
Technische Universität Darmstadt
Department of Computer Science

Cryptography and Computeralgebra

Bachelor Thesis

Lattice Basis Reduction in Infinity
Norm

Vanya Sashova Ivanova
Technische Universität Darmstadt

Department of Mathematics

Supervised by Prof. Dr. Johannes Buchmann
Markus Rückert

Acknowledgements

First, and foremost, I would like to thank Prof. Dr. Johannes Buchmann
for giving me the opportunity to write this thesis. I am deeply grateful
to my direct supervisor, Markus Rückert, for his detailed and constructive
remarks, and for all his help and support throughout my work.

Warranty

I hereby warrant that the content of this thesis is the direct result of my
own work and that any use made in it of published or unpublished material
is fully and correctly referenced.

Date: Signature:

iii

Abstract

In the high-tech world of today, the demand for security is con-
stantly rising. That is why identifying hard computational problems
for cryptographical use has become a very important task. It is crucial
to find computational problems, which complexity could provide a basis
for the security of the cryptosystems. However, there are only very few
hard computational problems that are useful for cryptography. One of
these, which holds great importance, is finding the shortest basis of a
lattice, also called lattice basis reduction. The purpose of this paper
is to provide an overview of the lattice basis reduction algorithms and
to give an insight into the lattice reduction theory. The most impor-
tant concepts, Gauss, LLL and BKZ reduction, were initially created
to work with the Euclidean norm. Here however, the accent falls on
the generalisation of the original algorithms to an arbitrary norm, and
more precicely to the infinity norm. All three concepts in their three
versions are explained in detail. An analysis of the complexity of the
algorithms with respect to l∞-norm is provided.

v

Contents

1 Introduction 1

2 Mathematical Background 3
2.1 Basic Definitions . 3
2.2 Lattices and Successive Minima 4
2.3 Distance Functions . 6

3 Gauss’ Algorithm 8
3.1 Gauss - reduced Bases . 8
3.2 Gauss Algorithm with Euclidean Norm 9
3.3 Generalized Gauss Algorithm 9
3.4 Infinity Norm Algorithm . 10
3.5 Time Bounds . 12

4 LLL 14
4.1 LLL-reduced Basis . 14
4.2 LLL Algorithm . 16
4.3 LS Algorithm . 17
4.4 Computing the Distance Functions in Infinity Norm 18
4.5 Time Bounds . 19

5 Block-Korkine-Zolotarev Algorithm 21
5.1 BKZ-reduced lattice basis . 21
5.2 BKZ Algorithm with Euclidean Norm 22
5.3 BKZ Algorithm with an Arbitrary Norm 25
5.4 Enumeration for Infinity Norm 28
5.5 Time Bounds . 29

vii

1 Introduction

Lattices are discrete Abelian subgroups of Rn. The goal of lattice reduction
is to find interesting lattice bases, such as bases consisting of reasonably short
and almost orthogonal vectors. Lattice basis reduction algorithms are used
in quite a few modern number-theoretical applications, as for example the
discovery of the spigot algorithm for π. They hold a very important meaning
especially for present-day cryptography. The security proofs of many effec-
tive cryptosystems, for example public-key encryptions or collision-resistant
hash functions, are based on lattice reduction worst-case complexity, rela-
tively efficient implementations, and great simplicity. In recent years, meth-
ods based on lattice reduction are being used repeatedly for the cryptanalytic
attack on various systems.

This paper introduces the three most important algorithms for lattice
basis reduction. All of the original concepts are based on the Euclidean
norm and later generalized to an arbitrary norm. The emphasis here falls
on the extension of these algorithms with respect to l∞-norm. The infinity
norm is essential for further research of lattice reduction since solving the
shortest lattice basis problem with respect to l∞ would allow, for example,
breaking the Knapsack cryposystems or solving the well-known subset sum
problem.

The theory of lattice reduction could be traced back to Lagrange, Gauss
and Dirichlet. In the mathematical society today there is a dispute as to
who was the first mathematician to study lattices and their basis reduction
theory. Some argue that Lagrange started it by developing the reduction
theory of binary quadratic forms. Others believe that lattice reduction per se
actually started with Gauss who created an algorithm - the Gauss Algorithm,
which solves the problem using what resembles a lifting of the Euclidean
Great Common Divisor algorithm to 2-dimensional lattices. This Euclidean
norm algorithm works in polynomial time with respect to its input. It’s
worst case complexity was first studied by Lagrange and the analysis was
later continued and more precisely explained by Vallée [1] [12]. This oldest
algorithm is developed only for low dimensions since they are a lot more
intuitive for the human mind to understand.

A successful, efficient, but week algorithm that works for higher dimen-
sions was introduced by A.K.Lenstra, H.W. Lenstra and L.Lovász [6]. This
Euclidean norm algorithm is called LLL algorithm after the authors. It
works with any basis in polynomial time with respect to the input when the
number of integer variables is fixed. The result is however only an approxi-
mation of the shortest lattice vector. Schnorr [10] [9] [11] developed several
LLL-type algorithms that work better than the original and defined the hi-
erarchy of the polynomial time algorithms. He also introduced a new type
of reduction by combining the Lovász and Hermite’s definitions to obtain
a flexible order of concepts - the so called block reduction. He developed a

1

brand new Euclidean norm algorithm that works very well in practice - the
Block-Korkine-Zolotarev algorithm or BKZ-algorithm.

Kaib and Schnorr [4] [2] developed recently the Generalized Gauss Al-
gorithm for the reduction of two dimensional lattice bases with respect to
the arbitrary norm and obtained a universally sharp upper bound on the
number of its iterations for all norms. Lovász and Scarf [8] created the LS
algorithm that is in a way an extension of the LLL-algorithm to an arbitrary
norm. Kaib and Ritter [3] generalized the strong and efficient concept of
block reduction.

This paper begins with an introduction into the basic mathematical back-
ground so that the reader could follow the idea behind the reduction theory
easily. It is then divided into three main parts, one for each of the three
most important algorithms - Gauss, LLL and BKZ. Each of the three parts
presents first the original concept with respect to the Euclidean norm, then
their extension to an arbitrary norm and particularly to the infinity norm.
Each of the sections is concluded with an analysis of the complexity of the
algorithms with respect to l∞-norm.

2

2 Mathematical Background

This section gives a basic overview of the mathematical foundations of the
lattice basis reduction theory.

2.1 Basic Definitions

In this paper Rn denotes the n-dimensional real vector space with an inner
product 〈·, ·〉 : Rn × Rn → Rn. For all u,v,w ∈ Rn and λ ∈ R the inner
product has the following properties:

• 〈u + w,v〉 = 〈u,v〉 + 〈w,v〉,

• 〈λu,v〉 = λ 〈u,v〉,

• 〈u,v + w〉 = 〈u,v〉 + 〈u,w〉,

• 〈u, λv〉 = λ 〈u,v〉,

• 〈u,v〉 = 〈v,u〉,

• 〈u,u〉 > 0 for u 6= 0.

A mapping ‖ · ‖ : Rn → R is called a norm if for all u,v ∈ Rn and
λ ∈ R

• ‖ λv ‖ = |λ|· ‖ v ‖,

• ‖ u + v ‖ ≤ ‖ u ‖ + ‖ v ‖,

• ‖ u ‖ ≥ 0 for u 6= 0.

The l1-norm is

‖ (u1, u2, ..., un)T ‖1 :=
∑n

i=1 |ui|.

The l2-norm is computed with the help of the inner product

‖ (u1, u2, ..., un)T ‖2 :=
√
〈u, u〉 =

√(∑n
i=1 u

2
i

)
.

The lp-norm, p ∈ [1,∞] could be generalized to

‖ (u1, u2, , un)T ‖p :=
√

(
∑n

i=1 |ui|p).

The l∞-norm or the maximum-norm is then

‖ (u1, u2, ..., un)T ‖∞ := maxi=1,2,....,n |ui|.

It holds for the l1, l2 and l∞-norm:

• ‖ u ‖2 ≤ ‖ u ‖1 ≤
√
n· ‖ u ‖2,

3

• ‖ u ‖∞ ≤ ‖ u ‖2 ≤ n· ‖ u ‖∞.

