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Nowadays, robots are moving off of factory production lines and into our everyday

lives.1 Unlike stationary and pre-engineered factory buildings, an everyday envi-

ronment, such as an office, museum, hospital, or home, is an open and dynamic place

where robots and humans can coexist and cooperate. Hence, instead of the capabilities

of precise motion, dexterous manipulation, and so
forth—capabilities a factory robot requires—the
increasingly popular interactive robot must be able
to learn from and adapt to its dynamic environment
and communicate with people. 

We have built an office robot, Jijo-2, as a testbed
for autonomous intelligent systems that interact and
learn in the real world (see Figure 1). Jijo-2’s most
notable properties are its communication and learn-
ing skills: it can communicate with humans through
a sophisticated Japanese spoken-dialogue system,
and it navigates by using models that it learns by itself
or through human supervision. It achieves the former
through a combination of a microphone array, speech
recognition module, and dialogue management mod-
ule.2 It achieves the latter through statistical learning
procedures by which the robot learns landmarks or
features of its environment that let it construct useful
models (or maps) for navigation.

Unlike a factory robot, Jijo-2’s tasks are not clearly
defined. Our intention was not to design special-pur-
pose hardware and software tuned for a particular task
but to build a mobile agent that, being physically
embodied in the human world, would exhibit some
generic aspects of intelligence. In particular, we have
emphasized in Jijo-2 the role of (semi) autonomous
learning: By operating in an office environment, the
robot is expected to learn how to perform services

such as guiding visitors, delivering messages, man-
aging office members’ schedules, arranging meet-
ings, and other similar tasks. Currently, Jijo-2 can
demonstrate most of these enthralling tasks.

A robot–human dialogue
Figure 2 illustrates an example of a dialogue

between human users (U1, U2) and Jijo-2 (R) involv-
ing several different behaviors. The robot’s behav-
iors included in this example are

• turning to the sound source (U1),
• detecting and recognizing the user’s face,
• referencing the database of the office member’s

current location,
• calling a member by sending email,
• guiding the user to a member’s office, and
• registering new location information in the loca-

tion database.

This example also illustrates how the omitted
salient information in the users’ utterances is recon-
structed. The words in square brackets in the English
translation of the Japanese utterance are omitted in
Japanese. For example, in U1’s fifth utterance, only
the name of a person (Hara-san) is mentioned.
Because the utterance is also a question, the system
creates a database query frame and fills a slot using
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the information “doko” (where) in the atten-
tional state. Such an omission of salient infor-
mation is often encountered in natural lan-
guages, especially in Japanese; therefore, the
capability of estimating the omitted informa-
tion is essential for building a realistic dia-
logue system.

In the middle of the dialogue, during its
navigation to Hara’s office, the robot becomes
uncertain about its position. This can occur
because of noise in sensor signals, occlusion,
and so forth. The navigation module recog-
nizes the problem and sends the request “ask
location” to the dialogue manager. The robot
actively starts a new conversation to confirm
its location by asking, “Koko wa doko
desuka?” (Where am I?) 

The Jijo-2 architecture
Jijo-2 is based on Nomadic’s Nomad 200

mobile-robot platform. It is equipped with
various sensors such as ultrasonic range sen-
sors, infrared proximity sensors, tactile sen-
sors, and an odometric sensor. Figure 3 shows
a schematic diagram of its architecture. The
onboard computer is a PC running Linux and
is connected to a LAN through radio Ether-
net. We added a microphone array, a CCD
(charge-coupled device) color camera, an
omnidirectional camera, digital signal proces-
sors (DSPs) for sound signal processing, and
a Japanese speech synthesizer.

