
Testing Planarity of Partially Embedded Graphs ∗

Patrizio Angelini†, Giuseppe Di Battista†, Fabrizio Frati†, Vı́t Jeĺınek‡§,
Jan Kratochv́ıl‡, Maurizio Patrignani†, and Ignaz Rutter]

† Dipartimento di Informatica e Automazione, Roma Tre University, Italy
‡ Department of Applied Mathematics, Charles University, Prague, Czech Republic

§ School of Computer Science, Reykjav́ık University
] Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Germany

Abstract

We study the following problem: Given a planar graph
G and a planar drawing (embedding) of a subgraph
of G, can such a drawing be extended to a planar
drawing of the entire graph G? This problem fits the
paradigm of extending a partial solution to a complete
one, which has been studied before in many different
settings. Unlike many cases, in which the presence of
a partial solution in the input makes hard an otherwise
easy problem, we show that the planarity question re-
mains polynomial-time solvable. Our algorithm is based
on several combinatorial lemmata which show that the
planarity of partially embedded graphs meets the “on-
cas” behaviour – obvious necessary conditions for pla-
narity are also sufficient. These conditions are expressed
in terms of the interplay between (a) rotation schemes
and containment relationships between cycles and (b)
the decomposition of a graph into its connected, bicon-
nected, and triconnected components. This implies that
no dynamic programming is needed for a decision algo-
rithm and that the elements of the decomposition can
be processed independently.

Further, by equipping the components of the de-
composition with suitable data structures and by care-
fully splitting the problem into simpler subproblems, we
improve our algorithm to reach linear-time complexity.

Finally, we consider several generalizations of the
problem, e.g. minimizing the number of edges of the
partial embedding that need to be rerouted to extend
it, and argue that they are NP-hard. Also, we show
how our algorithm can be applied to solve related Graph
Drawing problems.

∗Work on this problem began at the BICI Workshop on
Graph Drawing, held in Bertinoro, Italy, in March 2009, and was
carried out while the authors were at the Department of Applied
Mathematics, Charles University, Prague.

1 Introduction

Planarity is one of the central concepts not only in
Graph Drawing, but in Graph Theory as a whole.
The characterization of planar graphs proved by Ku-
ratowski [20] in 1930 marks the beginning of modern
Graph Theory. Such a characterization, based on two
forbidden topological subgraphs – K5 and K3,3 – makes
planarity a finite problem and leads to a polynomial
time recognition algorithm. Planarity is thus “simple”
from the computational point of view (this, of course,
does not mean that algorithms for testing planarity
are trivial) in the strongest possible way, as several
linear-time algorithms for testing planarity are known
[2, 16, 3].

In this paper we pose and study the question of
planarity testing in a constrained setting, namely when
a part of the input graph is already drawn and cannot
be changed. A practical motivation for this question
is, e.g., the visualization of large networks in which
certain patterns are required to be drawn in a standard
way. The known planarity testing algorithms, even
those that build a drawing incrementally, are of no help
here, since they are allowed to redraw at each step
the part of the graph processed so far. For similar
reasons, online planar embedding and planarity testing
algorithms, such as [28, 25, 4, 24], are not suitable to be
used in this context.

The question of testing the planarity of partially
drawn graphs fits into the general paradigm of extend-
ing a partial solution to a full one. This has been stud-
ied in various settings and it often happens that the
extendability problem is more difficult than the uncon-
strained one. As an example, graph coloring is NP-
complete for perfect graphs even if only four vertices
are already colored [19], while the chromatic number of
a perfect graph can be determined in polynomial time.
Another example is provided by edge colorings – decid-

202 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

ing 3-edge-colorability of cubic bipartite graphs if some
edges are already colored is NP-complete [9], while it
follows from the famous König-Hall theorem that cubic
bipartite graphs are always 3-edge colorable. In view
of these hardness results it is somewhat surprising that
the planarity of partially drawn graphs can be tested in
polynomial time, in fact linear, as we show in this pa-
per. All the more so since this problem is known to be
NP-hard [23] for drawings where edges are constrained
to be straight-line segments.

Specific constraints on planar graph drawings have
been studied by several authors. See, e.g., [27, 26, 6, 14].
Unfortunately, none of those results can be exploited to
solve the question we pose in this paper. Mohar [21, 17]
gives algorithms for extending 2-cell embeddings on the
torus and surfaces of higher genus. However, the 2-cell
embedding is a very strong condition that substantially
changes the nature of the problem.

In order to solve the general problem, we allow
disconnected or low connected graphs to be part of the
input. It is readily seen that in this case the rotation
schemes (i.e., the cyclic orderings of the edges incident
to the vertices of the graph) do not fully describe the
input. In fact, the relative position of vertices against
cycles in the graph must also be considered. (These
concepts and their technical details are discussed later.)
Further, we make use of the fact that drawing graphs
on the plane and on the sphere are equivalent concepts.
The advantage of considering embeddings on the sphere
lies in the fact that we do not need to distinguish
between the outer face and the inner faces.

The main idea of our algorithm is to look at the
problem from the “opposite” perspective. Namely,
we do not try to directly extend the input partial
embedding (which seems much harder than one would
expect). Instead, we look at the possible embeddings of
the entire graph and decide if any of them contains the
partially embedded part as prescribed by the input.

Our algorithm is based on several combinatorial
lemmata, relating the problem to the connectivity of the
graph. Most of them exhibit the “oncas” property – the
obvious necessary conditions are also sufficient. This is
particularly elegant in the case of 2-connected graphs.
In this case, we exploit the SPQR-tree decomposition
of the graph. This notion was introduced in [4] to
describe all the possible embeddings of 2-connected
planar graphs in a succinct way and was used in various
situations when asking for planar embeddings with
special properties. A survey on the use of this technique
in planar graphs is [22]. It is indeed obvious that if a
2-connected graph admits a feasible drawing, then the
skeleton of each node of the SPQR-tree has a drawing
compatible (a precise definition of compatibility will

come later) with the partial embedding. We prove that
the converse is also true. Hence – if we only aim at
polynomial running time – we do not need to perform
any dynamic programming on the SPQR-tree and we
could process its nodes independently. However, for the
ultimate goal of linear running time, we must refine
the approach and pass several information through
the SPQR-tree. Then, dynamic programming becomes
more than useful. Also, the SPQR-trees are exploited
at two levels of abstraction, both for decomposing an
entire block and for computing the embedding of the
subgraph induced by each face of the constrained part
of the drawing.

The paper is organized as follows. In Section 2 we
describe the terminology and list auxiliary topological
lemmata. In particular, the combinatorial invariants
of equivalent embeddings are introduced. In Section 3
we state the combinatorial characterization theorems
for disconnected, simply connected, and 2-connected
cases. The consequence of them is a simple polynomial-
time algorithm outlined at the end of the section.
Section 4 is then devoted to describe technical details
of the linear-time algorithm. Section 5 summarizes
the results, discusses several possible generalizations of
the question leading to NP-hard problems, and shows
how our techniques can be used to solve other Graph
Drawing problems.

2 Notation and Preliminaries

In this section we introduce some notations and prelim-
inaries.

2.1 Drawings, embeddings, and the problem
definition A drawing of a graph is a mapping of each
vertex to a distinct point of the plane and of each edge
to a simple Jordan curve connecting its endpoints. A
drawing is planar if the curves representing its edges
do not cross but, possibly, at common endpoints. A
graph is planar if it admits a planar drawing. A planar
drawing Γ determines a subdivision of the plane into
connected regions, called faces, and a circular ordering
of the edges incident to each vertex, called rotation
scheme. Visiting the (not necessarily connected) border
of a face f of Γ in such a way to keep f to the left,
we determine a set of circular lists of vertices. Such a
set is the boundary of f . Two drawings are equivalent
if they have the same rotation schemes and the same
face boundaries. A planar embedding is an equivalence
class of planar drawings. Let H be a subgraph of a
graph G and let H and G be embeddings of H and G,
respectively. The restriction of G to H is the embedding
of H that is obtained from G by considering only the
vertices and the edges of H. Further, G is an extension

203 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

of H if the restriction of G to H is H. We study the
following decision problem (see Fig. 1 for an example):

Partially Embedded Planarity (Pep)
Input: A triplet (G,H,H) of graphs G and H, with
H ⊆ G, and a planar embedding H of H.

Question: Does G admit a planar embedding whose
restriction to H is H?

Figure 1: Embedding of a planar graph G whose
restriction to H coincides with H. Vertices and edges
in H are black; vertices and edges in G \H are grey.

2.2 Connectivity and data structures A graph
is connected if every pair of vertices is connected by a
path. A k-connected graph G is such that removing
any k − 1 vertices leaves G connected; 3-connected,
2-connected, and 1-connected graphs are also called
triconnected, biconnected, and simply connected graphs,
respectively. A separating k-set is a set of k vertices
whose removal disconnects the graph. Separating 1-
and 2-sets are called cutvertices and separation pairs,
respectively. Hence, a connected graph is biconnected
if it has no cutvertices and it is triconnected if it has no
separation pairs. The maximal biconnected subgraphs
of a graph are its blocks. Each edge of G falls into
a single block of G, while cutvertices are shared by
different blocks.

Let (G,H,H) be an instance of Pep. In the
following we define some data structures that are widely
used throughout the paper. All of such data structures
can be easily computed in time linear in the number of
edges of the graph or of the embedding they refer to.

The component-face tree CF of H is a tree whose
nodes are the connected components of H and the faces

ofH. A face f and a component C are joined by an edge
if a vertex of C is incident to f . The block-face tree BF
of H is a tree whose nodes are the blocks of H and
the faces of H. A face f and a block B are joined by an
edge if B contains an edge incident to f . The vertex-face
incidence graph VF of H is a graph whose nodes are the
vertices of H and the faces of H. A vertex x and a face
f are joined by an edge if x appears on the boundary of
f . The block-cutvertex tree of a connected graph G is a
tree whose nodes are the blocks and the cutvertices of
G. Edges in the block-cutvertex tree join each cutvertex
to the blocks it belongs to. The enriched block-cutvertex
tree of a connected graph G is a tree obtained by adding
to the block-cutvertex tree of G each vertex v of G that
is not a cutvertex and by connecting v to the unique
block it belongs to.

The SPQR-tree T of a biconnected graph G de-
scribes the arrangement of its triconnected components.
In the following, we summarize basic concepts about
SPQR-trees. More details can be found in [4].

A graph is st-biconnectible if adding edge (s, t) to it
yields a biconnected graph. Let G be an st-biconnectible
graph. A split pair {u, v} of G is either a separation
pair or a pair of adjacent vertices. A maximal split
component of G with respect to a split pair {u, v} (or,
simply, a maximal split component of {u, v}) is either
edge (u, v) or a maximal subgraph G′ of G such that G′

contains u and v and {u, v} is not a split pair of G′. We
call split component of {u, v} the union of any number
of maximal split components of {u, v}.

The SPQR-tree T of a biconnected graph G rooted
at edge e describes a recursive decomposition of G
induced by its split pairs. The nodes of T are of four
types: S, P, Q, and R. Their connections are called arcs.

Each node µ of T has an associated st-biconnectible
multigraph, called the skeleton of µ, denoted by sk(µ),
and showing how the children of µ, represented by
“virtual edges”, are arranged into µ. The virtual edge
in sk(µ) corresponding to a child node ν, is called the
virtual edge of ν in sk(µ).

Recursively replacing each virtual edge ei of sk(µ)
with the skeleton sk(µi) of its corresponding child µi

produces a subgraph of G that is called the pertinent
graph of µ and is denoted by pert(µ).

Given a biconnected graph G and a reference edge
e = (u′, v′), tree T is recursively defined as follows.
At each step, a split component G∗, a pair of vertices
{u, v}, and a node ν in T are given. A node µ
corresponding to G∗ is introduced in T and attached
to its parent ν. Vertices u and v are called the poles of
µ and also denoted by u(µ) and v(µ), respectively. The
decomposition possibly recurs on some split components
of G∗. At the beginning of the decomposition G∗ = G−

204 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

{e}, {u, v} = {u′, v′}, and ν is a Q-node corresponding
to e.

Base Case: If G∗ consists of exactly one edge between
u and v, then µ is a Q-node whose skeleton is G∗

itself.

