
Recovery Boosting: A Technique to Enhance

NBTI Recovery in SRAM Arrays

Taniya Siddiqua and Sudhanva Gurumurthi

Department of Computer Science

University of Virginia

Email: {taniya,gurumurthi}@cs.virginia.edu

Abstract—Negative Bias Temperature Instability (NBTI) is
an important lifetime reliability problem in microprocessors.
SRAM-based structures within the processor are especially sus-
ceptible to NBTI since one of the PMOS devices in the memory
cell always has an input of ‘0’. Previously proposed recovery
techniques for SRAM cells aim to balance the degradation of
the two PMOS devices by attempting to keep their inputs at a
logic ‘0’ exactly 50% of the time. However, one of the devices
is always in the negative bias condition at any given time. In
this paper, we propose a technique called Recovery Boosting
that allows both PMOS devices in the memory cell to be put
into the recovery mode by slightly modifying the design of
conventional SRAM cells. We present the circuit-level design
of an issue queue that uses such cells and perform SPICE-
level simulations to verify its functionality and quantify area
and power consumption. We then conduct an architecture-
level evaluation of the performance and reliability of using
an area-neutral design of such an issue queue using the M5
simulator and the SPEC CPU2000 benchmark suite. We show
that recovery boosting provides a 56% improvement in the static
noise margin for the issue queue while having very little impact
on power consumption and a negligible loss in performance.

I. INTRODUCTION

Reliability is one of the biggest challenges facing the
microprocessor industry today. With continued technology
scaling, processors are becoming increasingly susceptible
to hard errors. One important hard error phenomenon is
Negative Bias Temperature Instability (NBTI), which affects
the lifetime of PMOS transistors. NBTI occurs when a
negative bias (i.e., a logic input of ‘0’) is applied at the
gate of a PMOS transistor. The negative bias can lead to the
generation of interface traps at the Si/SiO2 interface, which
cause an increase in the threshold voltage of the device. This
increase in the threshold voltage degrades the speed of the
device and reduces the noise margin of the circuit, eventually
causing the circuit to fail [10], [6]. One interesting aspect of
NBTI is that some of the interface traps can be eliminated by
applying a logic input of ‘1’ at the gate of the PMOS device.
This puts the device into what is known as the recovery mode,
which has a “self-healing” effect on the device [1].

Memory arrays that use Static Random Access Memory
(SRAM) cells are especially susceptible to NBTI. Since each
memory cell stores either a ‘0’ or a ‘1’ at all times, one of
the PMOS devices in each cell always has a logic input of
‘0’. Since modern processor cores are composed of several
critical SRAM-based structures, such as the register file and
the issue queue, it is important to mitigate the impact of NBTI
on these structures to maximize their lifetimes. Previous work
on applying recovery techniques to SRAM structures aim
to balance the degradation of the two PMOS devices in a

memory cell by attempting to keep the inputs to each device
at a logic input of ‘0’ exactly 50% of the time [1], [6], [12].
However, one of the devices is always in the negative bias
condition at any given time. In this paper, we propose a novel
technique called Recovery Boosting that allows both PMOS
devices in the memory cell to be put into the recovery mode.

The main contributions of this paper are:

• We describe how SRAM cells can be modified to
support recovery boosting and discuss several circuit
and microarchitecture level design considerations when
using such cells to build SRAM arrays.

• We present the circuit-level design of an issue queue
for a 4-wide issue processor core that uses the modified
cells to provide recovery boosting. We verify the func-
tionality of this design and quantify its area and power
consumption through SPICE-level simulation using the
Cadence Virtuoso Spectre circuit simulator [4] for the
32nm process technology. We show that the modified
SRAM structure imposes only a 3% area overhead
over the baseline non-recovery boost design and that
its maximum power consumption is less than 2% over
the baseline.

• We then evaluate the performance and reliability of an
area-neutral design of the issue queue at the architecture-
level via execution-driven simulation using the M5
simulator [2] and the SPEC CPU2000 benchmark suite
[14]. We show that recovery boosting provides a 56%
improvement in the static noise margin for the issue
queue suite while having a negligible impact on perfor-
mance.