On the robot and the remote host, we imple-
mented several software modules for naviga-
tion and dialogue. Figure 4 depicts the system’s

overall structure, including the reactor and the
integrator modules. We implemented integra-
tor modules in EusLisp, an object-oriented
Lisp for robot control, and the reactor modules
in C for the sake of real-time control. The mod-
ules are managed in an event-driven architec-
ture and realize both reactive and deliberative
behaviors.3 Communication between modules
occurs over TCP/IP connections. The major
advantages of this event-driven multiagent
architecture are the implementation of con-
current behaviors and the plug-and-play
aspects of the software modules.

The dialogue system
Jijo-2’s spoken dialogue system is com-

posed of several parts. The first is a sound
source localization and signal separation
module. It can reduce the noise level and
improve speech recognition—even in an
office environment. The next part is a speaker-
independent continuous Japanese speech
recognition module, which decodes an input
speech signal to its semantic contents. The
third part interprets utterances using a task
frame and any system knowledge. The final
part manages the dialogue process and the
robot’s behavior using a set of predefined
reply templates with a context-based slot-fill-
ing method. 

How Jijo-2 listens to the human
voice

For Jijo-2 to carry out a smooth dialogue in
real environments, dynamic noise suppression
is needed to maintain good speech recogni-
tion performance. We applied a microphone
array composed of eight omnidirectional
microphones around the robot’s top tray. The
sound from a speaker arrives at each micro-
phone with a different delay. The sound signal
at each microphone is digitized and fed to the
first DSP (TI-C44). Based on the delay-and-
sum beam-forming method,2 the direction to
the sound source is computed and then used to
form a beam to pick up the speech and reduce
ambient noise. We observed a noise reduction
of approximately 10 decibels in the frequency
region over 1,000 Hz, which is crucial in rec-
ognizing consonants. As Figure 5 shows, our
multimicrophone system usually performs
better than a single-microphone system, even
in noisy environments.

The noise-free digital sound data is sent to
the second DSP through the direct–memory–
access-driven communication port. The sec-
ond DSP does the frequency analysis and
emits the vector quantization code (VQ code)
for each phonetic element every 10 ms. The
VQ codes are sent to the onboard PC through
a serial link.
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Figure 1. Our speaking robot, Jijo-2.

Figure 2. A typical dialogue between Jijo-2 and a human. (U1 and U2 are the human
users, Toshihiro Matsui and Isao Hara, respectively; R is the robot.)

U1: Kon-nichiwa. (Hello.)
The robot turns to the speaker, detects his face, and recognizes him.
R: Kon-nichiwa, Matsui-san. (Hello, Dr. Matsui.)
U1: Asoh-san wa doko? (Where is Mr. Asoh?)
R: Honkan ni imasu. ([He is] in the main building.)
U1: Yonde kudasai. (Please call [him].) 
R: Asoh-san ni me-ru wo okurimashouka? (Shall I send an email to Mr. Asoh?)
U1: Hai. (Yes, please.)
The robot sends an email.
U1: Hara-san wa? ([Where is] Dr. Hara?) 
R: Office ni imasu. ([He is] in [his] office.)
U1: Tsureteitte kudasai. (Please take me [to his office].)
The robot plans a path to the office and executes the navigation plan.
During the navigation, it becomes uncertain about its location.
R: Koko wa doko desuka? (Where am I?)
U1: Asano-san no tokoro desu. ([You are] in front of Dr. Asano’s office.)
R: Arigatou. (Thanks.)
The robot confirms the current position, replans the path to its destination, and 
resumes navigation.
R: Hara-san no heya ni tsukimashita. ([We are] at Dr. Hara’s office.)
U2: Shokuji ni yukimasu. ([I’m] going out for lunch.)
R: Schedule wo touroku shimasu. ([I’ll] register [the data] to the schedule database.)
The robot sends SQL commands to the schedule database.
U1: Matsui mo. (Matsui, too.)
R: Schedule wo touroku shimasu. ([I’ll] register [the data] to the schedule database.)
The robot sends SQL commands to the schedule database.
U1: Arigatou. (Thanks.)
R: Douitashimashite. (You are welcome.)



