolated LOC 221 417 404 394 394 366
% Total LOC 16.6% 31.4% 30.4% 29.7% 29.7% 27.5%
Evaluations 109 115 101 87 87 99.8
Time (min:sec) 10:09 10:09 10:31 8:54 8:37 9:40

Exhaustive Combination Search
Isolated Functions 7 8 7 6 6 6.8
% Total Functions 25.9% 29.6% 25.9% 22.2% 22.2% 25.2%
Isolated LOC 219 415 402 392 392 364
% Total LOC 16.5% 31.2% 30.3% 29.5% 29.5% 27.4%
Evaluations 134217728
Time (days:hrs:min:sec) 9075:11:27:27

Table 7: Summary of the number of isolated changes, in terms of functions and lines of code, responsible
for the seeded flex fault using five test cases. The cost of identifying these changes is also shown in
terms of evaluations performed by the technique and time (Minutes:Seconds for the experimental regression
fault analysis approach and Days:Hours:Minutes:Seconds for the exhaustive approach). For the exhaustive
combination search, the same number of evaluations (227) were required for all five test cases.

to isolate this minimum and an estimate of the time required to test these changes. The result for the

percentage of total functions and lines of code isolated are based on the 27 total functions and 1,329 lines of

code that changed across versions 2.4.3 and 2.4.7 of flex. Time measurements are in Minutes:Seconds for

the experimental program analysis approach, and Days:Hours:Minutes:Seconds for the exhaustive approach.

From the 27 initial changes, depending on the particular test case used to reproduce the failing execution,

our technique isolated between seven and nine changes, or approximately 26%–33% of the original 27 changes,

needed to expose the regression fault. On average, this process took less than 10 minutes for each test case.

Furthermore, depending on the failing test case, between 17%–31% of the total lines of code that changed

between these two flex versions were isolated by the experimental regression fault analysis technique.

The performance of the EPA technique, in terms of the precision and size of the isolated functions and

source code, was comparable to that of the exhaustive approach. For each test case, as shown in Table 7,

exhaustively considering all combinations of changes would have eliminated only one fewer change than the

EPA technique. In analyzing these results further after the completion of this study, we found that the same

additional change was eliminated by the exhaustive approach for each of the five test cases: a two-line change

in the version.h header file of flex. Yet clearly the cost of exhaustively considering all combinations of

changes is not justified by the elimination of this one two-line change, as exhaustively applying and testing

all 227 combinations of changes would require years (on the machines we considered in this study).

One possible change that could be made to our experimental regression fault analysis technique is an “a

33



priori” analysis that would study the dataflow relationships between segments of source code changes. The

goal of this approach would be to use this information to ensure that changes that depend on each other

are made together to reduce the number of wasted evaluations that are applied and tested. The essential

strategy of this approach — grouping changes based on their dependencies — is similar to the Hierarchical

Delta Debugging approach [28] that aims to apply groups of related changes to reduce wasted tests.

Another possible improvement to our approach that could further reduce the changes identified by the

technique would be to exhaustively consider all combinations of the changes identified by the EPA technique.

For example, for test cases t4 and t5, seven changes were isolated by the technique. We could exhaustively

consider all 27 combinations of these seven changes, which would eliminate the two-line change in version.h

and leave us with six changes. However, this would require an additional 128 tests, which would more than

double the total number of changes required by a technique conducting such “post-hoc” analysis, as only 87

changes were required by the EPA technique to isolate the original seven changes.

Discussion: The Benefit of Experimental Program Analysis

Our goal in conducting this study was to formatively investigate the potential of a purely experimental

approach to debugging regression faults – without attempting to fine-tune the technique so that it performs

a more sophisticated analysis. Our investigation revealed that experimental program analysis can contribute

to an important debugging activity: isolating the source changes that may be responsible for regression

faults. It also provides a means for effectively reducing the exploration space of changes that an engineer

must consider when debugging a regression fault, which corroborates results from related work in a similar

debugging activity [51].

Overall, experimental program analysis experienced success in this setting by experimentally testing and

narrowing the set of relevant changes until a smaller result could not be obtained. However, two characteris-

tics of this strategy deserve recognition. First, despite the potential number of program changes in a problem

instance, as well as dependencies therein, the experimental program analysis approach proposed here was

able to systematically control the changes that may be relevant to the regression fault, and experimentally

test the relevance of these changes and dependencies, leading to a precise solution. Second, the sampling

procedures of this EPA technique considered only functions in the program containing changes, which helped

to reduce the cost of the program analysis.