Definition 2.1. Let b1,b2,,bm ∈ Rn be an ordered basis of a lattice L.
The orthogonal projection of this basis is then

πi : Rn → span(b1,b2,,bi−1)⊥,

b − πi(b) ∈ span(b1,b2,,bi−1).

Let b̂i := πi(bi). The vectors b̂1, b̂2,, b̂m could be computed with the
help of the Gram-Schmidt algorithm:

b̂1 := b1,

b̂i := πi(bi) = bi −
∑i−1

j=1 µi,jb̂j , for i = 2, 3,,m.

µi,j denote the Gram-Schmidt coefficients:

µi,j := 〈bi,b̂j〉
〈b̂j ,b̂j〉 = 〈bi,b̂j〉

‖b̂j‖2
.

For j > i it holds that µi,j = 0 and µi,i = 1. The orthogonal projec-
tion of bi in span(b1,b2,,bk) is

∑k
j=1 µi,jb̂j and in span(b1,b2,,bk)⊥

is
∑i

j=k+1 µi,jb̂j . The basis vectors could therefore be presented in the fol-
lowing manner

[b1,b2,,bm] = [b̂1, b̂2,, b̂m] · [µi,j]T1≤i,j≤m.

For the matrix B consisting of the basis vectors [b1,b2,,bm] the quadratic
form QFB(x1, x2,, xm), where x1, x2,, xm are real variables, is equal to∑

1≤i,j≤m 〈bi,bj〉xixj . This quadratic form is positive definite, therefore
QFB(x1, x2,, xm) ≥ 0 and QFB(x1, x2,, xm) = 0 if and only if
x1 = x2 = = xm = 0. For every positive definite, symmetrical
quadratic form QF =

∑
1≤i,j≤n qijxixj there is a lattice basis b1,b2,,bm

such that 〈bi,bj〉 = qij for 1 ≤ i, j ≤ m.

2.2 Lattices and Successive Minima

In the real vector space Rn a lattice L is a discrete Abelian subgroup. By
discrete here we mean that any bounded subset of Rn contains at most
finitely many lattice elements.

Definition 2.2. Let b1,b2,,bm ∈ Rn be linearly independent vectors.
Let L be a subgroup of Rn

L(b1,b2,,bm) :=
∑m

i=1 biti, where t1, t2, , tm ∈ Z

is called a lattice with basis (b1,b2,,bm).

4

Definition 2.3. The rank or the dimension of a lattice L is the number of
vectors that form the basis of this lattice.

Definition 2.4. The determinant of a lattice L ⊆ Rn with a basis
B = (b1,b2,,bm) is defined as:

detL =
√

(det BTB)

Theorem 2.5. The determinant of a lattice is independent on the choice of
the basis b1,b2,,bm ∈ Rn.

Definition 2.6. The vectors b1,b2,,bk ∈ L, where L ⊆ Rn is a lattice,
build a primitive system if:

1. b1,b2,,bk are linear independent,

2. span(b1,b2,,bk) ∩ L = L(b1,b2,,bk).

Theorem 2.7. In a lattice L ⊆ Rn the vectors b1,b2,,bk ∈ L are a basis
of this lattice only when they build a primitive system with respect to L.

Definition 2.8. Let ‖ · ‖p be an arbitrary norm. For a lattice L ⊆ Rn of
rank m the successive minima λ1, λ2,, λm with respect to the norm are
defined as follows:

λi = λi(L) := inf(r > 0|c1, c2,, ci ∈ L are linearly independent with
‖ cj ‖p ≤ r for j = 1, 2,, i)

The successive minima are geometrical invariants of the lattice, which
means that when isometric transformations are done in the lattice, the suc-
cessive minima stay unchanged. It holds that λ1 = ≤ λ2 ≤ ≤ λm. For
every lattice basis b1,b2,,bm

λi ≤ maxj=1,2,...,i ‖ bj ‖p for i = 1, 2,,m.

The successive minima are used as a criterion to check when a lattice
basis is reduced - a basis is reduced when ‖bi‖p

λi
, for i = 1, 2, ...,m, are

”small”. For the lattice basis to be reduced the vectors should be almost
orthogonal. In general there is no basis b1,b2, ...,bm for which ‖ bi ‖p = λi
for i = 1, 2, ..., 5. The successive minima depend on the norm that is being
used. For example the first successive minimum for the Euclidean norm and
the standard inner product is

‖ L ‖2 := λ1,2(L) = min {‖ b ‖2 : b ∈ L 0}.

And the first successive minimum in l∞-norm is

‖ L ‖∞ := λ1,∞(L) = min {‖ b ‖∞ : b ∈ L 0}.

5

Figure 1: First Successive Minimum

An example of a first successive minimum λ1(L(a,b)) = x is the figure
above.

Since for every lattice L ⊆ Rn ‖ x ‖∞ ≤ ‖ x ‖2 ≤
√
m ‖ x ‖∞ for all

x ∈ Rn, it holds for the successive minima that

λ1,∞(L) ≤ λ1,2(L) ≤
√
mλ1,∞(L)

Theorem 2.9. For each lattice L ⊆ Rn of rank m, ‖ L ‖∞ ≤ (detL)
1
m

2.3 Distance Functions

The term ”Distance Function” was integrated into the lattice reduction the-
ory by Lovász and Scarf.

Definition 2.10. Let b1,b2,,bm ∈ Rn be linearly independent vectors
for all m ≤ n and let ‖ · ‖p be an arbitrary norm on Rn. The functions
Fi : Rn → R with

Fi(x) := minξ1,....,ξi−1∈R ‖ x +
∑i−1

j=1 ξjbj ‖p for 1 ≤ i ≤ m + 1

are called distance functions.

The distance functions determine the distance between a vector bi and
span(b1,b2,,bi−1) with respect to an arbitrary norm. The functions
Fi(x) are actually the norm of span(b1,b2,,bi−1)⊥. With respect to
the Euclidean norm they are also Euclidean norms of the subspace. The
distance functions are very useful because the length of the shortest lattice
vector could be restricted by them.

6

Theorem 2.11. For every basis b1,b2,,bm of a lattice L ⊂ Rn and every
norm ‖ · ‖p

mini=1,....,n Fi(bi) ≤ λ1,p(L)

7

3 Gauss’ Algorithm

The first person to develop an algorithm for lattice basis reduction was
Gauss. This first algorithm generalizes the Euclidean algorithm. It was
initially described within the general framework of binary integer quadratic
forms by Gauss himself and was later specified in terms of lattice basis
reduction by Vallée [12]. It is the first to be considered in this paper not
only because it is the first to have a polynomial-time complexity but also
because it works in the 2-dimensional space and thus gives an understanding
of the higher dimensions.

Primarily, the algorithm was created to work with the Euclidean norm.
Later Schnorr and Kaib [4] extended the concept to an arbitrary norm. In
the dissertation of Kaib [2] a detailed explanation of the generalized algo-
rithm is given as well as an extension, that is specifically useful for the
infinity norm.

In this chapter we give a short explanation of what reduced lattice bases
in the Gaussian sense mean and describe the original Gauss Algorithm,
which works with the Euclidean norm. This algorithm is then enhanced
to work with arbitrary norms in the Generalized Gauss Algorithm. An
extension for the l∞-norm and its time complexity is finally presented in the
last sub-chapter.

3.1 Gauss - reduced Bases

Since we give a short description for both the original and the generalized
Gauss algorithm here, in this section ‖ · ‖p, for p ∈ [1,∞], will denote any
norm.

Definition 3.1. An ordered basis (a,b) ∈ Rn is Gauss-reduced with respect
to a norm ‖ · ‖p when

‖ a ‖p ≤ ‖ b ‖p ≤ ‖ a + b ‖p.

When considering the standard inner product for the Gram-Schmidt
coefficient µ and the Euclidean norm we have:

1. µ2,1 ≤ 1
2 ⇔ ‖ b ‖2 ≤ ‖ a− b ‖2,

2. µ2,1 ≥ 0 ⇔ ‖ a− b ‖2 ≤ ‖ a + b ‖2.