The organization of the rest of this paper is as follows. The
next section discusses the recovery boosting technique. The
circuit-level design and evaluation of the issue queue is given
in Section III. The architectural experimental methodology is
given in Section V and the corresponding results in Section
VI. Section VII discusses related work and Section VIII
concludes this paper.

II. BASICS OF RECOVERY BOOSTING

Since the SRAM cell has cross-coupled inverters, each
inverter charges the gate of the PMOS or NMOS device of
the other inverter. Therefore, at any given time, one PMOS
device will always be in the stress mode. The goal of recovery
enhancement is to put the PMOS devices into the recovery
mode by feeding input values to the cell that will transition
them into that mode. However, due to the cross-coupled
nature of the inverters, only one of the PMOS devices can
be put into the recovery mode. We propose a 6T SRAM
cell design shown in Figure 1 which is capable of normal
operations (read, write, and hold) as well as providing an
NBTI recovery mode that we call the recovery boost mode



where both PMOS devices within the cell undergo recovery
at the same time.

The basic idea behind recovery boosting is to raise the
node voltages (Node0 and Node1 in Figure 1) of a memory
cell in order to put both PMOS devices into the recovery
mode. This can be achieved by raising the ground voltage and
bitlines to the nominal voltage through an external control
signal. Raising the bitlines to Vdd allows for a fast transition
into the recovery boost mode, which is important for high-
speed SRAM. The modified SRAM cell has the ground
connected to the output of an inverter, as shown in Figure 1.
CR is the control signal to switch between the recovery boost
mode and the normal operating mode. During the normal
operating mode, CR has a value of ‘1’ (Vdd), which in turn
connects the ground of the SRAM cell to a value of ‘0’.
With this connection, the SRAM cell can perform normal
read, write, and hold operations. To apply recovery boosting,
CR has to be changed to a ‘0’ in order to raise the ground
voltage of the SRAM cell to Vdd. To raise the voltages of both
Node0 and Node1 to Vdd, BL and BLB have to be charged
to Vdd along with the raised ground voltage. This circuit
configuration puts both PMOS devices in the SRAM cell
into the recovery mode. A cell can be put into the recovery
boost mode regardless of whether its wordline (WL) is high
or low. Unlike read and write operations on a cell, putting a
cell into the recovery boost mode does not require an access
to its wordline.�� �����

��
��� ��	
���	
�

Fig. 1. SRAM Cell Design for Recovery Boosting

Incorporating the modified SRAM cell into a memory
array requires additional microarchitectural design considera-
tions. Recovery boosting can be provided at a fine granularity,
such as for individual entries/rows of a memory array, or at
a coarser granularity, such as for an entire array.
• Fine-Grained Recovery Boosting: In the normal operating
mode, the state of the bitlines change during read and write
operations. Since a pair of bitlines is shared by all the
memory cells in a given column in the array, even those
memory cells that are not being read from or written to will
have the voltage on their bitlines changing. In an ordinary
SRAM array, these bitline transitions do not affect the normal
operation of the cells. However, in order to perform recovery
boosting of a memory cell, both bitlines of the cell need to
be raised to Vdd. Therefore, we need to be able to isolate
the bitlines of the memory cells that are in the recovery
boost mode from the bitlines that are used for accessing
other cells in the array. To provide this isolation, we extend
the memory cell in Figure 1 with connections to the Vdd

rail of an adjoining row or column via two PMOS access
devices. The design of the modified SRAM cell is shown
in Figure 2(a) and an SRAM array that uses this cell for
controlling individual entries to operate either in normal or
recovery boost mode is shown in Figure 2(b).