Parallel Case: If G∗ is composed of at least two
maximal split components G1, . . . , Gk (k ≥ 2) of G
with respect to {u, v}, then µ is a P-node. Graph
sk(µ) consists of k parallel virtual edges between u
and v, denoted by e1, . . . , ek and corresponding to
G1, . . . , Gk, respectively. The decomposition recurs
on G1, . . . , Gk, with {u, v} as pair of vertices for
every graph, and with µ as parent node.

Series Case: If G∗ is composed of exactly one max-
imal split component of G with respect to {u, v}
and if G∗ has cutvertices c1, . . . , ck−1 (k ≥ 2),
appearing in this order on a path from u to v,
then µ is an S-node. Graph sk(µ) is the path
e1, . . . , ek, where virtual edge ei connects ci−1 with
ci (i = 2, . . . , k − 1), e1 connects u with c1, and
ek connects ck−1 with v. The decomposition re-
curs on the split components corresponding to each
of e1, e2, . . . , ek−1, ek with µ as parent node, and
with {u, c1}, {c1, c2}, . . . , {ck−2, ck−1}, {ck−1, v} as
pair of vertices, respectively.

Rigid Case: If none of the above cases applies, the
purpose of the decomposition step is that of par-
titioning G∗ into the minimum number of split
components and recurring on each of them. We
need some further definition. Given a maximal split
component G′ of a split pair {s, t} of G∗, a vertex
w ∈ G′ properly belongs to G′ if w 6= s, t. Given a
split pair {s, t} of G∗, a maximal split component
G′ of {s, t} is internal if neither u nor v (the poles
of G∗) properly belongs to G′, external otherwise.
A maximal split pair {s, t} of G∗ is a split pair of
G∗ that is not contained into an internal maximal
split component of any other split pair {s′, t′} of
G∗. Let {u1, v1}, . . . , {uk, vk} be the maximal split
pairs of G∗ (k ≥ 1) and, for i = 1, . . . , k, let Gi be
the union of all the internal maximal split compo-
nents of {ui, vi}. Observe that each vertex of G∗

either properly belongs to exactly one Gi or belongs
to some maximal split pair {ui, vi}. Node µ is an
R-node. Graph sk(µ) is the graph obtained from
G∗ by replacing each subgraph Gi with the virtual
edge ei between ui and vi. The decomposition re-
curs on each Gi with µ as parent node and with
{ui, vi} as pair of vertices.

In the following we assume that, for each node µ
of the SPQR-tree T of a graph G, sk(µ) contains the

virtual edge (u, v) representing the parent of µ in T .
We say that an edge e of G projects to a virtual edge
e′ of sk(µ), for some node µ in T , if e belongs to the
pertinent graph of the node of T corresponding to e′.

The SPQR-tree T of a graph G with n vertices and
m edges has O(n) Q-, S-, P-, and R-nodes. Also, the
total number of vertices of the skeletons of the nodes of
T is O(n). Graph G is planar if and only if the skeletons
of all the nodes of T are planar [1]. The SPQR-tree
T can be used to represent all the planar embeddings
of G. We emphasize the following properties, that are
implicitly exploited throughout all the paper.

Property 2.1. A planar embedding of the skeleton of
every node of T determines a planar embedding of G
and vice versa.

Property 2.2. Let C be a cycle of G and let µ be any
node of T . Then, either the edges of C belong to a single
virtual edge of sk(µ), or they belong to a set of virtual
edges that induce a cycle in sk(µ).

2.3 Facial cycles and H-bridges Let Γ be a planar
drawing of a graph H (see Fig. 2.a). Let ~C be a
simple cycle in H with an arbitrary orientation. The
oriented cycle ~C splits the plane into two connected
parts. Denote by V left

Γ (~C) and V right
Γ (~C) the sets of

vertices of the graph that are to the left and to the right
of ~C in Γ, respectively. The boundary of each face f of
Γ can be uniquely decomposed into simple edge-disjoint
cycles, bridges (i.e., edges that are not part of a cycle),
and isolated vertices (see Fig. 2.b). Orient the cycles in
such a way that f is to the left when walking along the
cycle according to the orientation. Call these oriented
cycles the facial cycles of f (see Fig. 2.c). Observe that
the sets V left

Γ (~C), V right
Γ (~C) and the notion of facial

cycles only depend on the embedding H of Γ. Hence, it
makes sense to denote V left

H (~C) and V right
H (~C), and to

consider the facial cycles of H.
Let x be a vertex of a graph G with embedding G.

Denote by EG(x) the set of edges incident to x and by
σG(x) the rotation scheme of x in G.

Lemma 2.1. Let (G,H,H) be an instance of Pep and
let G be a planar embedding of G. The restriction of G
to H is H if and only if the following conditions hold:
1) for every vertex x ∈ V (H), σG(x) restricted to EH(x)
coincides with σH(x), and 2) for every facial cycle ~C of
each face of H, we have that V left

H (~C) ⊆ V left
G (~C) and

V right
H (~C) ⊆ V right

G (~C).

Proof. The proof easily descends from the following
statement. Let Γ1 and Γ2 be two drawings of the
same graph G such that, for every vertex x ∈ V (G),

205 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

1
2 3

4

5
6 7

89

10
3018

21 2022
19

23
24

25
26

27 28
29

32
31 3313

12

14 11

16 17

15

34

4 9

1018

20
19 29

32
31 3313

12

14 11

16 17

15

34

4
9

1018

20
19 29

13
12

11

16 17

15

34

(a) (b) (c)

Figure 2: (a) A planar drawing of a graph G. The shaded region represents a face f of
the drawing. (b) The boundary of f . The circular lists defining the boundary of f are:
[15, 16, 17], [33, 31, 32, 31], [13, 12, 14, 12, 11, 10, 9, 4, 29, 20, 19, 18, 20, 4]. (c) The facial cycles of f .

σΓ1(x) = σΓ2(x). Drawings Γ1 and Γ2 have the same
embedding if and only if Γ1 and Γ2 have the same
oriented facial cycles and for each facial cycle ~C we have
V left

Γ1
(~C) = V left

Γ2
(~C).

We need to prove this statement in both directions:
(i) if Γ1 and Γ2 have the same embedding then they have
the same oriented facial cycles and for each facial cycle
we have V left

Γ1
(~C) = V left

Γ2
(~C) and (ii) if Γ1 and Γ2 have

the same oriented facial cycles and for each facial cycle
we have V left

Γ1
(~C) = V left

Γ2
(~C), then Γ1 and Γ2 have the

same embedding.
The first direction trivially descends from the ob-

servation that drawings with the same embedding have
the same facial cycles. Suppose for a contradiction that,
for some facial cycle ~C, V left

Γ1
(~C) 6= V left

Γ2
(~C). Then, at

least one vertex v is to the left of ~C in Γ1 and to the
right of ~C in Γ2 (the opposite case being analogous).
Hence, v is part of the boundary of a face that is to the
left of ~C in Γ1 and to the right of ~C in Γ2, contradict-
ing the hypothesis that Γ1 and Γ2 have the same facial
boundaries.

For the second direction, first suppose that G is
connected and has at least one vertex of degree three.
In this case, the fact that Γ1 and Γ2 have the same
rotation scheme implies that they also have the same
face boundaries, and, hence, the same embedding.
Second, suppose that G is connected and has maximum
degree two. Then, G is either a path or a cycle. In both
cases, the face boundaries of Γ1 and Γ2 are the same
(recall that G is drawn on the sphere). Finally, suppose
that G has several connected components C1, C2, . . . ,
Ck. Then, Γ1 and Γ2 have the same face boundaries
if: (a) for each Ci, i = 1, . . . , k, the embedding G1 of
Γ1 restricted to Ci is the same as the embedding G2

of Γ2 restricted to Ci and (b) each pair of connected
components Ci and Cj , with i, j = 1, . . . , k and i 6= j,
either do not share a face both in G1 and in G2 or they
contribute with the same circular lists to the boundary

of the same face f in G1 and in G2.
Condition (a) is guaranteed as in the two cases

in which G is connected. Condition (b) follows from
the hypothesis that, for each facial cycle ~C, we have
V left

Γ1
(~C) = V left

Γ2
(~C). In fact, suppose for a contradic-

tion that two connected components Cx and Cy share a
face f in G1 and no face in G2. Since Cx and Cy share
a face in G1, they are on the same side of any facial
cycle ~C belonging to any other component Cz (more
intuitively, Cx and Cy can not be separated by any fa-
cial cycle of Γ1). On the other hand, consider the unique
path Cx, f1, C1, f2, . . . , Cy in the component-face tree of
G2. By hypothesis, C1 6= Cx, Cy. Hence, the facial cy-
cle ~C obtained from the boundary of f1 and containing
vertices of C1 separates Cx from Cy, thus contradicting
the hypothesis that V left

Γ1
(~C) = V left

Γ2
(~C).

Finally, suppose for a contradiction that two con-
nected components Cx and Cy contribute with circular
lists Lx

1 and Ly
1 to the boundary of the same face f1 of

G1 and with circular lists Lx
2 and Ly

2 to the boundary of
the same face f2 of G2 and suppose that Lx

1 6= Lx
2 . The

boundary of f1 is oriented in such a way that every facial
cycle has f1 to its left. Then, every facial cycle obtained
from Lx

1 has Cy to its left. Further, for every cycle C ′

of Cx that is not a facial cycle obtained from Lx
1 , there

exists a facial cycle ~C obtained from Lx
1 that has C ′ to

its right (part of ~C and of C ′ may coincide). As G1 and
G2 restricted to Cx give the same embedding, the last
statement is true both in G1 and in G2. Then, for ev-
ery facial cycle ~C ′ obtained from Lx

2 and not from Lx
1 ,

there exists a facial cycle ~C obtained from Lx
1 hat has

~C ′ to its right. Since ~C ′ is incident to f2 and since Cy

is incident to f2, such a component is to the right of ~C,
contradicting the hypothesis that V left

Γ1
(~C) = V left

Γ2
(~C).

¤

Let G be a graph and let H be a subgraph of G. An
H-bridge K of G is a subgraph of G formed either by a

206 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

single edge e ∈ E(G) \E(H) whose end-vertices belong
to H or by a connected component K− of G − V (H),
together with all the edges (and their end-vertices) that
connect a vertex in K− to a vertex in H. In the first
case, the H-bridge is trivial. A vertex that belongs
to V (H) ∩ V (K) is called an attachment vertex (or
attachment) of K. Note that the edge-sets of the H-
bridges form a partition of E(G) \ E(H).

An H-bridge K is local to a block B of H if all the
attachments of K belong to B. Notice that an H-bridge
with a single attachment can be local to more than one
block, while an H-bridge with at least two attachments
is local to at most one block. An H-bridge that is not
local to any block of H is non-local.

3 Combinatorial Characterization

We first present a combinatorial characterization of the
instances of Pep that allow an embedding extension.
This not only forms a basis of our algorithm, but it
is also interesting in its own right, since it shows that
an instance of Pep has an embedding extension if and
only if it satisfies simple conditions that are obviously
necessary for an embedding extension to exist.

3.1 G biconnected We focus on instances (G,H,H)
of Pep in which G is biconnected. This assumption
allows us to use the SPQR-tree of G as the main tool of
our characterization.

Definition 1. A planar embedding of the skeleton of
a node of the SPQR-tree of G is edge-compatible with
H if, for every vertex x of the skeleton and for every
three edges of EH(x) belonging to different virtual edges
of the skeleton, their clockwise order determined by the
embedding of the skeleton is a suborder of σH(x).

Lemma 3.1. Let (G,H,H) be an instance of Pep
where G is biconnected. Let T be the SPQR-tree of G.
An embedding G of G satisfies Condition 1 of Lemma 2.1
if and only if, for each node µ of T , the corresponding
embedding of sk(µ) is edge-compatible with H.

Proof. Obviously, if G has an embedding satisfying
Condition 1 of Lemma 2.1, then the corresponding
embedding of sk(µ) is edge-compatible with H, for each
node µ of T .