How Jijo-2 recognizes speech
The speaker-independent continuous Japan-

ese speech recognizer, Ninja, is a hidden
Markov model-based system developed in the

Electrotechnical Laboratory, which evolved
into AIST. Using phoneme models, a word dic-
tionary, and a grammar created beforehand,
Ninja searches for a series of word symbols

that is consistent with the grammar. Thus, the
speech recognition module produces a list of
symbols such as hello, right to turn, straight
to go, and here is Matsui’s office together with
a recognition confidence value and a direction
angle to the sound source.

We have preliminarily evaluated the
speech recognizer’s recognition rate using a
prepared data set, which is a recording of six
male speakers reading 95 typical input sen-
tences of the dialogue with Jijo-2. When we
use a standard microphone, which is set near
the speaker’s mouth, the average recognition
rate for a whole sentence is 86 percent. How-
ever, in an office setting, the recognition rate
decreases because of ambient noise and echo
caused by the distance between the speaker
and the microphones. When an omnidirec-
tional microphone—set about 50 cm from
the speaker—records the data, the recogni-
tion rate drops to 47 percent.

To cope with recognition performance
degradation, we introduced multiple gram-
mars for recognition. When the robot starts
up, three speech recognition processes start
running. Each recognizer handles one gram-
mar—the reply grammar, location grammar,
or full grammar. The dialogue manager in
the integration layer chooses one grammar
at a time. When a yes-or-no reply is expected,
the dialogue manager activates the reply
grammar. When location or person names
are expected, it invokes the location gram-
mar. Otherwise, it uses the full grammar.
Because evaluating the performance quan-
titatively online is difficult, we have not yet
evaluated the recognition rate’s increase.
From experience with more than 100 demon-
strations to visitors, however, we conclude
that introducing multiple grammars signifi-
cantly improves speech recognition.

Because the pipelined multiprocessors
(two DSPs and a MPU) form the audio beam,
generate VQ code, and perform speech
recognition, the total recognition finishes
almost in real time. The longest delay is intro-
duced by the 0.4-second pause to identify the
end of an utterance. This is also important for
realizing fluent communication between the
robot and humans.

To understand a speaker’s intention and
respond correctly, an utterance’s semantic
content is extracted from the result of speech
recognition. We use a simple task-dependent
dictionary and grammar from the speech rec-
ognizer to parse the recognition result. In this
word dictionary, we embed task-dependent
semantic equivalences.
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Figure 3. A diagram of Jijo-2’s architecture.
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How Jijo-2 carries out a dialogue
The dialogue manager maintains the state

of the dialogue and outputs appropriate
responses from the robot. A state transition
network controls the dialogue process, where
the current state is represented as a state in the
finite-state automaton network (see Figure 6).

Depending on the state, the robot’s
responses to input utterances change. The
rules for response generation and state tran-
sition are encoded as logical statements
using a Prolog-like language interpreted by
EusLisp. The robot knows about a particular
task or task frame, which is a frame struc-
ture with several slots to represent necessary
information for task execution. The dialogue
manager tries to fill the slots using the dia-
logue’s information content. After filling all
slots in a specific task frame, the robot can
execute the task. Currently, we’ve prepared
five kinds of task frames: database query,
database update, identify person, navigation,
and call person. The task frame for naviga-
tion has four slots, such as destination, direc-
tion, action, and modifier (fast, slow, and so
forth). In this case, depending on the action
slot’s value, destination or direction must
always be filled before executing a task. The
other slots are filled with default values if the
user does not specify them.

When the system starts up, the dialogue
module is in the Idle state and must wait for
input from the user (such as “hello”). When
a user calls the robot, the state changes to
Waiting, and the system waits for the user’s
request. If the request relates to database
access, the state moves to DB info, and the
system generates a task frame for “database
query” or “database update,” depending on
the input sentence’s mode (interrogative or
declarative). If the request relates to naviga-
tion, the state moves to the Command state,
and the system generates a task frame for the
specific command. When the robot asks the
user a yes or no question, the state moves to
Confirm, and the system expects a yes-or-no
response from the user. In the confirm state,
the yes–no grammar is used for speech recog-
nition. The state transition network effectively
eliminates wrong responses to spurious utter-
ances generated by noise and prevents the
system from catastrophic faults. In case some
utterance is misidentified, the system recon-
firms the utterance before executing the task.