Therefore the basis (a,b) is reduced if and only if

1. ‖ a ‖2 ≤ ‖ b ‖2 and

2. 0 ≤ µ2,1 ≤ 1
2 .

Theorem 3.2. For a reduced basis (a,b) ∈ Rn, ‖ a ‖p and ‖ b ‖p are the
two successive minima of the lattice L = Za + Zb.

8

Definition 3.3. An ordered basis (a,b) ∈ Rn is called well-ordered with
respect to a norm ‖ · ‖p when

‖ a ‖p ≤ ‖ a− b ‖p ≤ ‖ b ‖p.

The transition from an order basis to a well-ordered one could be done
in few steps. We know that for the ordered basis (a,b), ‖ a ‖p ≤ ‖ b ‖p ≤
≤ ‖ a + b ‖p. If ‖ a−b ‖p > ‖ a + b ‖p, let b := −b. If ‖ a ‖p > ‖ a−b ‖p,
(b− a,−a) is the well-ordered basis for this lattice.

3.2 Gauss Algorithm with Euclidean Norm

The original version of the Gaussian algorithm works with the Euclidean
norm. It takes as an input an arbitrary basis and produces as an output
a basis that is reduced. In each iteration b is reduced according to b :=
b− dµ2,1ac. In other words, we make b as short as possible by subtracting
a multiple of a. At the end if (a,b) is not reduced, a and b are swapped.

Algorithm 1.1 Gauss Reduction Algorithm for Euclidean Norm
INPUT: A lattice basis (a,b) ∈ Rn such that ‖ a ‖2 ≤ ‖ b ‖2

1. WHILE |µ2,1| > 1
2 DO

• b := b− µa, where the integer µ is chosen to minimize the norm
‖ b− µa ‖p.

• IF ‖ a ‖2 > ‖ b ‖2 THEN swap a and b

2. END WHILE

3. DO b := b · sign(µ2,1)

OUTPUT: A reduced basis (a,b) ∈ Rn

3.3 Generalized Gauss Algorithm

The generalized Gaussian algorithm finds the two successive minima for an
arbirtary norm. Given a reduced basis, we provide a minimum size input
basis requiring a given number of iterations. The sign of the basis vector is
chosen in such a way that the algorithm iterates on a well-ordered basis. As
a result all integral reduction coefficients µ are positive.

Algorithm 1.2 Generalized Gauss Algorithm
INPUT: A well-ordered lattice basis (a,b) ∈ Rn

1. WHILE ‖ b ‖p > ‖ a− b ‖pDO

• b := b− µa, where the integer µ is chosen to minimize the norm
‖ b− µa ‖p.
• IF‖ a + b ‖p > ‖ a− b ‖p THEN b := −b.

9

• Swap a and b.

2. END WHILE

OUTPUT: A reduced basis (a,b) ∈ Rn

The exchange in Step 3 produces either a well-ordered or a reduced basis.
The algorithm traverses a sequence of well-ordered bases until a reduced one
is found. In order to have a well defined algorithm in Step 1 the smallest
possible µ, that minimizes the norm ‖ b − µa ‖p for p ∈ [1,∞], should
be chosen. In general this algorithm terminates after finitely many steps
because the norm of the basis vector decreases with every iteration, except
the last one.

3.4 Infinity Norm Algorithm

As Kaib explains and proves in his dissertation [2] there is a fast way to
calculate the coefficient µ for l∞-norm. This section describes the method
proposed by him.

Let us consider the function f(µ) = ‖ b−µa ‖∞. It is a piecewise linear
and convex function with at most n corners. Its minimum, according to the
optimization theory, could be found on one of these corners. The reduction
coefficient µ is therefore one of the two neighboring whole numbers of the
corner that minimizes the function f . In order to find that minimum, the
elements of the function f(µ) = max fi(µ)|1 ≤ i ≤ n should be taken.

Let us consider the graph of the function f(x) = maxi≤n |bi − xai|, which
is the maximal polygon. The ascending slope of the function is f+

i (x) :=
|ai| (x− bi

ai
) and the descending - f−i (x) := |ai| (biai − x), where all elements

with ai = 0 are already eliminated. All elements are sorted according to
their absolute value, |a1| ≥ |a2| ≥ ≥ |an| > 0 without loss of
generality. Let f (k)(x) := maxi≤k |(bi − xai)| be the maximal polygon that
has the k steepest elements. For each k = 1, 2,, n we compute the value
of f (k) as an ordered subset of lines, which build the maximal polygon. The
faces of the polygon are determined from these lines and from them x(k),
which minimizes f (k), is calculated.

From the elements fk+1 = max (f+
k+1, f

−
k+1) only the ones with the

biggest f±k+1(x(k)) values are to be considered. If fk+1(x(k)) ≤
≤ f (k)(x(k)), set f (k) = f (k+1). In case there are more elements with the
same slope, only the ascending one with the smallest bmin

amin
and the descending

one with the biggest bmax
amax

are considered.
We divide the line segments of f (k) in two groups - R and L, where R

contains the ascending and L - the descending segments. The absolute value
of the slope is minimal for both groups. The value x = x(k) denotes the
minimal point of f (k), that is the crossing point of the topmost line from
both groups. The biggest element from the groups is denoted by (gL, xL)

10

and (gR, xR) respectively. The crossing point of the two lines is then g1 ∩
g2 = b1−b2

a1−a2
.

We initialize R with (g+,+∞), L with (g−,−∞) and x := g+ ∩ g−. We
iterate over all of the line, starting with the one with the steepest slope.
Since the two cases, with ascending and descending lines, respectively, are
symmetric, here only an algorithm only for the ascending case is given.

Algorithm 1.3 Infinity Norm
INPUT: A well-ordered basis (a,b) ∈ Rn, 0 ≤ x ≤ 1

2

1. x̄ := g ∩ gL

2. If x̄ ≥ x, go to the next step

3. As long as x̄ ≤ xL do [POP (L, x̄ := g ∩ gL] (deletion of an element)

4. x := x̄

5. x̂ := g ∩ gR

6. As long as x̂ ≥ xR do [POP (R, x̂ := g ∩ gR]

7. PUSH (R, (g, x̂)) (insertion of an element)

OUTPUT: x that minimizes f(x) =‖ b− xa ‖∞
Consider the following figure:

This figure shows part of the graph of the function f(µ) = ‖ b−µa ‖∞.
The continous lines on the graph are the ones that form the polygon of the
function f(x). The punctuated lines are to be deleted by the POP function.

11

3.5 Time Bounds

The time bound of the generalized Gauss algorithm has been proven by
Schnorr and Kaib [4]. They use the normal arithmetic operations (addition,
multiplication, division, subtraction, comparison and next integer computa-
tion) as unit costs and count arithmetical steps and oracle calls. It requires
a norm oracle that produces ‖ a ‖p for a given a ∈ Rn, where p ∈ [1,∞].

Theorem 3.4. Given an oracle for an arbitrary norm ‖ · ‖p, for p ∈ [1,∞],
there is an algorithm which ‖ · ‖p-reduces a given basis (a,b) ∈ Rn using
O(n log(n+ λ2

λ1
) + logB) many steps, where B = max ‖a‖p,‖b‖pλ2

.

For efficiency, the basis is first reduced in a norm corresponding to a
suitable inner product, that is the Euclidean norm. The resulting basis
is subsequently reduced in the norm that we are interested in. The inner
product is chosen so that {x ∈ Rn| ‖ x ‖∞ ≤ 1} is spherical. The steps
for producing the inner product are not counted since we assume they are
given. The initial inner product reduction costs O(1) arithmetical steps per
iteration.

That gives a total of O(n+ logB) arithmetical steps for the inner prod-
uct reduction. In each iteration the Gram-Schmidt matrix is transformed
and the transformation matrix H and the coefficient µ are produced. Each
iteration requires 6 multiplications, 6 subtractions, 1 division and 1 next
integer computation.

The final ‖ · ‖p-reduction is done in O(n+ log(n+ λ2
λ1

)) many steps. As
shown in the paper of Schnorr and Kaib this final reduction requires at most
log1+

√
2(2
√

2 maxx,y∈Rn
‖x‖p

√
<y,y>

‖y‖p
√
<x,x>

+ 1) + o(1) = O(log n) many iterations.
Every iteration besides the final one requires O(1) norm computation and
O(n) arithmetical steps.

