
Compressed Sensing and
Linear Codes over Real Numbers

Fan Zhang and Henry D. Pfister
Department of Electrical and Computer Engineering

Texas A&M University
{fanzhang,hpfister}@tamu.edu

Abstract—Compressed sensing (CS) is a relatively new area
of signal processing and statistics that focuses on signal recon-
struction from a small number of linear (e.g., dot product) mea-
surements. In this paper, we analyze CS using tools from coding
theory because CS can also be viewed as syndrome-based source
coding of sparse vectors using linear codes over real numbers.
While coding theory does not typically deal with codes over real
numbers, there is actually a very close relationship between CS
and error-correcting codes over large discrete alphabets. This
connection leads naturally to new reconstruction methods and
analysis. In some cases, the resulting methods provably require
many fewer measurements than previous approaches.

I. INTRODUCTION

Compressed sensing (CS) is a framework for signal sensing
and compression that finds it origin in the sparse representation
of signals [4], [6], [3], [5], [2]. The basic idea is that any
n-dimensional signal, with a k-sparse representation in some
basis, can be reconstructed from m fixed linear dot-product
measurements where m = O (k lnn). In particular, m random
linear projections are often sufficient for reconstruction of the
signal. In many applications, the two relevant performance
measures are the oversampling ratio m/k required for good
performance and the computational complexity of reconstruc-
tion.

Optimal decoding (in terms of oversampling ratio) requires
a combinatorial search that is known to be NP-Hard [3].
Practical reconstruction algorithms tend to either be based
on linear programming (e.g., basis pursuit (BP) [4]) or low-
complexity iterative algorithms (e.g., Orthogonal Matching
Pursuit (OMP) [19]). A wide range of algorithms allow one to
trade-off the oversampling ratio for reconstruction complexity.

Representing an n-dimensional signal using m < n mea-
surements is largely an exercise in compression. Therefore,
there is a close connection between CS and information theory.
In particular, signal compression via random linear projections
(sometimes called syndrome source coding) dates back to the
1970s and is usually associated with Slepian-Wolf coding [18],
[21], [1].

In this paper, we explore the connection between CS,
syndrome source coding, and error-correcting codes. Recent
progress in capacity-achieving codes allows us to propose and
analyze sampling/reconstruction algorithms based on sparse-
graph codes and message-passing decoding [12]. The algo-
rithms have linear complexity in n and offer nearly optimal

oversampling ratios. Some challenges remain, however, for
their application in some CS systems.

There are a few significant differences between coding
theory and CS. The first is that coding theory typically uses
discrete alphabets (see [20] for an exception to this) while CS
deals with signals over the real numbers. Fortunately, some
codes designed for large discrete alphabets (e.g., the q-ary
symmetric channel) can be adapted to the real numbers. The
second is that CS is typically interested in the case where
the signal is very sparse. From a syndrome source coding
perspective, this implies that code rate is very high. The third
is distinction between reconstruction of all sufficiently sparse
signals (called uniform reconstruction) versus almost-all suf-
ficiently sparse signals (called non-uniform reconstruction).
Though coding theory and CS deal with both types, CS tends
to focus more on uniform reconstruction while coding theory
tends to focus more on non-uniform reconstruction.

II. BACKGROUND

A. Problem Statement

Compressed sensing (CS) originated with the observation
that many signal processing systems sample a large amount of
data (e.g., at the Nyquist rate), perform a linear transform (e.g.,
to a wavelet basis), and then throw all the small coefficients
away. If the locations of the transform coefficients with large
magnitude are known in advance, then one could just sample
those values directly and reduce the complexity enormously.
Compressed sensing is field that emerged when researchers
realized that random sampling could be used (with a small
penalty) to achieve the same result without prior knowledge
of where the coefficients of large magnitude are located.