In future work, it may be that considering a finer notion of “change,” such as that proposed in related

work [33, 41], would result in more precise results. However, due to the increased number of units of change

that would result from this strategy, it could come at an unacceptably high cost by requiring that a greater

number of combinations of changes be experimentally applied and tested to determine their relevance. Future

investigation investigating these tradeoffs would be interesting.

34



5.3 Experimental Dynamic Invariant Detection

Aiding program understanding is one of the most well-known, traditional purposes of program analysis. As

an example of an activity in this problem area, we consider dynamic invariant detection. Most invariant

detection techniques investigate relationships between variables (i.e., invariants) in the program at specific

program points. However, there are potentially millions of relationships between variables at the various

program points that might be considered. A challenge, then, is to evaluate the potential invariants in a

cost-effective manner, as any evaluation is likely to consume resources. This challenge must be met in a

manner that ensures that the invariants that are reported are accurate and not spurious.

In an experimental setting, these potential relationships between variables can be viewed as a population

under study, and the items that are manipulated to learn about this population are the independent variables.

Such experiments can be designed to sample these large populations of potential invariants to control cost at

the risk of obtaining results that may not be conclusive, or may be incomplete. Experiments can also leverage

different designs in order to efficiently assign specific instances of the independent variable manipulations

(treatments) to units in the sample. Somewhat similar to the drawbacks of sampling, the power of the

conclusions drawn from such designs may diminish, but at the benefit of a less expensive (and perhaps more

cost-effective) design.

This section introduces an improvement to an existing EPA technique that is designed to characterize

program behavior. The improvement aims to increase the cost-effectiveness of this technique by altering its

experiment design.

5.3.1 Improving Cost-effectiveness in an Experimental Program Analysis Technique

Design

Daikon [15] is an implementation of a technique that can be characterized as experimental program analysis,

and that infers likely program invariants from execution traces using a “library” of predefined invariant types.

At each program point of interest, all possible invariants that might be true are evaluated by observing the

values of variables during program executions. If an invariant is violated in an execution, it is discarded

(falsified). If an invariant has not been falsified in any execution and has been evaluated enough that Daikon

has sufficient confidence in its validity, it is reported as a likely invariant.

Daikon can be considered a technique in the program understanding area because the invariants reported

by the technique help programmers learn about and understand the program, a well as provide support for

other software-engineering-related activities. In Daikon, the relationships between a program’s variables at

specific points are the population that is learned about. A sample of that population, in terms of candidate

invariants, is evaluated by applying the data from execution traces (the independent variable) and conducting

an hypothesis test about whether the invariant is valid based on the applied data. Thus, Daikon is attempting

35



to characterize a population (potential relationships between variables in a program) through the use of the

data in execution traces. We showed how Daikon can be mapped to the experimental program analysis

operational definition in Table 2. For details as to how Daikon operates algorithmically, we refer readers to

the work presenting the technique [15].

One important limitation for Daikon is that it can take a great deal of time to process the provided

execution traces in order to report invariants, especially if those execution traces are large, or great in

number. Ideally, we would like to improve Daikon so that it does less processing of execution traces without

sacrificing the quality of the reported invariants or reporting “false positive” invariants.

To do this, we have leveraged principles from a well-known practice in the traditional experiment design

literature: fractional factorial designs [26]. Fractional factorial designs reduce costs by achieving a balance

between the factors under consideration in experiments without testing all possibilities that could be consid-

ered. Unlike complete designs, where all possible treatments are applied to all available units in the sample,

fractional factorial designs spread the treatments across units of analysis in the sample. Balance is achieved

by considering combinations of k factors, and selecting the combinations that are used in the experiments

based on the coverage of the factors’ levels that is achieved.

We used these principles with respect to Daikon to create an experiment design that chooses a fraction

of the treatment combinations (i.e., execution trace data applied to candidate invariants) in a manner

designed to be adequate for the analysis. (Our construct for “adequacy” is described later.) The treatment

combinations chosen for evaluation are selected in an attempt to achieve a balance among the coverage of

the sampled program points through the careful selection of execution traces.

In our implementation of a fractional design within Daikon, we consider two factors: the execution traces

applied to the invariants, and the program points at which those invariants are evaluated. If the execution

traces versus the program points are viewed as a two-dimensional grid, a complete design fills as many of

these boxes as possible, while a fractional design balances the boxes that are filled across both the execution

trace and program point factors.