To prove the converse, assume that the skeleton
of every node of T has an embedding that is edge-
compatible with H, and let G be the embedding of G
determined by all such skeleton embeddings. We claim
that G satisfies Condition 1 of Lemma 2.1. To prove the
claim, it suffices to show that any three edges e, f, and g
of H that share a common vertex x appear in the same
clockwise order around x in H and in G. Assume that

the triple (e, f, g) is embedded in clockwise order around
x in H. Let µ be the node of T with the property that
the Q-nodes representing e, f , and g appear in distinct
components of T −µ. Note that such a node µ exists and
is unique. The three edges e, f , and g project into three
distinct virtual edges e′, f ′, and g′ of sk(µ). Since the
embedding of sk(µ) is assumed to be edge-compatible
with H, the triple (e′, f ′, g′) is embedded in clockwise
order in sk(µ), and hence the triple (e, f, g) is embedded
in clockwise order in G. ¤

Consider a simple cycle ~C of G with an arbitrary
orientation and a node µ of the SPQR-tree of G. Either
all the edges of ~C belong to the pertinent graph of a
single virtual edge of sk(µ) or the virtual edges whose
pertinent graphs contain the edges of ~C form a simple
cycle in sk(µ). Such a cycle in sk(µ) inherits the
orientation of ~C in a natural way.

Definition 2. A planar embedding of the skeleton of a
node µ of the SPQR-tree of G is cycle-compatible with
H if, for every facial cycle ~C of H whose edges project to
a simple cycle ~C ′ in sk(µ), all the vertices of sk(µ) that
belong to V left

H (~C) and all the virtual edges that contain
vertices of V left

H (~C) (except for the virtual edges of ~C ′

itself) are embedded to the left of ~C ′; and analogously
for V right

H (~C).

Lemma 3.2. Let (G,H,H) be an instance of Pep
where G is biconnected. Let T be the SPQR-tree of G.
An embedding G of G satisfies Condition 2 of Lemma 2.1
if and only if, for each node µ of T , the corresponding
embedding of sk(µ) is cycle-compatible with H.

Proof. Obviously, if G is an embedding of G that satis-
fies Condition 2 of Lemma 2.1, then the corresponding
embedding of sk(µ) is cycle-compatible with H, for each
node µ of T .

To prove the converse, assume that sk(µ) has an
embedding that is cycle-compatible with H, for each
node µ of T , and let G be the resulting embedding of G.

Our goal is to show that, for every facial cycle ~C
of H and for every vertex x of H − V (~C), the relative
left/right position of x with respect to ~C is the same in
H as in G.

Refer to Fig. 3. Assume that x is to the right of
~C in G (the other case being analogous). Let P be
the shortest path in G that connects x to a vertex of
~C. Such a path exists since G is connected. Let y be
the vertex of ~C ∩ P , and let e and f be the two edges
of ~C adjacent to y, where e directly precedes f in the
orientation of ~C. By the minimality of P , all the vertices
of P − y avoid ~C, hence all the vertices of P − y are to
the right of ~C in G. Let g be the edge of P adjacent

207 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

to y. In G, the triple (e, f, g) appears in clockwise order
around y.

y
e

f
gx P

C
yx
eC’

’ ’
’
’

P

f
g

(a) (b)

Figure 3: Illustration for the proof of Lemma 3.2. Grey
regions represent virtual edges of the skeleton of a node
of T .

Let µ be the (unique) internal node of T in which e,
f , and g project to distinct edges e′, f ′, and g′ of sk(µ).
Let ~C ′ be the projection of ~C into sk(µ) (in other words,
~C ′ is the subgraph of sk(µ) formed by edges that contain
the projection of at least one edge of ~C), and let P ′ be
the projection of P . It is easy to see that ~C ′ is a cycle of
length at least two, while P ′ is either a path or a cycle.
Assume that the edges of ~C ′ are oriented consistently
with the orientation of ~C and that the edges of P ′ form
an ordered sequence, where the edge containing x is the
first and g′ is the last.

Both the endpoints of an edge of ~C ′ are vertices
of ~C. Analogously, both the endpoints of an edge of
P ′ are vertices of P , with the possible exception of
the first vertex of P ′. It follows that no vertex of P ′

belongs to ~C ′, except possibly for the first one and the
last one. Thus, no edge of P ′ belongs to ~C ′ and, by
the assumption that the embedding of sk(µ) is planar
and that G is the embedding resulting from the skeleton
embedding choices, all the edges of P ′ are embedded to
the right of the directed cycle ~C ′ in sk(µ). In particular,
the edge of sk(µ) containing x is to the right of ~C ′.
Since the embedding of sk(µ) is assumed to be cycle-
compatible with H, x is to the right of ~C in H.

This shows that G satisfies Condition 2 of
Lemma 2.1, as claimed. ¤

Definition 3. A planar embedding of the skeleton of a
node µ of the SPQR-tree of G is compatible with H if
it is both edge- and cycle-compatible with H.

As a consequence of Lemmata 3.1 and 3.2, we
obtain the following result, characterizing the positive
instances of Pep in which G is biconnected.

Theorem 3.1. Let (G,H,H) be an instance of Pep
where G is biconnected. Then G has an embedding

which extends H if and only if the skeleton of each node
of its SPQR-tree has an embedding compatible with H.

If G is biconnected we can use Theorem 3.1 for
devising a polynomial time algorithm for Pep. Namely,
we can test, for each node µ of the SPQR-tree T of
G whether µ has an embedding compatible with H.
For Q-, S-, and R-nodes, this test is easily done in
polynomial time.

If µ is a P-node, the test is more complex. Let x
and y be the two poles of sk(µ). We say that a virtual
edge e of sk(µ) is constrained if the pertinent graph of
e (that is, the pertinent graph of the child node of µ
in T corresponding to e) contains at least one edge of
H incident to x and at least one edge of H incident
to y. To obtain an embedding of µ edge-compatible
with H, the constrained edges must be embedded in a
cyclic order that is consistent with σH(x) and σH(y).
Such a cyclic order, if it exists, is unique and can be
determined in polynomial time. Note that, if H has
a facial cycle ~C that projects to a proper cycle ~C ′

in µ, then ~C ′ has exactly two edges and these two
edges are both constrained. Thus, the embedding of
any such cycle ~C ′ in µ is fixed as soon as we fix the
cyclic order of the constrained edges. Once the cyclic
order of the constrained edges of µ is determined, we
process the remaining edges one-by-one and insert them
among the edges that are already embedded, in such a
way that no edge-compatibility or cycle-compatibility
constraints are violated. It is not difficult to verify that
this procedure constructs an embedding of µ compatible
with H, if such an embedding exists.

3.2 G simply-connected or disconnected A
graph is planar if and only if each of its blocks is planar.
Thus, planarity testing of general graphs can be reduced
to planarity testing of biconnected graphs. For partially
embedded planarity, the same simple reduction does not
work (see Fig. 4). However, we will show that solv-
ing partially embedded planarity for a general instance
(G,H,H) can be reduced to solving the subinstances
induced by the blocks of G and to checking additional
conditions that guarantee that the partial solutions can
be combined into a full solution for G.

Let us consider instances (G,H,H) of Pep in which
G is connected. When dealing with such an instance, it
is often useful to assume that G has no non-trivial non-
local H-bridge. We will now show that any instance of
Pep can be transformed to an equivalent instance that
satisfies this additional assumption.

Let K be a non-trivial non-local H-bridge of G.
Since K is non-local, it must have at least two attach-
ments, and these attachments do not belong to any sin-
gle block of H.

208 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

(a) (b) (c)

Figure 4: Three examples of Pep instances (G,H,H)
that have no embedding extension, even though each
block of G admits an embedding extending the corre-
sponding sub-embedding of H. The black edges and
vertices represent H, the gray edges and vertices be-
long to G but not to H. Note that instance (a) fails to
satisfy Condition 3 of Lemma 3.3, instance (b) fails to
satisfy Condition 2 of Lemma 3.3, and instance (c) has
a non-trivial non-local H-bridge.

Let fK be the face of H whose boundary contains
all the attachments of the H-bridge K. Note that there
can be at most one such a face (see Fig. 5.a): If the
attachments of K were contained in the intersection of
the boundaries of two distinct faces of H, then K would
necessarily be local. If there is no face of H incident
to all the attachments of K, then G clearly has no
embedding extension (see Fig. 5.b). In this case, we
define fK as an arbitrary face of H.

fK

(a) (b)

Figure 5: A non-local bridge is either necessarily con-
tained in a face fK (a) or causes a non-planarity (b).

Let K be the set of non-trivial non-local H-bridges
of G. It is clear that, in any embedding of G extending
H, all the vertices of K − V (H) are embedded inside
fK , for every K ∈ K. This motivates the following
definition.

Definition 4. Let H ′ be the graph whose edge set is
equal to the edge set of H, and whose vertex set is
defined by V (H ′) = V (H)∪⋃

K∈K V (K). Let H′ be the
embedding of H ′ that is obtained from H by inserting,
for every H-bridge K ∈ K, all the vertices of K−V (H)
into the interior of the face fK .

Observe that the graph G has no non-trivial non-
local H ′-bridges. Observe also, that any embedding
of G that extends H also extends H′, and vice versa.
Thus, the instance (G,H,H) of Pep is equivalent to
the instance (G,H ′,H′), which contains no non-trivial
non-local bridges.

Let H be an embedding of a graph H, and let H1

and H2 be edge-disjoint subgraphs of H. We say that
H1 and H2 alternate around a vertex x of H if there
are two pairs of edges e, e′ ∈ E(H1) and f, f ′ ∈ E(H2)
that are incident to x and that appear in the cyclic
order (e, f, e′, f ′) in the rotation scheme of x restricted
to these four edges. Let x and y be two vertices of H
and let ~C be a directed cycle in H. We say that ~C
separates x and y if x ∈ V left

H (~C) and y ∈ V right
H (~C), or

vice versa.

Lemma 3.3. Let (G,H,H) be an instance of Pep
where G is connected and every non-trivial H-bridge of
G is local. Let G1, . . . , Gt be the blocks of G, let Hi be
the subgraph of H induced by the vertices of Gi, and let
Hi be H restricted to Hi. Then, G has an embedding
extending H if and only if 1) each Gi has an embedding
extending Hi, 2) no two distinct graphs Hi and Hj al-
ternate around any vertex of H, and 3) for every facial
cycle ~C of H and for any two vertices x and y of H sep-
arated by ~C, any path in G connecting x and y contains
a vertex of ~C.

Proof. Clearly, the three conditions of the lemma are
necessary. To show that they are also sufficient, assume
that the three conditions are satisfied and proceed by
induction on the number t of blocks of G.

If t = 1, then G is biconnected, and there is nothing
to prove. Assume that t ≥ 2. If there is at least one
block Gi that does not contain any vertex of H, we
restrict our attention to the subgraph G′ of G induced
by those blocks that contain at least one vertex of H.
Since every non-trivial H-bridge of G is local, graph G′

is connected, and hence it satisfies the three conditions
of the lemma. By induction, the embedding H can be
extended into an embedding G′ of G′. Since every block
Gi of G is planar (by condition 1 of the lemma), it is
easy to extend the embedding G′ into an embedding of
G.

Assume now that every block of G contains at least
one vertex of H. This implies that every cutvertex of G
belongs to H, because otherwise the cutvertex would
belong to a non-local H-bridge, which is impossible
by assumption. Let x be any cutvertex of G. Let
G′1, G

′
2, . . . , G

′
k be the connected components of G− x,

where we select G′1 by the following rules: if there is a
component of G− x that has no vertex connected to x
by an edge of H, then let G′1 be such a component; if

209 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

each component of G− x is connected to x by an edge
of H, then choose G′1 in such a way that the edges of
H incident to x and belonging to G′1 form an interval
in σH(x). Such a choice of G′1 is always possible, due to
condition 2 of the lemma.

Let G′ be the subgraph of G induced by V (G′1) ∪
{x}, and let G′′ be the subgraph of G induced by
V (G′2) ∪ · · · ∪ V (G′k) ∪ {x}. Let H ′ and H ′′ be the
subgraphs of H induced by the vertices of G′ and G′′,
respectively, and let H′ and H′′ be H restricted to H ′

and H ′′, respectively. Both G′ and G′′ have fewer
blocks than G. Also, both the instances (G′, H ′,H′)
and (G′′,H ′′,H′′) satisfy the conditions of the lemma.
Thus, by induction, there is an embedding G′ of G′ that
extends H′ and an embedding G′′ of G′′ that extends
H′′.

Our goal is to combine G′ and G′′ into a single
embedding of G that extends H. To see that this is
possible, we prove two auxiliary claims.