Let x ∈ Rn be the signal vector, Φ ∈ Rm×n be the m× n
measurement matrix, and s = Φx be the m linear observations
of x. Given the observation s, the valid set of signal vectors
is

V (s) = {x ∈ Rn|Φx = s} . (1)

Since there is clearly no unique inverse when m < n, we
can only choose the “best” solution based on prior knowledge
of the signal. For example, if the signal components are i.i.d.
zero mean Gaussian random variables, then the maximum-
likelihood (ML) solution is the least-square solution

x̂ = arg min
x∈V (s)

‖x‖2 = ΦT
(
ΦΦT

)−1
s, (2)



where
(
‖x‖p

)p
=
∑n
i=1 |xi|

p for p ∈ (0,∞). If instead,
we know that the signal x is strictly sparse (e.g., entries are
non-zero with probability p < 1/2), then the ML solution (if
unique) satisfies

x̂ = arg min
x∈V (s)

‖x‖H , (3)

where ‖x‖H = limp→0 ‖x‖pp is the Hamming weight of
x. In both cases, the purpose of the prior distribution for
x is simply to provide a partial ordering of the set V (s)
so that one of the “best” elements can be chosen. In gen-
eral, if the signal components are drawn i.i.d. according to
fX(x) =

[
2Γ
(
α+1
α

)]−1
e−|x|

α

, then the ML solution (if
unique) satisfies

x̂ = arg min
x∈V (s)

‖x‖α . (4)

B. Connections with Coding Theory

Compressed sensing is closely related to a number of
other well-established research areas such as signal processing,
statistics, approximation theory, and information theory. In
approximation theory, the signal is modeled as an element in a
set S ⊂ Rn and one seeks an m-dimensional linear projection
that minimizes the maximum approximation error with respect
to some metric [5], [11]. In this case, good upper/lower bounds
have been derived for many interesting cases. Information
theory and coding theory have also been use to get interesting
results for CS [8], [16], [15], [22]. However, we believe this
connection still has many interesting results to offer.

Coding theory typically deals with error correction in a mes-
sage transmission setting. For example, a codeword c ∈ Fn is
chosen from the codebook C (over the field F) and transmitted
through a channel and received as ĉ where ĉ = c + e and
e ∈ Fn is the additive noise. With the received word ĉ and the
knowledge of the codebook C, the decoder tries to estimate
c (or equivalently e). For linear codes, the codebook C can
be described compactly in terms of its parity-check matrix
H ∈ Fm×n as C = {c ∈ Fn|Hc = 0}.

A syndrome decoder works by first calculating the syn-
drome s = Hĉ = H(c + e) = He and then finding the most
likely error patten ê given the syndrome [10]. We note that, in
contrast to standard coding theory, we assume that s, c, e, x are
column vectors. If the probability of an error vector e is strictly
decreasing w.r.t. some weight function, then the syndrome
decoder is equivalent to the minimum distance decoder w.r.t.
that weight function. For the q-ary symmetric channel, the
error probability is strictly decreasing w.r.t. Hamming weight
and the syndrome decoder is a minimum Hamming distance
decoder. In this case, error correction is only successful if e
is the sparsest vector that satisfies s = He.

A syndrome source coding system uses a linear code with
parity-check matrix H ∈ Fm×n to compress a vector x ∈ Fn
by computing its syndrome s = Hx [1]. Given a prior
distribution on x, the decoder reconstructs x by maximizing
Pr (x|s). The basic idea is that the vector x is treated as an
error vector for the transmission of some codeword c that

satisfies Hc = 0. Since successful error correction relies on the
fact that the error vector is sparse, we find that reconstruction is
only successful if x is the sparsest vector that satisfies s = Hx.

C. Low-Density Parity Check Codes

Low-density parity-check (LDPC) codes are linear codes
with a sparse parity-check matrix H . If the codes are defined
over Fq , the entries of H are elements from Fq and the parity-
check equations are also computed in Fq . Message-passing
decoding works on the natural bipartite graph associated with
the parity-check matrix [9]. The decoding complexity is linear
in the block length and linear in the number of iterations.

The ensemble of LDPC codes that we use in this paper
was introduced in [13], [14] and is defined by the edge
degree distribution (d.d.) functions λ(x) =

∑
k≥2 λkx

k−1 and
ρ(x) =

∑
k≥2 ρkx

k−1. In [13], the authors also design a class
of capacity-achieving codes for the binary erasure channel
(BEC) by carefully choosing the variable-node and check-node
degree distributions.