The whole algorithm, which computes a reduced basis (a,b) for an ar-
bitrary norm, works in O(n log(n + λ2

λ1
) + logB) many steps, where B =

max ‖a‖p,‖b‖pλ2
.

In the case of l∞-norm the following theorem holds:

Theorem 3.5. For l∞-norm there is an algorithm that reduces any given
well-ordered basis (a,b) in O(n log n + logB) many iterations, where B =
‖b‖∞
λ2

and λ2 is the second successive minima of the lattice.

As presented in this section, the inner product reduction for l∞-norm
works also in O(n+ logB) arithmetical steps.

The algorithm, shown in the previous section, needs O(n log n) arith-
metical operation for sorting the elements. The cycle for sorting the lines
costs at most O(n) arithmetical operations. There is only one PUSH step
for each element and at most n− 1 POP steps.

12

Hence the l∞-norm reduction of a lattice basis (a,b) ∈ Rn takes at most
O(n log n+ logB) arithmetical steps, where B = ‖b‖∞

λ2
and λ2 is the second

successive minima of the lattice.

13

4 LLL

The subject of lattice basis reduction theory was revived in 1981 with
H.W.Lenstra’s work on integer programming, which is based on a novel
lattice reduction technique and works in polynomial time only for fixed di-
mensions. Lovász later developed a version of the algorithm which computes
a reduced basis of a lattice in polynomial time for any dimension. The LLL
algorithm, named after its creators, reached its final version in the paper of
A.K. Lenstra, H.W. Lenstra and L. Lovász [7], where it is applied to fac-
tor rational polynomials with respect to the Euclidean norm. It computes
a reduced basis after polynomial many steps. Further enhancements were
introduced later by Schnorr.
In 1992 Lovász and Scarf [8] proposed a generalized lattice reduction algo-
rithm, which was later named after them - LS algorithm. They extend the
meaning of an LLL-reduced basis to any norm. It works in polynomial many
arithmetical operations and calculations of distance functions.
We begin this chapter with a short description of the mathematical mean-
ing of LLL-reduced bases. The original LLL algorithm is then presented.
This type of reduction is continued with the LS algorithm that works with
an arbitrary norm. Finally, a specific enumeration for the infinity norm is
introduced.

4.1 LLL-reduced Basis

Here we explain the meaning of an LLL-reduced basis and show the qualities
of such a basis. Let (b̂1, b̂2, ..., b̂m) be the ordered orthogonal system for
the basis (b1,b2, ...,bm) ∈ Rn and µi,j the Gram-Schmidt coefficient.

Definition 4.1. An ordered lattice basis (b1,b2,,bm) ∈ Rn is called
LLL-reduced for a parameter δ, such that 1

4 < δ ≤ 1, when:

1. |µi,j | ≤ 1
2 for 1 ≤ j < i ≤ m

2. δ · ‖ b̂k−1 ‖22 ≤ ‖ b̂k ‖22 + µ2
k,k−1 · ‖ b̂k−1 ‖22, for k = 2, 3,,m

The quality of the reduced basis depends on the parameter δ : the bigger
the value, the stronger the reduction of the basis. In the original paper of
Lenstra, Lenstra and Lovász the LLL algorithm is defined only for δ = 3

4 .
With the help of the orthogonal projection

πk : Rn → span(b1,b2,,bk−1)⊥.

The second part of the definition could be written in the following way:

δ · ‖ πk−1(bk−1) ‖22 ≤ ‖ πk−1(bk) ‖22, for k = 2, 3,,m.

14

In the case where the basis consists of only two vectors, for δ = 1 we
get a Gauss reduced basis.

If (b1,b2,,bm) is LLL-reduced with some δ then (πk(bk), πk(bk+1),
..., πk(bj)) is also LLL-reduced with δ and 1 ≤ k < j ≤ n.

Theorem 4.2. Let (b1,b2,,bm) be LLL-reduced for the parameter δ. For
α = 1

δ− 1
4

we have

‖ b̂i ‖22 ≤ αj−i · ‖ b̂j ‖22 for 1 ≤ i ≤ j ≤ m.

For the special case of δ = 3
4 and α = 2 we have ‖ b1 ‖22 ≤ 2j−1· ‖ b̂j ‖22

so that the square of the length for big values of j is not arbitrary small.

Theorem 4.3. Let (b1,b2,,bm) be a basis of the lattice L ⊂ Rn. Then
for i = 1, 2,,m we have

λj ≥ mini=j,j+1,...,m ‖ b̂i ‖2.

This theorem shows that the lengths ‖ b̂j ‖2 are a rough approximation
of the successive minima λj .

Theorem 4.4. Let (b1,b2,,bm) be the basis of the lattice L ⊆ Rn with
a parameter δ. It holds for α = 1

δ− 1
4

that :

1. α1−j ≤ ‖b̂j‖22
λ2
j

, for j = 1, 2,,m,

2. ‖bj‖
2
2

λ2
j
≤ αn−1, for j = 1, 2,,m,

3. ‖ bk ‖22 ≤ αj−1 · ‖ b̂j ‖22, for k ≤ j.

Definition 4.5. Let ‖ · ‖p for p ∈ [1,∞] be any norm in Rn and 0 < ∆ ≤ 1.
A basis b1, b2 , ..., bm of a lattice L ⊂ Rn is called Lovász-Scarf reduced
with ∆ or LS-reduced with ∆ if

1. Fj(bi) ≤ Fj(bi ± bj), for all j < i,

2. ∆Fi(bi) ≤ Fi(bi+1), for 1 ≤ j < m.

In the case of the Euclidean norm, the terms δ LLL-reduced lattice basis
and ∆ =

√
δ LS-reduced lattice basis are equivalent. The bigger the value

of ∆, the stronger the basis reduction.

Theorem 4.6. For each LS-reduced basis (b1,b2,,bm) of a lattice L ⊂
Rn with ∆ ∈ (1

2 , 1] the following holds:

(∆− 1
2)i−1 ≤ Fi(bi)

λi,‖·‖p
(L) ≤ (∆− 1

2)i−m, for i = 1,,m.

15

4.2 LLL Algorithm

Algorithm 2.1 LLL Algorithm
Input : A basis (b1,b2,,bm) ∈ Rn δ with 0 ≤ δ ≤ 1

1. k := 2 (k is the stage)

[Compute the Gram-Schmidt coefficient µi,j for 1 ≤ j < i < k

and ci = ‖ b̂i ‖22 for i = 1,, k − 1]

2. WHILE k ≤ n

• IF k = 2 THEN c1 := ‖ b1 ‖22
• FOR j = 1,, k − 1

µk,j := (〈 bk,bk 〉 −
∑j−1
i=1 µj,iµk,ici)

cj

• ck := 〈 bk,bk 〉 −
∑k−1

j=1 µk,jcj

3. Reduce the size of bk

• FOR j = k − 1,, 1

– µ := dµk,jc
– FOR i = 1,, j − 1 : µk,j := µk,i − µµj,i
– µk,j := µk,j − µ
– bk := bk − µbj

4. • IF δck−1 > ck + µ2
k,k−1ck−1

• THEN swap bk and bk−1 , k := max(k − 1, 2)

• ELSE k := k + 1

5. END while

OUTPUT : an LLL-reduced basis (b1,b2,,bm) ∈ Rn with δ
In step 1, when entering degree k, the basis (b1,b2,,bk−1) is already

LLL-reduced with a parameter δ and the Gram-Schmidt coefficients µi,j , for
1 ≤ j < i < k, as well as the values ci = ‖ b̂i ‖22, for i = 1,, k − 1,
are already available.

Step 3 is actually an algorithm that reduces the size of the basis. For
additional information on this algorithm see the lecture slides of Schnorr.

For the swap of bk and bk−1 the values ‖ b̂k ‖22, ‖ b̂k−1 ‖22 and µi,j , µj,i,
for j = k − 1, k and i = 1, 2,,m, have to be calculated again. It is
important to keep the basis in exact arithmetics because otherwise a change
in the lattice would be made that cannot be fixed.