Knowing the current context is also help-
ful for understanding utterances. We use an
attentional state that lists salient entities
referred to in the preceding utterances. In nat-

ural Japanese conversations, salient informa-
tion, which is easily surmised from the con-
text, is not repeated and is often omitted from
the utterance. Hence, to understand under-

specified sentences, the system must keep
track of salient information in a conversation.
For this purpose, we tentatively introduced a
simple short list of salient discourse entities
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(the people, objects, and events being dis-
cussed), and we use the information stored in
the list to fill the task frame slots.

From the viewpoint of taking turns while
talking, the user controls the dialogue. Using
the task frame, the system can accept frag-
mental information distributed along several
input utterances in any order. When the user
does not specify necessary slot values within
some determined time, the system prompts
the user for input.

How Jijo-2 executes tasks
Jijo-2 is an integrated robot that carries out

dialogues to provide services combined with
its navigation and sensing capabilities. When
the user’s utterances fill all required slots of
a task frame and confirm the contents of the
slots, the dialogue module tries to execute a
task using these capabilities.

If the current task is a database query or
update, the dialogue module dispatches the task
to the database module. Normally, a response
is immediate, and the speech synthesizer can
pronounce the result for the query or update
task. If it takes too long, the user might want to
start another conversation, which the dialogue
module handles, because the modules all run
concurrently in an event-driven manner. The
database containing people’s schedules and loca-
tions is implemented on a database server (Post-
gres server), which also provides Web-based
access. Therefore, once a dialogue about a
user’s schedule lets the system update the data-
base, the information is available for public
access.

The dialogue module dispatches the nav-
igation task to the driver module, which also
maintains a map of the environment. The dia-
logue module can always command the dri-
ver to go to somebody’s office, but the dri-
ver might not know how to go there. In such
a case, the driver module requests the dia-
logue module to ask for navigation instruc-
tions from a person nearby. Additionally, dur-
ing navigation, the driver might encounter an
unexpected landmark, which could also lead
the dialogue module to conduct a conversa-
tion to confirm the new landmark’s location.

As Figure 4 shows, all modules related to
dialogue and task execution run concurrently
and are controlled in an event-driven manner.
When some event such as speech input, find-
ing a landmark, or detecting an obstacle occur,
the respective modules for processing the event
communicate with each other and collabora-
tively process the event. Hence, Jijo-2 can
maintain a dialogue while it navigates a corri-

dor. If the dialogue module can handle the dia-
logue within the module or the database—such
as a query about the current date and time—
then it is locally processed without interfering
with the navigation. On the other hand, if it con-
tains commands to stop navigation or change
destination, the dialogue module retracts the
current command to the driver and restarts
another behavior. Jijo-2 knows its current sta-
tus of task execution, and software developers
can program handling methods for interruptive
input such as “stop” or metacommands such as
“cancel,” depending on the task. This means,
however, that we should implement the han-
dling methods for all exceptional cases, which
becomes difficult when the task variation and
complexity increases. Solving the binding of

interruptive or metacommands to the specific
task is also difficult. The current system imple-
ments a simple binding rule that chooses the
task on top of the stack of required tasks.

How Jijo-2 finds and recognizes
people

When Jijo-2 hears “hello” while in its idle
state, it turns to the user, using information
about the sound source direction detected by
the microphone array unit. Simultaneously, it
invokes a skin color detection function in the
vision module to find the user’s face.4 Using
this, the camera module controls the CCD
camera’s pan tilt and tries to locate the human
face (the largest region of skin color) at the
center of the image. Then, the face recogni-
tion module runs to recognize the extracted
face region.