In the memory cell design given in Figure 2(a), the CR

signal serves the same purpose as before. When a value of ‘0’
is input to the CR line to transition the cell into the recovery
boost mode, in addition to raising the ground voltage, the two
extra PMOS devices connected to the Vdd rail are also turned
on. Therefore, by raising the ground and connecting the
bitcell to Vdd, the cell can be transitioned into the recovery
boost mode without affecting cells in other rows of the array.
NOTE: We make the extra PMOS devices resilient against
NBTI by using high-Vt transistors. Although high-Vt devices
are slower, these devices are used only when transitioning the
cell into the recovery boost mode and not when transitioning
to the normal operating mode. Therefore, these devices do
not impact performance but may delay the transition into the
recovery boost mode. Moreover, since these devices do not
lie on the performance critical path, they are sized so as to
minimize the overall area. However, the PMOS devices do
consume leakage power. We quantify the power consumption
in Section III.
� �����

��
��� ����������
���
���

(a) Modified SRAM cell with connection to the Vdd rail

of an adjoining row

(b) SRAM array with modified cell (N entries, M-wide)

Fig. 2. SRAM Array for Fine-Grained Recovery Boosting
• Alternative Cell Designs: In addition to the cell in Figure
2(a), we considered two alternative SRAM cell designs to
support fine-grained recovery boosting, which differ in terms
of their area, power, and the time needed to put the cell into
the recovery boost mode.
Alt-Cell-1: In this design, only GND is raised to Vdd. This
design will save area and power as the additional PMOS
access devices will no longer be needed. However, the
drawback of this approach is that it takes longer (i.e., multiple
processor clock cycles) to raise both the node voltages to Vdd.
Our goal is to be able to switch between the recovery boost
mode and the normal operating modes within a single cycle,
which is critical for a structure such as the issue queue where
instruction wakeup and select need to occur within a single
clock cycle for performance reasons.
Alt-Cell-2: This cell design involves a sequence of operations



as follows. The bitlines are first precharged and then a pulse is
applied to the respective wordline, which would help both the
nodes reach Vdd. Finally, the GND is changed to Vdd so that
the node voltages are held high. Again, this aproach would be
efficient in terms of area and power, but there would be write-
port contention between normal accesses to the SRAM array
and accesses related to recovery actions, which can degrade
performance. Alt-Cell-2 also increases the complexity of the
peripheral circuitry.

In this paper, we use the SRAM cell shown in Figure 2(a)
since it is better suited for high-speed SRAM arrays.
• Coarse-Grained Recovery Boosting: In this approach, we
use the SRAM cell design shown in Figure 1 instead of the
one for fine-grained control. Here, a single control signal puts
the entire array into the recovery boost mode. The control
signal CR with a value of ‘0’ raises the ground connection of
each entry to Vdd. In this design, connections to the Vdd rail
via the PMOS devices are not required. Instead we merely
need to raise all the bitlines in the array to Vdd to transition
all the cells in the array to the recovery boost mode.
• Tradeoffs Between Fine-Grained and Coarse-Grained
Recovery Boosting: Going in for the fine-grained approach
entails an area overhead of having two additional PMOS
devices for each memory cell which can be prohibitive for
large SRAM arrays such as caches. On the other hand, the
fine-grained approach provides greater flexibility in managing
NBTI by exploiting the usage characteristics of individual
entries in the structure. In this paper, we evaluate the use of
recovery boosting for the issue queue. Due to the relatively
small size of this structure (compared to caches), we use the
fine-grained approach.

�����������������
� �� ��� ��� ��� ��� ��� ��� ��� ��� �������������	��
�

�

��������	

��������	�
�����

������������������
�����������
����������������������
��������������	��
��
� ����������
�
Fig. 3. PMOS gate voltages of an SRAM bitcell due to

recovery boosting and power gating (Vdd=0.9V)

• Difference Between Recovery Boosting and Power Gating:
Similar to recovery boosting, power gating also involves a
small change to the design of the SRAM cell and can also
be used to combat NBTI [16]. Power gating helps reduce the
stress on the PMOS devices of the SRAM bitcell. However,
recovery boosting allows for recovery, since the gate voltage
of the PMOS device reaches Vdd. This is illustrated in Figure
3 which presents the achieved PMOS gate voltages of a
bitcell over time due to recovery boosting and power gating.
The simulation is performed using the Cadence Virtuoso
Spectre circuit simulator [4] for the 32nm process using
the Predictive Technology Model [8]. We can observe that
recovery boosting achieves the desired gate voltage (Vdd)
within a very short interval of time (195 ps), whereas power
gating achieves only about 11% of Vdd even after several
hundred nanoseconds. When a memory cell stores valid data,
neither recovery boosting nor power gating can be applied
and the PMOS devices in the cells will be stressed in a similar