Claim 1. H′ has a face f ′ whose boundary
contains x and, for any facial cycle ~C of f ′, all the
vertices of H ′′ except for x are in V left

H (~C), i.e., they
are ‘inside’ f ′. To see that the claim holds, assume first
that H ′ has no edge incident to x (see Fig. 6.a). Let f ′

be the unique face of H′ incident to x. We show that
all the vertices of H ′′ are inside f ′ in H. Let y be any
vertex of H ′′. Since G′′ is connected, there is a path P
in G′′ from y to x. Assume for contradiction that H′
has a facial cycle ~C such that ~C separates y from x in
H. This cycle belongs to H ′ − x, hence ~C and P are
disjoint, contradicting condition 3 of the lemma.

y

x
’’G
’G
’G ’H

’H

’H

’H

’H
’H

’’G

’’G ’’G

’’G
’’G

y

x
z ’H

’H’H

’H

’H
’H

’H

’H

’H
’H

i’G
i’G i’G i’G

i’G

(a) (b)

Figure 6: Illustration for the proof of Lemma 3.3. (a) H ′

has no edge incident to x. (b) H ′ has an edge incident
to x.

Next, assume that H ′ has an edge incident to x (see
Fig. 6.b). By the construction of G1, each connected
component of G − x has at least one vertex connected
to x by an edge of H. Moreover, the edges ofH′ incident
to x form an interval in σH(x). This shows that H′ has
a face f ′ containing x on its boundary, and such that

every vertex of H ′′ adjacent to x is inside f ′ in H. We
now show that all the vertices of H ′′ except for x are
inside f ′. Let y be a vertex of H ′′ different from x. Let
G′i be the component of G − x containing y. We know
that G′i has a vertex z adjacent to x by an edge of H and
that z is inside f ′ inH. Let P be a path in G′i connecting
y and z. If y is not inside f ′, then y is separated from
z in H by a facial cycle of H′, contradicting condition 3
of the lemma.

Claim 2. All the vertices of H ′, except for x, appear
in H inside the same face f ′′ of H′′; further, x is on
the boundary of f ′′. To prove the claim, note that any
two vertices from H ′ − x are inside the same face f ′′ of
H′′ in H by condition 3 of the lemma, because they are
connected by a path in G′1. Vertex x is on the boundary
of f ′′, since otherwise it would be separated in H from
the remaining vertices of H ′ by a facial cycle of f ′′, again
contradicting condition 3 of the lemma.

In view of the previous two claims, it is easy to see
that the embedding G′ of G′ and the embedding G′′ of
G′′ can be combined into a single embedding G of G that
extends H. To see this, note that, when H′ is extended
into G′, the face f ′ from Claim 1 can be subdivided
into several faces of G′, at least one of which, say g′,
contains x on its boundary. Analogously, the face f ′′

from Claim 2 can be subdivided into several faces of G′′,
at least one of which, say g′′, contains x on its boundary.
We then obtain the embedding G by merging the faces
g′ and g′′ into a single face. ¤

Observe that the second and third conditions of
Lemma 3.3 can be easily checked in polynomial time.

Next, we focus on the instances (G,H,H) of Pep
in which G is not connected. The possibility of solving
the subinstances of (G,H,H) induced by the connected
components of G does not guarantee that instance
(G,H,H) of Pep has a solution. However, we show
that solving Pep for an instance (G,H,H) can be
reduced to solving the subinstances induced by the
connected components of G and to checking additional
conditions that guarantee that the partial solutions can
be combined into a full solution for G.

Lemma 3.4. Let (G,H,H) be an instance of Pep. Let
G1, . . . , Gt be the connected components of G. Let Hi

be the subgraph of H induced by the vertices of Gi, and
let Hi be H restricted to Hi. Then G has an embedding
extending H if and only if: 1) each Gi has an embedding
extending Hi, and 2) for each i, for each facial cycle ~C
of Hi and for every j 6= i, no two vertices of Hj are
separated by ~C.

Proof. Clearly, the two conditions of the lemma are
necessary. To show that they are also sufficient, assume

210 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

that the two conditions are satisfied and proceed by
induction on the number t of connected components
of G.

If t = 1 then G is connected and there is nothing
to prove. Assume now that G has t ≥ 2 connected
components G1, . . . , Gt. Let Hi and Hi be defined as in
the statement of the lemma. Let CF be the component-
face tree of H, rooted at a node that represents an
arbitrary face of H. We say that a face fi of H is
the outer face of Hi if at least one child of fi in CF
is a component of Hi, but the parent of fi is not a
component of Hi. Observe that, due to the second
condition of the lemma, each Hi has exactly one outer
face fi. We thus have a sequence of (not necessarily
distinct) outer faces f1, . . . , ft.

Let us now assume, without loss of generality, that
in the subtree of CF rooted at f1, there is no outer face
fi 6= f1. This implies that f1 is the only face of H that
is incident both to H1 and to H−H1. By induction, the
embedding H − H1 can be extended to an embedding
G≥2 of the graph G − G1. By the first condition of
the lemma, H1 can be extended into an embedding G1

of G1. The two embeddings H − H1 and H1 share a
single face f1.

When extending the embeddingH1 into G1, the face
f1 of H1 can be subdivided into several faces of G1.
Let f ′ be any face of G1 obtained by subdividing f1.
Analogously, in the embedding G≥2 the face f1 can be
subdivided into several faces, among which we choose
an arbitrary face f ′′.

We then glue the two embeddings G1 and G≥2 by
identifying face f ′ of G1 and face f ′′ of G≥2 into a single
face whose boundary is the union of the boundaries of f ′

and f ′′. This yields an embedding of G that extends H.
¤

Note that the second condition of Lemma 3.4 can be
easily tested in polynomial time. Thus, we can use the
characterization to directly prove that Pep is solvable in
polynomial time. In the rest of the paper, we describe a
more sophisticated algorithm that solves Pep in linear
time.

4 Linear-Time Algorithm

In this section we show a linear time algorithm for
solving Pep. First, we tackle the case in which G is
biconnected. The algorithm solving this case, presented
in Subsection 4.3, uses the algorithms presented in
Subsections 4.1 and 4.2 as subroutines. Then, we deal
with the case in which G is simply connected and
with the general case in Subsection 4.4. Some data
structures are exploited by the algorithm we present,
namely block-cutvertex trees, SPQR-trees, enriched

block-cutvertex trees, block-face trees, component-face
trees, and vertex-face incidence graphs. These data
structures can be easily computed in linear time [15].

4.1 G biconnected, H biconnected In this section
we show how to solve Pep in linear time if both G and
H are biconnected.

Lemma 4.1. Let (G,H,H) be an instance of Pep such
that both G and H are biconnected. Let G be any planar
embedding of G satisfying Condition 1 of Lemma 2.1.
Then, G satisfies Condition 2 of Lemma 2.1.

Proof. Suppose, for a contradiction, that a planar em-
bedding G of G exists such that G satisfies Condition 1
and does not satisfy Condition 2 of Lemma 2.1. Then,
there exists a facial cycle ~C of H such that either there
exists a vertex x ∈ V left

H (~C) with x ∈ V right
G (~C) or

there exists a vertex x ∈ V right
H (~C) with x ∈ V left

G (~C).
Suppose that we are in the former case, as the latter
case can be discussed analogously. Since H is a pla-
nar embedding and H is connected, there exists a path
P = (x1, x2, . . . , xk) ∈ H such that x1 is a vertex of
~C, xi ∈ V left

H (~C), for each i = 2, . . . , k, and xk = x.
Denote by x−1 and by x+

1 the vertex preceding and fol-
lowing x1 in the oriented cycle ~C, respectively. Consider
the placement of x2 with respect to ~C in G. As x2 /∈ ~C,
either x2 ∈ V left

G (~C) or x2 ∈ V right
G (~C). In the first

case, path (x2, . . . , xk) crosses ~C, since x2 ∈ V left
G (~C),

xk ∈ V right
G (~C), and no vertex vi belongs to ~C, for

i = 2, . . . , k, thus contradicting the planarity of the em-
bedding G. In the second case, the clockwise order of
the edges incident to x1 in H is (x1, x

−
1), (x1, x2), and

(x1, x
+
1), while the clockwise order of the edges incident

to x1 in G is (x1, x
−
1), (x1, x

+
1), and (x1, x2), thus con-

tradicting the assumption that G satisfies Condition 1
of Lemma 2.1. ¤

Due to Lemma 4.1, testing whether a planar embed-
ding G exists satisfying Conditions 1 and 2 of Lemma 2.1
is equivalent to testing whether a planar embedding
G exists satisfying Condition 1 of Lemma 2.1. Due
to Lemma 3.1, testing whether a planar embedding G
exists satisfying Condition 1 is equivalent to testing
whether the skeleton of each node of the SPQR-tree of
G has a planar embedding that is edge-compatible with
H.

Algorithm BB Construct the SPQR-tree T of G
and root it at an arbitrary internal node. A bottom-up
visit of T is performed. After a node µ of T has been
visited, an embedding of sk(µ) that is edge-compatible
with H is selected, if it exists.

In order to keep track of the edges of H that belong
to pert(µ) and that are incident to the poles u(µ) and

211 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

v(µ), define the first edge fu(µ) and the last edge lu(µ)

(the first edge fv(µ) and the last edge lv(µ)) as the
edges of H such that all and only the edges between
fu(µ) and lu(µ) (resp. between fv(µ) and lv(µ)) in the
counterclockwise order of the edges incident to u(µ)
(resp. to v(µ)) in H belong to pert(µ). After a node
µ of T has been visited by the algorithm, edges fu(µ),
lu(µ), fv(µ), and lv(µ) are associated with µ. Refer also
to fu(e) and lu(e) (resp. fv(e) and lv(e)) where e is the
virtual edge corresponding to µ in the skeleton of the
parent of µ.

If µ is a Q- or an S-node, no check is needed. As
sk(µ) is a cycle, the only planar embedding of sk(µ) is
edge-compatible with H. Edges fu(µ), lu(µ), fv(µ), and
lv(µ) are easily computed.

If µ is an R-node, then sk(µ) has only two planar
embeddings. For each of them, verify if it is edge-
compatible with H by performing the following check.
For each vertex x of sk(µ) restrict the circular list of
its incident virtual edges to the virtual edges e1, . . . , eh

that contain an edge of H incident to x. Check if lx(ei)

precedes fx(ei+1) (for i = 1, . . . , h, where eh+1 = e1) in
the list of the edges incident to x in H. If x is a pole,
do an analogous check on the linear list of its incident
virtual edges obtained by removing the virtual edge
corresponding to the parent of µ from the circular list. If
one of the tests succeeds, then select the corresponding
embedding for sk(µ). Set fu(µ) = fu(f1), lu(µ) = lu(fp),
fv(µ) = fv(g1), and lv(µ) = lv(gq), where f1 and fp (g1

and gq) are the first and the last virtual edge in the
linear list of the virtual edges containing an edge of H
and incident to u(µ) (resp. to v(µ)).

If µ is a P-node, an embedding of sk(µ) is a coun-
terclockwise order of its virtual edges around u(µ). We
describe how to verify if an embedding of sk(µ) exists
edge-compatible with H. Consider the virtual edges
containing edges of H incident to u(µ). Construct a
list Lu of such edges corresponding to the ordering they
have in any embedding of sk(µ) edge-compatible with
H. Insert any of such edges, say ei, into Lu. Repeat-
edly consider the last element ej of Lu and insert as last
element of Lu edge ej+1 such that l(u(ej)) immediately
precedes f(u(ej+1)) in the counterclockwise order of the
edges incident to u(µ) in H. If ej+1 = ei, then Lu is
the desired circular list. If ej+1 does not exist, then the
edge following l(u(ej)) belongs to the virtual edge corre-
sponding to the parent of µ. Then, consider again edge
ei. Repeatedly consider the first element ej of Lu and
insert as first element of Lu edge ej−1 such that f(u(ej))
immediately follows l(u(ej−1)) in the counterclockwise
order of the edges incident to u(µ) in H. If ej−1 does
not exist, then check whether all the virtual edges con-
taining edges of H incident to u(µ) have been processed

and in such a case insert the virtual edge corresponding
to the parent of µ as first element of Lu. Analogously
construct a list Lv. Let Luv be the sublist obtained by
restricting Lu to those edges that appear in Lv. Let Lvu

be the corresponding sublist of Lv. Check whether Luv

and Lvu are the reverse of each other. If this is the case,
a list L of the virtual edges of sk(µ) containing edges of
H incident to u(µ) or to v(µ) can be easily constructed
compatible with both Lu and Lv. Finally, arbitrarily
insert into L the virtual edges of sk(µ) not in Lu and
not in Lv, thus obtaining an embedding of sk(µ) edge-
compatible with H. Denote by f1 and fp (by g1 and gq)
the virtual edges containing edges of H incident to u(µ)
(resp. to v(µ)) following and preceding the virtual edge
representing the parent of µ in L. Set fu(µ) = fu(f1),
lu(µ) = lu(fp), fv(µ) = fv(g1), and lv(µ) = lv(gq).