The current face recognizer is based on
combining a log-polar transform of the image
and higher-order local autocorrelation features
(HLAC).5 Because the log-polar transform
maps the image’s rotation and scaling to a

translation of the log-polar image—and
because HLAC is translation invariant—this
combination makes the recognition result
robust to the input image’s rotation and scaling.

A person’s face is memorized as a tem-
plate feature vector of 105 dimensions cre-
ated from several shots of training images of
the face by linear-discriminant analysis.
When a face image is input, the system
extracts the feature vector from the image,
compares it with the memorized template
vectors, and chooses the closest one. The
label accompanied with the face is output
from the recognition module and inserted as
the speaker’s name in the dialogue manager’s
attentional state stack.

The omnidirectional vision system
Among the several sensor devices used

in robotics, vision provides the richest
source of information—but it is traditionally
restricted to standard CCD cameras. How-
ever, omnidirectional vision systems are
becoming increasingly popular in mobile
robotics for tasks such as environment mod-
eling and navigation.6 Jijo-2 is equipped with
an omnidirectional imaging device, mounted
on top of the robot and consisting of a verti-
cally mounted standard camera aimed
upward and looking into a spherical mirror
(see Figure 7). Each omnidirectional image
has a resolution of 320 × 240 pixels.

An omnidirectional camera’s main advan-
tage—compared to a traditional camera—is
its large field of view. This view, for a mobile
robot application, lets many landmarks be
simultaneously present in the scene, leading
to more accurate localization. This, in turn,
obviates the need for expensive active vision
mechanisms for landmark detection, making
the robot localization task easier.

How Jijo-2 extracts features
Prior to building environment models to be

used for vision-based navigation, the robot
must be able to extract appropriate features
from images. These features can be natural or
artificial,7 and their purpose is to facilitate local-
ization performance. In statistical terms, the
need for feature extraction arises from the fact
that, normally, the dimensionality of the robot’s
sensor data is high, making any statistical infer-
ence in the original space unrealistic.

Recently, there has been a growing inter-
est in automatic procedures that learn such
features from a data set. This automatic learn-
ing of features is a natural objective, because,
in principle, it can make the process inde-
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pendent of environment, giving rise to a so-
called appearance-modeling approach.8 Learn-
ing is most often carried out with statistical
methods, and the easiest and most commonly
used is principal component analysis.9 In this
method, a set of sensor measurements is lin-
early projected to a low-dimensional sub-
space, which is easily computed by solving a
matrix eigenvalue problem. The nice thing
about using PCA is that it combines many
optimality properties and is simple to imple-
ment. There have been several recent reports
in the robotics literature that apply PCA on
omnidirectional images.10,11

Jijo-2 carries out feature extraction
through edge detection, which solves the
problem of illumination changes in the
robot’s environment. The original color
image is converted to grayscale and then lin-
early normalized so that the range of gray
values is within [0, 255]. Then a Sobel oper-
ator performs edge detection. Figure 8 shows
a snapshot from the omnidirectional camera
and an image after edge detection.

Next, we threshold the image and retain
only the edge pixels with the highest inten-
sity. To capture general characteristics of one
scene and avoid searching for particular
structure from these edge pixels, we use the
spatial density of these pixels.6 The idea is
that in those parts of the image where many
edge pixels appear, there is a potentially good
landmark on which to focus (such as the desk
outline in the upper right corner of Figure 8).
Moreover, edge pixels that appear as outliers

should be ignored as unnecessary details of
the scene—the  density estimation algorithm
should detect this.