Let B denote max(‖ b1 ‖22, ‖ b2 ‖22,, ‖ bm ‖22) for the input basis.
Throughout the algorithm the bit length of the numerators and denomina-
tors of the rational numbers ‖ b̂i ‖22, µi,j is bounded by O(m logB). The

16

bit length of the coefficients of the bi ∈ Zn is also bounded by O(m logB)
throughout the algorithm.
The algorithm preforms at most O(m3n logB) arithmetic operations on in-
tegers that are O(m logB) bits long.

4.3 LS Algorithm

Lovász and Scarf [8] introduced in 1992 an algorithm that gives a reduced
basis for an arbitrary norm in polynomial many steps with respect to the
size of the input.

Algorithm 2.2 LS Algorithm
INPUT : A basis (b1,b2,,bm) ∈ Rn, ∆ with 0 ≤ ∆ ≤ 1

1. k := 2

2. WHILE k ≤ n

• Reduce the length of bk
– FOR j = k − 1,, 1
∗ Compute a whole number µj which minimizes
Fj(bk − µbj)
∗ bk := bk − µbj

– IF Fk−1(bk) < ∆Fk−1(bk−1)
– THEN swap bk and bk−1 , k := max(k − 1, 2)
– ELSE k := k + 1

3. END while

OUTPUT : an LS-reduced basis b1,b2,,bm with a parameter ∆
In each step of the algorithm we search for the first index k−1 for which

one of the conditions

1. Fk−1(bk + µbj) ≥ Fk−1(bk) for integral µ,

2. Fk−1(bk) ≥ ∆Fk−1(bk−1)

is not satisfied, where F is a distance function. If the first condition is not
satisfied we replace bk by bk + µjbj , with µ being the integer that minimizes
Fk−1(bk+µbj). If after the replacement the second condition holds we move
to level k. If the second condition is not satisfied, we interchange bk and
bk−1 and move to the corresponding level.

Notice that the maximum value of the components of the vector F1(b1),
..., Fk−1(bk−1), Fk(bk), ..., Fm(bm), consisting of distance functions, does
not increase at any step of the basis reduction algorithm. If we replace bk
by bk + µjbj , none of the terms actually change. If bk and bk−1 are
interchanged, Fk−1(bk−1) simply becomes Fk−1(bk) ≤ ∆Fk−1(bk).

17

4.4 Computing the Distance Functions in Infinity Norm

The problem of computing the distance functions for the l∞-norm is actually
an optimization problem:

Given is a basis b1,b2,,bm and x ∈ Rn.
Compute Fi(x) = minzi∈R ‖ x +

∑i−1
j=1 zjbj ‖∞ such that

zi ≥ 0 (1)

zi := ‖ x +
i−1∑
j=1

zjbj ‖∞ (2)

−zi ≤ xk +
i−1∑
j=1

zjbj,k ≤ zi, for all k = 1,,m (3)

We get the following optimization problem:

Minimize Q(x) = zi

s.t.

zi ≥ 0 (4)

zi ≤ ‖ x ‖∞ (5)

i−1∑
j=1

zjbj,k − zi ≤ −xk (6)

−
i−1∑
j=1

zjbj,k − zi ≤ xk, for all k = 1,,m (7)

Such an optimization problem is solved in polynomial time for all ratio-
nal input values with the help of the Ellipsoid Method or the Karmarkars
Algorithm. In practice the Simplex Algorithm is even more efficient.

The best and quickest way to solve such a problem would be to use the
ILOG CPLEX Software, which is a large-scale programming software that
is capable of solving huge, real-world optimization problem. The problem is
simply written in the respective CPLEX language and the software finds a
solution if there is such.

Another option is to model the problem in a language that translates the
mathematical model into a linear or mixed-integer mathematical program,
like for example Zimpl [5], and solve the resulting problem using JAVA. This
approach is not as quick and affective as the first one but is the only way to
solve such an optimization problem without expensive software.

18

4.5 Time Bounds

The LS basis algorithm is known to converge in polynomial time, including
the number of variables n, for F (x) = |x| and a general lattice given by an
integer basis. This argument is based on two observations:

1. An interchange between bk−1 and bk preserves the value of the dis-
tance function for all indices other than k and k − 1.

2. For F (x) = |x|, the product Fk−1(bk−1)Fk(bk) is constant when the
vectors bk−1 and bk are exchanged. This permits us to deduce that∏

(Fk−1(bk−1))m−1 decreases by a factor ∆ at each interchange.∏
(Fk−1(bk−1))m−1 ≥ 1 is therefore true for any basis, from which

the polynomial convergence follows.

The product Fk−1(bk−1)Fk(bk) is not constant in the general case, and
therefore the algorithm does not execute in polynomial time with respect to
the number of variables m. However it could be shown that the algorithm
works in polynomial time for a fixed m. There are two arguments to support
this conclusion both of which are going to be explained here briefly. They
are both fully covered in the paper of Lovász and Scarf [7].

The idea behind both of them is to obtain a lower bound for the val-
ues of Fi(bi). For this purpose, let C ⊂ B(R) be a ball of radius R.
The distance function F (x) ≥ |x|

R . Let b1,b2,,bm be any basis that
satisfies Fi(bi) ≤ U where U is equal to maxFi(ai). We have that
ci = bi +

∑i−1
j=1 µi,jbj is a proper basis associated with bi, satisfying

Fi(ci) = Fi(bi) and F1(ci) ≤ Fi(bi) + 1
2

∑i−1
1 Fi(bj) ≤ mU . Therefore

we get that |ci| ≤ mUR.
The distance function is limited from below by the following inequality:

Fi(bi) ≥ min |(bi + α1c1 + + αi−1ci−1)|
R .

This actually represents the distance between the vector bi and the space
< c1,, ci−1 >. When this distance is represented by the Gram matrix
G(x1,,xi) = det[(xj ,xk)]ij,k=1, for the integral bj and c1,, ci−1 we
get that G(c1,, ci−1,bj) ≥ 1. From there it can be concluded that
Fi(bi) ≥ 1/[R(mRU)i−1] ≥ 1/[R(mRU)n−1]. Set here Fi(bi) to be equal
to V .

As we already mentioned, each component of F1(b1), ..., Fi(bi),
Fi+1(bi+1), ..., Fm(bm) is bounded above by maxFi(ai) = U throughout
the algorithm. Scarf and Lovász also noticed that the first term in the
sequence to change at any iteration decreases by a factor of (1 − ε).

The first argument for the polynomial convergence of the generalized
algorithm is therefore to observe that the maximum number of interchanges
is

[log(U/V)/ log(1/(1 − ε))]m

19

Using the introduced lower bound V , it can be seen that the interchanges
of the basis reduction algorithm is bounded above by :

[m log(mUR)/ log(1/(1 − ε))]m

The second argument for polynomiality, which achieves a different bound,
depends on the observation that for a general distance function the product
Fi(bi) Fi+1(bi+1) increases by a factor ≤ 2 in any step of the algorithm
for an interchange of bi and bi+1. Here Fi(bi) = 1. Let y = bi and x =

bi+1

Fi(bi+1) . Fi+1(x) = 1
dx

and F ∗i+1(bi) = 1
dx

with F ∗i+1 the distance function
associated with a projection of the original basis into < bi,bi+2,,bm >.
Therefore

Fi(bi+1)F ∗i+1(bi)/Fi(bi)Fi+1(bi+1) =
= [Fi(bi+1)

dy
]/[Fi(bi+1)

dx
] = dx/dy ≤ 2

Let D(b1,,bm) =
∏

(Fi(bi))γ
m−1

, with γ = 2 + 1
log(1

(1 − ε)
)
. It is

easy to see that D(b1,,bm) decreases by a factor of at least 1 − ε at each
interchange required by the basis reduction algorithm. Since V ≤ Fi(bi) ≤ U
at each step of the algorithm , the number of interchanges is bounded above
by:

[(γm − 1)/(γ − 1)] log(U/V) log(1/(1 − ε))
≤ (γn − 1)/(γ − 1)]m log(mUV) log(1/(1 − ε))

.
This second estimate is much better than the first one in terms of its

dependence to U and R. And since the number of possible values of the vec-
tor F1(b1),, Fi(bi), Fi+1(bi+1),, Fm(bm) is finite, the basis reduction
algorithm executes in finite time even when ε = 0.