To achieve this type of behavior in Daikon, we modified the tool so that it considers only 50% of the

possible comparisons of execution traces to program points. For each execution trace processed, the data

regarding variable values in that trace, which are applied to prospective invariants, are considered for only

50% of the program points in that trace. Furthermore, the program points that are selected are those that

have the least coverage thus far in terms of the number of traces whose data has been applied to invariants

at those points; we term these the neediest program points because they are in the most need of further

observations to validate their invariants. Thus, the subset of execution that is applied to the sampled program

points is carefully selected with the goal of reducing cost while controlling coverage.

These decisions regarding the neediest points are made based on accumulated feedback about what

36



program points have been covered so far, and how often they have been covered during the analysis, which

is done using previously processed data from execution traces. By selecting the 50% of the program points

that are least covered in each trace, our design seeks to lower costs in a reasonable way while balancing the

distribution of observations so that certain program points and their prospective invariants are not “starved.”

Threats to Validity in the Experimental Program Analysis Technique

In terms of the limitations that are new to Daikon as a result of our modifications to the technique, the

particular manner in which we select the treatment combinations of execution data to apply to prospective

invariants is an internal validity threat, as the particular invariants that are reported and discarded may

change if different execution data were distributed among different invariants.

Conclusion validity is the primary increased threat to the technique. Because we (purposefully) consider

only a fraction of the available data, the power of the technique’s results are reduced in an effort to help

control the costs of the technique.

5.3.2 Pilot Study of Cost-effectiveness Improvement

To gauge the performance of Daikon when the tool utilizes a fractional experiment design, and to help

demonstrate the use of experimental program analysis in application to program understanding problems,

we implemented this design in Daikon version 3.1.7 [9]; we refer to this tool as Daikonfrac. We then

investigated the capabilities of this EPA technique using the Space program as a subject.

Space functions as an interpreter for an array definition language (ADL). Space is written C, and contains

136 functions and 9,564 lines of source code. Previous studies [19, 45] have resulted in the creation of 13,525

test cases and 1,000 branch-coverage-adequate test suites for Space. (Like our previous subjects, Space,

along with numerous test suites, is publicly available [10].)

Study Design

The independent variable evaluated in this study is the experiment design used within Daikon to select the

treatment combinations that are evaluated during the technique’s analysis. We consider three approaches in

this study:

1. As a treatment approach, we consider the use of Daikon with the fractional design (Daikonfrac).

2. As our first control approach, we consider the use of Daikon where 50% of the treatment combinations

are randomly chosen – not within the context of the “neediest” program points. This helps us assess

how an alterative strategy for reducing the costs of Daikon compares with our approach. We label this

approach Daikonrand.

37



3. As our second control approach, we consider the use of Daikon as originally designed: with a complete

design considering the maximum number of treatment combinations possible. This variable serves as

a baseline for assessing the relative costs and benefits of Daikonfrac and Daikonrand in comparison to

the original implementation of Daikon.

This study utilizes two metrics as dependent variables to measure the cost and the effectiveness of our

modifications to the experiment design within Daikon:

1. As our first dependent variable, we measure the number of additional false positive invariants reported

by the technique that would not have been reported if the original version of Daikon had been used.

This helps us assess the drawbacks in using a modified experiment design to reduce the cost of Daikon’s

analysis. We chose to measure false positives because we expect that inaccurate invariants will be the

greatest barrier to adopting a modified experiment within Daikon that tests a fraction of the possible

treatment combinations.

2. As our second dependent variable, we measure the amount of analysis saved by Daikon through the

use of a modified experiment design. This is measured as the number of comparisons of execution

trace data to candidate invariants at the sampled program points. This dependent variable helps us

assess the benefits of using a modified experiment design by facilitating comparisons of the cost of the

techniques. We chose this measure because it is normalized with respect to the machines on which

Daikon could be run.

As objects of analysis, we randomly selected five test suites from the 1,000 test suites for Space that

are available from the software infrastructure repository [10], and generated execution trace files for each

execution of each test suite. We then compared the original Daikon implementation with Daikonfrac to

detect invariants using all five suites.

Threats to Validity of Study Design

The size of Space is an external validity issue facing this study, as Space may not be representative of real-

world programs that are often much larger in size. We accepted this tradeoff in order to study a program

that has already been used by other researchers working with Daikon, and that has an infrastructure of

non-trivial test suites in place to facilitate our study’s design. We also expect that, because each test suite

was designed to be branch-coverage-adequate, the test suites are likely to resemble suites that might be

created for a program such as Space in a real-world software development setting.