To compute the spatial density, we use the
Parzen method. This amounts to using one
Gaussian kernel per edge pixel and then adding
the contributions from all pixels to compute
the local density. Unfortunately, this operation
has quadratic complexity and is inconvenient
for real-time processing. However, there is a
fast algorithm for density estimation based on
the fast Fourier transform whose logarithmic
complexity makes the total cost drop signifi-
cantly. The density function is computed on
the panoramic transformation of the omni-
directional snapshot with a resolution of 10 ×
30 (lower than the original 320 × 240 image),
which constitutes a 300-dimensional feature
vector. To further reduce the dimensionality of
the feature vector, we apply PCA. (You can
find more details elsewhere.6) 

How Jijo-2 localizes itself
Having extracted a feature vector from an

omnidirectional image while the robot
moves, the goal is to predict in real time the
robot’s position from this feature vector.
There are many possible ways to establish
associations between a set of robot positions
and feature vectors. To predict the robot’s
position from a feature vector, we use a sim-
ple nearest-neighbor method: When the robot
observes a new image, it compares the cor-
responding feature vector—after Parzen den-
sity estimation and PCA—to all feature vec-
tors stored in the database in terms of the
Euclidean distance. The position that corre-
sponds to the feature vector with the small-
est distance to the current feature vector pro-
vides a maximum a posteriori estimate of the
robot’s position.

This nearest-neighbor matching procedure
is efficient, because after PCA, the training
set of feature vectors is low-dimensional. We

can achieve further speedup in the nearest
neighbor search if we use an appropriate
structure to store the feature vectors—such
as a k-dimensional tree. Alternatively, a
regression method can replace the nearest-
neighbor search.

An example of edge-based feature
extraction

We carried out an experiment involving
400 omnidirectional images while the robot
was moving along a corridor in our office
environment. We applied the edge-based fea-
ture extraction method and PCA to further
reduce the dimension. Figure 9 shows cumu-
lative variance as a function of the number of
principal components in PCA. We note that
the first nine principal components provide
more than 90 percent of the original data set’s
total variation. So, with little loss of infor-
mation, we can discard the other dimensions.
The complete database information that we
need to store and use during real-time robot
localization is the 400 × 9 training-feature
set for nearest-neighbor matching and a sin-
gle projection matrix, which maps the edge
feature image to the 9-dimensional PCA fea-
ture vector.

Using this data set and a nearest-neighbor
method, we observed in most cases that the
robot had good localization performance. Fig-
ure 10 plots the estimated offset (in meters) of
the robot along the corridor as a function of
the true offset. Except for the three outlier
points, our algorithm can predict with good
accuracy the robot’s true position. The three
wrong predictions are due to occlusion of parts
of the scene by objects that did not appear in
the original PCA database construction.

Supervised feature extraction
When the robot collects its observations

in a supervised manner—that is, when they
are annotated in the sample with the robot’s
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position—then PCA can be suboptimal. The
reason is that PCA is an unsupervised fea-
ture-extraction method that uses only the
observed sensor vectors to compute the pro-
jection directions, and thus the extracted fea-
tures can have little discriminatory power
between robot positions. If feature extraction
is to be used for tasks such as robot localiza-

tion and navigation, then a supervised pro-
jection method could substitute for a PCA.12

The principal idea is that an optimal pro-
jection method should account for the topo-
logical structure of the observed data, which,
under certain assumptions about the robot’s
environment, can be assumed to form a low-
dimensional manifold embedded in the

observation space (plus noise). An optimal
linear projection is one that preserves this
resulting manifold’s topological structure—
for example, it reduces the number of self-
intersections. 

Figure 11 shows results from using the
supervised feature extraction method on
100 images collected by the robot along a
trajectory. We clearly see the advantage of
the supervised projection method over PCA.
From the projected manifold’s shape, we
see that considering the pose information
during projection can significantly improve
the resulting features. There are fewer self-
intersections of the projected manifold in
our method than in PCA, which, in turn,
means better robot position estimation on
average.