20

5 Block-Korkine-Zolotarev Algorithm

The algorithms presented in the previous section - LLL and LS, produce
a reduced basis in polynomial time with respect to the input data but the
result is only an approximation of the actual shortest lattice vector with
an exception of an exponential factor. In order to improve the practical
usage of these algorithms, Schnorr developed a hierarchy of reduction terms
with respect to the Euclidean norm, the so called block reduction. The
new algorithm, that Schnorr created, covers the general case of lattice basis
using the LLL-reduced and the HKZ-reduced (Hermite-Korkine-Zolotarev,
for more information see the script of Schnorr) bases as extreme cases.

In this chapter we present the practical BKZ algorithm and the subrou-
tine ENUM which work with respect to the Euclidean norm. This block
reduction theory is then expanded to an arbitrary norm and an algorithm
dealing specifically with the infinity norm is finally explained.

5.1 BKZ-reduced lattice basis

Let L = L(b1,b2,,bm) ∈ Rn be a lattice with an ordered basis
b1,b2,,bm. Furthermore, πi : Rm ⇒ span(b1,b2,,bm) holds true.
Let Li denote the lattice πi(L), which is a lattice of rank m− i+ 1.

Definition 5.1. An ordered basis b1,b2,,bm ∈ Rn is called size-reduced
if |µi,j | ≤ 1

2 for 1 ≤ j < i ≤ m An individual basis vector bi is
size-reduced if |µi,j | ≤ 1

2 for 1 ≤ j < i.

Definition 5.2. An ordered basis b1,b2,,bm of a lattice L ⊂ Rn is called
a Korkine-Zolotarev basis if:

1. it is size-reduced,

2. ‖ b̂i ‖2 = λ1(Li), for i = 1,,m.

This definition is equivalent to the original definition given in Korkine
and Zolotarev’s book from 1873.

Theorem 5.3. Let β be an integer such that 2 ≤ β < n. A lattice basis
b1,b2,,bm is β-reduced if:

1. it is size-reduced,

2. ‖ b̂i ‖2 ≤ λi(Li(b1,b2,,bmin(i+β−1,m))), for i = 1,,m− 1.

Let αβ denote the maximum of ‖b1‖2
‖bβ‖2 over all Korkine-Zolotarev reduced

bases. For lnβ - the natural logarithm of β, α2 = 3
4 , α3 = 3

2 and

αβ ≤ β1+lnβ. The constraint α
1

(β−1)

β converges to 1 with the increase of β.
The following theorem shows the strength of a β-reduced basis in com-

parison to an LLL-reduced one.

21

Theorem 5.4. Every β-reduced basis b1,b2,,bm of a lattice L ⊂ Rn

satisfies ‖ b1 ‖22 ≤ α
(n−1)
β−1

β λ1(L)2 provided that β − 1 divides n − 1.

Definition 5.5. A basis b1,b2,,bm is called β-reduced with a parameter
δ for 1

4 < δ ≤ 1 if:

1. it is size-reduced,

2. δ ‖ b̂i ‖22 ≤ λ1(Li(b1,b2,,bmax(i+β−1,m)))2, for i = 1,,m.

Notice that for β = 2 and 1
3 ≤ δ ≤ 1, a (β, δ)-reduced basis is

actually an LLL-reduced basis.

Definition 5.6. A lattice basis b1,b2,,bm is called β-block reduced with
a parameter δ, for 1

2 ≤ δ ≤ 1 and i = 1,,m, if for the distance function
F the following two inequations hold true:

1. δFi(bi) ≤ minFi(b), where b ∈ Zbi + + Zbmin(i+β−1,m) − 0,

2. Fj(bi) ≤ Fj(bi ± bj), for all j < i.

5.2 BKZ Algorithm with Euclidean Norm

The following algorithm performs a β-reduction with respect to a parameter
δ. Its backbone is the subroutine ENUM(j, k), which is also presented in
this section.

Algorithm 3.1 BKZ Algorithm with Euclidean Norm
INPUT: A lattice basis b1,b2,,bm ∈ Zn with parameters δ, with

0 ≤ δ ≤ 1, and β, with 2 < β < m

1. Size-reduce b1,b2,,bβ; j := m − 1; z := 0

2. WHILE z < m − 1

• j := j + 1, IF j = m THEN j := 1

• k := min(j + β − 1,m)

• ENUM(j, k) (ENUM finds the whole numbers (uj ,, uk) from
the representation of the vectors bnewj =

∑k
i=j uibi with c̄j := ‖

πj(bnewj) ‖22 = λ2
1,‖·‖2(L(πj(bj),, πj(bk))))

• h := min(k + 1,m)

• IF c̄j < δcj

• THEN

– extend b1,b2,,bj−1,bnewj to a basis
b1,b2,,bj−1,bnewj ,,bnewk ,bk+1,,bm of a lattice L

– size-reduce b1,b2,,bj−1,bnewj ,,bnewh

22

– z := 0

• ELSE

– size-reduce b1,b2,,bm
– z := z + 1

3. END WHILE

OUTPUT: BKZ-reduced basis b1,b2,,bm
Throughout the algorithm the integer j is cyclically shifted through the

integers 1, 2,,m − 1. The variable z counts the number of positions j
which satisfy the inequality

δ ‖ b̂j ‖22 ≤ λ2
1,‖·‖2(L(πj(bj),, πj(bk))).

If this inequality does not hold for some j, then bnewj would be inserted
into the basis, a size-reduction would be done and z would be reset to 0.
The term j = m is skipped since the inequality always holds for it. As
defined earlier, a basis b1,b2,,bm is β-reduced with a parameter δ if it
is size-reduced and z = m − 1. Therefore, the algorithm always produces
a β-block reduced basis with a parameter δ up to a certain error.

The size reduction in step one could be alternatively replaced either by
an LLL-reduction or an L3FP-reduction (LLL Floating Point-reduction).

When adding the vectors b1,b2,,bj−1,bnewj =
∑k

i=j uibi we differ-
entiate between several cases for g := max i : j ≤ i ≤ k, ui 6= 0:

1. |ug| = 1: b1,b2,,bnewj ,bj ,,bg−1,bg+1,,bm is a basis of the
lattice. This means that the vector bg could be removed from the
lattice and replaced by bnewj .

2. |ug| > 1: In this case the basis b1,b2,,bm is transformed into b1,
b2, ..., bj−1, b

′
j , ..., b

′
g, bg+1,,bm such that bnewj =

∑g
i=j u

′
ib
′
i with

|u′i| = 1. This is always possible when the result of the subroutine
ENUM(j, k) holds, thus when ggT (uj ,, uk) = 1 holds. Otherwise

b :=
bnewj

ggT (uj ,....,uk) is a lattice vector for which ‖ πj(b) ‖22= ĉj
ggT (uj ,....,uk)2

and therefore ĉj>λ2
1,‖·‖2 (L(πj(bj), ..., πj(bk))). The vector b

′
j is then

removed from the basis and replaced by bnewj .

As mentioned before, the core of this algorithm is actually the routine
ENUM(j, k), which computes the vectors for which the distance function
Fj is minimal. We are looking here for integers (uj ,, uk) 6= (0,, 0)
and F̄j := Fj(

∑k
i=j uibi) = λ1,Fj (L(bj ,,bk)). This is done with the

help of a recursive enumeration of all coefficient vectors (ũt,, ũk) ∈ Zk−t+1,
for t = k,, j and Ft(

∑k
i=t ũibi) < Fj(bj). For the coefficient vector

different from 0, for which Fj is minimal throughout the whole enumeration,
the integers (uj ,, uk) are set to (ũj ,, ũk).

23

For each step t > p of the algorithm, the integers (ũt+1,, ũs) are fixed.
All left integers ut−1, for which Ft(

∑k
i=t ũibi) < Fj(bj), are enumerated.

Since Ft(−x) = Ft(x) for all x ∈ Rn if ũk = = ũt = 0 we
could limit the search to only nonnegative integers. Every time a coefficient
is computed it is organized in a search tree with depth k − j + 2.