Theorem 4.1. Let (G,H,H) be an n-vertex instance of
Pep such that both G and H are biconnected. Algorithm
BB solves Pep for (G,H,H) in O(n) time.

Proof. We show that Algorithm BB processes each node
µ of T in O(kµ) time, where kµ is the number of children
of µ in T .

First, observe that the computation of fu(µ), lu(µ),
fv(µ), and lv(µ) is trivially done in O(1) time once the
embedding of sk(µ) has been decided.

If µ is a Q-node or an S-node, Algorithm BB does
not perform any check or embedding choice.

If µ is an R-node, Algorithm BB computes the two
planar embeddings of sk(µ) in O(kµ) time. For each of
such embeddings, Algorithm BB processes each node x
of sk(µ) separately, considering the list of the virtual
edges incident to x (which is trivially constructed in
O(t) time, where t is the number of such edges), and
restricting the list to those virtual edges containing
an edge of H incident to x (for each virtual edge, it
suffices to check whether the first edge incident to x is
associated with an edge of H, which is done in O(1)
time). Checking whether lx(ei) precedes fx(ei+1) in the
list of the edges incident to x in H is done in O(1) time.
Hence, the total time spent for each node x is O(t).
Summing up over all the nodes of sk(µ) results in a
total O(kµ) time, as every edge is incident to two nodes
and the total number of edges in sk(µ) is O(kµ).

If µ is a P-node, extracting the virtual edges of
sk(µ) containing edges of H incident to u(µ) or to v(µ)
can be done in O(kµ) time, as in the R-node case. For
each of such edges, equipping fu(e), lu(e), fv(e), and lv(e)

with a link to e is done in constant time. Determining
an ordering of the virtual edges containing edges of
H incident to u(µ) can be done in O(kµ) time, as
the operations performed for each virtual edge ei are
accessing to the first and the last edge of ei, accessing

212 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

to the edge following the last edge of ei (preceding the
first edge of ei) in the counterclockwise order of the
edges incident to u(µ) in H, accessing to a virtual edge
linked from a first or last edge; each of such operations
is trivially done in O(1) time. Marking the virtual edges
in Lu and in Lv is done in O(kµ) time, as Lu and Lv

have O(kµ) elements. Then, obtaining Luv and Lvu,
and checking whether they are the reverse of each other
is done in O(kµ) time. Finally, extending Luv to L is
also easily done in O(kµ) time; namely, if Luv is empty,
then let L be the concatenation of Lu and Lv (where
such lists are made linear by cutting them at any point).
Otherwise, start from an edge ei of Luv; ei is also in Lu

and in Lv; insert ei into L; insert into L all the edges
of Lu following ei till the next edge ei+1 of Luv has
been found; insert into L all the edges of Lv preceding
ei till the next edge ei+1 of Luv has been found; insert
ei+1 into L, and repeat the procedure. Each element
of Luv, Lu, and Lv is visited once, hence such a step is
performed in O(kµ) time.

As
∑

µ∈T kµ = O(n), the total running time of the
algorithm is O(n). ¤

4.2 G biconnected, all the vertices and edges
of G are in the same face f of H The instances
of Pep considered in this section are denoted by
(G(f),H(f),H(f)). Such instances are assumed to sat-
isfy the following properties: (i) G(f) is biconnected,
(ii) G(f) and H(f) have the same vertex set, (iii) all
the vertices and edges of H(f) are incident to the same
face f of H(f), and (iv) no edge of G(f) \ H(f) con-
nects two vertices of the same block of H(f). Algorithm
BF, that deals with such a setting, is used as a subrou-
tine by Algorithm BA, to be shown later, dealing with
the instances of Pep in which G is biconnected and H
arbitrary.

Algorithm BF As in Algorithm BB, the SPQR-
tree T (f) of G(f) is constructed and rooted at an
arbitrary internal node. Tree T (f) is visited bottom-
up. After a node µ of T has been visited, an embedding
of sk(µ) that is compatible with H(f) is selected, if it
exists.

Edges fu(µ), lu(µ), fv(µ), and lv(µ) of a node µ
of T (f) (and of a virtual edge e) are defined as in
Algorithm BB. After each node µ of T (f) is visited, a
flag p(µ) is set equal to true if there exists a traversing
path P , that is, a path between u(µ) and v(µ) that is
composed of edges of H(f), that belongs to pert(µ), and
that is part of a simple cycle ~C of H(f) not entirely
contained in pert(µ); flag p(µ) is set equal to false
otherwise. If p(µ) = true, a flag uv(µ) is set equal to
true if P is oriented from u(µ) to v(µ) according to the
orientation of ~C, and it is set equal to false otherwise.

Refer also to p(e) and uv(e), where e is the virtual edge
corresponding to µ in the skeleton of the parent of µ.

We state some useful lemmata. The first one ex-
ploits the particular structure of the input to simplify
the test of cycle-compatibility with H(f) for the skele-
ton of a node µ of T (f).

Lemma 4.2. Consider any node µ of T (f). Then, an
embedding of sk(µ) is cycle-compatible with H(f) if and
only if, for every facial cycle ~C of H(f) whose edges
project to a cycle ~C ′ of sk(µ), no vertex and no edge
of sk(µ) is to the right of ~C ′, where ~C ′ is oriented
according to the orientation of ~C.

Proof. By assumption (iii) of the input, all the vertices
and edges of H(f) are incident to the same face f of
H(f). By construction, every facial cycle ~C of H(f) is
oriented in such a way that f and hence all the vertices
of H(f) are to the left of ~C. Then, by Lemma 3.2, if
the edges of ~C determine a cycle ~C ′ of virtual edges of
sk(µ), all the vertices of sk(µ) that are not in ~C and
all the virtual edges of sk(µ) that are not in ~C ′ and
that contain vertices of G(f) have to be to the left of
~C ′. Finally, all the virtual edges that are not in ~C ′ and
that do not contain any vertex of G(f) (that is, virtual
edges corresponding to Q-nodes) have one end-vertex
that is not in ~C, by assumption (iv) of the input. Such
an end-vertex forces the edge to be to the left of ~C ′. ¤

The next property relates the edges of H(f) to the
cycles of such a graph.

Property 4.1. Every simple path of H(f) belongs to
at most one simple cycle of H(f).

Proof. Suppose that there exists a path (that can
possibly be a single edge) of H(f) belonging to at least
two simple cycles of H(f). Then, such cycles define
at least three regions of the plane. Not all the edges
of the two cycles can be incident to the same region,
contradicting the fact that all the edges of H(f) are
incident to the same region of the plane in H(f). ¤

Now, we state lemmata specifically dealing with S-,
R-, and P-nodes of T (f).

Lemma 4.3. Let µ be an S-node of T (f) with children
µ1, µ2, . . . , µk. Then, p(µi) = true for some 1 ≤ i ≤ k
if and only if p(µj) = true for all 1 ≤ j ≤ k.

Proof. If p(µj) = true for all 1 ≤ j ≤ k, then trivially
p(µi) = true. If p(µi) = true for some 1 ≤ i ≤ k, there
exists a traversing path of µi that is part of a simple
cycle ~C of H(f) not entirely contained in pert(µi);

213 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

however, as µ is an S-node, ~C does not entirely lie
inside pert(µ), as otherwise it would entirely lie inside
pert(µi). Then, ~C consists of a traversing path of
pert(µj), for all 1 ≤ j ≤ k, and of a traversing path
of the virtual edge of sk(µ) corresponding to the parent
of µ in T (f), thus proving the lemma. ¤

Lemma 4.4. Let µ be an R-node of T (f). If an edge
e of sk(µ) has a traversing path belonging to a facial
cycle ~C, let us orient e in the direction determined by
the projection of ~C in sk(µ). An embedding of sk(µ) is
cycle-compatible with H(f) if and only if, for each face g
of the embedding of sk(µ), either (i) every virtual edge e
on the boundary of g is oriented so that g is to the right
of e, or (ii) none of the virtual edges on the boundary
of g is oriented in a way that g is to the right of it.

Proof. Suppose that an embedding of sk(µ) is cycle-
compatible withH(f). Let g be a face of the embedding.
Assume that on the boundary of g there is an edge e
containing a traversing path P , such that g is to the
right of e. Let ~C be the facial cycle of H(f) that
contains P . By Lemma 4.2, ~C projects to a directed
cycle ~C ′ in sk(µ), and no vertex or edge of sk(µ) is
embedded to the right of ~C ′. Thus, ~C ′ corresponds
to the boundary of the face g, and hence g satisfies
condition (i).

Suppose now that in an embedding of sk(µ), ev-
ery face satisfies condition (i) or condition (ii). We
claim that the embedding of sk(µ) is cycle-compatible
with H(f). To prove it, we use Lemma 4.2. Let ~C be
a facial cycle of H(f) that projects to a simple cycle ~C ′

in sk(µ). Let e be any edge of ~C ′ and let g be the face
to the right of e in the embedding of sk(µ). Necessarily,
g satisfies condition (i). Hence, each edge on the bound-
ary of g has a traversing path. The union of these paths
forms a cycle in H(f), and by Property 4.1, this cycle is
equal to ~C. Thus, the boundary of g coincides with the
cycle ~C ′. In particular, no vertex and no edge of sk(µ)
is embedded to the right of ~C ′. By Lemma 4.2, this
means that the embedding of sk(µ) is cycle-compatible
with H(f). ¤

Lemma 4.5. Let µ be a P-node of T (f). There exist
either zero or two virtual edges of sk(µ) containing a
traversing path.

Proof. If there exists one virtual edge ei of sk(µ)
containing a traversing path that is part of a simple
cycle ~C of H(f) not entirely contained in pert(ei),
another virtual edge of sk(µ) containing a traversing
path that is part of ~C exists, as otherwise ~C would
not be a cycle. Further, if there exist at least three

virtual edges of sk(µ) containing traversing paths, then
each of such paths belongs to three simple cycles, thus
contradicting Property 4.1. ¤

We are now ready to exhibit the main steps of
Algorithm BF.

If µ is a Q- or an S-node, no check is needed. As
sk(µ) is a cycle, the only planar embedding of sk(µ)
is compatible with H(f). Edges fu(µ), lu(µ), fv(µ), and
lv(µ), and flags p(µ) and uv(µ) can be easily computed.

If µ is an R-node, for each of the two planar
embeddings of sk(µ), check if it is edge-compatible with
H(f) and set values for fu(µ), lu(µ), fv(µ), and lv(µ)

as in Algorithm BB. In order to check if any of the
two embeddings is cycle-compatible with H(f), check
if Lemma 4.2 is satisfied. To perform such a test, first
determine if the virtual edge ep of sk(µ) representing the
parent of µ in T (f) contains a traversing path Pp and,
in case it does, determine its orientation. By definition
of traversing path, Pp exists if and only if there exists
a traversing path in pert(µ). Restrict sk(µ) to those
edges ei 6= ep with p(ei) = true and denote by sk′(µ)
the obtained graph. Check if the degree of u(µ) and
v(µ) in sk′(µ) is even or odd. In the former case, Pp

does not exist; set p(µ) = false and p(ep) = false. In
the latter case, Pp exists; set p(µ) = true and p(ep) =
true; the orientation of Pp is the only one that makes
the number of edges ei incident to u(µ) with uv(ei) =
true equal to the number of edges ei incident to u(µ)
with uv(ei) = false; this determines uv(µ) and uv(ep).
Now, p(ei) and uv(ei) are defined for every virtual edge
ei of sk(µ). Consider every face g of sk(µ) and denote by
ej = (uj , vj) any edge incident to g. Suppose, without
loss of generality, that g is to the right of ej when
traversing such an edge from uj to vj . Then, check
if p(ej) = false, or p(ej) = true and uv(ej) = false,
for all edges ej incident to g, and check whether p(ej) =
true and uv(ej) = true, for all edges ej incident to
g. If one of the two checks succeeds, the face does not
violate Lemma 4.2, otherwise it does.