Daikon will report different likely invariants for programs based on the execution traces it is given to

analyze. Thus, the particular test suites we chose may be responsible for the results seen in this study, as

38



Cost: False Positive Invariants
Daikon: Number of Reported Invariants 33415
Daikonfrac: Additional False Positives 1738 (5.2%)
Daikonrand: Additional False Positives 5790 (17.3%)

Benefit: Observations Saved
Daikon: Number of Observations 176288
Daikonfrac: Observations Saved 59638 (33.8%)
Daikonrand: Observations Saved 44910 (25.5%)

Table 8: Results of using a fractional design in Daikon.

other results might have been acquired using other execution traces from other test suites. We attempted

to mitigate this threat by randomly selecting multiple test suites generated by other researchers.

In terms of construct validity, there are many measures we could have used to gauge the cost and benefit

of using a fractional design. For example, we could have directly measured the savings in terms of time

rather than the number of variable value comparisons to invariants. We chose the latter because it is

normalized with respect to the machines on which Daikon could be run. Furthermore, comparing variable

values to invariants for large sets of execution traces dominates the cost of Daikon, so we focus on the savings

achieved during this expensive process. As in our prior study, however, our measures do not account for

costs and benefits related to actual use by engineers of invariants reported by the approaches; our results

thus bear on effectiveness and efficiently of the techniques in producing invariants, but not necessarily on

usefulness of the reported invariants in practice.

Results

Table 8 summarizes the results of using the Daikon techniques. The top of the table summarizes the

average number of invariants reported by Daikon for the five branch-coverage-adequate test suites, and the

average number of additional false positives reported by Daikonfrac and Daikonrand. The bottom of the

table summarizes the average number of observations required by Daikon to process the execution traces

from each test suite and test the candidate invariants, as well as the savings achieved by Daikonfrac and

Daikonrand.

We first consider, in detail, the results of Daikonfrac as compared to the original implementation of

Daikon. As can be seen, with a 50% fractional design, Daikonfrac required, on average, two-thirds of the

observations that would be required by the original Daikon implementation. (Two-thirds of the observations

were required, rather than 50% of the observations, due to the number of candidate invariants that needed

to be tested at each selection of 50% of program points.) Furthermore, these savings came at a cost of, on

average, about 5% of precision, as the extra invariants that were not falsified using Daikonfrac.

We were also interested in how well Daikonfrac improved the cost-effectiveness of the technique relative to

39



other approaches that might have been considered. Comparing the number of additional false positive invari-

ants reported by Daikonfrac and Daikonrand indicates that, for the particular Space test suites selected for

this study, Daikonrand reported over three times the number of false positive invariants than did Daikonfrac.

Furthermore, Daikonfrac experienced greater savings in terms of analysis cost than did Daikonrand. This

appears to be due to the fact that Daikonfrac sought to give adequate coverage to program points that were

not covered by many execution traces, and did not have as many invariants to test as more traces were used.

5.3.3 Discussion: The Benefit of Experimental Program Analysis

Our change to Daikon, and the study of that change, suggest that the cost-effectiveness of Daikon may be

improved by incorporating advanced designs into the experiments conducted by the tool. The use of such

experiment designs and statistical principles serves to provide a unique experimentation-based solution to

an important program analysis problem. We suspect that other such opportunities exist in other program

analysis techniques, both in the program understanding domain and elsewhere.

6 Related Work

6.1 Experimentation in Software Engineering Research

There is a growing body of knowledge on the employment of experimentation to assess the performance of,

and evaluate hypotheses related to, software engineering methodologies, techniques, and tools. For example,

Wohlin et al. [47] introduce an experimental process tailored to the software engineering domain, Fenton

and Pfleeger [16] describe the application of measurement theory in software engineering experimentation,

Basili et al. [3] illustrate how to build software engineering knowledge through a family of experiments, and

Kitchenham et al. [25] provide guidelines for conducting empirical studies in software engineering. However,

these approaches focus on experimentation to evaluate methodologies, or techniques and tools, whereas we

focus on its use as the driving force behind program analysis techniques.

There are also instances in which software engineering techniques utilize principles of experimentation

as part of their operation (not just for hypothesis testing). For example, the concept of sampling is broadly

used in software profiling techniques to reduce their associated overhead [1, 13, 27], and experiment designs

are utilized in interaction testing to drive an economic selection of combinations of components to achieve a

target coverage level (e.g., [8, 12]). We believe that, in many cases, techniques that utilize certain principles

of experimentation may in fact be appropriately characterized as EPA techniques, allowing investigators

opportunities such as the use of advanced experiment designs to improve the cost-effectiveness of their

techniques, and providing insights into technique limitations through the assessment of validity threats.