way. However, as Figure 3 shows, when the memory cell is
idle and the data in the cell is no longer needed, it would be
more beneficial to take advantage of recovery boosting.
• Impact of Process Variation on Correct Functionality: In
deep submicron technologies, intra-die process variation is
an important issue. Different transistor parameters, including
Vt, are affected by process variation and can impact circuit
delay characteristics. Vt is affected by variations in the device
geometry, random dopant number flucations, and mobile
charges in the gate oxide [13]. Process variation will affect
the delay characteristics of the 6T SRAM cell inherent in both
the original and modified bitcells in a similar way. Process
variation can also impact the Vt of the two Vdd-rail access
transistors and the devices in the inverter connected to the
CR line. If the Vt of the Vdd rail transistors is high, then
transitioning the bitcell to the recovery boost mode may be
slower. This could reduce the amount of time for which we
can apply recovery boosting but will not affect the correctness
of the SRAM cell operation. On the other hand, if their Vt is
lower, the bitcell will transition into the recovery boost mode
faster and the access devices will consume higher leakage
power but will again not affect correctness. A delay in the
PMOS device of the CR line inverter will again merely slow
the transition into the recovery boost mode. However, a delay
in the NMOS device in the inverter could affect the speed at
which the cell transitions out of the recovery boost mode and
into a normal operating mode, which can affect correctness.
In order to handle this situation, we need to set the clock
frequency such that this delay can be accomodated within a
single cycle.
• Recovery Boosting Does Not Exacerbate PBTI: Putting
the PMOS devices into the recovery mode does not increase
the stress on the NMOS devices in the memory cell. Stresses
on the NMOS devices can lead to a phenomenon that is
similar to NBTI called PBTI (Positive Bias Temperature
Instability), which occurs when a positive bias (Vgs = Vdd)
is applied to the NMOS device. As with NBTI, PBTI also
generates interface traps and increases the threshold voltage.
PBTI is expected to become more important in future deep
submicron technologies [9]. While in the recovery boost
mode, both the ground and node voltages of the cell are raised
to Vdd. Consequently, the Vgs of the NMOS devices in the
inverters becomes zero and therefore these NMOS devices do
not experience any positive bias. The access transistors are
also not accessed during the recovery boost mode. Therefore
recovery boosting does not exacerbate PBTI on the NMOS
devices in the memory cell (and may in fact provide PBTI
recovery [9]).

III. ISSUE QUEUE DESIGN THAT SUPPORTS RECOVERY

BOOSTING

Recovery boosting can be implemented for any SRAM
structure and is especially well-suited for multiported struc-
tures. Although the modifed bitcell has extra devices, which
increases the area overheads, the impact of these overheads
is less for multiported SRAM structures since only one pair
of Vdd rail access devices are required per bitcell. Since
most large high-speed SRAM arrays within the processor
core are heavily multiported to support instruction/thread-
level parallelism, the area overheads due to recovery boosting
are small. In this paper we present the design and evaluation
of one such high-speed multiported SRAM structure: the
issue queue.

In this section, we present the design of an issue queue for
a 4-wide issue processor core and evaluate this design at the
circuit-level. Our baseline design, which we extend to support



recovery boosting, is based on complexity-effective designs
(with respect to energy and delay) that have been published
previously [7], [5]. The issue queue uses a non-data-captured
design and consists of 64 entries with 4 read-ports, 4 write-
ports, and 65 bits per-entry. The choice for the entry-size is
based on the issue queue descriptions given in [1].