If µ is a P-node, check if an embedding of sk(µ)
exists that is compatible with H(f) as follows. By
Lemma 4.5, there exist either zero or two virtual edges of
sk(µ) containing a traversing path. Then, consider the
children µi of µ such that p(µi) = true. If zero or two
such children exist, then the edge of sk(µ) corresponding
to the parent ν of µ in T has no traversing path; if one
such a child exists, then the edge of sk(µ) corresponding
to ν has a traversing path. Denote by ei and ej the edges
of sk(µ) containing a traversing path, if such edges exist,
where possibly ej corresponds to ν (in this case, set
p(ej) = true, and set uv(ej) = true if uv(ei) = false
and uv(ej) = false otherwise). If there exists no edge
ei of sk(µ) such that p(ei) = true, then construct an

214 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

embedding of sk(µ) that is edge-compatible with H(f),
if possible, as in Algorithm BB; as there exists no facial
cycle of H(f) whose edges belong to distinct edges of
sk(µ), then an edge-compatible embedding is also cycle-
compatible with H(f). Edges fu(µ), lu(µ), fv(µ), and
lv(µ) are computed as in Algorithm BB. Flag p(µ) =
false. If there exist two edges ei and ej such that
p(ei) = true, p(ej) = true, and p(el) = false for
every edge el 6= ei, ej , suppose that uv(ei) = true and
uv(ej) = false, the case in which uv(ei) = false and
uv(ej) = true being analogous. Then, by Lemma 4.2,
ej has to immediately precede ei in the counterclockwise
order of the edges incident to u(µ). Then, construct
Lu and Lv as in Algorithm BB; check whether Lu and
Lv, restricted to the edges that appear in both lists,
are the reverse of each other; further, check whether ej

precedes ei in Lu and whether ei precedes ej in Lv; if the
checks are positive construct the list L of all the edges of
sk(µ) as in Algorithm BB, except for the fact that the
edges of sk(µ) not in Lu and not in Lv are not inserted
between ej and ei. Edges fu(µ), lu(µ), fv(µ), and lv(µ)

are computed as in Algorithm BB. Set p(µ) = false if
ej corresponds to a child µj of µ and p(µ) = true if ej

corresponds to the parent of µ in T ; in the latter case,
uv(µ) = true if uv(µi) = true and uv(µ) = false
otherwise. We get the following:

Theorem 4.2. Let (G(f),H(f),H(f)) be an n-vertex
instance of Pep such that G(f) is biconnected, G(f)
and H(f) have the same vertex set, all the vertices
and edges of H(f) are incident to the same face f of
H(f), and no edge of G(f)\H(f) connects two vertices
belonging to the same block of H(f). Algorithm BF
solves Pep for (G(f),H(f),H(f)) in O(n) time.

Proof. We show that Algorithm BF processes each node
µ of T (f) in O(kµ) time, where µ1, . . . , µkµ are the
children of µ in T (f).

Observe that the computation of fu(µ), lu(µ), fv(µ),
and lv(µ) and the check of edge-compatibility are done
as in Algorithm BB, hence they take O(kµ) time. We
describe how to check the cycle-compatibility of an
embedding of sk(µ) in O(kµ) time.

If µ is a Q-node or an S-node, Algorithm BF does
not perform any check nor embedding choice.

If µ is a P-node, then Algorithm BF performs the
same checks and embedding choices as Algorithm BB,
plus the check that the two edges ei and ej with p(ei) =
true and p(ej) = true (notice that one of such edges
could be the virtual edge corresponding to the parent of
µ) are consecutive (with the right order) in Lu and Lv,
that is done in constant time. Flags p(µ) and uv(µ) are
computed in O(kµ) time, by simply checking the flags
p(µi) and uv(µi), for i = 1, . . . , k.

Suppose that µ is an R-node. The construction
of sk′(µ) can be easily done in O(kµ) time, as such a
graph can be obtained from sk(µ) by simply checking
flag p(ei), for each edge ei in sk(µ). Then, the degree of
u(µ) and v(µ) in sk′(µ), and the flags p(µ), uv(µ), p(ep)
and uv(ep) can be computed in total O(kµ) time. The
test on each face takes time linear in the number of edges
incident to the face. Namely, such a test consists of two
checks, each of which requires to consider a constant
number of flags associated with each edge of the face.
As every edge is incident to two faces of sk(µ) and the
number of edges in sk(µ) is O(kµ), the total time spent
for the test on the faces of sk(µ) is O(kµ).

As
∑

µ∈T kµ = O(n), the total running time of the
algorithm is O(n). ¤

4.3 G biconnected We show how to solve Pep in
the case in which G is biconnected and H is arbitrary.
The algorithm we propose is as follows. First, compute
a subgraph H+ of G with the following properties: (i)
H+ is biconnected; (ii) H is a subgraph of H+; (iii) H+

contains every non-local H-bridge of G. Second, solve
instance (H+,H,H) obtaining an embedding H+ of H+

extending H, if H+ admits one. Finally, solve instance
(G,H+,H+) with Algorithm BB.

Let H ′ and H′ be as in Definition 4. Let f be a face
of H′ and let V (f) be the set of vertices of H ′ that are
incident to f . Let H(f) be the subgraph of H ′ induced
by V (f) and let H(f) be H′ restricted to H(f). Let H+

be the graph obtained from G by removing the vertices
and edges (but not the attachments) of all the local H-
bridges of G. Notice that H+ has the same vertex set
as H ′. Let G(f) be the subgraph of H+ induced by
V (f). Note that any embedding of H+ that extends
H also extends H′ and vice versa. Furthermore, in any
embedding of H+ that extends H, the edges of G(f)
not belonging to H(f) are embedded inside f .

Lemma 4.6. H+ is biconnected.

Proof. By construction of H+, each H+-bridge of G has
all its attachment vertices in the same block of H, and
hence in the same block of H+, as H is a subgraph
of H+. Therefore, the number of blocks of H+ is not
modified by the addition of the H+-bridges of G. Since
such an addition produces G, which is biconnected, H+

is biconnected. ¤

Lemma 4.7. An instance (G,H,H) of Pep such that
G is biconnected admits a solution if and only if (a)
instance (H+, H,H) admits a solution and (b) for every
such a solution H+, instance (G,H+,H+) admits a
solution.

215 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Proof. Clearly, if conditions (a) and (b) hold, then G
has an embedding extending H.

To prove the converse, assume that G has an
embedding G extending H. Clearly, G contains a sub-
embedding H+ of H+ that extends H, so condition (a)
holds. It remains to prove that condition (b) holds, too.

First, we introduce some terminology: Let f be any
face of H and let H+ be any embedding of H+ that
extends H. In H+, the face f can be partitioned into
several faces, which we will call the subfaces of f . A
set of vertices S ⊆ V (H) is said to be mutually visible
in f with respect to H+ if H+ has a subface of f that
contains all the vertices of S on its boundary.

The proof that condition (b) holds is based on two
claims. The first one shows that for the vertices that
belong to the same block of H, mutual visibility is
independent of the choice of H+:

Claim 1. Let ~C be a facial cycle of f and let
S ⊆ V (~C) be a set of vertices of ~C. If the vertices in
S are mutually visible in f with respect to at least one
embedding of H+ that extends H, then they are mutually
visible in f with respect to every embedding of H+ that
extends H.

Note that the mutual visibility of S in f only
depends on the embedding H+ restricted to G(f).
Let T be the SPQR-tree of G(f). By Theorem 3.1,
the embeddings of G(f) that extend H(f) are exactly
obtained by specifying a compatible embedding for
each skeleton of T . Assume that G1 and G2 are two
embeddings of G(f) that extend H. Assume that the
vertices of S are mutually visible in f with respect to
G1. We will show that they are also mutually visible
with respect to G2. In view of Theorem 3.1, we may
assume that G2 was obtained from G1 by changing the
embedding of the skeleton of a single node µ ∈ T .

Let us distinguish two cases, depending on whether
the cycle ~C is contained in the pertinent graph of a
single edge of µ, or whether it projects to a cycle in µ.
If ~C is part of the pertinent graph of a single virtual
edge e = {x, y} ∈ µ, then let Ge be the embedded
graph obtained as the union of the pertinent graph of
e and a single edge connecting x and y, embedded in
the outer face of the pertinent graph. We easily see
that the vertices S are mutually visible in f if and only
if they share the same face of Ge, other than the face
that is to the right of ~C. Since Ge does not depend on
the embedding of µ, we see that S are mutually visible
in G2.

Assume now that the cycle ~C projects to a cycle ~C ′

in µ. By Lemma 4.2, in any compatible embedding of
µ, all the vertices and edges of µ that do not belong to
~C ′ are embedded to the left of ~C ′. In particular, if µ is
an R-node, it only has a single compatible embedding.

Thus, µ must be a P-node. Let e and e′ be the two
virtual edges of µ that form ~C ′. In each compatible
embedding of µ, these two edges must be embedded
next to each other, and in the same order. It easily
follows that any two compatible embeddings of µ yield
embeddings of G(f) in which the vertices from S have
the same mutual visibility. This completes the proof of
the claim.

Let us proceed with the proof that condition (b)
holds. We need more terminology: Let K and K ′ be
a pair of local H-bridges of G whose attachments all
appear on a facial cycle ~C of a face f in H. We say that
K and K ′ have a three-vertex conflict on ~C if they share
at least three attachments, and that they have a four-
vertex conflict on ~C if there are four vertices x, x′, y, y′

which appear on ~C in this cyclic order, and x, y are
attachments of K, while x′, y′ are attachments of K ′.

Claim 2. Assume that a face fK of H has been
assigned to every local H-bridge K of G so that all
the attachments of K are on the boundary of fK . Let
H+ be an embedding of H+ extending H. There is an
embedding G of G extending H+, with the additional
property that each local H-bridge K is embedded inside
a subface of fK , if and only if:

1. For any local H-bridge K, all the attachments of
K are mutually visible in fK with respect to H+.

2. If K and L are distinct local H-bridges assigned to
the same face fK = fL, such that the attachments
of K and L appear on a common facial cycle ~C of
H+, then K and L have no conflict on ~C.

Clearly, the two conditions are necessary. In order
to prove that they are also sufficient, assume that both
the conditions hold. Construct an embedding of G with
the desired properties as follows. Let f be any face
of H and let f ′ be a face of H+ which is a subface
of f . Let K1, . . .Ks be all the local H-bridges that were
assigned to f and such that all their attachments appear
on the boundary of f ′. Observe that the first condition
of the claim guarantees that every H-bridge Ki can be
assigned to a face f ′ such that all the attachments of Ki

are mutually visible in f ′. We show that all the bridges
K1, . . .Ks can be embedded inside f ′.

First, observe that the boundary of f ′ is a simple
cycle C ′, because H+ is biconnected. Observe also
that no two bridges Ki and Kj have a conflict on C ′,
by the second condition of the claim. To show that
all the bridges K1, . . . , Ks can be embedded inside C ′,
proceed by induction on s. If s = 1 the statement is
clear. Assume that s ≥ 2 and that the bridge K1 has
been successfully embedded into f ′. The embedding of
K1 partitions f ′ into several subfaces f ′1, . . . , f

′
t . Such

subfaces are again bounded by simple cycles, otherwise

216 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

G would not be biconnected. We claim that, for every
bridge Ki, with i ≥ 2, there is a subface f ′j containing
all the attachments of Ki. Consider any bridge Ki.
Assume first that Ki has an attachment x that is not an
attachment of K1. Then, x belongs to a unique subface
f ′j . Hence, if Ki has another attachment not belonging
to f ′j , there is a four-vertex conflict of K1 and Ki on ~C ′,
contradicting the second condition of the claim. Assume
next that each attachment of Ki is also an attachment of
K1. Then, Ki has exactly two attachments and, if such
attachments do not share a face f ′j , a four-vertex conflict
of K1 and Ki on ~C ′ is created, again contradicting the
second condition of the claim.

We can thus assign to each Ki a subface f ′j that
contains all its attachments. By induction, all the Ki’s
can be embedded into their assigned faces, thus proving
the second claim.