40



6.2 Experimentation in Program Analysis

Zeller is the first to have used the term “experimental” in application to program analysis techniques [50].

Our work differs from Zeller’s, however, in several ways.

First, Zeller’s goal was not to precisely define experimental program analysis, but rather to provide a

“rough classification” of program analysis approaches and “to show their common benefits and limits”, and

in so doing, to challenge researchers to overcome those limits [50, page 1]. Thus, in discussing specific analysis

approaches, Zeller provides only informal definitions. In this work, we provide a more precise notion of what

experimental program analysis is and can be.

Second, our view of experimental program analysis differs from Zeller’s in several ways. He writes:

“Experimental program analysis generates findings from multiple executions of the program, where the exe-

cutions are controlled by the tool”, and he suggests that such approaches involve attempts to “prove actual

causality”, through an (automated) series of experiments that refine and reject hypotheses [50, page 3].

When considering the rich literature on traditional experimentation, there are several drawbacks in the fore-

going suggestions. Experimentation in the scientific arena can be exploratory, descriptive, and explanatory,

attempting not just to establish causality but, more broadly, to establish relationships and characterize a

population [24, 29, 34]. For example, a non-causal question that can clearly be addressed by experimenta-

tion is, “is the effect of drug A applied to a subject afflicted by disease D more beneficial than the effect of

drug B?” EPA techniques can act similarly. Further, experimentation (except in a few situations) does not

provide “proofs”; rather, it provides probabilistic answers — e.g., in the form of statistical correlations.

Finally, Zeller’s explication contains no discussion of several concepts that are integral to experimentation,

including the roles of population and sample selection, identification of relevant factors, selection of dependent

and independent variables and treatments, experiment design, and statistical analysis. He also does not

discuss in detail the nature of “control”, which requires careful consideration of nuisance variables and

various forms of threats to external, internal, construct, and conclusion validity. All of these fundamental

experimentation-related notions are present in our definition, and the utility of including them is supported.

6.3 Search-based Software Engineering

Harman and Jones [21] defined search-based software engineering as the reformulation of a software engineer-

ing task as a search problem. In contrast, through experimental program analysis, we attempt to formulate

the targeted program analysis as an experimentation process.

Search-based software engineering involves three primary components [21]. The first component involves

casting solutions to the problem domain in a representation that is amenable to symbolic manipulation.

This is done so that a search can be conducted by making changes to this representation as a solution is

sought. The second component involves defining a fitness function that measures the quality of prospective

41



solutions identified by the search. These fitness functions should have a landscape that is amenable to being

searched in order to find an optimal solution. Thus, fitness landscapes that are largely flat and unchanging,

or that have sharp and sudden shifts that can be easily missed by a search technique, are generally not

ideal. The third component involves operators for manipulating the representation of a possible solution as

a search is conducted [21]. Search-based software engineering involves the use of metaheuristic techniques

in software engineering settings [20, 21]. Metaheuristic techniques such as genetic algorithms [21, 40], tabu

searches [18, 30, 40], and simulated annealing [31, 40] are used in place of optimization techniques such as

linear programming and dynamic programming due to the size of large software engineering problems, such

as those addressed by combinatorial testing.

Clearly, there are some similarities between the formulations of search-based and experimental pro-

gram analysis. For example, the fitness function(s) of search-based software engineering techniques can be

mapped to the dependent variables feature of experimental program analysis. The units that are measured

in search-based software engineering techniques using fitness functions are similar to the treatments feature

of experimental program analysis. The process guiding search-based software engineering techniques could

be mapped to the interim analysis feature of experimental program analysis. And both approaches have

their unique toolset to support cost-effective analysis.

Still, as two separate formulations of program analysis techniques, search-based software engineering and

experimental program analysis techniques offer different perspectives with unique strengths. For example,

search-based software engineering techniques may be desirable when the goal is to search for and identify an

optimal solution. On the other hand, experimental program analysis techniques may be more appropriate

when it is desirable to analyze causality or characterize a population with the support of measures of

confidence to evaluate the accuracy or completeness of the identified solutions, providing a different type

of solution than search-based software engineering techniques. We believe that researchers will find some

research problems where search-based software engineering solutions are more attractive, and other problems

where experimental program analysis solutions are preferable.