The issue queue houses instructions that have been fetched,
decoded, and renamed and are pending execution. Instruc-
tions are dynamically scheduled from the issue queue based
on the availability of their source operands and functional
units. Instructions whose dependencies have been satisfied
need to be woken up and be sent to the functional units within
a single clock cycle in order to maintain high processor
throughput. Conventional issue queues have a CAM/RAM
structure where the CAM holds the source operand tags and
the RAM holds the remaining information. Each entry has
a valid-bit to indicate its status. The valid-bit is set when
the entry is allocated for a dispatched instruction and is reset
when the instruction is issued and leaves the issue queue. We
put invalid entries into the recovery boost mode. The CAM
performs tag-matching operations against all the broadcasted
tags each clock cycle. In order to do this, each CAM entry
has a set of comparators and matchlines and the number of
these required depends on the issue width of the processor.
In each cycle, each matchline is precharged. If there is a
mismatch between the tag data in the memory cell and the
broadcasted result tag in any of the CAM cells in the issue
queue entry, then the corresponding matchline is discharged;
otherwise the matchline stays high. If any of the matchlines
for a given operand tag entry stays high, its corresponding
ready signal is asserted high via a OR-block.

Fig. 4. Modified CAM Structure (IW = issue width). MBC

is the Modified Bit-Cell for recovery boosting.

To provide recovery boosting, the memory cells of the
RAM and CAM structures are composed of the modified
SRAM cells shown in Figure 2(a). The modified issue queue
entry is shown in Figure 4. The valid-bit works as the control
signal (CR) for the entry. When the memory cells in the entry
transition to the valid state, the CR signal becomes high
which pulls the ground down to low and the entry works
in the normal operating mode. When the entry transitions
to the invalid state, the CR signal becomes low and puts
the memory cell into the recovery boost mode. When in
the recovery boost mode, both nodes of the memory cells
in both the RAM and the CAM parts are raised to Vdd.
Due to the high node voltages, the comparators in the CAM
will be triggered leading to a discharge of the matchline.
To avoid this unnecessary precharging and discharging of
the matchline (which wastes power), we further modify the
issue queue entry so that the prechargers of the matchlines are
connected to the CR signal. When CR is high in the normal
operating mode, the matchlines will be precharged to Vdd and

the tag-matching process will continue each cycle. When CR
is low during the recovery boost mode, the matchlines stay
low and therefore do not discharge.

IV. CIRCUIT-LEVEL SIMULATION RESULTS

We perform SPICE-level simulation using the Cadence
Spectre circuit simulator to verify the functionality of our
designs and determine their area and power consumption.
Our experiments are carried out for 32nm process using the
Predictive Technology Model. Our bitcell device sizes are:
PMOS = 58nm × 33nm, NMOS = 87nm × 33nm, Access
Transistor = 58nm × 41nm. We simulate two designs of the
issue queue: the baseline design that uses conventional 6T
SRAM cells (which do not provide recovery boosting) and
the design that uses the modified SRAM cells discussed in
Section II to provide fine-grained recovery boosting.
• Functionality: We verified functionality through transistor-
level simulation of the issue queue. We evaluated whether we
can perform read, write, and hold operations on the modified
SRAM cells and whether the modified cells correctly switch
between the normal operating modes and the recovery boost
mode. We took into account the extra inverter delay required
for changing the ground voltage of the cell during these
transitions. We verified that these memory structures operate
correctly in the normal operating modes and also that writes
are performed correctly to the cells when transitioning out of
the recovery boost mode.
Clock Frequency Setting: In our simulations, we found the
smallest possible cycle-time for the modified SRAM cell to
be 220ps (a clock frequency of 4.5 GHz). We choose a more
conservative cycle-time of 333ps, which corresponds to a
clock frequency of 3 GHz. We found the delay of the high-
Vt access transistors that connect to the Vdd rail to be small
enough to transition the cell into the recovery boost mode
within a single cycle for the 3 GHz clock frequency.

������
������
������
������

���	
� ��
����

����� µµ µµ

���
���� ������� !" #$$%� &%�%�

Fig. 5. Area of the the issue queue for designs that

use conventional 6T cells and modified cells for recovery

boosting.
• Area: We designed the issue queue for both the baseline
and recovery boosting cases to occupy the minimum area re-
quired to provide correct functionality. Care was taken to size
the devices so that they are of minimal size while meeting
the 3 GHz clock frequency requirement. The overheads for
the multi-ported issue queue is given in Figure 5.