The proof that condition (b) holds easily follows
from the two claims. Namely, assume that G has an
embedding G extending H. Let H+ be G restricted to
H+. For every local H-bridge K of G, let fK be the
face of H inside which K is embedded in G. Clearly, H+

satisfies the two conditions of the second claim, since it
can be extended into G. Then, every embedding of H+

that extendsH satisfies the two conditions of the second
claim: For the first condition, this is a consequence
of the first claim and for the second condition this is
obvious. We conclude that every embedding of H+ that
extendsH can be extended into an embedding of G, thus
proving condition (b) and hence the lemma. ¤

Algorithm BA Starting from an instance
(G,H,H) of Pep, graphs G(f) and H(f), and em-
bedding H(f), for every face f of H, are computed as
follows. For each H-bridge K of G, determine whether
it is local to a block of H or not. In the former case,
K is not associated to any face f of H. In the latter
case, we compute the unique face f of H in which
K has to be embedded in any solution of instance
(G,H,H) of Pep and we associate K with f . Such
computations involve checks on the CF -tree of H, on
the BF-tree of H, on the VF-graph of H, and on
the enriched block-cutvertex tree of each connected
component of H. However, all such a computation can
be performed in time linear in the size of K, as shown
in the following.

Lemma 4.8. Let (G,H,H) be any instance of Pep. Let
K be an H-bridge of G. There is an algorithm that
checks whether K is local to any block of H in time
linear in the size of K. Further, if K is non-local, such
an algorithm computes the only face of H incident to all
the attachment vertices of K, if such a face exists, in
time linear in the size of K.

Proof. Compute the component-face tree CF of H,
rooted at any node, the vertex-face incidence graph
VF of H, the block-face tree BF of H, rooted at any
node, and, for each connected component Ci of H, the
enriched block-cut vertex tree B+

i of Ci, rooted at any
node. Such computations can be performed in linear
time (as shows in the Data Structures section).

Consider the attachment vertices a1, a2, . . . , ah

of K. If h = 1, then K is local. Otherwise, h ≥ 2.
In order to decide whether K is local for some block of
H, we perform the following check. Consider the at-
tachment vertices a1 and a2. If a1 and a2 belong to
distinct connected components, then K is not local to
any block. Otherwise, they belong to the same con-
nected component Ci. Check whether a1 and a2 have
distance 2 in B+

i , that is, whether they belong to the
same block B. This can be done in constant time [18].
If the check fails, then K is not local to any block. Oth-
erwise, B contains both a1 and a2. In the latter case,
check whether B is also adjacent in B+

i to all the other
attachment vertices a3, . . . , ah of K. Again, each such
a check is performed in constant time [18]. If the test
succeeds, then K is local to block B. Otherwise, there
exists a vertex aj , with 3 ≤ j ≤ h, that is not incident
to B, and K is not local to any block.

If K is non-local, we compute the unique face f
of H to which all the attachment vertices of K are
incident. Consider two attachment vertices ap and aq,
with 1 ≤ p, q ≤ h, that do not belong to the same block.
Observe that, if a1 and a2 do not belong to the same
block, then ap = a1 and aq = a2. If the check failed
on an attachment vertex aj in a3, . . . , ah, then either a1

and aj , or a2 and aj do not belong to the same block.
In the former case set ap = a1 and aq = aj , in the
latter one ap = a2 and aq = aj . Since the vertex-face
incidence graph VF is planar, we may use the approach
of [18] to determine in constant time whether ap and aq

are connected by a path of length two in VF , and find
the middle vertex of such a path. This middle vertex
corresponds to the unique common face f of ap and aq.
Check whether all the attachments of K are adjacent to
f in VF . If the test fails, then no face of H contains all
the attachments of K. Otherwise, f is the only face of
H whose boundary contains all the attachments of K.

¤
For each face f of H, consider every H-bridge K

associated with f . Add the vertices and the edges of K
to G(f), and add the vertices of K to H(f) inside f .
Let H+ =

⋃
f∈H G(f). For each face f of H call Algo-

rithm BF with input (G(f),H(f),H(f)). If Algorithm
BF succeeds for every instance (G(f),H(f),H(f)) (thus
providing an embedding H+(f) of G(f) whose restric-
tion to H(f) is H(f)), merge the embeddings H+(f) of

217 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

G(f) into a planar embedding H+ of H+. Finally, call
Algorithm BB with (G,H+,H+).

Theorem 4.3. Let (G, H,H) be an n-vertex instance of
Pep such that G is biconnected. Algorithm BA solves
Pep for (G, H,H) in O(n) time.

Proof. The correctness of the algorithm descends from
Lemma 4.7.

By Lemma 4.8, determining whether an H-bridge
K is local or not can be done in time linear in the
size of K. Further, if K is non-local, the only face of
H incident to all the attachment vertices of K can be
computed, if it exists, in time linear in the size of K.
Then, the construction of graphs G(f), H(f), H+ and
of embeddings H(f) takes O(n) time, as it only requires
to perform the union of graphs that have total O(n)
edges.

By Theorem 4.2, Algorithm BF runs in time linear
in the number of edges of G(f), hence all the execu-
tions of Algorithm BF take a total O(n) time. By The-
orem 4.1, Algorithm BB runs in O(n) time, hence the
total running time of Algorithm BA is O(n). ¤

4.4 G simply connected or disconnected First,
we deal with instances (G,H,H) of Pep in which G
is simply connected, every non-trivial H-bridge of G
is local, and H is arbitrary. We show that the three
conditions of Lemma 3.3 can be checked in linear time.
The first condition can be checked in linear time by
Lemma 4.8. The second and the third conditions can
be checked in linear time by the following two lemmata.

Lemma 4.9. Let (G, H,H) be an instance of Pep,
where G is connected. Let G1, . . . , Gt be the blocks of G,
and let Hi be the subgraph of H induced by the vertices of
Gi. There is a linear-time algorithm that checks whether
any two distinct graphs among H1, . . . ,Ht alternate
around a vertex of H.

Proof. Let us describe the algorithm that performs the
required checks. We assume that every edge e of H
has an associated label indicating the block of G that
contains e. We also associate to each block two integer
counters which will be used in the algorithm.

We now describe a procedure TEST(x) which, for a
given vertex x ∈ V (H), checks whether any two graphs
Hi,Hj alternate around x. Let us use the term x-edge
to refer to any edge of H incident to x, and let x-block
refer to any block of G that contains at least one x-edge.

The procedure TEST(x) proceeds as follows: first,
for every x-block Gi, it determines the number of x-
edges in Gi and stores this in a counter associated
with Gi. This is done by simply looking at every

edge incident to x and incrementing the counter of the
corresponding block. Next, TEST(x) visits all the x-
edges in the order determined by the rotation scheme
σH(x), starting at an arbitrary x-edge. For each x-block
it maintains in a counter the number of its x-edges that
have been visited so far. An x-block is active if some
but not all of its x-edges have already been visited.

The procedure TEST(x) also maintains a stack
containing the active x-blocks. At the beginning of the
procedure the counters of visited edges of each x-block
are set to zero and the stack is empty.

For every edge e that TEST(x) visits, it performs
the following steps:

1. Let Gi denote the block containing e. Increment
the counter of visited x-edges of Gi.

2. If no other edge of Gi has been visited so far, push
Gi on the stack.

3. If some x-edge of Gi has been visited before e, we
know that Gi is currently somewhere on the stack.
Check whether Gi is on the top of the stack. If the
top of the stack contains an x-block Gj different
from Gi, output that Hi and Hj alternate around
x and stop.

4. Check whether e is the last x-edge of Gi to be
visited (comparing its counter of visited x-edges to
the counter of total x-edges), and if it is, pop Gi

from the stack. (Note that if Gi has only one x-
edge, it is pushed and popped during the visit of
this edge.)

If TEST(x) visits all the x-edges without rejecting, it
outputs that there is no alternation around x.

The procedure TEST(x) takes time proportional to
the number of x-edges. Thus, we can call TEST(x) for
all the vertices x ∈ V (H) in linear time to test whether
there is any alternation in H.

Let us now argue that the procedure TEST(x) is
correct. Assume that TEST(x) outputs an alternation
of Hi and Hj . This can only happen when Gj is on the
top of the stack while an x-edge e ∈ Gi is visited, and
furthermore, e is not the first edge of Gi to be visited.
It follows that the first edge of Gi was visited before the
first edge of Gj , and Gj is still active when e is visited.
This shows that Hi and Hj indeed alternate around x.

Conversely, assume that there is a pair of graphs
Hi and Hj that alternate around x, and the alternation
is witnessed by two pairs of x-edges e, e′ ∈ Hi and
f, f ′ ∈ Hj . For contradiction, assume that TEST(x)
outputs that there is no alternation. Without loss of
generality, assume that at least one x-edge of Hi is
visited before any x-edge of Hj , that e is visited before

218 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

e′, and that f is visited before f ′. Thus, the four x-edges
are visited in the order e, f, e′, f ′. When the procedure
visits e′, both Gi and Gj are active, and Gj is on the
stack above Gi, since we assumed that the first x-edge
of Gi is visited before the first x-edge of Gj . This means
that when TEST(x) visited e′, Gi was not on the top of
the stack and an alternation should have been reported.

This contradiction completes the proof of the
lemma. ¤

Lemma 4.10. Let (G,H,H) be an instance of Pep
where G is connected. Let G1, . . . , Gt be the blocks of
G, and let Hi be the subgraph of H induced by the
vertices of Gi. Let Hi be H restricted to Hi. Assume
that the following conditions hold. 1) each non-trivial
H-bridge of G is local, 2) each Gi has an embedding
that extends Hi, and 3) no two of the graphs H1, . . . ,Ht

alternate around any vertex of H. There is a linear time
algorithm which decides whether there exists a facial
cycle ~C of H that separates a pair of vertices x and
y such that x and y are connected by a path of G that
has no vertex in common with ~C.

Proof. Let P be a path in G with end-vertices in H
and let ~C be a facial cycle of H. If P and ~C are
vertex-disjoint and the end-vertices of P are separated
by ~C, we say that P and ~C form a PC-obstruction. A
PC-obstruction (P, ~C) is called minimal if no proper
subpath P ′ ⊂ P forms a PC-obstruction with ~C.
Observe that, in a minimal PC-obstruction, all the
internal vertices of P belong to V (G) \ V (H).

We want to show that the existence of a PC-
obstruction can be tested in linear time. Of course,
it is sufficient to test the existence of a minimal PC-
obstruction. Before we explain how this test is done, we
make some more observations concerning the structure
of minimal PC-obstructions.

Let (P, ~C) be a minimal PC-obstruction, and let x
and y be the end-vertices of P . As the internal vertices
of P belong to V (G) \ V (H), then P is a subset of an
H-bridge K, and x and y are among the attachments
of K. Let us now distinguish two cases, depending on
whether K is local to some block or not.

First, assume that K is local to a block B of H.
Then, both B and P are part of the same block Gi of G.
Hence, ~C belongs to a different block of G, because if it
belonged to Gi, then Gi would contain the whole PC-
obstruction (P, ~C) and it would be impossible to extend
the embedding Hi to Gi, thus contradicting condition
2 of the lemma. Then, let Gj be the block of G that
contains ~C. Since x and y belong to a common block
B of H, they are connected by a path Q ⊆ B. Since
x and y are separated by ~C, Q shares a vertex z with
~C (otherwise the embedding H would not be planar).

Since Q and ~C belong to distinct blocks, z is their unique
common vertex. Hence, in the rotation scheme of z, the
two edges that belong to Q alternate with the two edges
that belong to ~C, because ~C separates x and y. Thus,
Gi alternates with Gj around z, contradicting condition
3 of the lemma. Then, K cannot be a local bridge.

Second, assume that K is non-local. By condition 1
of the lemma, K consists of a single edge of E(G)\E(H).

We conclude that any minimal PC-obstruction
(P, ~C) has the property that P is a single edge that
forms a non-local H-bridge of G.

Observe that two vertices x and y belonging to
distinct blocks of H are separated by a facial cycle of H
if and only if there is no face of H to which both x and
y are incident.

We are now ready to describe the algorithm that
determines the existence of a minimal PC-obstruction.
The algorithm tests all the edges of E(G) \ E(H) one
by one. For any such an edge e, it determines in
constant time whether it is an H-bridge, i.e., whether
its endpoints x and y belong to H. If it is an H-bridge,
it checks whether it is non-local in constant time, by
using Lemma 4.8. For a non-local bridge, the algorithm
then checks in constant time whether there is a face f
of H into which this bridge can be embedded, again
using Lemma 4.8. Such a face f , if it exists, is uniquely
determined. Finally the algorithm checks whether both
x and y are incident to f , using the vertex-face incidence
graph VF .