6.4 Static and Dynamic Analysis

One additional question of interest involves the relationship between experimental program analysis and

other “types” of analyses, such as “static” and “dynamic” analysis. The characteristics of and relationships

between techniques, and taxonomies of techniques, have been a topic of many research papers (see, e.g.,

[2, 14, 43, 48, 50]). In these papers, static techniques are generally described as those that operate on fixed

representations of programs and have no knowledge of the types of execution behaviors those programs might

exhibit in practice, while dynamic techniques utilize information gleaned from program executions.

While our goal is not to taxonomize, we argue that experimental program analysis is not constrained to

42



the traditional static or dynamic classification, but rather, is orthogonal to it. The EPA paradigm focuses on

the type of analysis performed: namely, whether tests and purposeful changes are used to analyze software.

As such, it can overlap with both static and dynamic analysis techniques, as illustrated by program refactoring

(a static technique) and Daikon (a dynamic technique).

Experimental program analysis thus presents a perspective that is not provided by static or dynamic

analysis techniques by offering (1) methodologies for manipulating independent variables of interest to test

their effects on dependent variables, (2) procedures for conducting and adjusting hypothesis tests in program

analysis contexts, (3) strategies for systematically controlling sources of variation during these tests, (4)

experiment designs and sampling techniques to reduce the costs of experimentation, and (5) mechanisms to

generate confidence measures in the reliability and validity of the results. We believe that such advantages,

which allow EPA techniques to address research questions in ways that other program analysis techniques

cannot, will motivate the development of EPA techniques.

7 Conclusions and Future Work

While researchers have created various program analysis techniques incorporating features of experimenta-

tion, the notion of incorporating such features has not previously been investigated in its own right. This

article has taken this step, and formalized experimental program analysis as a program analysis paradigm.

We have shown that by following this paradigm, and using our operational definition of experimental program

analysis, it is possible to identify limitations of EPA techniques, improve existing techniques, and create new

techniques.

There are many intriguing avenues for future work on experimental program analysis. One direction

involves the use of the paradigm to solve software engineering problems in more cost-effective ways by

adapting existing non-experimental techniques or creating new EPA techniques. In this article we have

considered only a few examples of how to adapt existing techniques or create new techniques, but we

believe that there are many others. We conjecture that investigating software engineering problems from an

experimental program analysis perspective can reveal new opportunities for addressing them.

A second direction for future work, as we have mentioned, involves automation opportunities for EPA

techniques. Thus far, we have focused on the automation of experimental program analysis tasks and the

advantages therein. It seems likely, however, that the selection of the approach for a task can be automated

as well. For example, EPA techniques could be encoded to consider multiple experimental designs (e.g.,

blocking, factorial, split-plot, latin square), and select that which is best suited for a specific instance of

a problem. Improvements such as these may allow techniques to perform more efficiently, thereby making

them more affordable to solve different classes of problems.

A third direction for future work with somewhat broader potential impacts involves recognizing and

43



exploiting differences between experimental program analysis and traditional experimentation in some other

fields. As Section 4 points out, there are several such interesting differences including, for example, the

potential for EPA techniques to cost-effectively consider enormous numbers of treatments. It is likely that

further study of experimental program analysis will open up intriguing new problems in the fields of empirical

science and statistical analysis.

In closing, we believe that experimental program analysis provides numerous opportunities for program

analysis and software engineering research. We believe that framing program analysis problems as an ex-

periment offers access to new approaches that are not available in existing forms of analysis — at least for

particular classes of analysis tasks — including procedures for systematically controlling sources of vari-

ation while analyzing software systems, experimental designs and sampling techniques to reduce the cost

of generalizing targeted aspects of a program, procedures for conducting and adjusting hypothesis tests in

program analysis contexts, and mechanisms to generate confidence measures in the reliability and validity of

the results. We believe that such advantages will lead to significant advances in program analysis research

and in the associated software engineering technologies that this research intends to improve.

8 Acknowledgments

We thank Kent Eskridge and David Marx of the Statistics Department at the University of Nebraska–Lincoln

for feedback on our definition of experimental program analysis. This work has been supported by NSF under

awards CNS-0454203, CCF-0440452, and CCR-0347518 to University of Nebraska–Lincoln.

References

[1] M. Arnold and B. G. Ryder. A framework for reducing the cost of instrumented code. In Proceedings

of the ACM SIGPLAN 2001 Conference on Programming Language Design and Implementation, pages

168–179, Snowbird, Utah, U.S.A., June 2001.