Currently the Depth-First-Search is considered most appropriate for the
enumeration. With respect to the Euclidean norm and z ∈ R, the distance
function Ft can be efficiently computed with the help of the Gram-Schmidt
orthogonal system. From

c̃t := ‖ πt(
∑k

i=t ũibi) ‖22 and ct := ‖ b̂t ‖22 = ‖ πt(bt) ‖22, for 1 ≤ t ≤ k

we get

F 2
t (
∑k

i=t ũibi) = c̃t = c̃t+1 + (ũt +
∑k

i=t+1 ũiµi,t)
2ct

−yt is the minimal real point for yt :=
∑k

i=t+1 ũiµi,t. We get the whole
minimum through the symmetry

ct(−yt + x, ũt+1,, ũk) = ct(−yt − x, ũt+1,, ũk)

at the point νt := d−ytc. Depending on whether νt > −yt holds true or
not, we get a sequence of non-declining values c̃t either in order (νt, νt − 1,
νt + 1, νt − 2, ...) or in order (νt, νt + 1, νt − 1, νt + 2,).

Algorithm 3.2 ENUM with Euclidean Norm
INPUT: j, k,b1,,bm

1. • s := t := j, c̄j := cj , ũj := uj := 1

• νj := yj := ∆j := 0, δj := 1

• FOR i = j + 1,, k + 1

– c̃i := ui := ũi := νi := ∆i := 0
– δi := 1

2. WHILE t ≤ k

• c̃t := c̃t+1 + (yt + ũt)2ct

• IF c̃t < c̄j

• THEN

– IF t > j

– THEN
∗ t := t − 1, yt :=

∑s
i=t+1 ũiµi,t

∗ ũt := νt := d−ytc, ∆t := 0
∗ IF ũt > −yt
∗ THEN δt := −1
∗ ELSE δt := 1

24

– ELSE c̄j := c̃j , ui := c̃i, for i = j,, k

• ELSE

– t := t + 1
– s := max(s, t)
– IF t < s THEN ∆t := −∆t

– IF ∆tδt ≥ 0 THEN ∆ := ∆ + δt

– ũt := νt + ∆t

3. END WHILE

OUTPUT: The minimal point (uj ,, uk) ∈ Zk−j+1 − 0k−j+1 and the
minimum c̄j(uj ,, uk)

With a proper prereduction of the lattice basis, this algorithm gives a
shortest lattice vector consisting only of integers. This routine finds the
shortest vector with respect to the Euclidean norm up to a dimension 50
by setting j = 1 and k := m. When it is used as a subroutine of a
(β, δ)-block reduction with δ < 1 only the vectors bnewj with c̄ < δcj
are of interest. The costs could be therefore reduced from the beginning by
setting c̄j := δcj .

5.3 BKZ Algorithm with an Arbitrary Norm

The BKZ Algorithm with an arbitrary norm is analogous to the one with
the Euclidean norm. Instead of c̄j here the distance functions are used.

Algorithm 3.3 BKZ Algorithm with an Arbitrary Norm
INPUT: A lattice basis b1,b2,,bm ∈ Zn with parameters δ with

0 ≤ δ ≤ 1 and β with 2 ≤ β ≤ m

1. Size-reduce b1,b2,,bβ; j := m − 1; z := 0

2. WHILE z < m − 1

• j := j + 1, IF j = m THEN j := 1

• k := min(j + β − 1,m)

• ENUM(j, k) (ENUM finds the whole numbers (uj ,, uk) from
the representation of the vectors bnewj =

∑k
i=j uibi with

F̄j := Fj(
∑k

i=j uibi))

• h := min(k + 1,m)

• IF F̄j < δFj(bj)

• THEN

– extend b1,b2,,bj−1,bnewj to a basis
b1,b2,,bj−1,bnewj ,,bnewk ,bk+1,,bm of a lattice L

– size-reduce b1,b2,,bj−1,bnewj ,,bnewh

25

– z := 0

• ELSE

– size-reduce b1,b2,,bm
– z := z + 1

3. END WHILE

OUTPUT: BKZ-reduced basis b1,b2,,bm
The same logic is applied here as in the algorithm that works with re-

spect to the Euclidean norm. j is cyclically shifted through the integers
1, 2,,m − 1. The variable z counts the number of positions j which sat-
isfy the inequality δFj(bj) < F̄j . Here again, if the inequality does not
hold, bnewj is inserted into the basis, a size-reduction is done and z is set to
0. The term j = m is skipped since for it the inequality always holds. The
basis (b1,b2,,bj−1,bnewj) is extended to (b1,b2,,bj−1,bnewj ,,bnewh)
using the coefficients uj in the representation bnewj =

∑h
i−j uibi. The ma-

trix T ∈ GLh−j+1(Z) with [uj ,, uh] · T = [1, 0,, 0] is computed at this
point and the vectors [bnewj ,,bnewh] are set to [bj ,,bh] · T−1.

The backbone of the algorithm is again the routine ENUM(j, k), which
computes the minimal point (uj ,, uk) so that the minimum of F̄j can be
found. Here we are looking for a vector b ∈ L(b1,b2, ..., bm) ⊂ Rn with
‖ b ‖p = λ1,‖·‖p(L). Let b̄ =

∑m
i−1 uibi be the vector that has the minimum

lp-norm from all enumerated lattice vectors. At the beginning of the algo-
rithm the vector b̄ is set to b1 which means that (u1,, um) = (1, 0,, 0).
We can stop the search for the shortest lattice vector in a partial tree with
a root (ũt,, ũm) as soon as Ft(ωt) ≥ ‖ b̄ ‖p.

For this stop criterion the minimal point (λt,, λm) of the function
f(µt,, µm) :=‖ b̄ ‖p‖

∑m
i=1 µiωi ‖q −c̃t, with µi ∈ R and

∑m
i=1 µiωi = c̃t,

must be first computed. The enumeration could be stopped if f(λt,, λm)
is negative. The minimum of this function is calculated in polynomial time
with the help of the Ellipsoid method. The cost of the stop criterion is
comparable to the cost of the computation of the distance functions. Our
purpose is thus to find an optimal range of vectors (λt, ..., λm). For (λt, ...,
λm) = (1, 0, ..., 0) we get

c̄t
‖ωt‖q ≥ ‖ b̄ ‖p=⇒ Ft(ωt) ≥ ‖ b̄ ‖p

This gives us a stop criterion which can be tested in linearly many arith-
metical operations.

For (λt,, λm) = (1, 0,, 0) we have

|ũt + yt| ≥ ‖b̄‖p‖b̂t‖q
ct

=⇒ Ft(ωt) ≥ ‖ b̄ ‖p

In this way we can limit the number of possible values of ũt with constant
(ũt+1,, ũm) a priori.

26

This enumeration in the direction λt(ωt − ωt+1) can be stopped when
‖ b̄ = ‖p

∑m
i=t λic̃i for any (λt,, λm) with λt 6= 0.

For simplification here we limit the calculation only to the case∑s
i=t λic̃i with λt > 0. The enumeration is thus stopped only in the

direction ωt − ωt+1. Without this limitation with every stop different cases
must be considered.