Socially embedded learning
In the design of traditional machine-learn-

ing systems, the learning systems are fed
with clean training data prepared by the
users, and they learn simple functional rela-
tionships hidden in the data. The learning
systems are isolated from the information-
rich environment around them. On the other
hand, teaching by direct human supervision,
as is the case for young children in close
interaction with their parents, can be the most
powerful teaching strategy. This kind of
closely coupled interaction with the envi-
ronment can significantly support and accel-
erate an agent’s learning capabilities. We call
this kind of learning process socially embed-
ded learning.13

In the current Jijo-2 system, we explored
the first step in this direction in the map-learn-
ing scheme by using a robot–human dialogue.
Map learning is important for mobile robots,
and although a variety of techniques have
been proposed,1,14 it remains a difficult prob-
lem. In particular, map learning with uncer-
tain sensors is difficult because of accumula-
tion of uncertainty about the robot’s location.
Here we have introduced the robot–human
dialogue as a potential solution to that prob-
lem. Jijo-2 starts with no map information and
acquires a probabilistic map under human
supervision, as Figure 12 shows. This proce-
dure is similar to the one we execute when we
have a newcomer in our office and shows how
a simple dialogue can drastically improve the
map-learning process. This is a simple exam-
ple of the socially embedded learning princi-
ple—of course, more research is needed,
including analysis of human-to-human inter-
action in various learning situations.
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A lthough Jijo-2 can communicate with
humans using a spoken-dialogue sys-

tem and learn good features and a proba-
bilistic map of its environment, there are still
many open issues to make the system really
adaptive and robust.

Our dialogue system’s biggest problem is
that the design of the state transition network
and task frames is ad hoc and strongly task-
dependent. The scheme of representing seman-
tic information of the utterance is also infor-
mal. These problems make it difficult to extend
the system to cover wider tasks. When a new
task is introduced, the system designer must
redesign large parts of the structures. To avoid
this problem and make such incremental exten-
sions easier, designing a more systematic
semantic representation is necessary. For the
design, we need a deeper understanding of the
robot’s tasks and the task domain’s ontology.
Attention control of the dialogue system is cur-
rently also rather simple. Introducing theories
of discourse structure,15,16 such as in the Col-
lagen system,17 is an important issue.

A basic element we are continuously
investigating is the seamless integration of
the robot’s communication and learning. In
particular, the robot can use its communica-
tion skills effectively for collecting informa-
tion necessary to learn the environment. On
the other hand, the embodied knowledge
about an environment can prove essential for
executing natural conversation. Such coevo-
lution of the communication and learning
skills is currently the most demanding part
of the Jijo-2 architecture and constitutes an
ongoing research issue in our groups.

Ongoing research also involves extending
the current simple topological map to a
hybrid topological–metric map. The benefit
of using such a map is that a rough descrip-
tion of the environment is incorporated in the

topological map, allowing precise metric
information to be used only in those areas of
the environment requiring accurate naviga-
tion. We can smoothly integrate such a
framework within the state transition net-
work that controls the dialogue process (see
Figure 6), allowing the definition of a gen-
eral state transition network in a joint ver-
bal–world space. Beside the scientific chal-
lenges and innovations that such a joint-space
approach might entail, we intuitively expect
that it can provide elegant solutions to prac-
tical problems, such as optimal backtracking
in task execution when retracting com-
mands—such as “stop”—are issued.

In parallel, introducing the user to the
robot’s control loop, in the socially embedded
manner we have described, immediately sug-
gests the use of reinforcement-learning tech-
niques for map learning and navigation.18 We
could then regard user feedback as a rein-
forcement signal that rewards or penalizes the
robot’s decisions, while we could allow sto-
chastic actions between the (discrete) states
of the verbal–world space, and augment the
joint-transition network with a state–action
reward function. Then, learning of optimal
decisions within a particular environment

could be achieved using dynamic program-
ming or alternative reinforcement learning
techniques, leading to an efficient learning-
by-experience paradigm. 

Finally, it would be interesting to see how
Jijo-2 could adapt itself within a community
of socially embedded robots and to what
extent the interaction of multiple semisen-
tient robots can facilitate their learning and
task execution capabilities.
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