[2] T. Ball. The concept of dynamic analysis. In Proceedings Seventh European Software Engineering

Conference held jointly with the Seventh ACM SIGSOFT International Symposium on Foundations of

Software Engineering, pages 216–234, Toulouse, France, Sept. 1999.

[3] V. R. Basili, F. Shull, and F. Lanubile. Using experiments to build a body of knowledge. In Proceedings

of the NASA Software Engineering Workshop, pages 265–282, Dec. 1999.

[4] M. Bowman, L. C. Briand, and Y. Labiche. Multi-objective genetic algorithm to support class responsi-

bility assignment. In Proceedings of the IEEE International Conference on Software Maintenance, pages

124–133, Oct. 2007.

44



[5] G. E. P. Box, W. G. Hunter, and J. S. Hunter. Statistics for Experimenters: An Introduction to Design,

Data Analysis, and Model Building. Series in Probability and Mathematical Statistics. Wiley, New York,

1st edition, 1978.

[6] B. R. Childers, J. W. Davidson, and M. L. Soffa. Continuous compilation: A new approach to aggressive

and adaptive code transformation. In National Science Foundation Workshop Next Generation Software,

Nice, France, Apr. 2003.

[7] J. D. Choi and A. Zeller. Isolating failure-inducing thread schedules. In Proceedings of the 2002 ACM

SIGSOFT International Symposium on Software Testing and Analysis, pages 210–220, Rome, Italy,

July 2002.

[8] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system: An approach to

testing based on combinatorial design. IEEE Transactions on Software Engineering, 23(7):437–444,

July 1997.

[9] Daikon invariant detector distribution. http://pag.csail.mit.edu/daikon/. Last accessed: April 23, 2008.

[10] H. Do, S. Elbaum, and G. Rothermel. Infrastructure support for controlled experimentation with

software testing and regression testing techniques. In Proceedings of the 2004 International Symposium

on Empirical Software Engineering, pages 60–70, Redondo Beach, California, U.S.A., Aug. 2004.

[11] B. Du Bois, S. Demeyer, and J. Verelst. Refactoring—improving coupling and cohesion of existing code.

In Proceedings of the 11th IEEE Working Conference on Reverse Engineering, pages 144–151, Delft,

The Netherlands, Nov. 2004.

[12] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, and A. Iannino. Applying design of

experiments to software testing: Experience report. In Proceedings of the 19th International Conference

on Software Engineering, pages 205–215, Boston, Massachusetts, U.S.A., May 1997.

[13] S. Elbaum and M. Diep. Profiling deployed software: Assessing strategies and testing opportunities.

IEEE Transactions on Software Engineering, 31(4):312–327, Apr. 2005.

[14] M. D. Ernst. Static and dynamic analysis: Synergy and duality. In Proceedings of the ICSE’03 Workshop

Dynamic Analysis, pages 24–27, Portland, Oregon, U.S.A., May 2003.

[15] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely program

invariants to support program evolution. IEEE Transactions on Software Engineering, 27(2):99–123,

Feb. 2001.

45



[16] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and Practical Approach. Course Tech-

nology, 2nd edition, 1998.

[17] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston, 1999.

[18] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston, 1997.

[19] T. L. Graves, M. J. Harrold, J. M. Kim, A. Porter, and G. Rothermel. An empirical study of regression

test selection techniques. ACM Transactions on Software Engineering and Methodology, 10(2):184–208,

Apr. 2001.

[20] M. Harman. The current state and future of search based software engineering. In Proceedings of the

29th International Conference on Software Engineering, pages 20–26, Minneapolis, Minnesota, U.S.A.,

May 2007.

[21] M. Harman and B. F. Jones. Search-based software engineering. Information & Software Technology,

43(14):833–839, Dec. 2001.

[22] B. Henderson-Sellers. Object-Oriented Metrics: Measures of Complexity. Prentice-Hall, 1996.

[23] A. J. Kinneer, M. B. Dwyer, and G. Rothermel. Sofya: Supporting rapid development of dynamic

program analyses for Java. In Proceedings of the 29th International Conference on Software Engineering,

pages 51–52, Minneapolis, Minnesota, U.S.A., May 2007.

[24] R. E. Kirk. Experimental Design: Procedures for the Behavioral Sciences. Brooks/Cole Publishing, 3rd

edition, 1995.

[25] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. E. Emam, and

J. Rosenberg. Preliminary guidelines for empirical research in software engineering. IEEE Transactions

on Software Engineering, 28(8):721–734, Aug. 2002.