Algorithm 3.4 ENUM with an Arbitrary Norm
INPUT: m, ci,bi, b̂i, µi,t for i = 1,,m and 1 ≤ t < i ≤ m

1. • s := t := 1, ũ1 := η1 := δ1 := 1, ν1 := y1 := ∆1 := 0

• ω1 := (0,, 0), c := ‖ b1 ‖p
• FOR i = 2,,m + 1

– c̃i := ui := ũi := νi := yi := ∆i := 0, νi := δi := 1
– ωi := (0,, 0)

2. WHILE t ≤ m

• c̃t := c̃t+1 + (yt + ũt)2ct

• IF c̃t < (R(‖ · ‖p)c)2

• THEN ωt := ωt+1 + (yt + ũt)b̂t
– IF t > 1
– THEN
∗ IF SCHNITTp (s, ωt,, ωs, c̃t,, c̃s, c) = 1
∗ THEN
· IF ηt = 1 THEN GO TO 3
· ηt := 1, ∆t := −∆t

· IF ∆tδt ≥ 0 THEN ∆t := ∆t + δt

· ũt := νt + ∆t

∗ ELSE
· t := t − 1, ηt := ∆t := 0
· yt :=

∑s
i=t+1 ũiµi,t

· ũt := νt := d−ytc
· IF ũt > −yi
· THEN δt := −1
· ELSE δt := 1

– ELSE
∗ IF ‖ ω1 ‖p < c

∗ THEN (u1,, us) := (ũ1,, ũs), c := ‖ ω1 ‖p
• – t := t + 1

– s := max(t, s)

27

– IF νt = 0
– THEN
∗ ∆t := −∆t

∗ IF ∆tδt ≥ 0 THEN ∆t := ∆t + δt

– ELSE ∆t := ∆t + δt

– ũt := νt + ∆t

3. END WHILE

OUTPUT: (u1,, um), c = ‖
∑m

i=1 uibi ‖p
The algorithm SCHNITTp works in the following way:

Algorithm 3.5 SCHNITTp
INPUT: s, ωt,, ωs, c̃t,, c̃s, c

1. Compute the minimum F of the function
f(λt,, λs) := c ‖

∑s
i=t λiωi ‖q −

∑s
i=t λic̃i with respect to a

subgroup of the vectors (λt,, λs) with λt > 0 and
∑s

i=t λic̃i > 0).
The most efficient constraint in practice is (λt,, λs) = (1, 0,, 0)

OUTPUT: 1, if F < 0 and 0 otherwise
ηt shows in how many directions the enumeration process of step t was

broken. If ηt = 1 and SCHNITTp(....) = 1 holds, then both directions can
be broken, which means that t can be increased by 1. By always choosing
a positive ũs the redundancy of the enumeration process could be avoided.
Thus at step s only one of the directions needs to be processed and ηs can
be initialized directly with 1. Here c is the lp-norm of the shortest lattice
vector.

The number of the knots, which are traversed throughout the
ENUM(j, k) algorithm , is proportional to the volume of the set, in which
the orthogonal vectors ωt lie. Without the algorithm SCHNITTp the set
is simply the l2-norm ball Sn(0, R(‖ · ‖p) ‖ b̄ ‖p). Through the constraint
(λt,, λm) = (1, 0,, 0) the restraint ‖ x ‖22 ≤ ‖ b̄ ‖p‖ x ‖q, for x ∈ Rn,
is reached. For l∞-norm this restraint means a decrease of the volume with
an exponential factor. The cost of this step is linear.

5.4 Enumeration for Infinity Norm

We consider here the case of lattices consisting only of integers. The l∞-
norm of the shortest lattice vector is therefore also an integer and since
R(‖ · ‖p) =

√
nc̃t < (R(‖ · ‖∞ c))2, it can be replaced by c̃t ≤ n(c − 1)2.

In practice often only l∞-norm equal to 1 is wanted. In such cases c
could be initialized with 2 and the enumeration is completed as soon as
such a norm is found. Thus a deterministic algorithm is found with which
all Knapsack problems with dimension up to 66 can be efficiently solved.

28

We consider the efficiency of the simplest case with
(λt,, λm) = (1, 0,, 0) with comparison to the complete enumeration
with respect to the Euclidean norm. The following holds:

1. Ft(ωt) ≤ d =⇒ each ν ∈ ±dn with ‖ ωt − 1
2ν ‖

2
2 ≤ nd2

4

2. minµ∈±dn ‖ ωt − 1
2ν ‖

2
2 ≤ nd2

4 ⇐⇒ ‖ ωt ‖22 ≤ d ‖ ωt ‖1.

This means that instead of searching for the shortest lattice vector in a
ball with a center 0 and a radius d

√
n we are searching in the conjunction

of 2n balls with centers (±d
2 ,,±

d
2) and a radius d

2

√
n. The volume Vn of

the conjunction of the smallest balls equals to

(2d)n
∫ 1

2
+ 1

2

√
n

0
∫ 1

2
+ 1

2

√
n

0 X(x1,, xn)dxn....dx1

In the equation above X(x1,,xn) =

{
1, if

∑n
i=1 x

2
i ≤

∑n
i=1 xi

0, otherwise
Through transformation we get

Vn = dn
∫ √n

1

∫
max(−1,−

√
n−x2

1)

√
n−x21

..

..
∫√n−x2

1−....−x2
n−1

max(−1,−
√
n−x2

1−....−x2
n−1)

1dxn....dx1

Thus V2 = (2 + π)d2, V3 = (2 + 4π)d3 and the volume of the big
ball is 2+π

2π for n = 2 and 2+4π
4
√

3π
for n = 3.

5.5 Time Bounds

Currently there is no proof of a polynomial upper bound for the BKZ al-
gorithm in either Euclidean or Infinity norm. It is however known that it
works very well in practice. It has a polynomial running time for a block
size less than 25. For β ≥ 25, where β is the block size, it is exponential in
the dimension. In this chapter therefore no real time proof is presented, but
only a basic description on how well the infinity norm enumeration works.

For the infinity norm, the analysis of the integrals, presented in the
previous section, is very costly and does not give an exact solution for n > 3.
The fraction of the volume is hence done with the help of the Monte-Carlo
approximation. The conjunction of the small ball is about (2+π

2π)n−1th of
the volume of the big ball. The rest of the costs for searching every knot of
the search tree, which are received from tests, is linear. The full cost of the
enumeration is thus reduced with an exponential factor.

A direct translation from the volume ration of the Gaussian volume
heuristic results in an approximation of A∞ of all cycles from step 2, which
gives a lower value than the one from the test runs.

A∞ ≈ (2+π
2π)k−jA(j, n) + 2

∑k
t=j+1

2+π
2π

k−j
A(t, n))

29

Thus the sum of all arithmetical operations is

O(nA∞) ≈ O(n · ((2+π
2π)k−j)A(j, n) + 2

∑k
t=j+1

2+π
2π

k−j
A(t, n))

30

References

[1] Hervé Daudé, Philippe Flajolet, and Brigitte Vallée. An analysis of the
gaussian algorithm for lattice reduction. pages 144–158, 1994.

[2] Michael Kaib. The gaußlattice basis reduction algorithm succeeds with
any norm. pages 275–286, 1991.

[3] Michael Kaib and Harald Ritter. Block reduction for arbitrary norms.
1994.

[4] Michael Kaib and Claus P. Schnorr. The generalized gauss reduction
algorithm. J. Algorithms, 21(3):565–578, 1996.

[5] Thorsten Koch. Zimpl user guide. 2006.

[6] A.K. Lenstra, H.W.jun. Lenstra, and Lászlo Lovász. Factoring polyno-
mials with rational coefficients. Math. Ann., 261:515–534, 1982.

[7] László Lovász and Herbert E. Scarf. The generalized basis reduction
algorithm. Math. Oper. Res., 17(3):751–764, 1992.

[8] Herbert E. Scarf and Laszlo Lovasz. The generalized basis reduction
algorithm. (946), June 1990.

[9] C. P. Schnorr. A more efficient algorithm for lattice basis reduction.
1985.

[10] C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction
algorithms. Theor. Comput. Sci., 53(2-3):201–224, 1987.

[11] C. P. Schnorr and M. Euchner. Lattice basis reduction: improved prac-
tical algorithms and solving subset sum problems. Math. Program.,
66(2):181–199, 1994.

[12] Brigitte Vallée. Gauss’ algorithm revisited. J. Algorithms, 12(4):556–
572, 1991.

	Introduction
	Mathematical Background
	Basic Definitions
	Lattices and Successive Minima
	Distance Functions

	Gauss' Algorithm
	 Gauss - reduced Bases
	Gauss Algorithm with Euclidean Norm
	Generalized Gauss Algorithm
	Infinity Norm Algorithm
	Time Bounds

	LLL
	LLL-reduced Basis
	LLL Algorithm
	LS Algorithm
	Computing the Distance Functions in Infinity Norm
	Time Bounds

	Block-Korkine-Zolotarev Algorithm
	BKZ-reduced lattice basis
	BKZ Algorithm with Euclidean Norm
	BKZ Algorithm with an Arbitrary Norm
	Enumeration for Infinity Norm
	Time Bounds