Overall, for any edge e, the algorithm determines
in constant time whether this edge is a non-local bridge
that is part of a minimal PC-obstruction. Thus, in
linear time, we determine whether G has any PC-
obstruction. ¤

Combining Lemmata 3.3, 4.8, 4.9 and 4.10 with
Theorem 4.3, we obtain the following result.

Theorem 4.4. Pep can be solved in linear time when
restricted to instances (G,H,H) where G is connected.

Proof. By Lemma 4.8, an instance of Pep where G is
connected can be reduced in linear time to an equivalent
instance that has the additional property that all the
non-trivial H-bridges are local. Namely, whether an
H-bridge K is non-local and, in such a case, which is
the face of H in which K has to be embedded can be
computed in time linear in the size of K, by Lemma 4.8.
We may thus assume that (G,H,H) is an instance of
Pep where G is simply connected and all non-trivial
H-bridges in G are local to some block.

To solve Pep for (G, H,H), we present an algorithm
based on the characterization of Lemma 3.3. First,
we generate all the subinstances (Gi,Hi,Hi) for i =

219 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

1, . . . , t, induced by the blocks of G. It is not difficult
to see that the subinstances can be generated in linear
time. We then solve these subinstances using Algorithm
BA, which takes linear time, by Theorem 4.3, since the
total size of the subinstances is linear. If any of the
subinstances does not have an embedding extension, we
reject (G,H,H), otherwise we continue.

In the next step, we check whether there is a pair of
graphs Hi,Hj that have an alternation around a vertex
of H. If there is an alternation, we reject the instance,
otherwise we continue. This step can be implemented
in linear time, due to Lemma 4.9.

Finally, we check the existence of PC-obstructions,
which by Lemma 4.10 can be done in linear time.
We accept the instance if and only if we find no PC-
obstruction. The correctness of this algorithm follows
from Lemma 3.3. ¤

Next, we deal with the instances (G,H,H) of Pep
in which G is disconnected and H arbitrary. We use
Lemma 3.4 directly, and show that the two conditions
of the lemma can be checked in linear time. The
first condition of Lemma 3.4 can be checked in linear
time by Theorem 4.4. To check the second condition,
the CF tree of H is considered and rooted at any
node representing a face; then, the embedding Hi is
considered as H restricted to the subgraph Hi of H
induced by the vertices of Gi; then, for every i, each
node of CF that represents a face of H incident to
a component of Hi and whose parent represents a
component of H not in Hi is considered; if there is more
than one of such nodes, for some i, (G, H,H) admits no
solution, otherwise it does. The correctness of such an
argument and an efficient implementation of it are in
the proof of the following theorem.

Theorem 4.5. Pep can be solved in linear time.

Proof. Let (G,H,H) be an instance of Pep. Let
G1, . . . , Gt be the connected components of G, let Hi

be the subgraph of H induced by the vertices of Gi,
and let Hi be H restricted to Hi.

By Lemma 3.4, (G, H,H) has an embedding exten-
sion if and only if each instance (Gi,Hi,Hi) has an em-
bedding extension and, for i 6= j, no facial cycle of Hi

separates a pair of vertices of Hj . By Theorem 4.4,
we can test in linear time whether all the instances
(Gi,Hi,Hi) have an embedding extension.

It remains to test the existence of a facial cycle of
Hi that separates vertices of Hj . For this test, we use
the component-face tree CF of H. Assume that CF is
rooted at any node representing a face of H; call this
face the root face of H. A face f is an outer face of Hj if
at least one child of f in CF is a component of Hj , but

the parent of f does not belong to Hj (which includes
the possibility that f is the root face).

We claim that a pair of vertices of Hj is separated
by a facial cycle belonging to another component of
H if and only if there are at least two distinct outer
faces of Hj in CF . To see this, assume first that
Hj has two distinct outer faces f1 and f2, and let
C1 (or C2) be a component of Hj which is a child of
f1 (or f2, respectively). Any path from C1 to C2 in
CF visits the parent of f1 or the parent of f2. These
parents correspond to components of H not belonging
to Hj , and at least one facial cycle determined by these
components separates C1 from C2.

Conversely, if C1 and C2 are components of Hj

separated by a facial cycle belonging to a component
C3 of Hi (i 6= j), then the path in CF that connects C1

to C2 visits C3, and in such a case it is easy to see that
Hj has at least two outer faces.

We now describe the algorithm that tests the second
condition of Lemma 3.4. We assume that each compo-
nent of H has associated its corresponding subgraph Hi

in CF . We then process the components of H one by
one and, for each component C, we check whether its
parent node is an outer face of the embedding Hi of
the subgraph Hi containing C. We accept (G, H,H) if
and only if each Hi has one outer face. This algorithm
clearly runs in linear time. ¤

The algorithms for Pep we presented in this section
are non-constructive, i.e., they test whether an embed-
ding extension exists, without actually constructing the
embedding. While it is possible to extend these algo-
rithms into constructive linear-time algorithms, we pre-
ferred to present a shorter non-constructive version.

5 Conclusions

In this paper we have shown that Partially Embed-
ded Planarity (Pep), i.e. the problem of deciding
whether a partial drawing can be extended to a planar
drawing of the entire graph, is solvable in linear time.

The following two generalizations of Pep are NP-
complete since they are special cases of Crossing num-
ber and Maximum planar subgraph, respectively:
(i) deciding if an embedding H can be extended to a
planar drawing of G with at most k crossings; and (ii)
deciding if at least k edges of E(G)\E(H) can be added
to H preserving planarity.

Two additional problems that generalize Pep in
different directions are the following: (iii) deciding
whether G has a planar embedding G in which at least
k edges of H are embedded the same as in H; and (iv)
deciding whether a set F of at most k edges can be
deleted from H, so that G\F has a planar embedding G

220 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

in which the induced embedding of H \F coincides with
H \ F . It can be proved that even these two problems,
called Minimum Rerouting Partially Embedded
Planarity and Maximum Preserved Partially
Embedded Planarity, respectively, are NP-hard.

The results presented in this paper yield to solve in
linear time the problem of deciding whether two graphs
have a Simultaneous Embedding with Fixed Edges [7,
12, 13, 5, 8, 11, 10] (in the following called SEFE, for
short) if one of the graphs has a fixed embedding. A
SEFE of a pair of graphs (G1 = (V,E1), G2 = (V, E2))
on the same set of n vertices is a pair of planar drawings
(Γ1, Γ2) of (G1, G2) such that each edge (u, v) ∈ E1∩E2

has the same drawing in Γ1 and in Γ2. The following
theorem immediately implies a linear-time algorithm for
deciding whether two graphs have a SEFE, if one of
them has a fixed embedding.

Theorem 5.1. Let G1 and G2 be two graphs with the
same n vertices, let G2 be a planar embedding of G2 and
let G1∩2 be the restriction of G2 to G1∩G2. Then G1 and
G2 have a SEFE in which the planar embedding of G2 is
G2 if and only if (G1, G1 ∩G2,G1∩2) is a Yes-instance
of Pep.

References

[1] P. Bertolazzi, G. Di Battista, and W. Didimo. Com-
puting orthogonal drawings with the minimum number
of bends. IEEE Trans. Computers, 49:8:826–840, 2000.

[2] J. M. Boyer and W. J. Myrvold. On the cutting edge:
simplified O(n) planarity by edge addition. J. Graph
Alg. Appl., 8(3):241–273, 2004.

[3] H. de Fraysseix, P. O. de Mendez, and P. Rosenstiehl.
Trémaux trees and planarity. Int. J. Found. Comput.
Sci., 17:1017–1030, 2006.

[4] G. Di Battista and R. Tamassia. On-line planarity
testing. SIAM J. Comput., 25:956–997, 1996.

[5] E. Di Giacomo and G. Liotta. Simultaneous embed-
ding of outerplanar graphs, paths, and cycles. Int. J.
Comput. Geom. Appl., 17(2):139–160, 2007.

[6] Christoph Dornheim. Planar graphs with topological
constraints. J. Graph Alg. Appl., 6(1):27–66, 2002.

[7] C. Erten and S. G. Kobourov. Simultaneous embed-
ding of planar graphs with few bends. In J. Pach, ed-
itor, GD ’04, volume 3383 of LNCS, pages 195–205,
2004.

[8] A. Estrella-Balderrama, E. Gassner, M. Jünger,
M. Percan, M. Schaefer, and M. Schulz. Simulta-
neous geometric graph embeddings. In S.-H. Hong,
T. Nishizeki, and W. Quan, editors, GD ’07, volume
4875 of LNCS, pages 280–290, 2007.

[9] J. Fiala. NP-completeness of the edge precoloring
extension problem on bipartite graphs. J. Graph
Theory, 43(2):156–160, 2003.

[10] J. Fowler, C. Gutwenger, M. Jünger, P. Mutzel, and
M. Schulz. An SPQR-tree approach to decide special
cases of simultaneous embedding with fixed edges. In
I. G. Tollis and M. Patrignani, editors, GD ’08, volume
5417 of LNCS, pages 157–168, 2008.

[11] J. Fowler, M. Jünger, S. G. Kobourov, and M. Schulz.
Characterizations of restricted pairs of planar graphs
allowing simultaneous embedding with fixed edges.
In H. Broersma, T. Erlebach, T. Friedetzky, and
D. Paulusma, editors, WG ’08, volume 5344 of LNCS,
pages 146–158, 2008.

[12] F. Frati. Embedding graphs simultaneously with fixed
edges. In M. Kaufmann and D. Wagner, editors, GD
’06, volume 4372 of LNCS, pages 108–113, 2006.

[13] E. Gassner, M. Jünger, M. Percan, M. Schaefer, and
M. Schulz. Simultaneous graph embeddings with fixed
edges. In F. V. Fomin, editor, WG ’06, volume 4271 of
LNCS, pages 325–335, 2006.

[14] C. Gutwenger, K. Klein, and P. Mutzel. Planarity
testing and optimal edge insertion with embedding
constraints. J. Graph Alg. Appl., 12(1):73–95, 2008.

[15] C. Gutwenger and P. Mutzel. A linear time implemen-
tation of SPQR-trees. In J. Marks, editor, GD ’99,
volume 1984 of LNCS, pages 77–90, 2000.

[16] J. Hopcroft and R. E. Tarjan. Efficient planarity
testing. Journal of the ACM, 21(4), 1974.

[17] M. Juvan and B. Mohar. 2-restricted extensions of
partial embeddings of graphs. European J. Comb.,
26(3–4):339–375, 2005.

[18] L. Kowalik and M. Kurowski. Short path queries in
planar graphs in constant time. In STOC ’03, pages
143–148, 2003.

[19] J. Kratochvil and A. Sebo. Coloring precolored perfect
graphs. J. Graph Theory, 25:207–215, 1997.

[20] K. Kuratowski. Sur le problème des courbes gauches
en topologie. Fund. Math., 15:271–283, 1930.

[21] B. Mohar. A linear time algorithm for embedding
graphs in an arbitrary surface. SIAM J. Discr. Math.,
12(1):6–26, 1999.

[22] P. Mutzel. The SPQR-tree data structure in graph
drawing. In J. C. M. Baeten, J. K. Lenstra, J. Parrow,
and G. J. Woeginger, editors, ICALP ’03, volume 2719
of LNCS, pages 34–46, 2003.

[23] M. Patrignani. On extending a partial straight-line
drawing. Found. Comput. Sci., 17(5):1061–1069, 2006.

[24] J. A. La Poutré. Alpha-algorithms for incremental
planarity testing. In STOC ’94, pages 706–715, 1994.

[25] R. Tamassia. On-line planar graph embedding. J.
Algorithms, 21(2):201–239, 1996.

[26] R. Tamassia. Constraints in graph drawing algorithms.
Constraints, 3(1):87–120, 1998.

[27] R. Tamassia, G. Di Battista, and C. Batini. Automatic
graph drawing and readability of diagrams. IEEE
Trans. Syst., Man and Cyber., (1):61–79, 1988.

[28] J. Westbrook. Fast incremental planarity testing. In
W. Kuich, editor, ICALP ’92, volume 623 of LNCS,
pages 342–353, 1992.

221 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