[26] R. O. Kuehl. Design of Experiments: Statistical Principles of Research Design and Analysis.

Brooks/Cole Publishing Company, Pacific Grove, California, U.S.A., 2nd edition, 2000.

[27] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical bug isolation. In

Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and Implemen-

tation, pages 15–26, Chicago, Illinois, U.S.A., June 2005.

[28] G. Misherghi and Z. Su. HDD: Hierarchical delta debugging. In Proceedings of the 28th International

Conference on Software Engineering, pages 142–151, Shanghai, China, May 2006.

46



[29] D. C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, New York, 4th edition,

1997.

[30] K. Nurmela. Upper bounds for covering array by tabu search. Discrete Applied Mathematics, 138(1–

2):143–152, 2004.

[31] K. Nurmela and P. R. J. Ostergard. Constructing covering designs by simulated annealing. Technical

report, Digital Systems Laboratory, Helsinki University of Technology, 1993.

[32] RefactorIt—Aqris Software. http://www.aqris.com/display/ap/RefactorIt/. Last accessed: April 23,

2008.

[33] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: A tool for change impact analysis of

Java programs. In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-oriented Pro-

gramming, Systems, Language, and Applications, pages 432–448, Vancouver, British Columbia, Canada,

Oct. 2004.

[34] C. Robson. Real World Research. Blackwell Publishers, Malden, Massachusetts, U.S.A., 2nd edition,

2002.

[35] J. R. Ruthruff. Experimental program analysis: A new paradigm for program analysis. In Proceedings

of the 28th International Conference on Software Engineering Doctoral Symposium, pages 977–980,

Shanghai, China, May 2006.

[36] J. R. Ruthruff, M. Burnett, and G. Rothermel. Interactive fault localization techniques in a spreadsheet

environment. IEEE Transactions on Software Engineering, 32(4):213–239, Apr. 2006.

[37] J. R. Ruthruff, S. Elbaum, and G. Rothermel. Experimental program analysis: A new program analysis

paradigm. In Proceedings of the ACM SIGSOFT International Symposium on Software Testing and

Analysis, pages 49–59, Portland, Maine, U.S.A., July 2006.

[38] S. Siegel and N. Castellan Jr. Non-parametric Statistics for the Behavioral Sciences. McGraw Hill,

Boston, 1998.

[39] D. Siegmund. Sequential Analysis: Tests and Confidence Intervals. Springer-Verlag, New York, 1985.

[40] J. Stardom. Metaheuristics and the search for covering and packing arrays. Master’s thesis, Simon

Fraser University, 2001.

[41] M. Stoerzer, B. G. Ryder, X. Ren, and F. Tip. Finding failure-inducing changes in Java programs

using change classification. In Proceedings of the 14th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 57–68, Portland, Oregon, U.S.A., Nov. 2006.

47



[42] S. K. Thompson. Sampling. Series in Probability and Mathematical Statistics. Wiley, New York, 2nd

edition, 2002.

[43] F. Tip. A survey of program slicing techniques. Journal of Programming Languages, 3(3):121–189, 1995.

[44] W. M. K. Trochim. The Research Methods Knowledge Base. Atomic Dog Publishing, Cincinnati, Ohio,

2nd edition, 2001.

[45] F. I. Vokolos and P. G. Frankl. Empirical evaluation of the textual differencing regression testing

technique. In Proceedings of the IEEE International Conference on Software Maintenance, pages 44–53,

Bethesda, Maryland, U.S.A., Nov. 1998.

[46] A. Wald. Sequential Analysis. Wiley, New York, 1947.

[47] C. Wohlin, P. Runeson, M. Host, B. Regnell, and A. Wesslen. Experimentation in Software Engineering.

Kluwer Academic Publishers, Boston, 2000.

[48] M. Young and R. N. Taylor. Rethinking the taxonomy of fault detection techniques. In Proceedings

of the 11th International Conference on Software Engineering, pages 53–62, Pittsburgh, Pennsylvania,

U.S.A., May 1989.

[49] A. Zeller. Isolating cause-effect chains from computer programs. In Proceedings of the 10th ACM

SIGSOFT International Symposium on Foundations of Software Engineering, pages 1–10, Nov. 2002.

[50] A. Zeller. Program analysis: A hierarchy. In Proceedings of the ICSE’03 Workshop on Dynamic Analysis,

pages 6–9, Portland, Oregon, U.S.A., May 2003.

[51] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input. IEEE Transactions on

Software Engineering, 28(2):183–200, Feb. 2002.

48