Since the issue queue has 4 read and write-ports respec-
tively, each bitcell has 16 transistors: 4 transistors for the
inverter-pair, 8 transistors for the write-ports, and 4 transistors
for the read-ports (for supporting single-ended reads). To
support recovery boosting, we add 2 extra transistors of
minimal size to each cell and one extra inverter for an entire
row of 65 bitcells. Therefore, adding the extra transistors
for recovery boosting to this heavily multi-ported structure
is expected to add only a small amount of area. Indeed, we
can see that the area of issue queue that uses the modified



cells is only 3% more than the baseline design. This overhead
is roughly equivalent to the area occupied by two entries in
the modified issue queue. We can therefore design the issue
queue to be area-neutral with respect to the baseline (i.e.,
occupy the same area as the baseline design) by having its
capacity reduced by two entries. The performance impact of
this area-neutral design is evaluated in Section VI.
• Dynamic and Leakage Power Consumption: Figure 6
gives the power consumption of a single issue queue entry for
both the baseline design and the one that uses the modified
SRAM cell. For the issue queue entry, in addition to the
power consumed in the recovery boost mode, we quantify
the power consumed in each of the three normal operating
modes (read, write, and hold). For each of these modes,
we present the power consumption for two scenarios: (i)
when both source tags of an entry mismatch with the ones
broadcast down the issue queue in the same cycle, which
is the highest power consumption scenario since all the
matchlines discharge, and (ii) when both source tags match in
the same cycle, which consumes the least amount of power.

����������������������
�������µµ µµ�	

��������	


�

��
�����
�	���
�����
��	
������	��������	�� 
���
�	���	��
�	���	������������	������������

Fig. 6. Power consumption of a single issue queue entry.
We can see that the power consumed by the designs that

use the modified SRAM cells for the read, write, and hold
operations are nearly equal to those of the baseline designs.
The maximum increase in power is less than 2% for the issue
queue entry. The slight increase in power for the recovery
boost designs is due to leakage in one of the PMOS access
transistors that connect to the Vdd rail. The sources of the
PMOS access transistors are connected to Vdd and the drains
are connected to the nodes. Therefore, based on whether
a cell holds a ‘0’ or a ‘1’, one of the two PMOS devices
will leak. Since we use high-Vt PMOS devices as the access
transistors for the cells (to reduce the impact of NBTI), the
leakage power of these transistors is also reduced.

In memory arrays that use conventional SRAM cells, the
cells will normally be operating in the hold mode when they
house invalid data. However, when the modified cells are
used, cells that hold invalid data can operate in the recovery
boost mode. We can see that the power consumed in the
recovery boost mode is orders of magnitude less than in the
hold mode. This is because the recovery boost operation
raises Node0 and Node1 (shown in Figure 2(a)) and the
ground to Vdd, which cuts off the path from Vdd to ground
and significantly reduces the leakage currents. Finally, there
is a small power benefit at the structure level since we use
an area-neutral design for the issue queue which is slightly
smaller than the baseline design.

V. ARCHITECTURAL ANALYSIS METHODOLOGY

We carry out our architecture-level evaluations via
execution-driven simulation using the M5 simulator [2]. Our
workloads consist of benchmarks from the SPEC CPU2000

benchmark suite [14]. We perform detailed simulation of the
first 100-million instruction SimPoint for each benchmark
[11]. We present simulation results for 16 representative
benchmarks - 8 integer and 8 floating-point. We model a
4-wide issue core, which is similar to those in multicore
processors. We assume the initial threshold voltage of the
PMOS devices in the memory cells to be 0.2 V and the
service life of the processor to be 7 years based on the work
by Tiwari and Torrellas [15].
Static Noise Margin(SNM): NBTI can affect read and write
times of the SRAM cells as well as their read SNM (SNM).
Previous work [6] has shown that, of these three metrics,
the SNM is the one that is most heavily affected by NBTI
and therefore we use SNM as the reliability metric in this
paper. Initially, before the processor is used for executing
workloads, the bitcells in the issue queue are designed such
that their SNM is not limited by the strength of the PMOS
devices. But after these structures are exercised by workloads,
their SNM gets limited by the strength of the PMOS devices
due the impact of NBTI on Vt. We capture this impact by
tracking the stress and recovery cycles on all the PMOS
devices in the issue queue (based on our circuit-level designs)
over the course of an architecture simulation and extrapolate
the statistics to calculate the degradation in Vt after the 7-
year service life. We then feed the Vt values of these PMOS
devices into the Spectre circuit simulator to calculate the
SNM of all the cells in a structure at the end of the 7-year
period and use the smallest value to denote the SNM for that
structure.