D. The q-ary Symmetric Channel and Verification Decoding

The q-SC channel is defined by

Pr(y|x) =

{
1− δ

δ/(q − 1)
if y = x

otherwise
,

where x, y ∈ Fq are the input and output of the channel respec-
tively. Verification decoding is a message-passing decoding
algorithm which marks messages as verified when they are
very likely to be correct. For example, if two independent
observations through a q-SC give the same value, then the
probability that value is not correct is roughly δ2/(q − 1).
From this, we find that verifying symbol nodes based on two
independent matching observations gives a probability of false
verification (FV) that approaches zero as q goes to infinity.

In [12], two decoding algorithms based on verification were
proposed. The first algorithm, dubbed LM1 in this paper, is
very similar to the peeling decoder for the erasure channel
from [13]. The algorithm works by sequentially verifying
code symbols and removing all edges attached to verified
symbols. To get started, any parity-check which sums to zero
is used to verify all adjacent code symbols with value “0”.
It proceeds by using parity-checks with degree-1 to verify
another code symbol and remove all its attached edges. The
second algorithm, dubbed LM2 in this paper, adds one more
rule. If any two parity-checks predict the same value for a code
symbol, then that symbol is verified (with that value) and all
its edges are removed. Decoding succeeds if all code symbols
become verified.

Since verification is based on the idea that two independent
error are unlikely to match when q is large, it is easily
generalized to F = R. In this case, two real numbers chosen
independently from continuous distributions will almost surely
be distinct.



III. MAIN RESULTS

A. Compressed Sensing and Coding

In this paper, we show that the basic CS problem can be
interpreted as a syndrome source coding problem and solved
using standard coding techniques generalized to F = R. In
particular, we will modify coding techniques designed for the
q-ary symmetric channel with large q [17], [12], [23]. In fact,
the reconstruction algorithm proposed in [16] for CS is almost
identical to the decoding algorithm proposed in [12] for the q-
ary symmetric channel. These approaches currently work only
for strictly sparse signals (i.e., many entries are exactly zero).
Generalizations to approximately sparse signals (i.e, ‖x‖p ≤
R for some 0 < p < 2) are currently underway.

In our approach, the measurement matrix Φ is chosen
to be the parity-check matrix of a low-density parity-check
(LDPC) code over R. Signal reconstruction is based on an
iterative message-passing decoder for this code. In particular,
verification decoding is used to mark parts of the signal which
are known correctly with high probability [17], [12], [23]. The
message-passing decoder is analyzed using density evolution
(DE) to track the average fraction of verified messages as
decoding progresses. If this fraction converges to 1, then
decoding is successful with high probability. We note that this
DE analysis can only establish non-uniform reconstruction.

Consider a CS system for a sequence of strictly sparse
signals of increasing dimension n with kn = bδnc non-zero
elements. For each n, the measurement matrix Φ is chosen
randomly from the ensemble of LDPC matrices parametrized
by (λ(x), ρ(x)). In this case, there is a threshold δ∗ such that,
for all δ < δ∗, iterative decoding will recover the original
signal with high probability as n → ∞. The number of
measurements produced by this system is the same as the
number of rows in Φ and is given by

mn =

∫ 1

0
ρ(x)dx∫ 1

0
λ(x)dx

n.

In this case, the required oversampling ratio is given by mn
δ∗n .

For a particular degree distribution (λ(x), ρ(x)) and decod-
ing rule, the threshold δ∗ can be computed with high precision
using DE. For example, the ensemble of measurement matrices
generated by the degree distribution

(
x2, x5

)
(i.e., 3 non-

zero elements (n.z.e.) per column and 6 n.z.e. per row) has
δ∗ ≈ 0.169 when the first decoding rule in [12] is used. This
corresponds to a required oversampling ratio of 0.5

0.169 ≈ 3. One
advantage this approach has over all previous results is that
the required oversampling ratio can be computed precisely.