VI. ARCHITECTURE-LEVEL SIMULATION RESULTS

We now study the impact of putting memory cells of
the issue queue entries into the recovery boost mode when
they hold invalid data. We evaluate three different proces-
sor configurations, which we denote as: Baseline, Recovery
Boosting, and Balancing. Baseline models 4-wide issue core
that does not use any NBTI mitigation technique. Recovery
Boosting replaces the issue queue of the baseline configu-
ration with its counterpart that supports recovery boosting.
We assume that the modified issue queue is designed to be
area-neutral with respect to Baseline by trading off a small
amount of storage capacity to accommodate the extra area
required to implement recovery boosting. Based on our area
evaluations in Section III, we assume that the modified issue
queue has 62 entries. In all our simulations, we find that this
reduction in capacity has a negligible impact on performance
and therefore we do not present detailed performance results.
Balancing denotes a recovery enhancement scheme similar to
the one proposed in [1] that uses the same time intervals that
Recovery Boosting exploits to balance the degradation of the
two PMOS devices in the memory cell. As pointed out by
Abella et al. [1], flipping the contents of the memory cells
only when they hold invalid data instead of when they hold
both valid and invalid data, for which additional circuitry is
required [6], is the preferable approach for high-speed SRAM
structures in order to not increase their delay significantly.
Since the access time of the issue queue has a strong
impact on processor performance, the Balancing technique
is applied only when the memory cells hold invalid data. We
optimistically assume that Balancing does not impose any
additional area overheads over the baseline design and that
it can keep the inputs to each PMOS device at a logic ‘0’
exactly 50% of the time whenever the cells are in this mode.

The breakdown of the time spent by the issue queue entries
in the Valid and Invalid states for each benchmark is shown
in Figure 7(a) and the corresponding reliability results are



given in Figure 7(b). The time-breakdown in Figure 7(a) is
an average over all the entries in the issue queue and over
the entire SimPoint of each benchmark.

As the Figure shows, while Balancing provides a good
improvement in the SNM, Recovery Boosting provides sig-
nificantly higher reliability benefits by virtue of its ability to
put both PMOS devices into the recovery mode. Across all
the benchmarks, Balancing provides a 40% improvement in
the SNM while Recovery Boosting provides a 56% improve-
ment. These results clearly highlight the benefits of recovery
boosting as a technique to mitigate NBTI in the issue queue.

��������������������	��
���������

��������������	

���	
	��������

�
���������

��������	


��������������	
���	
	���������
� �����
�

(a) Breakdown of time spent by the issue queue entries

in the Valid and Invalid states.

�����
������
����

��������	
���
�
���
�����������
���

��������	


��������������	��
��
��
�����������
 ������������
���


(b) Improvement in the SNM over the baseline

processor configuration.

Fig. 7. Reliability Behavior of the Issue Queue.

VII. RELATED WORK

There are two basic approaches to mitigating NBTI: (i)
reduce the stress on the PMOS transistors; (ii) enhance
the recovery process. Stress reduction techniques aim to
reduce the aging rate by controlling Vdd, Vt, and temperature,
whereas recovery enhancement techniques aim to increase the
recovery time for the PMOS devices. Recovery boosting is
a recovery enhancement technique for SRAM structures.
Stress reduction techniques: Tiwari and Torrellas propose
a technique called “Facelift” [15] to hide the effects of aging
through temperature-based job-scheduling to individual cores
of a multicore processor, in conjunction with Vdd and Vt

control. The use of stress reduction techniques is orthogonal
to the use of recovery enhancement.
Recovery enhancement techniques: Abella et al. [1], Kumar
et al. [6], and Shin et al. [12] propose techniques to balance
the degradation of the two PMOS devices in the memory
cells by attempting to keep the inputs to each device at a
logic input of ‘0’ (i.e., negative-bias) exactly 50% of the
time. A recently issued US Patent describes an idea similar to
coarse-grained recovery boosting using a cell design similar

to the Alt-Cell-1 alternative cell discussed in Section II [3].
However, the idea in the patent has the same drawback as
Alt-Cell-1: it takes multiple processor clock cycles to put
both PMOSes into recovery and therefore cannot be used
for high-speed SRAM arrays. Recovery boosting, on the
other hand, can be used for high-speed arrays and can be
used with both fine- and coarse-grained control. Moreover,
the patent does not provide any analysis of the impact
(qualitatively nor quantitatively) of using their technique to
design microarchitectural structures.