Since CS is interested primarily in the case where δ is very
small or approaches 0 as n→∞, we also consider a “scaling
law” analysis of iterative decoding in the high rate regime.
This allows us to derive tight bounds on the DE thresholds in
limit as δ → 0. To make this precise, we consider sequences
of (j, l) regular LDPC code ensembles where j is fixed and
l→∞.

Theorem 1: Consider a CS system for strictly sparse signal
based on (j, l) regular LDPC code ensembles with LM1

reconstruction. Non-uniform reconstruction succeeds (w.h.p
as n → ∞) if δ < δ∗ = (l − 1)−j/(j−1) for j ≥ 3
and l ≥ 2. This results in a required oversampling ratio of

j/l
(l−1)−j/(j−1) < jl1/(j−1) = jδ∗−1/j .

Sketch of Proof: Using a scaling law for LM1 DE as
l→∞, we can show that DE converges in this case.

Corollary 1: For the non-uniform reconstruction with LM1,
choosing j =

⌈
ln 1

δ

⌉
results in a required oversampling ratio

of at most
⌈
ln 1

δ

⌉
e.

Theorem 2: Consider a CS system for strictly sparse signal
based on (4, l) regular LDPC code ensembles with LM2
reconstruction. Reconstruction succeeds (w.h.p as n → ∞)
if δ < δ∗ = (l − 1)−1 for l ≥ 2. This results in a required
oversampling ratio of 4/l

(l−1)−1 < 4. Therefore, LM2 achieves
a constant oversampling ratio as δ → 0.

Sketch of Proof: Using a scaling law for LM2 DE as
l→∞, we can show that DE converges in this case.

Conjecture 1: Consider a CS system for strictly sparse
signal based on (j, l) regular LDPC code ensembles with
LM1 reconstruction. A randomly chosen measurement matrix
(w.h.p as n → ∞) achieves uniform reconstruction of all
signals with δ < δ∗ = 1

2 (l − 1)−j/(j−2) for j ≥ 3 and
l ≥ 2. This results in a required oversampling ratio of

j/l
1
2 (l−1)−j/(j−2) < 2jl1/(j−2) = 2jδ∗−2/j .

Sketch of Proof: Using a scaling law for stopping set
analysis of LM1 decoding as l → ∞, we have shown this is
the correct scaling but there are still some details to verify.

Corollary 2: For uniform reconstruction with LM1, choos-
ing j =

⌈
ln 1

δ

⌉
results in a required oversampling ratio of at

most 2
⌈
ln 1

δ

⌉
e2.

B. Caveats

There is one drawback to this approach that may not be
obvious at first glance. The coding approach solves the CS
problem for the case the signal-of-interest is sparse in the
standard basis. In many cases, sampling occurs relative to
one basis and the signal is sparse in another basis. The linear
programming approach (i.e., basis pursuit) for signal recon-
struction handles this very elegantly by adding n auxiliary
variables and n linear equality constraints. On the other hand,
most iterative or fast approaches cannot handle this easily.

Of course, sampling in the wrong basis can also be handled
by a simple linear transform of the measurement matrix. The
problem with this approach is two-fold. First, the correct basis
may not be known in advance or the complexity of commu-
nicating the correct basis to the sensor may be prohibitive.
Second, randomized sampling may occur naturally as part of
some physical process and may not be controllable by the
sensor. In both cases, LP based reconstruction works without
any problem.

One possible solution is to use error-correcting codes and
decoders designed for channels with memory [7]. In this case,
the sampling basis can be distinct from the basis of sparsity
and iterative decoding has been shown to work quite well.



IV. CONCLUSION

In this paper, we discuss the connections between com-
pressed sensing (CS) and error-correcting codes. In particular,
we point out that CS is identical to syndrome source coding
[1] with linear codes over the real numbers. We propose and
analyze new techniques for CS by adapting the construction
and analysis of good codes for the q-ary symmetric channel
[17], [12], [23]. This results in linear-time algorithms for signal
reconstruction that have sparsity and oversampling thresholds
which can be computed precisely. We also analyze the scaling
of the oversampling ratio as the signal becomes extremely
sparse. One important new result is that non-uniform linear-
time reconstruction of strictly sparse signals is possible with
a constant oversampling ratio as the fraction of non-zero
elements goes to zero.
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