VIII. CONCLUSION

NBTI is an important silicon reliability problem. SRAM
memory cells are especially vulnerable to NBTI. We propose
recovery boosting, a technique that allows both PMOS de-
vices in the cell to be put into the recovery mode by raising
the ground voltage and the bitline to Vdd. We design and
evaluate an issue queue, at both the circuit and architecture
levels, that uses recovery boosting and show that this tech-
nique is effective in providing NBTI recovery and is efficient
in terms of area, power, and performance.

ACKNOWLEDGMENT

We thank Mircea Stan and Adam Cabe for their valuable
inputs. This research has been supported in part by NSF grant
0627527 and gifts from Intel.

REFERENCES

[1] J. Abella, X. Vera, and A. Gonzalez. Penelope: The NBTI-Aware
Processor. In Proceedings of the 40th IEEE/ACM International

Symposium on Microarchitecture, 2007.
[2] N.L. Binkert and et al. The M5 Simulator: Modeling Networked

Systems. IEEE Micro, 26(4), July 2006.
[3] P. Bose, J. Shin, and V. Zyuban. Method for Extending Lifetime

Reliability of Digital Logic Devices Through Removal of Aging
Mechanisms, February 2009. US Patent 7,489,161.

[4] Cadence Virtuoso Spectre Circuit Simulator.
http://www.cadence.com/products/cic/spectre circuit/.

[5] D. Folegnani and A. Gonzalez. Energy-Effective Issue Logic. In
Proceedings of the International Symposium on Computer Architecture

(ISCA), June 2001.
[6] S.V. Kumar, C.H. Kim, and S.S. Sapatnekar. Impact of NBTI on

SRAM Read Stability and Design for Reliability. In Proceedings of

the International Symposium on Quality Electronic Design, 2006.
[7] S. Palacharla. Complexity-Effective Superscalar Processors. PhD

thesis, University of Wisconsin - Madison, 1998.
[8] Predictive Technology Model. http://www.eas.asu.edu/ ˜ ptm/.
[9] G. Reimbold and et al. Initial and PBTI-induced traps and charges

in Hf-based oxides/TiN stacks. Microelectronics Reliability, 47(4-5),
April 2007.

[10] D.K. Schroder and J.A. Babcock. Negative Bias Temperature In-
stability: Road to Cross in Deep Submicron Silicon Semiconductor
Manufacturing. Journal of Applied Physics, 94(1), July 2003.

[11] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
Characterizing Large Scale Program Behavior. In Proceedings of the

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), October 2002.
[12] J. Shin, V. Zyuban, P. Bose, and T.M. Pinkston. A proactive wearout

recovery approach for exploiting microarchitectural redundancy to
extend cache sram lifetime. In Proceedings of the International

Symposium on Computer Architecture, 2008.
[13] A. Sil, S. Ghosh, N. Gogineni, and M. Bayoumi. A Novel High Write

Speed, Low Power, Read-SNM-Free 6T SRAM Cell. In Proceedings of

the Midwest Symposium on Circuits and Systems (MWSCAS), August
2008.

[14] SPEC CPU2000. http://www.spec.org/cpu2000/.
[15] A. Tiwari and J. Torrellas. Facelift: Hiding and Slowing Down Aging

in Multicores. In Proceedings of the International Symposium on

Microarchitecture (MICRO), November 2008.
[16] X. Yang, E. Weglarz, and K. Saluja. On NBTI Degradation Process in

Digital Logic Circuits. In Proceedings of the International Conference

on VLSI Design, January 2007.


